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ABSTRACT

Tropical cyclones (for example, hurricanes, ty-
phoons) are expected to intensify under a warming
climate, with uncertain effects on tropical forests.
These ecosystems contribute disproportionately to
greenhouse gas (GHG; carbon dioxide (CO,), me-
thane (CH,4) and nitrous oxide (N,0)) fluxes glob-
ally but there is high uncertainty in how these
fluxes will respond to the projected increase in the
frequency of severe tropical cyclones. To examine
how these natural disturbance events may alter
ecosystem processes in tropical forests, we studied
the effects of Hurricane Maria (2017), a category 4
storm, on soil GHG fluxes from a forest in Puerto
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Rico. We also asked how environmental conditions,
namely severity of tree canopy damage and topo-
graphic position, influenced spatial heterogeneity in
post-hurricane soil GHG emissions. Seven months
after Hurricane Maria, we observed an 18% in-
crease in soil CO, fluxes, a switch in CH4 fluxes
from net consumption toward net production, and a
threefold increase in N,O emissions relative to pre-
hurricane fluxes. None of these fluxes were sensi-
tive to topographic heterogeneity or the magnitude
of tree canopy damage, in contrast to the marked
soil GHG flux sensitivity to topography prior to the
storm. Upscaling the increase in soil N,O emissions
to the ecosystem level shows that greater emissions
of soil N,O following hurricanes also led to high
rates of nitrogen loss that, if sustained over a year,
would be equivalent to 30% of estimated losses of
inorganic nitrogen to runoff and groundwater.
Additionally, the combined hurricane-induced in-
creases in soil GHGs suggest a 25% increase in the
contribution of soil GHG emissions from this forest
to global warming, an effect that can persist for
several months after the storm. Taken together, our
results show that hurricane disturbance in coastal
tropical forests can, at least temporarily, shift the
radiative forcing of soils in these forests, exacer-
bating climate change.
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INTRODUCTION

Tropical forests represent major gross sources of
greenhouse gases (GHG) globally (Bouwman and
others 1995; Curry 2007; Bond-Lamberty and
Thomson 2010; Spahni and others 2011) but how
these ecosystems will respond to increases in tem-
perature and more variable precipitation with a
changing climate remains highly uncertain (Hunt-
ingford and others 2013; Cavaleri and others 2015).
Climate warming is expected to increase the fre-
quency and severity of several natural disturbance
events (McDowell and others 2020), including cy-
clonic storms (aka hurricanes, cyclones, and ty-
phoons) (Balaguru and others 2018; Bhatia and
others 2019), which represent the dominant nat-
ural disturbance in many coastal forests across the
tropics (Lugo 2008). Increases in the severity of
hurricanes further complicate our ability to predict
forest responses to climate change (Knutson and
others 2010; Richardson and others 2010; Shiels
and others 2015; Bhatia and others 2019). More
generally, predicting the effects of changing dis-
turbance regimes on tropical ecosystems, and the
consequences for GHG fluxes, is a key challenge for
global change research.

Severe hurricanes have the potential to alter the
short- and long-term dynamics of tropical forests
ecosystems and consequently, their contribution to
global GHG fluxes (McDowell 2001; Erickson and
Ayala 2004; Chambers and others 2007; Vargas
2012; Chen and others 2015; Reed and others
2020a). Changes in the soil environment following
a hurricane can increase both the magnitude and
variation in GHG fluxes compared to pre-hurricane
conditions. These changes include elevated light
and temperature in the understory (Richardson
and others 2010; Shiels and others 2015), reduced
evapotranspiration and increased throughfall and
soil moisture (Steudler and others 1991; Heartsill-
Scalley and others 2007; Richardson and others
2010), as well as high nutrient deposition and
decomposition rates (Lodge and others 1991; Os-
tertag and others 2003).

Debris from hurricane-induced tree damage and
mortality represent massive transfers of biomass
and nutrients that can significantly influence the
soil environment. Typically, nutrient supply to
forest soils increases following a hurricane (Lodge

and others 1991; Ostertag and others 2003; Silver
and others 2014; Gutierrez Del Arroyo and Silver
2018), reflecting rapid decomposition of litter and
woody debris generated by the storm (Chambers
and others 2007; Chen and others 2015) as well as
high rates of root mortality (Parrotta and Lodge
1991; Silver and Vogt 1993; Beard and others 2005;
Yaffar and others 2021). The loss of aboveground
biomass from trees can release up to 45% of
nutrients previously sequestered in plant tissues
(Scatena and others 1993). Higher soil inorganic N
concentrations and rates of soil nitrification after
hurricanes (Steudler and others 1991; Silver and
Vogt 1993; McDowell 2001; Erickson and Ayala
2004; Reed and others 2020a) are responsible for
an increased rate of soil N,O production (Steudler
and others 1991; Erickson and Ayala 2004). At the
same time, tree mortality and canopy damage can
lead to short-term declines in vegetation nutrient
demand (Richardson and others 2010) and above-
ground leaf litter production (Scatena and others
1996; Silver and others 2014). Increases in nutrient
availability can also lead to higher rates of root
production after the hurricane (Yaffar and others
2021), which could be amplified in trees with more
damage (Raich and others 2014).

