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The hydrophobicity of proteins and similar surfaces, which display
chemical heterogeneity at the nanoscale, drives countless aqueous
interactions and assemblies. However, predicting how surface chem-
ical patterning influences hydrophobicity remains a challenge. Here
we address this challenge by using molecular simulations and ma-
chine learning to characterize and model the hydrophobicity of a di-
verse library of patterned surfaces, spanning a wide range of sizes,
shapes and chemical compositions. We find that simple models,
based only on polar content, are inaccurate, whereas complex neural
network models are accurate but challenging to interpret. However,
by systematically incorporating chemical correlations between sur-
face groups into our models, we are able to construct a series of
minimal models of hydrophobicity, which are both accurate and in-
terpretable. Our models highlight that the number of proximal po-
lar groups is a key determinant of hydrophobicity and that polar
neighbors enhance hydrophobicity. Although our minimal models
are trained on a particular patch size and shape, their interpretability
enables us to generalize them to rectangular patches of all shapes
and sizes. We also demonstrate how our models can be used to
predict hot-spot locations with the largest marginal contributions to
hydrophobicity, and to design chemical patterns that have a fixed po-
lar content but vary widely in their hydrophobicity. Our data-driven
models and the principles they furnish for modulating hydrophobic-
ity could facilitate the design of novel materials and engineered pro-
teins with stronger interactions or enhanced solubilities.

hydrophobicity | chemical correlations | self-assembled monolayer |

machine learning | interpretability

H ydrophobicity — the aversion of non-polar solutes to water
— drives diverse molecular assemblies, ranging from micelle
formation and protein folding, to supramolecular chemistry
and biomolecular interactions (1-7). The hydrophobicity of
homogeneous surfaces is determined primarily by their polar-
ity (8-10). In contrast, the hydrophobicity of proteins and
similar surfaces, which display chemical heterogeneity at the
nanoscale, depends not just on their polar content, but also
on the arrangement of their polar and non-polar groups (11—
17). Consequently, additive approaches for characterizing
hydrophobicity, such as hydropathy scales (18, 19), which sum
over the contributions from individual chemical groups, fail
to accurately quantify the hydrophobicity of heterogeneous
surfaces (20-24).

Recent theoretical developments (25-27), coupled with ad-
vances in specialized molecular simulation methods (28, 29),
have made it possible to rigorously characterize the hydropho-
bicity of surfaces with nanoscale chemical patterns (30, 31).
In particular, a number of studies have shown that the ease
with which water can be displaced from the vicinity of a sur-
face to form interfacial cavities is a robust molecular measure
of its hydrophobicity (32-34). Moreover, these studies have

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

highlighted that the response of interfacial water structure to
surface chemical patterning is complex and collective (15, 35),
obfuscating the relationship between patterning and hydropho-
bicity, and making it challenging to develop predictive models
for the hydrophobicity of heterogeneous surfaces.

Machine learning (ML) approaches (36-38) offer the
prospect of exposing the emergent many-body determinants of
hydrophobicity in a data-driven fashion (16, 39). Indeed, such
approaches have recently been applied to uncover patterned
surfaces with optimal interfacial properties, such as water dif-
fusivity or affinity for small hydrophobic solutes (40, 41). How-
ever, data-driven models are typically subject to the accuracy-
interpretability trade-off — sophisticated “black box” models
capable of accurately learning high-dimensional functional
mappings can resist interpretation, whereas simple “white box’
models amenable to intuitive understanding can be insuffi-
ciently expressive, rendering them inaccurate. Models that
are both accurate and interpretable are desirable because they
can justify their predictions, divulge the limits of their appli-
cability, and are amenable to generalization, which prompts
the question: Is it possible to learn models relating chemical
patterning and hydrophobicity that are at once accurate, in-
terpretable, and generalizable, and if such models exist, what
insights can they provide into the chemical determinants of
hydrophobicity?

i

To address these questions, here we use specialized molec-
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ular simulations (28, 29) to characterize the hydrophobicity
of numerous patterned surface patches, spanning a range of
sizes, shapes and chemical compositions, and employ deep
learning techniques (36, 38) to model the relationship between
chemical patterning and hydrophobicity. We demonstrate that
simple models, based solely on polar content, are poor pre-
dictors of hydrophobicity, whereas neural network models are
highly accurate predictors. Although the latter fail to pro-
vide interpretable principles and actionable design precepts,
they nevertheless highlight the importance of local chemical
correlations in determining hydrophobicity.

