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Abstract
Computationally efficient modeling of gas turbine combustion is challenging due to the chaotic multi-scale physics and
the complex non-linear interactions between acoustic, hydrodynamic, and chemical processes. A large-eddy simulation
(LES) is conducted for the model combustor of Meier et al. (1) using an unstructured mesh finite volume method with
turbulent combustion effects modeled using a flamelet-based method. The flow field is validated via comparison to
averaged and unsteady high-frequency particle image velocimetry (PIV) fields. A high degree of correlation is noted
with the experiment in terms of flow field snapshots and via modal analysis. The dynamics of the precessing vortex
core (PVC) is quantitatively characterized using dynamic mode decomposition. The validated FOM dataset is used to
construct projection-based ROMs, which aim to reduce the system dimension by projecting the state onto a reduced
dimensional linear manifold. The use of a structure-preserving least squares formulation (SP-LSVT) guarantees stability
of the ROM, compared to traditional model reduction techniques. The SP-LSVT ROM provides accurate reconstruction
of the combustion dynamics within the training region, but faces a significant challenge in future state predictions. This
limitation is mainly due to the increased projection error, which in turn is a direct consequence of the highly chaotic
nature of the flow field, involving a wide range of disperse coherent structures. Formal projection-based ROMs have not
been applied to a problem of this scale and complexity, and achieving accurate and efficient ROMs is a grand challenge
problem. Further advances in non-linear manifold projections or adaptive basis projections have the potential to improve
the predictive capability of this class of ROMs.

Keywords
Computational Fluid Dynamics; Gas Turbine Dynamics; Reduced-Order Modeling

Introduction

Over the past two decades, the requirements on newly-
developed combustion devices have increased signifi-
cantly (2). The aviation industry has actively pursued
improved performance (e.g., fuel efficiency) and reduced
emissions. On the other hand, for power generation appli-
cations, the design of gas turbines incorporates additional
requirements. The modern power generation landscape has
made traditional combustion power generation profitable on
a day-to-day and even hour-to-hour basis. This variability in
demand is due to improved energy efficiencies and diversi-
fication of power generation sources, most notably renew-
able sources. These considerations economically incentivize
traditional gas-turbine energy systems to have the capability
to operate at specific power levels and quickly adjust output
to satisfy different power grid demands while maintaining
profitability.

To accommodate these three requirements, namely
improved efficiency, reduced emissions, and operational
flexibility, the gas turbine combustor is usually designed
to operate at fuel-lean conditions, which makes it
more susceptible to undesirable phenomena, most notably
combustion instability. The coupling between chemical
reactions and acoustic waves can significantly affect device
performance. Previous designs have leveraged physical

adjustments to promote passive stability (3) as well as
active control (4) at the design point to damp these harmful
effects, but dynamic operation adds the extra challenge of
maintaining stability at multiple operating points.

Combustion instability (or thermoacoustic instability) has
remained an area of significant concern in combustion
device design. This phenomenon is characterized by
large-amplitude pressure oscillations, which can lead to
catastrophic device failure. The primary mechanism of
combustion instability can be attributed to the interactions
between flow dynamics, acoustics, and chemical reactions.
The observation of this phenomenon has been documented
by Mallard and Le Chatelier (5). Lord Rayleigh (6) proposed
an elegant explanation for combustion instability based
on the phase relationship between unsteady acoustics and
chemical reactions (or, more precisely, the pressure and heat
release fluctuations). However, in real combustion devices,
the occurrence of combustion instability can be influenced
by many factors, including geometric details, operating
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conditions, and propellants. This also introduces additional
challenges in developing predictive models. With recent
advances in computational modeling, detailed simulations
can be used to investigate the mechanisms of combustion
instability for complex geometries. Especially, Large-Eddy
Simulation (LES) have the potential to provide valuable
insight into the underlying unsteady dynamics. Huang et
al. (7; 8; 9) applied LES to a standard lean-premixed
(LP) combustor (10). Since these initial investigations,
LES techniques have advanced as a modeling tool in
combustion instability-prone systems. Within gas turbine-
type systems, these simulation studies have been applied to
a variety of problems ranging from laboratory combustors
for both atmospheric (11) and high-pressure (12) conditions
to (albeit under-resolved) studies of large-scale practical gas
turbines (13).

Gas Turbine Model Combustors : Experiments
& Simulations
Gas turbine model combustors (GTMCs) have been
developed to enhance the understanding of the underlying
physics inherent to practical gas turbine systems in a
laboratory environment and act as validation cases for
developing modeling capabilities. These laboratory burners
have spanned a range of different geometries, injection
schemes, and stabilization strategies. A comprehensive
collection of a variety of different GTMC experimental
configurations can be found in Stohr et al. (14). Of
particular note are the family of burners being studied at the
German Aerospace Center (Deutsches Zentrum für Luft-und
Raumfaht(DLR)). These have included the PRECCINSTA
burner (15), the dual-swirl burner (16; 17; 1), and most
recently the independent dual-swirl burner (18; 19; 20).

