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Predicting Hand-Object Interaction for Improved
Haptic Feedback in Mixed Reality

M. Salvato

Abstract—Accurately detecting when a user begins interaction
with virtual objects is necessary for compelling multi-sensory expe-
riences in mixed reality. To address inherent sensing, computation,
display, and actuation latency, we propose to predict when a user
will begin touch interaction with a virtual object before it occurs.
We hypothesize that the sequence of hand poses when approaching
an object, combined with object pose, contain sufficient information
to predict when the user will begin contact. By leveraging this infor-
mation, we could reduce or eliminate latency in providing haptic
feedback during virtual object interaction. We focus on small time
horizons, on the order of 100 ms, to overcome sense-to-actuation
latency for haptic feedback in mixed reality systems. We use a time
series of tracked hand poses, along with virtual object geometry
to perform our prediction. By calculating minimum hand-object
distance and feeding those along with hand poses to a self-attention-
based network, we achieve approximately 52.8 ms of timing error
for a 100 ms prediction horizon. Additionally, we test our system
against different levels of tracking and hand-object alignment
noise, finding minimal change in timing error. By contrast, when
only extrapolating joint and hand velocities, we find that timing
error consistently exceeds the prediction horizon.

Index Terms—Grasping, haptics and haptic interfaces, human
detection and tracking, human and humanoid motion analysis and
synthesis.

I. INTRODUCTION

OMPELLING virtual and augmented reality experiences
C with haptic feedback require that virtual object interac-
tions occur smoothly and with minimal latency [1]-[3]. In
virtual reality, humans can detect errors in haptic stimulation
timing that are more than 15 ms before or 50 ms after visual
stimulation [4]. Additionally, [5] found 45 ms to be the required
temporal resolution for optimal realism in visuo-haptic inter-
faces. While state-of-the-art hand tracking can have latency as
low as 13ms [6], hand pose reconstruction errors [7], especially
when exacerbated by errors such as blurring [8] or occlusion,
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result in reduced tracking accuracy [7] and consequently timing
errors for human-object interaction. This reduces realism and
can create force-feedback instability for haptics. Furthermore,
haptic device latency due to hardware limitations introduces ad-
ditional challenges. For example, low speed, encountered-type
haptic devices have visual haptic latency as high as 200 ms [9]. A
recent haptic latency testbed had approximately 100 ms latency
between a sensed tap and haptic feedback [4]. These issues
highlight the need to consider novel approaches to augment hand
tracking for haptic interaction, in order to accurately determine
touch interaction timing and movement with maximal accuracy.
Specifically, by predicting contact before it happens, we can
circumvent such latencies by sending the actuation signal to the
haptic device early, resulting in more precise haptic feedback
timing.

To address this challenge, we propose an interaction-
expectation model for hands interacting with virtual objects
and demonstrate its ability to predict contact timing in advance
(Fig. 1). We hypothesize that changes in hand pose over time
encode information about when the human expects object inter-
action to begin, and develop an interaction-expectation model
based on this hypothesis. The interaction-expectation model
augments existing hand tracking systems by providing predicted
future hand-object interaction timing. These predictions can be
used to reduce object interaction latency resulting in improved
haptic interaction timing and increasing realism in mixed reality
systems. Our model uses a recorded history of hand points,
as well as virtual object pose, as input to predict upcoming
hand-object interaction before it begins. The output of our model
is the probability of contact for a fixed time horizon into the
future. To achieve this, our model uses an architecture based on
fully connected layers with skip connections, combined with
self-attention [11], trained on the publicly available GRAB
dataset [12]. We compare the performance of our model when
using as input either the full mesh representation of the hand,
or only the joint vertices, with different levels of measurement
noise. As an evaluation metric, we use the accuracy of first
detected contact time by the model.

In sum, our paper presents a predictive hand-object
interaction-expectation model that is learned from human grasp-
ing data. The main contributions are:

1) By using a history of hand pose information, our model
predicts contact before it occurs with an average timing
error of 52.8 ms for a prediction horizon of 100 ms. By
contrast, extrapolating joint and hand velocities into the
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Fig.1. Theinteraction-expectation model predicts contact with a virtual object
before it occurs. As a demonstrative example, the user begins reaching for the
virtual apple. We predict the interaction before it occurs. This information can
be communicated to a haptic device (picture from [10]), so it can provide haptic
feedback at the correct time, unhindered by sense-to-actuation latency.

future and checking mesh to mesh contact yields an error
of 129.7 ms.