To achieve a seamless trade-off between model accuracy and
interpretability, we incorporate chemical correlations between
surface groups and construct a series of increasingly complex
models of hydrophobicity. Our models emulate additive mod-
els in their simplicity, but rival the neural network models
in their predictive performance. Importantly, our minimal
models reveal simple but non-intuitive principles that advance
our understanding of the chemical determinants of hydropho-
bicity. In particular, we find that in addition to the number
of polar groups, the number of polar neighbors in a patch
also influences its hydrophobicity, and that for patches with
the same polar content, clustering the polar groups enhances
hydrophobicity. Uncovering the predominant factors that gov-
ern the hydrophobicity of patterned patches also allows us to
generalize our minimal models, which were trained on 3 nm X
3 nm patches, to rectangular patches of all shapes and sizes.

Leveraging the efficiency of our models, we further find
that patch hydrophobicity is most susceptible to a polar mu-
tation introduced at the center of a non-polar cluster, whereas
patch hydrophilicity is particularly susceptible to non-polar
mutations at isolated polar groups or along the periphery of
a polar cluster. We also find that for patches with a given
chemical composition, the most hydrophilic patches display
significant dispersion of polar and non-polar groups, whereas
the most hydrophobic patches feature a single non-polar clus-
ter. We hope that the accuracy and interpretability of our
data-driven models, as well as the principles they furnish for
optimally modulating hydrophobicity, will facilitate the ratio-
nal design of novel materials with tailored hydrophobicity and
engineered proteins with stronger interactions or enhanced
solubilities (35, 42-44).

Hydrophobicity of Chemically Patterned Surfaces

To interrogate the relationship between chemical patterns
displayed by heterogeneous surfaces and their hydrophobicity,
we employ self-assembled monolayer (SAM) surfaces, which
are versatile soft material templates with diverse applications
ranging from fouling resistance to molecular electronics (45,
46). In particular, we study binary SAM surfaces with end-
groups that are either polar (hydroxyl) or non-polar (methyl)
(Figure 1). Initially, we focus on a 6 X 6 square patch (roughly
3nm X 3 nm), which contains 36 end-groups, and is embedded
in a background of polar end-groups, as shown in Figure 1A.
Given that simulating all the 23¢ &~ 7 x 10'° possible patches
is computationally infeasible, we construct a reasonably large
training library of N = 884 patches (Figure 1B). To promote
the diversity of patterning motifs in our library, we use the
Wang-Landau algorithm (47) to sample patches spanning a
wide range of polar contents and degrees of clustering. We
quantify patch hydrophobicity /hydrophilicity, f, by displacing

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

12 24
n, (polar content)

Fig. 1. Characterizing the hydrophobicity/hydrophilicity of heterogeneous surfaces.
(A) Simulation snapshot (left) and schematic (right) highlighting a chemically patterned
patch on a binary self-assembled monolayer (SAM) surface. The rectangular patch
(orange) spans p and g end-groups in the = and y directions, respectively, and is
comprised of polar (hydroxyl, blue) and non-polar groups (methyl, white); groups
outside the patch are polar (hydroxyl, light-blue). (B) A library of 884 patches with
p = q = 6, encompassing a range of chemical compositions and patterning motifs
is constructed, and the hydrophilicity, f, of each patch is characterized. (C) Patch
hydrophilicity, f, is defined using the free energy, AG..v, required to empty a
roughly 0.3 nm thin, cuboidal probe volume, v (orange) adjacent to the patch; the
more hydrophilic a patch, the greater the value of f. (D) The hydrophilicity, f, of
every patch in the library is plotted as a function of the number of polar end-groups,
no, in the patch. Although a linear fit (model M1, blue), denoted by fui1, captures
the general trend of patch hydrophilicity, f, increasing with polar content, n,, it is
incapable of capturing the variation in f for patches with the same n,. Consequently,
model M1 has an error, enp1 = 3.7 kT, which is much greater than the inherent
uncertainty, g = 1.02 kg T, in our estimates of f. Representative patches with the
same polar content n,, and different hydrophilicity, f (orange), as well as those with
different n, and similar f (magenta) are shown.