In the present work, focus is placed on the DLR dual-
swirl burner developed by Meier et al. (1; 16) This
burner deviates from previous designs by virtue of having
multiple swirlers and a partially premixed combustion
regime. The dual swirl burner is characterized by three
distinct operating conditions referenced as flame A, B,
and C. Flame A exhibited a stable V-shaped flame, while
flame B operated as an unstable flat flame with peak
instability at 280-300 Hz. Finally, flame C operated near
the flammability limits with periodic blowout and re-ignition
observed. These conditions have been examined using
both stereoscopic particle image velocimetry (stereo-PIV),
Raman spectroscopy, OH*/CH* chemiluminescence, and
OH/CH/CH2O planar laser-induced fluorescence (PLIF).
These measurements were used to characterize both
the steady and unsteady performance of the burner.
Studies included swirl number dependencies, flow structure
development (21), precessing vortex core behavior (22),
unsteady local mixing (23), and vortex flame interaction (14).
In addition to the original work conducted by DLR, an
identical setup was investigated by Allison et al. (24; 25)
which focused on the behavior of the burner when operating
at various equivalence ratios and particularly with more
complex fuels, most notably syngas.

In concert with these experimental measurements, a
variety of modeling efforts have been attempted on this
geometry. To the knowledge of the authors, the first attempt

was the work of Widenhorn et al. (26) which simulated the
whole geometry under the flame A conditions and showed
reasonable average velocity field comparison. A more
comprehensive modeling effort was conducted by See and
Ihme (11) who used a modified flamelet model, and showed
good agreement in the flame A averaged field condition.
Additional work by Koo et al. (27) focused on accurate
modeling of soot formation in the system. These works
primarily focused on the turbulent combustion modeling of
the stable flame A configuration, focusing on flamelet model
augmentation and particulate matter generation, respectively.
Recent work by Chen et al. (28; 29) comprehensively
modeled both the flame A and B conditions with a focus
on the instability as well as validation of both the stable
and unstable flame operating conditions representing the first
complete steady and unsteady modeling of this system.

Reduced-Order Modeling
Though LES is becoming affordable for complex problems
and can reveal details of the underlying physics that
are inaccessible through experiment, these techniques are
still far out-of-reach for use in many-query applications
(e.g., design, optimization, and uncertainty quantification).
Therefore, it is imperative to develop reduced models that
can inherit the fidelity of the LES, while being much
more efficient for many-query computations. One class of
these methods is the projection-based reduced-order model
(ROM), which attempts to develop a dynamical system with
reduced-dimension to represent the full-order model (FOM)
(e.g., LES). These methods have been proven effective
in reducing the dynamics for flow control (30; 31; 32).
However, when applied to multi-scale problems containing
transport phenomena such as convection, projection-based
ROMs suffer in both accuracy and stability. These
shortcomings can arise from a combination of numerical
stability of the projection (e.g. Galerkin (33)), the truncation
of low-energy modes (34), and the inefficiency of linear
manifolds in representing convective phenomena (35).

Several strategies have been suggested to mitigate these
challenges. Balanced proper orthogonal decomposition has
been used in linear systems to form stable ROMs (36; 37).
Attempts have also been made to improve ROM stability
via examination of the underlying numerical discretization
through various methods. Rowley et al.(38) ensured that
the computed inner product for the Galerkin projection
is physically meaningful. Parish et al. (39) used the
Mori-Zwanzig formalism to develop a Petrov-Galerkin-type
closure. Ahmed et al. (40) present a comprehensive review of
the state of the art in closure modeling for projection-based
ROMs. It has been shown that maintaining the conservation
properties of the governing equations is critical in ROM
development (41). A method demonstrated by (42) generates
stable non-linear ROMs by minimizing the least-squares
residual of the projected solution, yielding in a symmetrized
and linearly stable ROM. This popular method is referred to
as the least-squares Petrov Galerkin (LSPG) method.

In the context of reacting flow simulations, several addi-
tional challenges arise. A key challenge in computational
combustion has been the numerical stiffness inherent to
kinetics. When modeled using ROM methods, spurious
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oscillations have been observed near the high gradient condi-
tions present in a flame front. These oscillations commonly
lead to non-physical features such as negative temperature.
Physical constraints have been applied to promote local
stability with success.

The structure-preserving least-squares projection with
variable transformation (SP-LVST) (43) is a ROM for-
mulation specific to allow conservation to be maintained
while using alternate variables. This change of variables is
beneficial in the reacting flow context as using primitive
variables (pressure, temperature, velocity) allows for simpli-
fied state calculations compared with conserved forms (den-
sity, enthalpy, momentum). This transformation is combined
with least squares (to improve global stability), physical
constraints (to improve local stability), and hyper-reduction
methods (to achieve computational speed-up).

These developments have significantly increase the
accuracy and robustness of the family of projection-based
ROMs. However, all these techniques fundamentally operate
by projecting a high dimensional system onto a reduced
manifold. As a result the choice of the reduced space is
just as significant in ROM development. The most common
technique to develop the linear manifold is to use proper
orthogonal decomposition (44) based on snapshots of the
full state vector. Generally speaking, problems with a strong
limit cycle coherence have seen success when compared with
chaotic problems with limited magnitude coherence (45).

In this work, the flame A configuration of the DLR dual-
swirl burner is simulated using flamelet-based Large-Eddy
Simulations (LES). The simulations results are validated
using experimental measurements. Following this, reduced-
order modeling techniques are applied.