Canopy damage also increases light penetration
to the understory for 18-24 months after a hurri-
cane (Fernandez and Fetcher 1991; Bellingham
and others 1996; Shiels and Gonzalez 2014), which
together with reduced vegetation demand for wa-
ter, can lead to increases in soil temperature, and
shifts in soil moisture and oxygen (Steudler and
others 1991; Richardson and others 2010; Shiels
and Gonzalez 2014; Reed and others 2020b). In-
creases in nutrient availability coupled with chan-
ges in soil temperature, moisture and oxygen can in
turn alter microbial community activity and cor-
responding rates of soil carbon (C) and nitrogen (N)
cycling, which strongly depend on soil conditions
(Cantrell and others 2014). Additionally, leaching
can remove soluble portions of these nutrients
from the ecosystem (McDowell 2001). Elevated
nutrient leaching after a hurricane can persist as
long as a decade (McDowell and others 2013;
McDowell and Liptzin 2014). These changes to soil
nutrients and environmental conditions in re-
sponse to hurricanes have the potential to alter soil
GHG fluxes, which are likely to vary significantly
across small spatial scales, corresponding to topo-
graphic position and the magnitude of tree damage,
among other factors (for example, Wood and Silver
2012).
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Several studies reported a significant influence of
micro-topographic position on soil GHG fluxes in
tropical forests as a result of variation in soil
nutrients, pH, and water content, on soil GHG
fluxes in tropical forests (for example, Wood and
Silver 2012 (nutrients, CO,, CH,4, N,O); see Cour-
tois and others 2018). In wet forests, soils in valleys
are typically wetter and have lower soil oxygen
than ridges, which creates soil redox conditions
that favor higher production of CH,, consumption
of N,O, and reduction of CO, effluxes (McSwiney
and others 2001; Wood and Silver 2012; O’Connell
and others 2018; Quebbeman and others 2021).
However, although the proximal effects of topog-
raphy on soil GHG fluxes may be long-lasting,
many of the changes to the soil temperature,
moisture, and nutrient availability following a
hurricane are transient, lasting between a few
months to 1-2 years while the forest recovers
(Steudler and others 1991; McDowell 2001; Erick-
son and Ayala 2004; Shiels and others 2014; Shiels
and Gonzalez 2015).

Patchiness in tree species coupled with high
interspecific variation in tree litter (Condit and
others 2000; Hattenschwiler and others 2008) and
throughfall chemistry (Wood and Silver 2012) also
creates spatial heterogeneity in soil nutrients (C, N,
and P) (Keller and others 2013; Waring and others
2015; Osborne and others 2017; Quebbeman and
others 2021). Hurricanes also cause differential
damage across tree species, with damage severity
related to species traits like successional status and
wood density (Zimmerman and others 1994; Can-
ham and others 2010; Uriarte and others 2019).
Areas with high tree damage after the hurricane
will have reduced nutrient demand and evapo-
transpiration, leading to increases in substrate
availability and soil moisture during the initial
phase of post-hurricane recovery (Steudler and
others 1991; Silver and others 1996; Richardson
and others 2010). Increases in litterfall, decompo-
sition, and soil nutrient availability in damaged
areas are also likely to lead to higher CO, fluxes
(Ostertag and others 2003; Cleveland and Town-
send 2006; Vargas 2012). However, decreases in
autotrophic (that is, roots, mycorrhizae, and other
rhizospheric microorganisms) respiration due to
the immediate increase in root mortality following
a hurricane (Parrotta and Lodge 1991; Silver and
Vogt 1993; Beard and others 2005) or changes in
rates of soil gas diffusion (Wood and others 2013;
Schimel 2018) may dampen hurricane-induce in-
creases in soil CO, fluxes. In contrast, areas with
low hurricane damage may have soil properties
more similar to pre-hurricane conditions. Thus, the

response of soil properties and GHG fluxes to hur-
ricanes is likely to be spatially variable and related
to differences in hurricane-induced damage,
topography, and species characteristics, resulting in
high spatial heterogeneity in the magnitude of
change in soil GHG fluxes.