2) We study the effectiveness of using different hand repre-
sentations, specifically full hand meshes or joint vertices
only.

3) We show that our proposed model is robust to noise. For
per point Gaussian noise with a mean error of 30 mm, we
find a 1.4 ms increase in timing error. An additional 5 mm
of translational noise across the whole hand results in an
additional 2.2 ms of error.

4) We demonstrate that our model generalizes to grasping
behavior of both new users and new objects.

II. RELATED WORK

The increased availability of mixed reality headsets has
demonstrated the importance of visual hand tracking. For ex-
ample, the Oculus Quest [13], uses a tracking pipeline that
detects a hand, determines the joint pose, and creates a mesh
of it. Concurrently, a number of wearable technologies for
haptic feedback in virtual reality have been developed to give
rich mixed reality experiences to users in a variety of forms,
such as wrist-worn devices that provide haptic feedback not
collocated with the stimulus [10], fingertip devices designed
to give cutaneous feedback to the skin on the fingertip as a
user interacts with virtual objects [14], encountered-type haptic
devices such as robotics shape displays where a robot moves a
tangible surface to the point of interaction [9], [15], as well as
devices capable of applying forces across finger joints, allowing
the device to stop the motion of the user’s fingers as they grab an
object [16]. Unfortunately, the hand tracking methods popular
for virtual reality headsets [13] are insufficient for many of these
haptic devices. This is because these methodologies are either
too imprecise or too slow for compelling haptic experiences.
Delays in the haptic signal can affect the perception of the
mechanical properties of virtual objects such as compliance [1]
and cause instability [2], [3]. To mitigate these issues, haptics
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researchers use other methods for tracking, such as electromag-
netic trackers [14], which are expensive and cumbersome.

Haptic devices introduce their own latency caused by hard-
ware limitations. To mitigate these issues, [9] proposed illusions
such as using dynamic redirection for encountered-type haptic
devices to direct the user’s motion to a device reachable state.
Howeyver, these methods have a low threshold at which the user
starts noticing the illusion [17].

Prior studies have looked into full human body pose pre-
diction [18]-[20] with potential delay reduction applications,
but predictive hand tracking requires finer-scale tracking and
prediction due to the fast and precise movement of the hands.
Researchers have studied predictive hand tracking for gesture
prediction [21] and for detection of the user’s intended reach
target using Long Short-Term Memory networks [22] and tem-
poral trajectory template matching [23], but they do not predict
the timing of contacts.

III. INTERACTION-EXPECTATION MODEL

To address interaction timing errors caused by latency in
both the tracking system and haptics hardware, we propose an
interaction-expectation model. In this model, based on a user’s
hand movements, we predict when the user expects to begin
interacting with an object via touch. We consider prediction hori-
zons of 50 ms, 100 ms, and 200 ms. Depending on the system,
these horizons provide sufficient time to prepare the hardware
for rendering an upcoming contact before it has occurred.

A. Input and Output

At regularly spaced time intervals, the proposed model takes
as input H points in 3D space representing the hand, as well
as O points representing an object of known geometry to be
interacted with. At timestep ¢, ¢ such values have been generated.
The models then maps

R(H+O)><3><t N {0,1}

The binary output value represents whether the system believes
contact will be made at timestep ¢ + D, where D € Z is ahyper-
parameter indicating the prediction horizon for object contact.

B. Assumptions

Our approach assumes: (1) 3D points for hands passed in are
from the same person and represent a continuous movement,
(2) across timesteps, the point at a given index represents the
same anatomical location, and (3) hands are sampled at regular
intervals.

IV. TRAINING NETWORK

Our interaction-expectation model prediction is performed
using a network consisting of fully-connected layers with skip
connections feeding into a self-attention layer. The code for our
model is available: https://github.com/charm-lab/interaction-
expectation
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Network architecture. (A) At each timestep, the network takes as input the hand and object mesh. The distance between each hand vertex and the nearest

object vertex is calculated. This vector is concatenated with the hand vertices and passed through two fully connected blocks, each consisting of a fully connected
layer and rectified linear unit, with skip connections between them. This is used as an encoding to a self-attention and fully connected layer. The self-attention
mechanism is masked to only use prior data. (B) Our network outputs contact probability at time D + ¢ for each ¢. This produces a distribution, and loss is computed
as the mean squared error of the predicted distribution and ground truth distribution. To determine the single contact timing of the network, we set K, the threshold
for the predicted probability of contact. In this example we use a time horizon of D = 12 timesteps (100 ms at 120 Hz). DISTS: Minimum hand-object distances,

CAT: Concatenate, FC: Fully Connected, BN: BatchNorm.