Methods

Governing Equations

Favre-averaging φ̃(xi, t) is used for velocity u, enthalpy h,
total enthalpy h0, temperature T , and the flamelet transport
scalars Zm, Zv, C defined as

φ̃(xi, t) =
〈ρ(xi, t)φ(xi, t)〉
〈ρ(xi, t)〉

where the mean quantities 〈φ〉 are defined by ,

〈φ(xi, t)〉 =
1

∆t

∫ t+∆t

t

φ(xi, t
′)dt′.

The continuity and conservation of momentum and total
enthalpy equations take the form of

∂〈ρ〉
∂t

+
∂〈ρ〉ũj
∂xj

= 0.

∂〈ρ〉ũi
∂t

+
∂〈ρ〉ũj ũi
∂xj

+
∂〈p〉
∂xi

−
∂
(
τ̃ij − ũ′′i u′′j

)
∂xj

= 0,

∂(〈ρ〉h̃0 − 〈p〉)
∂t

+
∂〈ρ〉ũj h̃0

∂xj
− ∂ũiτ̃ij

∂xj
− ∂

∂xj

(
λ
∂T̃

∂xj

)
− ∂

∂xj

(
〈ρ〉

N∑
l=1

[
〈hl〉DlM

∂Ỹl
∂xj

])

+
∂ũiũ′′i u

′′
j

∂xj
−
∂〈ρ〉ũ′′j e′′

∂xj
= 0.

λ is the mixture heat transfer coefficient; DlM is the
diffusion coefficient of species l into the mixture M . Despite
using a flamelet-based model, thermal transport quantities
are calculated online based on the species compositions
provided by the flamelet table. τ̃ij is the resolved viscous
stress tensor assuming Newtonian fluid taking the form

τ̃ij = 2µε̃ij ,

where
ε̃ij =

(
1
2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
− 1

3
∂ũk

∂ũk
δij

)
,

with the bulk viscosity neglected. ũ′′i u
′′
j is the large-eddy

simulation(LES) mean stress modeled using the Nicoud
Sigma model (46),

ũ′′i u
′′
j = τSGSij − 1

3
τSGSkk δij = 2〈ρ〉νtε̃ij ,

where the Leonard and cross-terms are neglected (47). The
sub-grid scale turbulent viscosity is modeled as

νt = (Cσ∆)2Dσ(ũ),

where Dσ(ũ) = σ3(σ1−σ2)(σ2−σ3)
σ2
1

. Here σi are the singular
values of the resolved velocity gradient ordered greatest
to least and ∆ is the local cell size. The differential
operator defines the subgrid-scale viscosity based on the
singular values of the velocity gradient tensor (g̃ij = ∂ũi

∂x̃j
).

This model has been applied to other stabilized flame
cases (48; 49) and has shown favorable comparison for the
relatively small computation cost particularly in comparison
to transport equation based models.

The enthalpy equation unresolved term is closed using the
gradient-diffusion model using the turbulent viscosity and a
turbulent Prandtl number Prt approximated as 0.7;

ũ′′j e
′′ =

νt
Prt

∂h̃

∂xj

Turbulent Combustion Modeling
For this work, the flamelet progress variable
approach (50)(FPVA) model was utilized. Instead of n
species equations, 3 scalar equations are used to represent
the Favre-filtered mean mixture fraction Zm, mixture
fraction variance Z ′′2, and progress variable C.

∂〈ρ〉Z̃m
∂t

+
∂〈ρ〉ũjZ̃m

∂xj
− ∂

∂xj
〈ρ〉
(
D +

νt
Sct

)∂Z̃m
∂xj

= 0

∂〈ρ〉Z̃ ′′2

∂t
+
∂〈ρ〉ũjZ̃ ′′2

∂xj
− ∂

∂xj
〈ρ〉
(
D +

νt
Sct

)∂Z̃ ′′2
∂xj

=

2〈ρ〉
( νt
Sct

∂Z̃m
∂xj

∂Z̃m
∂xj︸ ︷︷ ︸

Production

−CZ
νt
∆2

Z̃ ′′2︸ ︷︷ ︸
Dissipation

)
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∂〈ρ〉C̃
∂t

+
∂〈ρ〉ũjC̃
∂xj

− ∂

∂xj
〈ρ〉
(
D +

νt
Sct

) ∂C̃
∂xj

= 〈ρ〉˜̇ωC ,
where Sct is the turbulent Schmidt number, approximated
as 0.7. The individual flamelets were generated using
FlameMaster (51) using the GRI-12 mechanism (52).
The flamelets were organized into a table for online
computation with an adaptive mesh in the reaction zone.
In traditional flamelet-based methods, all thermo-chemical
and transport properties are interpolated from the generated
look-up table at run time. In this work, only the species
mass fractions are updated from the flamelet manifold.
Because of the formulation of the energy equation in
total enthalpy form, the resultant temperature and transport
properties are recomputed using the species. The model
maintains energy conservation but requires the computation
of transport and thermodynamic properties from the local
species composition and total enthalpy. The thermodynamic
quantities are computed using the polynomials temperature
relations of McBride (53), and the transport properties
are computed using the mixing rules of Wilke (54)
and Mathur (55) for viscosity and thermal conductivity,
respectively.