water molecules from an interfacial probe volume, v, and
estimating the free energetic cost, AGeay, of creating a cavity
adjacent to the patch (Figure 1C); the greater the cost, the
more hydrophilic the patch (33). We use molecular simulations
and the Indirect Umbrella Sampling (INDUS) technique (29)
to characterize the hydrophobicity, f = AGcay, of each of
the 884 patches in our library. A detailed description of how
we curate our library of SAM patches and characterize their
hydrophobicity is provided in the SI (Figures S1-S4).

Using estimates of f for every patch in our library, we then
seek to construct a model, f, that is capable of predicting the
hydrophobicity of a patch from its chemical pattern. The ven-
erable Cassie’s law, which is based on macroscopic interfacial
thermodynamics, suggests that the greater the polar content of
a surface, the more hydrophilic it should be (48). Accordingly,
we plot f for every patch in our library against the number of
polar end-groups, no, in that patch (Figure 1D, black dots),
and find that patches with more polar groups (higher n,)
indeed tend to be more hydrophilic (higher f). In fact, the
general trend of f increasing with n, is captured reasonably
well by a linear fit, fan = 110.7 4+ 4.0n, (model M1, blue line),
where fyrg is expressed in units of thermal energy, kgT’; ks
is Boltzmann’s constant and T is temperature. We quantify
the accuracy of model M1, and all subsequent models that we
consider, by estimating the root mean square error (RMSE),
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€, obtained using five-fold cross-validation. We find model M1
error (enn = 3.67 kgT) to be significantly higher than the
underlying uncertainty in our computational estimates of f
(e0 = 1.02 kgT). Moreover, as shown in the SI (Figure S5),
other reasonable functional forms of f(n,) do not perform
much better than model M1 (e.g., the error of a quadratic
model is 3.42 kgT). Thus, the predominant contribution to
emi stems not from our choice of the simple (linear) functional
form of fMl(no), but from the observed variation in f at any
given value of n,. Importantly, although the magnitude of
em1 may seem small when compared to the range spanned
by f, significant shortcomings of model M1 are exposed upon
closer examination of the variation in f for patches with the
same n,. For example, the two patches shown in Figure 1D
(bottom, right), which have the same chemical composition
(no = 16), differ in their hydrophobicity by Af = 16.1 kgT,
corresponding to a difference of roughly 10° in their water
droplet contact angles, and translating into a 7 orders of magni-
tude difference in their binding affinity for extended non-polar
surfaces (33). These findings highlight the important role that
the chemical patterning of a patch plays in determining its
emergent hydrophobicity (49-51) and further emphasize the
need to go beyond simple additive models for predicting the
hydrophobicity of heterogeneous surfaces (17, 34).