A. Hand-Object Distances

To compute the input to our model, we assume a known hand
and object mesh. As the first step, we compute the minimum
distance from each hand vertex to the nearest object vertex at
each timestep in the movement sequence. We concatenate these
hand-object distances with the positions of each hand vertex.
Therefore, the input to the network is RH*4 where H is the
number of hand vertices. This reduces the dimensionality of our
input space dramatically compared to inputting objects directly,
while still maintaining key information about the nature of the
approach of the hand to the object. As will be described in
Section IV-B, we can apply this method to a full hand mesh
or using only the joint vertices. We find that on average, this
operation takes 9.1 ms for full hand meshes and 0.3 ms for joints
only with a Intel Xeon E5-1650 v4 CPU at 3.60 GHz.

B. Neural Network

To predict future hand-object contact, we leverage the change
in hand configuration and hand-object distance over time by
incorporating a self-attention mechanism into our model. We
found that fully connected layers with skip connection are
effective at encoding information from the hand and hand-object
distances to pass into the self-attention layer. Fig. 2 A shows the
full model architecture. A fully connected layer converts the
output of the self-attention to the appropriate dimensionality for
our loss function. The self-attention layers are masked to only
use prior data.

C. Latency

We ran our distance computation and neural network using an
Intel Xeon E5-1650 v4 CPU and NVIDIA Quadro P5000 GPU.
We find that on average, the hand-object distance operation takes
9.1 ms for full hand meshes and 0.3 ms for joints.We found the
estimated average time for a single timestep to pass through the
neural network is 0.14 ms for all mesh vertices, and 0.06 ms for
joints only. This yields a total inference time of 9.24 ms for full
mesh vertices, and 0.36 ms for joints only. This is much less
than required for a 100 ms horizon.

D. Loss

For input data at time ¢, we wish to predict whether contact
will occur at time ¢ 4+ D. For each time ¢, our network outputs a
probability of contact ¢ + D. This results in an array P of size T’
with each such prediction. Fig. 2 B shows an example network
prediction.

In practice, it is difficult to train a model that predicts only bi-
nary contact. Instead, we provide a blurred array of the expected
output, P*, as seen in Fig. 2 B. We blur the binary contact data
with a Gaussian with a standard deviation of 5 timesteps (4.2 ms),
cut off at 10 timesteps (8.3 ms) from the true value. Our loss is
the mean squared error between the predicted and ground truth
distributions, MSE (P, P*).

E. Initial Contact Timing Error Metric

To determine the single initial contact timing of the network,
we set I, the threshold for the predicted probability of contact.
We define P; network output at time t. We determine initial
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contact is made at

t' = argmin(t|P, > K) + D
teT
If ¢* is the true contact time, our metric, the timing error, for that
sequence is [t — t*].

F. Training Procedure

For all experiments we partition our data into train-validation-
test splits. We trained each model for 100 epochs of our data. We
found all experiments reached their minimum loss, and began
to diverge, prior to this number of epochs. To determine the
test model, we used the model with the minimum loss over all
validation sequences.

During training, we test K = [0,0.01,0.02, .. ., 1]. We select
the K for which the mean initial contact timing error time across
all sequences is minimized. During test time, we choose the K
which was optimal on our validation set.

For a given sequence, if there does not exist a time ¢ for which
P, > K, no contact is detected. In practice, this drives the model
to low K and high error. Thus, during training we determine K
for a given model by selecting the K for which timing error is
minimized, excluding up to 5% of the sequences for which no
contact was detected. We find as the model trains successfully;
even on the test set, the results are typically below the 5% ‘no
detection’ rate.

We randomize the start time of sequences during training to
provide generalization. The sequences can start any time from
the initialization of data, to 2 * D before contact.

V. EXPERIMENTS

The primary goal of our experiments was to evaluate the
performance of our interaction-expectation model to predict the
timing of initial hand-object interaction before it has occurred.
Our experiments were driven by four main questions:

1) Does ahuman’s hand motion contain information about an
upcoming contact, and can our model use this information
to predict contact at a given prediction horizon for new
users?

2) Does our model benefit from using a reconstructed hand
mesh instead of joint locations?