Experimental Geometry
The burner configuration is shown in Fig. 1. The setup
consists primarily of a combustion chamber with a square
cross-section connected to a single plenum via a fixed
dual swirler assembly. Dry atmospheric air is fed to the
lower cylindrical plenum. The two swirlers are fed by
this common plenum with symmetric piping to the upper
swirler. The lower swirler feeds into a central converging
nozzle (Diameter of 15mm at nozzle termination), while the
upper swirler feeds a co-annular diverging section (Outer
diameter 25mm, Inner Diameter 17mm at burner face). The
outer annular section smoothly contours to the bottom plane
of the combustion chamber. Un-swirled methane fuel is
injected between the two swirled air streams co-axially. The
fuel injection ports are formed by the stacking of the two
swirler plates and are fed by three radial fuel lines. The
central nozzle terminates 4.5 mm below the burner face.
The combustion chamber is composed of a square cross-
section (852 mm) with chamfered post corners with a total
height of 110 mm. The chamber terminates by contracting
to a cylindrical chimney (40mm diameter), opening to the
laboratory atmosphere. The walls in the experimental setup
are quartz to allow for optical access with substitute walls
with mounted probes.

In the scope of this work, we focus on the ‘flame A’
conditions for FOM validation and the ROM methods being
developed on this condition. For this configuration, the mass
flow of air ṁair is 1905 grams per minute, and the fuel inflow
rate ṁfuel is 41.8 grams per minute.

Computations
The Large-Eddy Simulations (LES) were conducted using an
in-house CFD code, the General Equations and Mesh Solver
(GEMS) (56). GEMS is a message passing interface (MPI)-
based parallel, second-order accurate in time and space finite
volume solver. An implicit dual time-stepping scheme is
used, with Roe fluxes (57) and the Barth-Jespersen flux

limiter (58). The numerical robustness of the solver allows
for the resolution of near-wall flow features while using
high aspect ratio grids. The simulation was conducted on
Engineer Research and Development Center (ERDC) Onyx
on 2200 cores. Each Onyx node is composed of two 22
core Intel E5-2699v4 Broadwell processors for a total of
44 cores with 128 GBytes per node running on the Cray
Aries interconnect. Both cases were run with a physical
time-step of one microsecond. The flame A simulation was
run for a total of 200 milli-seconds of real-time, accounting
for approximately two hundred characteristic flow through
periods of the combustion chamber or 70 periods for the
entire domain. The approximate wall-time per flow through
period of the combustion chamber was two hours.

Computational Domain The mesh is composed of a fully
structured multi-block topology with 7.5 million hexahedral
cells. The computational domain is shown in Fig 4. The
lowest minimum angle of hex elements is 24 degrees and
is limited by the geometry (the angle at which the lower
swirler vanes intersect with the core nozzle). Finally, the
point spacing was allowed to vary to limit the lowest quality
elements to areas where reactions do not occur, such as
the plenum or upper combustion chamber and chimney.
As shown by previous works (28; 11) the modeling of
both the swirling vanes as well as air plenum of the
combustor is critical for accurate prediction. Because of
this, the entire combustor geometry is modeled. The only
significant geometric modeling simplification was the fuel
injection nozzle. The 72 individual fuel injector holes
were approximated as a circular slot with a matching area
to accommodate the structured mesh (Fig. 3). The air
and fuel inflow conditions were specified to match the
experimental mass flow. In systems utilizing swirler vanes,
it is predicted that the swirler geometry generates nearly all
of the significant turbulence. With this consideration, both
inlets were specified as uniform velocities. The entire fuel
plenum consists of 3 feed lines arranged radially (Fig. 1).
These were not fully meshed, and instead, the fuel boundary
condition sits recessed from the approximated slot. The
outflow boundary condition was specified as a constant
pressure set to atmospheric conditions. The wall boundaries
were set to be adiabatic with an enforced no-slip condition.

The overall mesh topology focused on clustering cells in
the lower combustion chamber. The minimum mesh spacing
of ∆ = .1mm was constrained by the smallest feature of the
system, the fuel injector, resulting in ten cells across the fuel
injector ports (Fig. 3). A snapshot of the resulting mesh ∆ is
shown Fig. 4. Fine cells are clustered in the nozzle and lower
combustion chamber regions. Because of the requirements of
multi-block meshing and a desire to optimize computational
cost, there are some locations with relatively coarse cells.
However, these are limited to the upper corners of the
combustion chamber, chimney, and lower plenum.

Full-Order Model (FOM) Results

In this section, the simulation results of the flame A condition
for the GTMC dual-swirl burner with validation against
experimental results will be described.
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Figure 1. Burner schematic (17) (Left), stacked internal cutaway of swirler geometry(Center), and external iso-surface (Right)

Figure 2. Representative averaged (Top) and instantaneous
(Bottom) axial velocity fields for the flame A configuration

Averaged Velocity Field

The time and root mean square (RMS) averaged velocity
fields are examined as an initial comparison between
the simulation and experiment. A set of unsteady time
realizations, representing 100 characteristic flow-through
periods, were used to compute the cell-wise RMS and time
averages. The resulting flow-fields are displayed for axial
(Fig. 5), radial (Figs. 6), and swirl velocity (Figs. 7) with the
corresponding experimental PIV measurement layered on
the upper half of the contour. For a quantitative comparison,
profiles are extracted for the experimental and computational
data sets at various axial heights.

The overall structure is observed in all three dimensions
with two areas of discrepancy. These variations are most
observable in the axial velocity (Fig. 5 which has a
contour line placed at the axial stagnation velocity). The
first is the modeled height of the inner recirculating zone
(IRZ), predicted at 4 mm lower than found experimentally.