Neural Network Models for Predicting Hydrophobicity

To go beyond model M1 and learn a predictive model capable
of capturing how the hydrophobicity, f, of a patch, depends
not just on its polar content, no,, but on its entire chemi-
cal pattern, we encode the pattern using a feature vector x
whose elements are assigned values (-1) and (+1) for polar and
non-polar patch end-groups, respectively, and a value of (0)
for polar groups exterior to the patch (Figure 2A). To learn
the functional mapping, f(x), we then use artificial neural
networks (ANNs) (36), which are capable of accepting an
arbitrarily high-dimensional input, such as «, and learning
complex, non-linear functional forms (37). We train the ANNs
on the residuals, f(z) — fai(no(x)), of model M1 predictions,
thereby adopting a delta learning paradigm (52), which seeks
to learn the influence of chemical patterning not contained
within model M1. We term this model M1A. Since the hy-
drophobicity of a patch is invariant under rotation, reflection
and translation, we augment the training dataset with the
corresponding isomorphic variants of each patch (38). By
exploring a number of fully connected feed-forward architec-
tures, trained in PyTorch (53), we find that an ANN with
a single hidden layer and 48 neurons possesses the lowest
cross-validation error. A detailed description of our data aug-
mentation procedure as well as ANN training, architecture
selection, and hyperparameter optimization is included in the
SI (Figures S6, ST7).

The optimal model M1A is able to predict patch hydropho-
bicity with an error (emia = 2.75 kgT') that is roughly 1 kgT
lower than that of model M1 (Figure 2D). Moreover, unlike
model M1, the accuracy of model M1A is expected to continue
to improve as the model is trained with more data (Figure S11).
The substantial improvement in the accuracy of model M1A
stems from its ability to capture the variation of f with chem-
ical patterning, x, for patches with the same polar content,
no. However, to achieve this improvement, the modestly-sized
ANN used in model M1A employed 6,433 trainable parame-
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ters, making the learned model challenging to interpret. In
contrast, model M1 is easy to understand because it employs
an intuitive physical descriptor, n.; however, this choice also
renders model M1 incapable of capturing how hydrophobic-
ity, f, varies with chemical patterning (for fixed n,), thereby
degrading its accuracy and limiting its usefulness. The con-
trast between models M1 and M1A thus raises the question:
are model accuracy and interpretability mutually exclusive,
or is it possible to construct a hydrophobicity model that is
both highly accurate and simple enough that it lends itself to
physical interpretation?

To obtain simpler models with improved interpretability,
but without sacrificing on accuracy, we explore the use of
convolutional neural networks (CNNs) to learn the model M1
residuals, f(z) — fan (no(x)). We term this model M1C. Tra-
ditionally applied to image recognition (38), CNNs include a
pre-processing operation to extract relevant high-level image
features, which are then input to an ANN. Figure 2B illus-
trates this procedure: a filter, w;, is rastered over the patch
pattern, x, aggregating local chemical information to produce
a convolved pattern, c¢;; the weights associated with the filter
are trained parameters. Multiple filters are applied in parallel
to produce a set of convolved patterns, {c;}, which are then
coarse-grained under a max-pooling operation to produce a set
of lower-dimensional patterns, {p;}. An additional round of
convolution and pooling produces a final set of patterns, {p}},
which serve as inputs to a fully-connected ANN that predicts
the residuals, f() — fui(no(z)). In general, the convolution
and pooling operations enable optimal network performance
with far fewer trainable parameters. Moreover, the filters,
{w;}, are amenable to interpretability, and can inform aspects
of local chemical patterning that influence patch hydropho-
bicity. Once again, the training dataset is augmented with
rotational variants of every patch, and models are trained
in PyTorch (53) calling the HexagDLy libraries (54); details
of the CNN architecture and training are provided in the SI
(Figure S8).