In September 20, 2017, Hurricane Maria hit
Puerto Rico as a category 4 storm (Pasch 2018),
causing wide-scale defoliation, and tree damage
and mortality (Uriarte and others 2019; Hall and
others 2020). In this study, we examined the
storm’s effects on soil GHG fluxes from a sub-
tropical forest in Puerto Rico. We compared pre-
and post-hurricane soil GHG fluxes at the ecosys-
tem scale, evaluating how topography and spatial
heterogeneity in tree damage severity influenced
changes in soil GHG fluxes during the initial phase
of forest recovery. Specifically, we ask:

(1) To what degree do pre-hurricane soil GHG
fluxes change seven months after the hurri-
cane? In response to increases in soil temper-
ature and moisture and the balance of nutrient
supply and demand, we hypothesized an in-
crease in soil CO,, CH,4, and N,O fluxes (either
increased emission or a shift from consumption
to emission) following Hurricane Maria.

(2) Do fine-scale soil GHG fluxes vary spatially
with the severity of tree damage and topo-
graphic position? We hypothesized that fluxes
of soil CO,, CH,4, and N,O will be higher in
areas with more severely damaged trees during
the initial recovery phase due to associated
increased nutrient inputs and decreased nutri-
ent demand. Finally, we hypothesized that
canopy damage will lead to larger changes in
soil CHy and N,O fluxes in topographically
flatter than steep areas post-hurricane, because
of larger increases in soil moisture in valleys.

METHODS
Site Description

Soil GHG fluxes were measured in the Luquillo
Forest Dynamics Plot (LFDP) in the Luquillo
Experimental Forest in northeastern Puerto Rico
(SW corner 18° 20" N, 65° 49° W). The forest is
classified as a subtropical wet forest in the Hol-
dridge life zone system and has an average annual
rainfall of 3,500 mm per year (Ewel and Whitmore
1973). The LFDP is a 16-hectare forest plot estab-
lished in 1990. All stems in this plot with a diam-
eter greater than 1 cm at 1.30 m height (dbh) have
been mapped, identified to species, and measured
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based on the protocol fully described in (Thompson
and others 2002). Approximately every five years
since 1990, stems are re-measured and their status
is assessed, and new stems are added. The last
census of the LFDP prior to Hurricane Marfa was
completed in 2016, representing pre-hurricane
conditions in this study.

Beginning in January 2018, all trees at least
10 cm dbh in the LFDP were surveyed to assess
damage and immediate mortality from H. Maria
(Uriarte and others 2019). The survey recorded
several qualitative and quantitative observations of
tree damage resulting from the hurricane, such as
uprooting or stem break, and type of damage to
stems, tree crowns and branches. Using this infor-
mation, we classified each stem at least 10 ¢cm in
dbh into three damage classes: (1) no or light
damage ( £ 25% of crown volume removed by the
storm), (2) medium damage (25-75% of crown
volume lost through a combination of branch
damage and crown break), or (3) heavy or com-
plete (> 75% of the crown lost, stem snapped, root
break or tip-up) (see Canham and others (2010)
and Arellano and others (2021) for details).

We calculated concavity and slope for all trees
included in the analyses using a high-resolution
digital elevation model derived from a LiDAR fly-
over of the forest in 2011 (Wolf and others 2016).
We computed continuous measures of concavity
and slope by fitting a six-term polynomial over a
spatially moving window with a radius of r (m) to
the digital elevation model following methods de-
scribed in (Hurst and others 2012).

Pre-hurricane Gas Soil Flux Collection

Net fluxes of CO,, CH,, and N,O were measured
from the soil at the base of 24 individuals of each of
five focal species (120 trees total) in the LFDP.
These species (Casearia arborea, Dacryodes excelsa,
Inga laurina, Manilkara bidentata, and Prestoea
acuminata var. montana) represent a range of life
history strategies and are the five most abundant
species in the plot, accounting for 68% of stems
with a dbh at least 10 cm in the 2016 census of the
LFDP. Individual trees at least 10 cm dbh were
randomly chosen using the 2016 LEDP census data
after stratifying for topographic position (ridge,
valley) within each species. For individuals selected
in locations where GHG flux measurements were
not possible, (that is, rocky outcrops), a nearby
individual of the same species was selected. Each
tree was sampled for pre-hurricane measurements
once in May 2017 and again in July 2017. To
capture a single, pre-hurricane measurement for

each of the CO,, CH,4, and N,O fluxes, we averaged
the two pre-hurricane samples into a single esti-
mate for each individual tree.