3) How robust is our model to different levels of hand track-
ing error and noise?

4) Does our model generalize across objects grasped?

A. GRAB Dataset

We used the GRAB dataset [12], [24] for this project. This
dataset consists of sequences of hand meshes over time, as well
as tracked object meshes. The person is instructed to pick up
an object that is stationary on a table, and then interact with the
object in a specified way. The dataset has 10 subjects acting on
51 objects in different ways, including (i) lifting, (ii) handing
over, (iii) passing between hands, and (iv) utilizing the item for
its purposes. The data is recorded using a Vicon motion tracking
system with markers on the hand and on 3D-printed objects.
The use of 3D-printed objects as opposed to virtual equivalents
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Fig. 3. Average hand speed prior to contact. We calculate hand speed as the
speed of the center of mass at the hand. At t=0, the hand is in contact. We show
the speed for the 80 timesteps (667 ms) prior to and including contact at 120 Hz.
The boundary of the shaded region represents standard deviation.

results in natural haptic feedback being provided to the user
and consequently results in a model based on natural human
behavior, which is ideal for our purposes. The hand meshes
provided in this dataset are created by fitting Vicon data to the
SMPL-X [25] format using a modified MoSh++ [26] algorithm.
Each node in the hand mesh consists of a 3-dimensional feature
vector x, where x € R? is the 3D location of that point of the
hand. The data is provided at 120 Hz. For simplicity, we limit
our data to right-handed grasps.

Fig. 3 shows the average speed of hands in the GRAB dataset
prior to contact. There is a large standard deviation of the speed
across sequences, and the hand speed slows down approaching
contact.

We split the 10 GRAB dataset subjects into five 6-2-2 train-
validation-test splits for our by-subject experiments (Sections V-
D, V-C). We split the 51 objects into a single 31-10-10 split for
our by-object experiments (Section V-E).

B. Baseline

As abaseline, we consider a simple extrapolation of full hand
meshes into the future and determine contact time. At time ¢, for
each joint angle j, we extrapolate to j;1 p based on j; and j;_;.
To do this, we use the SLERP [27] algorithm for extrapolation.
While SLERP is typically for interpolation, the Tensorflow [28]
implementation extends to extrapolation.

After determining the new joint angles, we use a SMPL-X [25]
model to convert from joints to mesh. After determining the
new hand mesh, we extrapolate the hand mesh based on linear
velocity as well.

The contact metric for the GRAB dataset is not easily reim-
plemented (we chose not to, at explicit suggestion of the au-
thors [12]). Therefore for our baseline, we decided contact
occurred based on the minimum vertex-vertex distance between
the hand and object meshes. We used a threshold of 4.5 mm, as
in [12]. We found that when no extrapolation was performed,
the average error between our methods was 0.033 timesteps
(0.275 mm) — sufficiently small as to not impact our analysis.
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Fig. 4. Error vs. predictive horizon. A. Average timing error across all test
sequences when trained on joints or full mesh vertices. Each of the 3 prediction
horizons is trained on five different splits of the data, with standard deviation
shown on the error bars. We also compare with our baseline method. B. Similarly,
the rate at which no contact is detected for each method.

C. Noise-Free Hand-Object Interaction-Prediction Over
Multiple Time Horizons

We designed our first series of experiments to answer ques-
tions 1) and 2) — whether it is possible to predict contact over
future time horizons, and if full hand mesh data offers an
advantage over hand joints. We performed the training described
in Section I'V-F on our network model.

We evaluate on 3 time horizons: 50, 100, and 200 ms (6, 12,
24 timesteps at 120 Hz), and over both full hand meshes and
only joint vertices, each with 5 splits of the data. The average
prediction error is shown in Fig. 4. We see that the joints-only
data does not perform worse — indicating we have no need to
incur the computational cost of predicting over the full mesh.
The GRAB dataset uses SMPL-X to generate the mesh model
using a linear network with the joint locations as input. While
the SMPL-X model encodes information across subjects, it is
possible this information is fundamentally no more useful than
the joint information itself. Therefore, while it is not certain
joints only would be better, for our work the GRAB network
encoded information is not necessary.

We note that the ‘no detection’ rate is not monotonic with
the length of the prediction window. This is to be expected —
if the system is predicting contact time in advance, we cannot
guarantee that the system will detect contact before it is made.
Therefore, such a prediction has a fundamental tradeoff between
accuracy of contact timing and whether it detects a particular
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contact at all. In practice, the prediction threshold should be
tuned based on the particular use case.