We find that model M1C with five filters performs as well
as model M1A (emic = 2.72 kgT) but does so using only 349
trainable parameters (Figure 2D). The reduced complexity of
model M1C suggests that the pre-processing operations (i.e.,
convolution and pooling) are able to efficiently extract from the
patch patterns, «, local features that are the key determinants
of patch hydrophobicity. To shed light on these features, we
inspect the five learned filters used in the first convolution layer;
the filters are shown in Figure 2C and are colored according
to their trained weights. During the convolution operation,
the greatest signal is obtained when non-polar groups are
convolved with positive filter weights (green) and polar groups
are convolved with negative weights (purple). Accordingly,
patches with clusters of non-polar groups ought to provide
the greatest signal when convolved with filters that feature
predominantly positive filter weights, such as the first filter
in Figure 2C. Correspondingly, the presence of negative filter
weights at neighboring locations (e.g., as seen in the third
filter) suggests that the filter seeks motifs featuring proximal
polar groups. Thus, even though model M1C is too complex
to fully interpret, an examination of the learned filters in
the first convolution layer points to the importance of spatial
end-group correlations in determining the hydrophobicity of
heterogeneous surfaces.
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Fig. 2. Using neural networks to accurately predict the hydrophobicity of patterned SAM surfaces. (A) An artificial neural network (ANN) model M 1A is trained to predict patch
hydrophobicity, f, as a function of the chemical patterning, @, by learning over the residuals, f(x) — fMl (no(x)), of Model M1 . The components of the feature vector,
@, correspond to SAM end-groups, and assume values of (+1), (-1) or 0, for end groups that are non-polar, polar or external to the patch, respectively. The model employs
6,433 trainable parameters, making it challenging to interpret. (B) A convolutional neural network (CNN) model M 1C is trained to convolve the patch pattern, , with a set of
filtters, {w;} (¢ = 1,2,...5), that extract information about the local chemical environment into a set of patterns, {c; }, which are then coarse-grained using max-pool
operations into reduced patterns, {p; }. The reduced patterns are subjected to additional convolution and pooling before being passed through a fully-connected ANN to
predict the model M1 residuals, f(2) — far1(no(2)). (C) The CNN architecture offers improved interpretability via the comprehensible nature of the learned filters. The five
filters used in the first convolution layer are shown here with positive values colored green and negative ones shown in purple; darker shades represent larger absolute filter
weights, whereas lighter shades correspond to smaller weights. The presence of large filter weights (dark shades) at neighboring locations points to the importance of local
chemical correlations in determining patch hydrophobicity. (D) The 3.67 kg T error of model M1 is roughly 1 kgT greater than the errors of the neural network models M 1A
and M1C, highlighting the importance of accounting for the detailed chemical patterning of a patch, , in predicting its hydrophobicity. The underlying uncertainty in the
computed values of f is eg = 1.02 kgT" (dashed line). The number of trainable parameters in each model is also reported, highlighting the accuracy-interpretability tradeoff.

Incorporating Local Chemical Correlations into Hy-
drophobicity Models

Our use of neural network models represents a top-down strat-
egy wherein the networks are presented with the entire patch
pattern and asked to learn the chemical determinants of hy-
drophobicity not contained in model M1. As universal function
approximators, sufficiently deep neural networks can, in prin-
ciple, learn end-group correlations of all orders (37). However,
to obtain more interpretable models, we now include increas-
ingly higher-order end-group correlations into our baseline
model M1 in a complementary bottom-up approach, and seek
to match the performance of the neural network models. We
first incorporate the number of polar-polar nearest neighbors
(with at least one neighbor belonging to the patch), nqo, as a
descriptor of local chemical patterning to construct model M2,
which is linear in 1, and neo (Figure 3A). Interestingly, the
number of polar groups adjacent to non-polar groups, noc, or
the number of neighboring non-polar groups, ncc, are equiv-
alent descriptors of two-body nearest neighbor correlations.
Indeed, due to geometric and stoichiometric constraints, nec
and nec are uniquely determined by n., n.. and the patch
dimensions, as shown in the SI; thus, models that are isomor-
phic to model M2 can be constructed using n, and either noc
or T in lieu of neo.