To measure soil GHG fluxes, a 40 cm diameter,
6.4 cm height (8.04 L) chamber was placed on the
soil surface at 50 cm from the base of each indi-
vidual tree. A seal was created between the
chamber edges and the soil surface by fitting robust
plastic sheeting tightly around the base of the
chamber and weighting the sheeting with heavy
chains (Min and others 2021; Quebbeman and
others 2021). This method does not require
inserting collars into the soil, so it minimizes soil
disturbance, but the tradeoff is that the seal from
the weighted sheeting is not as tight as a collar base.
Atintervals of 0, 5, 15, and 25 min after sealing the
chamber, gas samples were withdrawn from the
chambers through a septum in the top of the
chamber and transferred to pre-evacuated Restek
vials fitted with robust Geo-Microbial Technologies
septa, which our internal tests have shown are gas
tight for at least a year. As an additional check on
sample leaks, we over pressurized the sample vials
(15 mL sample in 10 mL vials). Prior to extracting
each sample, we used the sampling syringe to mix
the air in the chamber by plunging the full volume
of the syringe three times. After sampling, septa
were sealed with silicon sealant to maintain posi-
tive pressurization. All gas samples were air trans-
ported back to Columbia University in New York
for analysis. Soil moisture (HydroSense II: 12 cm
depth) was measured at the end of each gas sam-
pling. To examine potential differences in soil
moisture that may have resulted from differences
in rainfall prior to sampling, we used cumulative
rainfall data for the 2-days preceding each sampling
event collected at the nearby El Verde Field Station.
This time window is most closely associated with
soil moisture at the site (Uriarte and others 2018).

Post-hurricane Soil Gas Flux Collection

Between April 18 and May 2, 2018, we used the
same methods to sample post-hurricane GHG
fluxes from the base of 22 to 33 individuals (Supp.
Table 1) of each of the five focal tree species sam-
pled before the hurricane. These five focal tree
species accounted for 72.5% of trees at least 10 cm
dbh at the time of the damage census and suffered a
range of damage severities (Figure 1).

Individuals sampled in 2017 were resampled if
they survived the hurricane (Supp. Table 1). When
selected pre-hurricane trees were either sacrificed
or could not be accessed because of fallen debris,
we selected a nearby tree (< 30 m distance) of the
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Figure 1. Proportion of trees 2 10 cm dbh in the LFDP in
each canopy damage category following Hurricane
Maria. The five focal species represent 72.5% of
trees 2 10 cm dbh in the LFDP. See Supplementary
Table 1 for damage categories in sampled individuals.

same species with similar canopy damage status
and topographic position, such that we had
approximately 10 individuals representing each of
the three canopy damage classes (light, medium, or
heavy damage) for each of the five focal tree spe-
cies. For the palm P. acuminata, we were only able
to sample individuals with light canopy damage
because this species cannot survive if the single
terminal bud is damaged (Zimmerman and others
1994; Uriarte and others 2019). We also calculated
proportion of trees damaged within various dis-
tance of the focal tree using various metrics (See
Supplementary Methods and Supp. Figure 1 for
details).

GHG Laboratory Analysis

For both pre- and post-hurricane gas samples, the
concentrations of soil CO,, CH;, and N,O were
analyzed using gas chromatography (a series of
two, 2 m Haysep-D columns; SRI 8610C, SRI
Instruments, Torrance, CA, USA) with a Nickel-63
electron capture detector for N,O and a flame
ionization detector equipped with a methanizer for
soil CO, and CHy. Soil GHG fluxes were calculated
from the quadratic change of the gas concentra-
tions over time after considering the chamber vol-
ume and air temperature at the time of collection.
Chamber flux measurements that had quadratic fits
with R? < 0.60 were discarded, as in Quebbeman
and others (2021). Negative fluxes represent net
uptake into the soil, whereas positive values rep-
resent net soil emissions. All soil GHG flux mea-

surements with negative CO, flux estimates were
discarded, as they suggest an issue with the sam-
pling chamber placement and seal. The final total
number of usable samples is provided in Supp.
Table 2.

Statistical Analysis

To compare pre- and post-hurricane soil GHG flux
measurements, we fitted a Bayesian linear model to
both pre- and post-hurricane measurements com-
bined for each gas (hereafter referred as M1). Be-
cause previous work found significant relationships
between topography and pre-hurricane soil GHG
flux measurements (Quebbeman and others 2021),
we also included concavity and slope as model
covariates in this model. Positive values of con-
cavity correspond to valleys and negative values
represent ridges. The optimal spatial window for
these topographic metrics were estimated for each
soil GHG flux by maximizing the likelihood of the
data using a model that included only concavity
and slope as covariates (see details in Quebbeman
and others (2021)). Measurements across damage
severities were treated as one category for post-
hurricane measurements in M1, that is, we did not
include damage severity as a covariate in this
model.

To compare the effect of canopy damage severity
and topographic position on post-hurricane soil
GHG flux measurements, we fitted an additional
model with damage classes (light, medium, and
heavy) and topographic position (concavity and
slope) as covariates (hereafter referred as M2).
Posterior distributions of parameters were esti-
mated using Markov chain Monte Carlo (MCMC)
methods using the rjags R package (Plummer
2003). Normal likelihood distributions were used
for soil CO,, CH,4, and N,O fluxes and three chains
were computed for each parameter with uninfor-
mative priors. The first 5,000 iterations were dis-
carded, and each chain ran for 10,000 iterations.
Convergence was assessed by visually inspecting
trace plots of chains. Significant differences were
determined by determining overlap in the 95%
credible intervals for parameter estimates.