Figure 3. Fuel injection detail (Top) and internal cell spacing at
injector face shown in green (Bottom)
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Figure 4. Mesh schematic with selected slice locations (Left) Mesh mean filter width slice (Right)

This height difference can be observed qualitatively from
the contour and quantitatively in the h = 1mm profile
near the center-line. This underprediction is expected in
swirl stabilized flows and is consistent with previous
computational studies (28). This characteristic is due to
inadequate wall modeling near the nozzle termination. The
second deviation is the prediction of the tail-like structure
of the recirculation bubble. In works focused on modeling
a vortex breakdown structure, a significantly finer mesh
resolution is required. Interestingly, despite not correctly
capturing the double tail structure of the recirculation bubble,
the center-line stagnation point matches the experimental
observations. Examining the extracted profiles, one can
observe strong agreement in both time, and RMS-averaged
quantities. Generally, because of the lower and smaller
recirculation bubble, velocities were computed as lower
than experimental values in the near nozzle region and
overestimating in the combustor’s upper region. Finally, the
outer recirculation zones (ORZ), the recirculation zone in the
lower outer corners of the chamber, are predicted accurately
compared with the experimental values’ size, shape, and
magnitude.

A majority of the observations in the axial velocity
hold when examining the corresponding radial(Fig. 6) and
tangential(Fig. 7) velocity fields. Both time and RMS-
averaged quantities correlate favorably with a relatively
minor discrepancy in the average radial velocity profile peak,
which persists in all near-nozzle profiles. This is expected to
be due to inadequate wall spacing of the diverging nozzle
section leading to an underestimation of the radial velocity
measurements due to the slightly slimmer inner recirculation
bubble.

Averaged Temperature and Mixture Fraction
For the dual-swirl GTMC, flame A corresponds to an
acoustically broadband stable V-shaped flame. The mid-
plane contours from the flame A case is shown in Fig. 8 along

Figure 5. Time and RMS-averaged axial velocity comparisons
of Flame A: experimental data superimposed on upper half of
combustor with lines at Axial Velocity equal to zero

with extracted profiles from the simulation data compared
with experimental measurements. We should note that the
experimental spectroscopy values are spatially averaged,
which can produce deviations compared with CFD filtered
quantities. Qualitatively, flame A shows the characteristic V-
shaped structure and compares well with the experimental
profiles. A caveat is that the height of the flame, like the IRZ,
is underpredicted. This underprediction can be observed in
the relative overprediction in temperature near the burner
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Figure 6. Time and RMS-averaged radial velocity of flame A

Figure 7. Time and RMS-averaged tangential velocity of flame
A

face. This under-prediction is most likely a combination
of the nozzle wall modeling, adiabatic wall boundary
conditions, and partially premixed reactions. However, the
overall characteristics of the temperature field are well
captured.

Mixture Fraction Temperature Correlation
The Flamelet Progress Variable (FPVA) model does not
have additional source terms to account for partially

Figure 8. Time-Averaged temperature and mixture fraction field
for flame A

premixed flame conditions. Examining the correlation
between mixture fraction and temperature in the simulation
vs. experimental spectroscopy measurements can give
quantitative insight into the consistency between the
experimental configuration and the simulation’s combustion
model. This correlation of these for Flame A is shown
in Fig. 9. The LES values are Favre-filtered, while the
experimental points are single-shot measurements. Because
of this, generally, the experimental data points can be
expected to exhibit higher temperature values compared to
the CFD. There are many points at low temperature at various
mixture fractions for both flame A and B, which indicates
a partially premixed flame. Despite this, flame A shows
relatively strong agreement. The higher temperature clusters
(0-2 and 21-27mm) represent the IRZ and ORZ, respectively,
and are regions that are a majority fully reacted products.

Unsteady PIV Comparison

While the simulation of the averaged quantities is relevant
for design point characterization, in the context of
thermo-acoustic instability, it gives little insight into the
underlying mechanisms. For the DLR combustor, unsteady
characterization was achieved using a high-speed kilohertz
PIV window. By taking specific points in the flow field, the
key hydrodynamic and acoustic frequencies can be isolated.
These measurements were conducted at 10 kHz for Flame
A. This region is shown in figure 10 and is centered at the
nozzle exit to examine the recirculation zones and shear
layers present. These three points of interest are the swirling
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Figure 9. Temperature vs mixture fraction scatter plots for
experimental and CFD at h = 5mm

JET, the inner shear layer (ISL), and the inner recirculation
zone (IRZ).

Experimental Comparison with PIV
While the simulation of the averaged quantities is relevant
for design point characterization, in the context of
thermo-acoustic instability, it gives little insight into the
underlying mechanisms. For the DLR combustor, unsteady
characterization was achieved using a high-speed kilohertz
PIV window. By taking specific points in the flow field,
the critical hydrodynamic and acoustic frequencies can be
isolated. These measurements were conducted at 10 kHz for
Flame A. This region is shown in figure 10 and is centered at
the nozzle exit to examine the recirculation zones and shear
layers present. These three points of interest are the swirling
JET, the inner shear layer (ISL), and the inner recirculation
zone (IRZ).