Importantly, the very simple model M2, with only three
learned parameters, is just as accurate (em2 = 2.67 kgT') as the
neural network models M1C and M1A, which employ 349 and
6,433 parameters, respectively (Figure 3D, solid bars). Even
more importantly, the relationship between patch hydropho-
bicity, f, and chemical patterning, x, encoded in model M2,
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fMg = 105.7 + 5.4 no — 0.4 noo, is highly interpretable and
exposes the essential physics underpinning the learned rela-
tionship: the greater the polar content, n,, of a patch, the
more hydrophilic it is; and for a given polar content n,, the
more polar neighbors there are, the less hydrophilic the patch.
In other words, the ability of a polar group to enhance patch
hydrophilicity is reduced when it is placed adjacent to other
polar groups. Indeed, when a patch with proximal polar groups
undergoes dewetting, those groups can hydrogen bond with
one another, making the patch easier to dewet and therefore
less hydrophilic; conversely, when a patch with well-separated
polar groups undergoes dewetting, those groups can hydro-
gen bond with and pin more hydration waters, making it
harder to dewet (15). Our finding that polar neighbors lower
hydrophilicity (for patches with a fixed polar content) is con-
sistent with the results of both Xi et al. (15) and Kelkar et
al. (16), who found that patches with adjoining polar groups
were less hydrophilic than those with alternating polar groups.

We now incorporate three-body correlations between end-
groups into our linear models, and seek to ascertain whether
explicit accounting of such correlations improves model perfor-
mance (55). As detailed in the SI, seven independent descrip-
tors are needed for this purpose (Figures S9, S10); as with
model M2, different descriptor combinations can be chosen,
giving rise to isomorphic models. We choose to work with the
descriptors shown in Figure 3B (green rectangle), which corre-
spond to the prevalence of the following motifs: polar groups

(no), polar dimers (noo), compact polar trimers (nSomP<t),

straight polar trimers (nS228m) bent polar trimers (n5eat),
straight) and bent mixed trimers

straight mixed trimers (ngoy
(n22%). We note that these motifs can feature polar end-
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Fig. 3. Bottom-up incorporation of spatial end-group correlations results in models that are both accurate and interpretable. (A) To construct a hydrophobicity model that is
cognizant of local chemical patterning, and not just polar content, n,,, we employ the number of polar-polar nearest neighbors, n., as an additional descriptor that quantifies
the two-body correlations amongst proximal end-groups. Model M2, which is linear in n,, and n., highlights that for a given polar content n,,, the presence of neighboring
polar groups decreases patch hydrophilicity. (B) To incorporate three-body correlations, we construct model M7, which is linear in the seven descriptors that quantify the
prevalence of the motifs shown in the green rectangle: the number of polar groups (n) and dimers (n..); the number of polar trimers that are compact (nggg‘wt), straight
(nStraishty and bent (n2°2*); and mixed trimers that are straight (n5':2181%) and bent (n2¢*). To reduce the dimensionality of model M7, we perform a series of ‘pruning’
(removing unimportant descriptors) and ‘merging’ (combining two descriptors) steps, which leads to the three-descriptor model M3 (purple rectangle). (C) To assess the
predictive performance of models M2 and M3 when confronted with novel patches, we curate a challenge dataset with nine chemical patterns that contain uncommon motifs.
The hydrophobicities, f, of the nine patches in the challenge dataset are compared against the corresponding predictions, f of models M1, M2 and M3 . (D) A comparison of
the accuracy of the different models, as quantified by e (solid bars), highlights the importance of accounting for end-group correlations. The inclusion of two-body correlations in
model M2 renders it 1.00 kg 7" more accurate than model M1, and comparable in accuracy to the black-box models M1A and M1C. In contrast, the 0.07 kgT" improvement
in accuracy from incorporating three-body correlations is modest, with models M3 and M7 being comparable in accuracy. The errors associated with the challenge dataset
(hatched bars) are greater than those with the training dataset (solid bars) for all the models we consider; however, the difference between those errors reduces as higher order

M1 M2 M3 M7 MI1A

correlations are incorporated, suggesting improved model generalizability. The precision in our measurements of fis eg =

groups external to the patch as long as at least one of the
end-groups in the motif belongs to the patch. We term this
model M7. As shown in Figure 3D, model M7 is slightly
more accurate (em7 = 2.60 kgT') than the neural network
models M1C and M1A, which consider the entire patch pat-
tern, x, as input, and therefore have access to many-body
end-group correlations of all orders; this finding suggests that
including two- and three-body correlations between end-groups
is sufficient to accurately predict patch hydrophobicity, and
incorporating higher-order correlations is unlikely to lead to
further improvements in model performance. Indeed, as shown
in the SI, surrogate linear models, which incorporate two- and
three-body end-group correlations, are able to explain the
predictions of the neural network models remarkably well.