We then assessed the effects of the hurricane on
scaled-up estimates of ecosystem soil GHG emis-
sions, using parameter estimates from M1 and M2
to estimate overall ecosystem-scale soil GHG
emissions for the 16-ha LFDP. To test for differ-
ences between pre- and post-hurricane ecosystem-
scale GHG emissions, we used parameter estimates
from M1 to derive pre-hurricane soil flux for each
tree at least 10 cm dbh in the LFDP. For post-hur-
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ricane conditions, we examined the effect of dam-
age severity on estimates of ecosystem-scale GHG
emissions using the canopy damage severity re-
corded for trees during the 2018 hurricane damage
assessment and parameter estimates from M2. We
then scaled each individual tree’s soil gas flux
estimate by a fraction of area of the LFDP using
Dirichlet tessellation (spatstat: Baddeley and others
(2016)). The tessellation was calculated by dividing
the area of the LFDP into convex, non-overlapping
and perfectly complementary polygons for each
individual tree at least 10 cm dbh regardless of
species identity (see detail in (Quebbeman and
others 2021)). The size of each polygon was influ-
enced by the distance to nearest neighbors and
scaled by tree size, such that, on average, a large
tree represents a larger fraction of LFDP area than a
small tree. Ecosystem-scale soil GHG emission
estimates were then calculated by summing soil
GHG fluxes across the estimates for all individual
trees. To incorporate uncertainty in coefficient
estimates into our ecosystem-scale GHG estimates,
we calculated ecosystem-scale soil GHG emissions
as a derived parameter within each model; this al-
lowed us to estimate credible intervals for each
ecosystem-scale soil GHG estimate. Differences be-
tween model estimates were significant if the 95%
credible intervals are non-overlapping.

To compare the combined effect of ecosystem-
scale soil CO,, CH,4, and N,O emissions, we used
global warming potentials at the standard 20 and
100 year equivalencies to calculate a CO,-equiva-
lent ecosystem emission for each model. Soil CH4
fluxes were scaled by 72 (20 year) and 25
(100 year), N,O fluxes by 289 (20 year) and 298
(100 year), and carbon dioxide fluxes by 1. Total
CO,-equivalent estimates for each model were
calculated as the sum of scaled soil CO,, CH,, and
N,O estimates.

REsuLTS
Pre- and Post-hurricane Soil GHG Fluxes

Post-hurricane soil CO, fluxes were higher
(P < 0.05; 95% credible intervals) than pre-hur-
ricane measurements (medians of 3.36 vs. 2.83 g
CO,-C m~? day~!, respectively; Figure 2a; Supp.
Table 3). Similarly, net soil CH, fluxes increased
marginally (P < 0.10; 90% credible intervals)
shifting from net soil CH; consumption to net
production in the LFDP following Hurricane Maria
(medians of 0.69 post- vs. — 0.41 mg CH4-C m™
2 day~! pre-hurricane; Figure 2b; Supp. Table 3).
Net soil N,O fluxes in the LFEDP differed substan-
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Figure 2. Boxplots of soil GHG flux measurements pre-
and post-hurricane. CO, (a), CH4 (b), and N,O (c) for
pre- and post-hurricane measurements, (M1l) and
measurements by damage severity (M2). All models
include topographic position. Open circles with lines
represent the model coefficient estimates and 95%
credible intervals.

tially between pre- and post-hurricane (P < 0.05;
95% credible intervals), increasing from 0.18 to
0.51 mg N,O-N m~? day™' (Figure 2c; Supp. Ta-
ble 3). This represents a nearly threefold increase in
net soil N,O production.

Differences in rainfall and soil moisture might
account for these changes in soil GHG fluxes.
Rainfall was lower during the post-hurricane
sampling period than in the pre-hurricane cam-
paign (Meanp,. = 30.33 mm, Meany,, = 9.75 mm,
F=282.16, df. =1, 992, P < 00,001) but soil
moisture was slightly higher after the hurricane
(Mean,,. = 42.24 mm, Mean,,,g = 45.59 mm,
F=17.01, d.f. =1, 788, P < 00,001). Although
rainfall was lower after the hurricane, under the
same antecedent rainfall conditions, average soil
moisture was slightly higher after the hurricane
(Figure 3, Supp. Table 4).

Prior to the hurricane, we observed significant
relationships between concavity and soil fluxes of
CH, (0.53 mg CH,;-C m *day ' per standard
deviation in concavity) and N,O (— 0.18 mg N,O-
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Figure 3. The relationship between 2-day cumulative
antecedent rainfall and soil moisture diftered between
the pre-hurricane and post-hurricane campaigns. Under
the same antecedent rainfall conditions, soil moisture
was higher after the hurricane (See Supplementary
Table 4 for ANCOVA results).