Dynamic Mode Decomposition
While single point probes can directly compare experimental
results, the nature of simulation data allows more
comprehensive methods to be used. In particular, when
trying to predict the characteristic frequencies of large-
scale structures, the resulting spectrum can be extremely
sensitive to the probe location. Modal decompositions
are a family of methods that can gain additional insight
by leveraging spatial data. Boxx (59) calculated proper
orthogonal decomposed(POD) modes which were able to
visualize the PVC structure. It was later shown (60) that

Figure 10. Schematic of kHz PIV window with points of interest
label (Top) power spectrum of axial velocity comparison of
points of interest (Bottom)

for systems exhibiting combustion instability, Dynamic
Mode Decomposition (DMD) (61) can create more
temporally consistent mode shapes, which can both
identify hydrodynamic and acoustic features. DMD extracts
more physical representations of complex spatio-temporal
structures than POD by constraining the temporal modes
to discrete frequencies. Details of this methodology for
sampling choice and formulation can be found in previous
works (60; 62) but is summarized here.

The field data ai ∈ RM corresponding to time instants
1 ≤ i ≤ N is assembled into the following matrices

A1 =
[
a1 a2 . . . aN−1

]
∈ RM×N−1 ;

A2 =
[
a2 a3 . . . aN

]
∈ RM×N−1

which are related to each other via the time advancement
matrix S in the form A2 = A1S. Following (63), we
perform a Singular Value Decomposition A1 = UΣVT . In
a similarity form, S̃ = UA2VΣ−1 is related to S in the
form S̃ = T̃∆̃T̃−1, and the spatial modes (DMD modes) are
constructed as Φ = UT̃. Using general decomposition form
we form the temporal modes Y as YT−1

= VΣ−1T̃, and
thus the response corresponding to each mode isRi = ψiy

T
i .

Applying this methodology to the simulation data, one
can visualize the complex 3D hydrodynamic features such
as the PVC more effectively. Further, this analysis is more
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Figure 11. DMD spectrum of axial velocity of the PIV data
compared with interpolated CFD data for Flame A

Figure 12. DMD spectrum of axial velocity full CFD three
dimensional flow field for flame A

robust to discrepancies in probe location as it is applied
to the entire spatial field. Applying this core methodology
described by Huang et al. (64) additional prepossessing
using singular value truncation and total-least squares (TLS)
preconditioning as described by Kutz et al. (65). This
prepossessing is significant in applying this combustor as
the instability amplitudes are extremely small ( .1% of mean
pressure) and can be easily diluted by noise, especially with
the statistical limits imposed by the CFD run time.

Decomposition of high-frequency PIV window

DMD is first conducted on the small high-frequency PIV
window described earlier and compared to the LES data
set interpolated onto an identical mesh to compare the
experimental and computational decompositions directly.
The same sampling rate and the total number of snapshots
used corresponded to the available simulation data. The
resulting spectra are shown in Fig. 11. Similar to the
point analysis, good agreement was found between the
computation and experimental results. The PVC frequency is
well identified in both the interpolated LES and experimental
data sets. Otherwise, the LES contains a slightly higher
energy level across the overall frequency space. This is
suspected to be due to the reflection of acoustic energy from
the pressure outlet boundary condition.

Full 3D Data

An identical methodology, as used on the PIV fields, is
applied to the 3D field data for axial velocity and pressure, as
shown in Fig. 12. The axial velocity spectrum shows many of
the same structures as the 2D experimental DMD. The flame
A PVC is observable at 1700 and is visualized in Fig. 13.
The vortical corkscrew shape structure can be observed much
more clearly than in the raw CFD field.

Figure 13. PVC(1750 Hz) DMD mode visualizations for flame A

Reduced-Order Modeling (ROM)
Projection-based ROMs seek a low-dimensional represen-
tation of a dynamical system state and a projection of
the governing equations onto the low-dimensional space to
reduce the computational cost of numerical solutions for
high-dimensional systems. To describe this approach, we
describe a general non-linear dynamical system ODE,

dq

dt
= R(q, t), q(t0) = q0, (1)

where q ∈ RM represents the system solution, and R
represents the non-linear function which describes the
spatially discretized terms in the original governing PDE.
For this system, the dimension of the system M can
be extremely large (Nvars ×Ncells): 6.2× 107 for this
problem. Repeatedly solving this system for different
operating conditions is prohibitively expensive and requires
extensive computing resources. The ultimate goal of model
order reduction techniques is to reduce the dimension of
Eqn. 1 without significantly compromising the accuracy of
the underlying dynamics.

To begin this process, the state vector is approximated by
the transformation

q(t) ≈ q + PVq̂(t),

where q represents a constant reference state, V ∈ RM×k is
the trial basis composed of k linearly independent vectors,
P is a matrix representing the normalization of different
variables in the state q, and q̂(t) represent the modal
coefficients describing the linear combination of the trial
basis vectors describing the approximate state of q.

The approximate state can be directly substituted into the
governing (Eqn. 1) to obtain

dq̂

dt
= R(q + PVq̂, t), q̂0 = q̂(t0).