We also apply our baseline to each predictive horizon. We see
the baseline does worse than our method at each horizon.

D. Effect of Noise

The GRAB dataset was collected using a Vicon motion cap-
ture system, leading to high-quality tracking and reconstruction.
To simulate a more realistic setting, we artificially induced noise
into the dataset and trained with it. We limited these experiments
to joints data only based on the success of joint-only data for the
noise-free experiments. We use 100 ms as an exemplar time
horizon. We add two different types of noise to the system.

First, we added per-joint 3D Gaussian noise. This simulates
hand tracking and reconstruction error. We apply Gaussian noise
such that the average error would be 10, 30, or 100 mm. We
chose these noise values based on the tracking performance of
Oculus Quest [13] and the HANDS’ 19 challenge [7], and added
100 mm as a high noise level for comparison. We calculate the
appropriate associated Gaussian standard deviation via the mean
of the Chi distribution — for a desired mean error of e, we use a
standard deviation of

This noise is injected freshly for each joint for each timestep.
These results are seen in the solid lines of Figs. 5 and 6.

Second, we added hand-object relative translation noise. To
simulate room tracking error of an augmented reality headset,
we inject relative translation between the hand and object. We
apply Gaussian noise with an average of 5 mm translation error.
In contrast to the previous noise, this noise is held constant for
all points within a given sequence. This is because we expect
room tracking noise error to vary little within the timeframe of a
grasp, and to affect all points similarly. We chose this translation
based on the mean perceived holographic drift in a Microsoft
HoloLens [29]. These results are seen in the dashed lines of
Fig. 5 and Fig. 6.

Fig. 5 shows the results when trained and tested on separate
subjects, as in the noise-free experiment. Each experiment was
run on one split, due to limited available computation. We see
only minimal impact of both joint and translation noise on the
timing error and no-contact-detection rates. While we do not
guarantee our injected noise profile is identical to measured
tracking noise, as ours is homoscedastic, we show that detection
time can be robust to noise.

At an approach speed of approximately 0.5 m/s at 100 ms
prior to contact (Fig. 3), 100 ms represents 5 cm of movement.
The noise levels we injected for testing are based on measured
noise from the Oculus Quest [13], HANDS’19 challenge [7],
and Microsoft HoloLens [29]. The measured noise levels are
consistently less than 5 cm, so the small effect of injected noise
is expected.

E. Generalization Across Objects

When interaction-expectation is used in a mixed reality sys-
tem, it needs to extrapolate to subjects for whom the system
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no translational noise (solid lines) or 5 mm translational noise (dashed lines).
Data is for 5 splits across subjects on joint data. B. Rate at which no contact is
detected for each noise level is shown.

was not trained. In the previous experiments, we show that
error on unseen subjects is low. In addition, it is possible that a
user would want to program novel objects into the system. To
test the feasibility of this, we ran experiments on a 31-10-10
train-validation-test split over the 51 GRAB objects. The results
are shown in Figs. 6 and 7. While the error and ‘no detection’
rate are higher for untrained objects, the system still extrapolates
to novel objects.

When generalizing across objects, neither joints nor vertices
are strictly better. The joints have a lower average error, but the
‘no detection’ rate for vertices is lower. Given the relative diffi-
culty of acquiring full mesh information compared to joint infor-
mation, for many uses joint information alone would be prefer-
able. In cases where it is critical that any prediction exceeds the
contact detection threshold, vertices could be preferable.

Fig. 7 shows the error on the 10 test objects. We see that
while there is variation between objects it is low relative to the
baselines.

VI. CONCLUSIONS

In this paper, we show that it is possible to predict the timing
of future hand-object interaction based on a history of hand
poses. Our model takes as input a history of hand and object
poses, and predicts upcoming contact for a horizon of 100 ms
with an average timing error of 52.8 ms. We demonstrate that
our method is robust to noise and can generalize across both
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Fig. 7. Results for generalization to new objects. Our model outperformed

the baseline consistently. We see some variance across objects. Joint and vertex
results are similar.

subjects and objects. With a latency of 0.36 ms per timestep,
our inference time is significantly shorter than our horizon. Our
system can be integrated with existing hand tracking methods,
to provide predictions on contact timing given a known object.
In future work, this method will be evaluated for its ability to
provide accurate haptic feedback via a wearable device when
integrated into a mixed reality system. We also seek to apply
similar methods to predict future hand poses.
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