N m % day ™' per standard deviation in concavity)
(Quebbeman and others 2021) and lower soil CO,
fluxes in steeper slopes (— 0.2 g CO>-C m ™~ day ™"
per standard deviation in slope). The relationship
between topography and soil CH4 and N,O fluxes
was not evident after the storm. However, soil CO,
fluxes were lower in valleys than ridges after the
storm (— 0.44 g CO,-C m > day ! per standard
deviation change in concavity).

Soil GHG Fluxes Across Damage
Severities

There was no statistical difference in any soil GHG
fluxes across damage severity. Median soil CO,
fluxes for light, medium, and heavy damaged cat-
egories were 3.33, 3.26, and 3.57 g CO,-C m~
2 day~!, respectively (Figure 2a; Supp. Table 3).
Median net soil CH,4 fluxes for light, medium, and
heavy damage categories were 0.69, 0.22, and
1.3 mg CH4-C m™ 2 day ™', respectively (Figure 2b;
Supp. Table 3). Median soil N,O fluxes for light,
medium, and heavy damage severities were 0.55,
0.39, and 0.43 mg N,O-N m > day ', respectively
(Figure 2¢; Supp. Table 3). We also failed to un-
cover any significant interactions between topog-
raphy (neither concavity nor slope) and damage
severity.
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Figure 4. Scaled-up soil GHG emission estimates. Each
panel shows estimates using M1 in the left half (the pre-
hurricane average and the post-hurricane average) and
M2 in the right half (true damage severity in the LFDP
and estimates assuming that all trees had low or high
damage severity). Points depict the median model
estimates, black lines represent 95% credible intervals
for that median, and gray lines 90% credible intervals.

Pre- and Post-hurricane Ecosystem-Scale
Soil GHG Emissions

We observed higher upscaled soil ecosystem GHG
emissions post-hurricane. We estimated median
post-hurricane upscaled soil CO, emissions to be
33.67 compared to 28.36 kg CO,-C ha™' day™! for
pre-hurricane conditions (P < 0.05; Figure 4a).
Similarly, upscaled soil CH, fluxes shifted from a
net CH, consumption of 4.1 g CH,-C ha™' day™!
pre-hurricane toward a net CH, production of 6.9 g
CH,-C ha 'day ' post-hurricane (Figure 4b).
Estimates of soil N20O emission, upscaled to the
ecosystem, showed an increase in median N,O
production from 1.8 to 5.07 g N>O-N ha ' day™!
(P < 0.05) following Hurricane Maria (Figure 4c).

Pre- and post-hurricane differences in estimates
of scaled-up soil ecosystem GHG emissions trans-



A. W. Quebbeman and others

late to significant differences in the global warming
potential at both 20- and 100-year equivalencies.
Pre-hurricane 20- and 100-year equivalencies were
28.58 and 28.70 kg CO,-C ha' day !, respectively
(Figure 5) compared to the respective post-hurri-
cane estimates of 35.62 and 35.34 kg CO,-C ha™
"' day~!. There were no significant differences in
global warming potentials across damage severities,
at least over the time period we considered.

DiscussioN

Comparing pre- and post-hurricane soil GHG
fluxes, we found an increase in emissions even
seven months after the storm. The most dramatic
change we found was an increase in ecosystem-
scale soil N,O production that was nearly 3 times
higher than pre-hurricane production. Generally,
soil N,O production rises following hurricane-dri-
ven increases in leaf litter and woody debris, which
increase nitrogen availability (ammonium pools
and rates of net N-mineralization and net nitrifi-
cation). The stark rise in N,O production in our
study is consistent with the higher soil inorganic N
availability (Silver and others 1996; Erickson and
Avyala 2004; Wood and Silver 2012) and elevated N
leaching (McDowell and others 2013; McDowell
and Liptzin 2014) observed in this forest following
previous hurricanes. These conditions can last as
long as 18 months (Shiels and others 2014). This
forest is characterized by high N availability that is
readily leached from soils, unlike available soil P,
which is generally considered the limiting nutrient
and is known to bind closely to the iron-rich soils
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Figure 5. CO,-equivalent ecosystem GHG emissions.
Values represent the 20-year (solid lines) and 100-year
(dashed lines) CO,-equivalent estimates (combined CO,,
CH,4, and N, O fluxes) for each model. Left half (M1): the
pre-hurricane average and the post hurricane average.
Right half (M2): true damage severity in the LFDP, and
estimates assuming all trees had low or high damage
severity. Error bars show 95% credible intervals.

(Vitousek and Sanford 1986; Chacon and Dezzeo
2004).