Recognizing that P, q, and V are constant in time, we are
able to simplify this to
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V
dq̂

dt
= P−1R(q̂, t)

Here we observe that V dq̂
dt ∈ RM and no dimension

reduction has occurred. Finally, we project the system onto
a low-dimensional test space, via the test basis W ∈ RM×k.
Like the trail basis V, the test basis W is a set of k linearly
independent vectors. This forms

WTV
dq̂

dt
= WTP−1R(q̂, t), (2)

where an ODE system of reduced dimension k has
been achieved. This reduced system can be advanced using
standard time-integration schemes (explicit or implicit).
Clearly, the choice of the bases W and V are critical in the
success of the ROM. Typically the trial basis V is computed
utilizing the proper orthogonal decomposition (POD) of the
data-set trajectory. In the situation of where the trial basis
equals the test basis W = V Eq. 2 simplifies to

dq̂

dt
= VTPR(˜̂q, t)

and is referred to as a Galerkin projection.
Another method seeks to formulate the test basis W so

that the fully-discrete FOM residual r is minimized, which
is referred to as the least-squares Petrov-Galerkin (LSPG)
projection (42). For a generic linear multi-step method with
s steps the r can be given as

rn = a0q
n +

s∑
i=1

aiq
n−i −∆β0R(qn, t)

−∆t
s∑
i=1

βiR(qn−i, tn−i),

where β0 is dependent on the time integration scheme.
The minimization problem for solving the ROM at time

instance n can be posed as

q̂n = argmin
q̂n∈Rk

||P−1r(q + PVa, tn)||22.

This produces a test basis of the form

Wn = P−1 ∂rn

∂q̂n
PV. (3)

For a linear multi-step method this results in a test basis of
the form

Wn = P(I−∆tβ0
∂rn

∂qn
)P−1V.

Notably for an explicit integrator Wn = V reducing to the
Galerkin projection. This method has been successfully used
for a variety of non-reacting flow applications.

Both of these methods face challenges (45) in their
application to reacting flow problems. In particular both
methods have shown to exhibit non physical oscillations and
generally suffer from stability problems associated with the
stiffness of the problem, and in handling the high gradients
present in flames (45). Further details on the stability

characteristics of Galerkin and LSPG methods can be found
in Huang et al. (43).

A more recent variant of the LSPG method of
ROM formulations is the structure preserving least-
squares variable transformation(SP-LSVT). The SP-LSVT
formulation uses a combination of approaches to improve
the robustness of the ROM. The variable transformation
allows for symmetrization (and hence global linear stability)
while maintaining discrete consistency and structure
preservation. Local stability is enhanced using physical
limiters. Refs. (43) and (66) provides additional details
of the SP-LVST methodology for performance and hyper-
reduction achievable on 3D problems. SP-LSVT allows one
to represent the system state as a function of primitive
variables qp. An additional normalization matrix H is
applied to the primitive variables to further improves the
conditioning of the system as qp(t) ≈ qp + HVpq̂p(t). If
a dual-time stepping algorithm is used with k denoting the
pseudo time iterations (with physical time ∆t and pseudo
time ∆τ , the SP-LSVT yields the following update equation:

(Wk−1
p )T (

∆t

∆τ
Γk−1
p )(q̂kp − q̂k−1

p ) + (Wk−1
p )T r(q̃k−1

p ) = 0,

with a test basis

Wk
p = P

[(∆t

∆τ
+ 1
)
Γk−1 −∆tβ0J

kΓk−1

]
HVp,

where J = ∂R
∂qp

, and Γ = ∂q
∂qp

.

Basis Generation
We now describe the procedure for generation of the desired
trial basis V. For the reacting flow problems exhibited in this
work, the primitive solution vector is organized as

qp =
[
p u T Zm Z′′

2
C
]T
. (4)

Each of the N solution snapshots gathered by evolving
Eqn. 1 in time are stored as columns of the complete data
matrix as shown in Eq. 4,

Q =
[
q(t1) q(t2) . . . q(tN )

]
.

Next, the reference state a (e.g. the initial condition
snapshot a0 or a time-averaged field) is subtracted from
each snapshot, and the resulting matrix is normalized by the
diagonal matrix P,

Q′ = P(Q− q1T )

Choosing the normalization constants in P such that the
variables are scaled to similar orders of magnitude ensures
that all variables are considered equally relevant. Choices
for computing these normalization constants include the
maximum absolute perturbation value and the L2 norm
measure described in (45).

The trail basis V is then formed using proper orthogonal
decomposition (POD).

V = argmin
A∈RN×k;VVT =I

||Q′ −AATQ′||2 (5)

The solution to this problem is typically computed using
the singular value decomposition. When applied to datasets
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Figure 14. Singular value decay residual for GTMC for various
variable groupings for a 5000 snapshot training region (top) and
training region lengths (bottom)

of this scale, the associated memory cost can become
extremely large, requiring specialized tools. For example, the
basis generation for this relatively small time series requires
three matrices, each of size (2.9× 108)× (104) matrices to
be allocated in memory. To facilitate this In conjunction with
the ROM module added to the GEMS solver, a distributed
memory linear algebra tool, leveraging ScaLAPACK and
MPI-IO routines, has been developed to generate these basis
sets for ROM usage and modal analysis as used for the DMD
analysis.

The singular values quantitatively describe the cumulative
energy content in the spatial modes. This decay is quantified
based on the residual power given by

Residual Power %(n) =

(
1−

∑i=n
i=1 σ

2
i∑

σ2
i

)
× 100%. (6)

However, as seen for the GTMC dataset(Fig. 14) a) there
is no clear cut-off, and b) a significant amount of modes
is required to resolve a significant portion of the energy.
Further, these facts are seen to worsen as the training
region is extended. Taken together, this presents a significant
challenge for ROMs.