Increases in soil CO, and CH, post-hurricane
fluxes were more modest in comparison with
changes in N,O fluxes. The increase in these fluxes
is consistent with previous studies in Puerto Rico
identifying increases in decomposition and micro-
bial activity following hurricanes (Ostertag and
others 2003; Cantrell and others 2014). However,
high rates of fine root mortality immediately fol-
lowing hurricanes (Parrotta and Lodge 1991; Silver
and Vogt 1993; Yaffar and others 2021) could lead
to a temporary decrease in autotrophic soil respi-
ration and thereby dampen the increase in CO,
fluxes. However, in a nearby forest Yaffar and
others (2021), found a 2.8- fold increase in root
biomass in the 9 months following Hurricane
Maria, which could account for the observed in-
crease in soil CO, fluxes. The shift from net CH4
consumption toward net production, coupled with
the higher soil moisture observed after the storm,
suggests a more anoxic post-hurricane soil envi-
ronment compared pre-hurricane conditions
(Shiels and others 2014; Reed and others 2020b),
given that methanogens thrive under anoxic con-
ditions. Higher anoxia post-hurricane may result
from reduced vegetation uptake and evapotran-
spiration and higher throughfall (Shiels and Gon-
zalez 2014).

Contrary to our expectations, the increase in
GHG fluxes post-hurricane Maria did not differ by
damage severity of the focal trees. It is possible that
individual tree assessments of damage do not re-
flect canopy changes in the neighborhood of the
focal trees, which together with variation species’
vulnerabilities to hurricane damage (Uriarte and
others 2019), may have shifted the nearby soil
environment. However, in addition to the focal tree
method, we also used metrics of neighborhood
damage calculated as the average of nearby tree
damage categories, which also showed no effect of
damage on GHG fluxes. Homogenization of debris
and leaf litter deposition following a hurricane
(Lodge and others 1991) is another possible reason
for the pattern. A canopy trimming experiment in
this forest (Shiels and others 2014) found that litter
deposition had more significant effects on soil C, N,
and P pools than canopy opening (that is, simulated
damage) (Gutierrez Del Arroyo and Silver 2018),
which primarily affected the nutrient demand of
canopy trees by shifting plant community compo-
sition (Shiels and others 2010) and litterfall nutri-
ent concentrations (Silver and others 2014). Our
finding that GHG fluxes did not vary by canopy
damage seven months after the hurricane, in
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addition to this trimming experiment, suggest that
the magnitude of canopy damage is a poor predic-
tor of soil processes and soil GHG fluxes in this
forest following a hurricane.

The effects of canopy damage and differences in
nutrient inputs associated with species’ litter
chemistry may also be dampened by other envi-
ronmental factors. Topography (both slope and
concavity) has previously been shown to affect
GHG fluxes in this forest (McSwiney and others
2001; Quebbeman and others 2021). The rela-
tionship between topography and GHG fluxes was
weaker post-hurricane. The overall negative rela-
tionship between CO, and concavity, the only
significant relationship, indicates that soil CO,
fluxes were lower in valleys compared to ridges.
This may be due to lower rates of gas diffusion or
decreases in microbial activity in wetter valley soils
(Silver and others 1999).

We observed upscaled soil N>,O emissions nearly
3 times higher than pre-hurricane N,O losses,
which is undoubtedly an underestimate of total
gaseous N loss to the system. Other N losses
through nitrification and denitrification include N,
NO, and NO,, all of which may equal or exceed
N,O losses (Pilegaard 2013), not to mention
ammonia volatilization. Additionally, if we scale
our estimates of soil N,O loss up to annual fluxes
by assuming constant fluxes throughout the year
(which has many caveats), the value (1.84 kg N,O-
N ha~! year ') is nearly 30% that of estimates of
nitrogen losses through runoff and groundwater
following Hurricane Hugo in 1989 (5.29 kg NO5-N
ha ' year ! and 0.54 kg NH,-N ha ' year ',
respectively; (Schaefer and others 2000)) and 50%
that of a previous estimate of total gaseous N losses
in this forest (1-4 kg N ha™' year™' including N,,
N,O, NO,, and NO; (Chestnut and others 1999)).
Gaseous soil N,O losses following Hurricane Maria,
if constant for a year, account for 0.27% of the
estimated aboveground nitrogen pool for this forest
(~ 670 kg N ha™!; Scatena and others (1996)).
This represents a major nitrogen loss from this
forest, nearly equal to rates of atmospheric N
deposition (2-4 kg N ha™! y~'; (Chestnut and
others 1999)), though lower than biological N fix-
ation (10 kg Nha™' y™'; (Cusack and others
2009)). Previous studies at the site have shown that
nitrate concentrations in soil solution can remain
elevated for almost a decade after the passage of a
storm (McDowell and others 2013). Thus, more
frequent or intense hurricanes could shift forests
into a new state characterized by high nitrogen loss
and lower soil N concentrations, which may slow

forest biomass recovery (Walker and others 1996;
Beard and others 2005).