Reduced-Order Modeling (ROM) Results
Initially, the projection-based intrusive ROM method of
the LSPG ROM is applied to the Flame A configuration.
The static trial basis is generated over a time period of 5
ms. This corresponds to roughly two flow-through periods,

roughly three acoustic periods, and 10 PVC cycles. These
runs proved to be unsuccessful as even within the training
region they suffered from numerical instability and deviated
significantly from the FOM dataset (Fig. 15). The SP-LVST
method improves significantly in terms of stability and is
able to fully reconstruct the training region and advance
beyond it. The ROM performance is assessed using unsteady
field comparisons at two representative time instances as
shown in Fig. 15. It can immediately be observed that
the overall dynamics within the basis generation region is
well-captured. However, regardless of the number of modes
used, the prediction shows significant deviation beyond the
training region as seen in the smearing and non-physical
character of the unsteady field.

Fig. 16 compares the time traces of pressure and
temperature at locations highlighted in Fig. 15 The
improvement of the SP-LVST method over the classical
LSPG method is observed within the training region. Even
with the relatively small number of modes, the method
represents the unsteady dynamics well in the training region,
but errors accumulate, and a considerable deviation develops
in future state prediction (i.e. beyond the training data).

a priori Projection Error Quantification
While the SP-LSVT offers improved stability, the funda-
mental limitation is governed by the information lost by
projecting on to the reduced basis, referred to as projection
error. This shortcoming is immediately apparent in the online
ROM runs as they advance beyond the training region The
projection error outside the training region varies from prob-
lem to problem but can be examined offline to observe the
upper limit of any choice of basis projected error. The error
of the overall state can be quantified as,

Projection Error(t) =
||q−VVTq||2

||q||2
, (7)

with the spatial representation given as

Field Error(x, t) = |q−VVTq| (8)

These metrics are applied to the static basis trained over
5000 snapshots representing 5 ms. The results are shown
in Fig. 17. It is immediately apparent that the projection
error within the training region is significantly improved with
increased dimension. Even with this improvement, outside
the training region, the error significantly increases and is
insensitive to the variations in the number of modes used.
Additionally, even with significant increases in the training
region, the projected error reaches the same level as even
smaller training regions. This can be visualized in the field
error (Fig. 19 as the maximum error in temperature is less
than 100 K. However, when projecting a snapshot beyond
the training data, we see large deviations with errors up
to 1400 K. This represents a significant limitation of using
linear static basis in a highly chaotic flow with multi-scale
advective transport.

Ultimately the projection error represents the best
possible performance of a projection-based ROM using
the corresponding basis. The Kolmogorov N-width (67),
describes the worst-case error of a projection onto the
best possible static linear subspace. For this flow, the slow
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Figure 15. Instantaneous online ROM fields at .5(Top) and 1.2(Bottom) of total training time with Fig. 16 locations highlighted

decay of the singular values signifies a slow decay of the
Kolmogorov N-width. Possible approaches that can mitigate
this issue include adaptive basis methods (68) and non-
linear manifolds (35). However, these techniques are in

development, and have not been applied extensively even in
2D non-reacting compressible flow problems.
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Figure 16. Pressure and Temperature Probes within Flame Front(Top) and Plenum(Bottom) for various Static Basis Choices

Figure 17. Static Basis Projection error for various mode
counts for 5 ms training window (left) and zoomed close to end
of Training (right)

Figure 18. Static Basis Projection Error for 90 modes
computed for various training lengths

Conclusions

A reacting large-eddy simulation (LES) of a methane-
air dual-swirl gas turbine model combustor (GTMC) is
performed using a flamelet-based approach. The simulation
is validated with experimental measurements and shows
excellent agreement, including accurate prediction of the
steady flow features, the recirculation bubble and overall
flame shape, and unsteady features. These validations are
supplemented via Dynamic mode decomposition (DMD).
The DMD analysis reveals the dynamics of the precessing
vortex core, and allows for a quantitative comparison of the
frequency spectrum of the entire PIV window.
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Figure 19. Full-Order Model (Left) Temperature Field
compared with a priori Static Basis 90 mode Projection (Right)
at t=.275(Top) and t=.261(Bottom)

Snapshots from this simulation are used to develop
a reduced dimensional linear subspace using proper
orthogonal decomposition. This basis is first used with
the well-known least-squares Petrov Galerkin(LSPG). Even
within the training region, this method suffers from
significant numerical stability issues. Following this, the
same basis is used in the structure-preserving least-squares
variable transformation. This method shows significantly
better stability and is able to replicate the training data
successfully. However, the SP-LSVT technique develops
significant error in future state prediction, which is a direct
consequence of the high projection error.

In summary, the linear manifold-based SP-LVST method
improves the overall performance of the ROM, but is still
limited by the choice of basis. In addition to the full-
order modeling and reduced-order method development,
for problems of this scale, a robust parallelized tool chain
is required to facilitate this work. It is noted that formal
projection-based reduced-order modeling of a problem of
this scale and complexity remains a grand challenge. This
work represents initial steps towards the development of a
robust reduced-order modeling framework for gas turbine

combustion dynamics. Continuing work is being dedicated
towards the use of adaptive basis to overcome the limitation
of a static linear manifold.
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