Improving our understanding of nitrogen and
carbon losses may help us predict shifts in the
carbon balance of forests under climate change.
Our work suggests that hurricanes increase soil
GHG emissions, at least temporarily. However,
predicting the long-term effects of more frequent
severe hurricanes on GHG fluxes is far more com-
plicated since it will depend on the degree of forest
recovery and productivity, and therefore on long-
term forest carbon uptake after storms. Tree species
differ in their susceptibility to disturbance by a
wind of a given intensity, the nature of the damage
they sustain from a given wind storm intensity,
their recovery from wind disturbance at both the
individual plant level through repair of damage,
and at the population level through reproduction,
seedling establishment, and juvenile response to
enhanced light availability (Canham and others
2010; Uriarte and others 2009; Walker 1991; Zim-
merman and others 1994; Uriarte and others 2019).
Because hurricanes tend to damage larger trees,
storm damage may increase short-term productiv-
ity by favoring rapid understory tree growth (Uri-
arte and Papaik 2016). However, losses of carbon in
downed biomass and differences among species
that benefit from wind damage in carbon uptake
relative to those present before a storm may
counteract these short-term gains over a longer
time period (Fisk and others 2013;Uriarte and Pa-
paik 2016). Understanding the relative importance
of these seemingly countervailing impacts on long-
term changes in forest composition and carbon
uptake can be furthered by the use of models (Fisk
and others 2013).

Although most models estimating tropical forest
response to climate change ignore hurricanes
(Huntingford and others 2013; Zhou and others
2013; Cavaleri and others 2015), models of tem-
perate forests that include hurricanes predict a shift
from net carbon sinks to net carbon sources with
increasing hurricane severity and frequency (Fisk
and others 2013). However, these studies in tem-
perate forest primarily focus on carbon storage in
aboveground biomass and do not consider the ef-
fect of nitrogen losses on biomass recovery.
Including N,O emissions in the calculation could
change the predictions considerably. According to
our results, N,O losses accounted for 4.2% of the
post-hurricane GHG-induced radiative forcing
(compared to 1.8% pre-hurricane) and the com-
bined increase in upscaled CO,, CH,, and N,O soil
emissions we observed translates to an increase in
forest soil GHG emissions of about 25% in global
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warming potential equivalency compared to pre-
hurricane emissions. These results suggest that
more frequent severe hurricanes may exacerbate
climate change by switching tropical forests from
long-term net carbon sinks to contributors of global
warming potential equivalent GHG emissions, at
least temporarily.

Although the limitation of forest recovery by
nitrogen after hurricanes is poorly understood,
there is evidence that forests on soils with increased
nitrogen pools from previous land-use recover
faster than nearby forests (Beard and others 2005)
and that increases in coarse woody debris can
immobilize soil nitrogen and limit biomass recovery
(Zimmerman and others 1995). Following Hurri-
cane Hugo, live aboveground biomass and nitrogen
in our study site decreased by nearly 50% (Scatena
and others 1996) and both took approximately
5 years to recover to pre-hurricane levels (Scatena
and others 1996). Frequent hurricanes could
therefore lead to a depleted nitrogen pool due to
increased losses to groundwater leaching and gas-
eous emissions and could affect the recovery of
forests and the role tropical forests will play in cli-
mate change mitigation in the future.

As large-scale disturbances, hurricanes have the
power to drastically alter the trajectory and state of
tropical forests (Uriarte and others 2009; McDowell
and others 2020). These ecosystems have the
potential to shift from net carbon sinks to net
sources if the frequency or intensity of storms in-
crease to the point that forests fail to recover be-
tween hurricane events. Constraints on biomass
recovery have primarily focused on successional
trajectories and species growth rates and few have
considered nutrients as a limiting factor in forest
regeneration post-hurricanes. However, removal of
debris after Hurricane Hugo at the study site caused
a significant decline in tree diameter increment
relative to controls (Walker and others 1996) and a
canopy and debris manipulation study also found
that debris increased forest productivity (Shiels and
others 2014). We observed a dramatic shift in soil
GHG emissions following Hurricane Maria, driven
largely by increases in soil N,O emissions that, in
addition to nitrogen leaching through groundwa-
ter, represent a net loss of nitrogen from the forest
that has the potential to limit biomass recovery in
the future. Based on these findings, we recommend
that soil GHG production in forests following hur-
ricanes, and the subsequent loss of nitrogen from
the system, both be considered when modeling
forest responses to climate change. Without such
considerations, projections of forest growth may

overestimate the ability of tropical forests to se-
quester carbon and mitigate climate change.
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