Although model M7 requires five more parameters than
model M2, the relative improvement in its accuracy, em2 —
em7 = 0.07 kT, is an order of magnitude smaller than the
improvement in model performance achieved upon introducing
two-body correlations, ex1 —em2 = 1.00 kg7 (Figure 3D). This
finding motivates us to ask whether all the terms in model M7,
and correspondingly, the motifs in Figure 3B (green rectan-
gle), are equally important, or if some may be omitted to
arrive at a more interpretable model. To this end, we perform
a series of operations, which involve either discarding unim-
portant descriptors (pruning) or combining two descriptors
with similar importance (merging); all possible pruning and
merging operations are attempted, and the operation that
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1.02 kT (dashed line).

results in a model with the greatest accuracy is accepted at
each stage (Figure 3B). After four iterations of this proce-
dure, we obtain model M3, which expresses hydrophobicity
as a linear function of three independent descriptors, fMg =
105.8 4 5.4 1o — 0.49 (N0 + nEOWPaCY 1 (0,13 (nSiraisht 4 pbent)
Model M3 employs four fewer descriptors than model M7,
but is just as accurate (em3 = 2.61 kgT), indicating that
it is capable of capturing the salient three-body correlations
(Figure 3D). Moreover, the simplicity of model M3 makes it
amenable to interpretation. Like model M2, model M3 pre-
dicts that polar groups increase patch hydrophilicity, whereas
polar neighbors lower hydrophilicity. Model M3 addition-
ally accounts for three-body correlations through terms that
are linear in the lumped descriptors, (noo + niowP*!) and
(nstraieht 4 pbenty. the former highlights that a compact polar
trimer lowers patch hydrophilicity as much as a polar dimer,
whereas the latter with its small positive coefficient suggests
that straight or bent polar trimers lead to a slight increase in
hydrophilicity. Thus, model M3 predicts that given a certain
number of polar groups and polar dimers, overlaps between
polar dimers to form bent or straight trimers lead to small
increases in hydrophilicity, whereas a clustering of dimers to
form compact trimers results in a decrease in hydrophilicity.

Figure 3D illustrates that the lowest error across all the
models considered, i.e., em7 = 2.60 kT, is 1.58 kT larger
than the 1.02 kg7 uncertainty in our estimates of f. As shown
in the SI (Figure S11), the difference between the error of our
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Fig. 4. Physics-based generalization of model M2 to rectangular patches of different shapes and sizes. (A) We first recognize that the intercept, . (gray box), in model M2
corresponds to the hydrophobicity of a uniformly non-polar patch for which n, = noo = 0. The linear terms in n, and n,. (blue box) determine how the presence and
arrangement of polar groups modulates patch hydrophobicity. (B) The hydrophobicity of a non-polar patch, f., is captured well by a model, fc, that is linear in the area of the
patch, pg, as well as its dimensions, p and g. (C) To test the hypothesis that the coefficients, ., and ., are independent of patch size and shape, we generate an expanded
dataset (yellow box) containing N = 228 patches of a different size (4 x 4) and N = 682 patches with a different shape (4 x 9) to augment the original dataset (red box) of
N = 884 patches (6 x 6). (D) The coefficients, v, and a0, Obtained by performing a least-squares linear fit to the original (red) and expanded (yellow) datasets are in good

agreement, validating the hypothesis that they are insensitive to patch size and shape.

best performing model and the uncertainty in our data de-
creases as the number of patches included in the training set
size is increased. Indeed, although our training dataset con-
tains patches with diverse chemical patterns, the 884 patches in
our dataset nevertheless represent a tiny fraction (0.0000013%)
of all 23¢ possible 6 x 6 patches. To challenge our data-centric
models and test how well they perform when presented with
novel patches, we designed a set of nine patterns that do not
belong to the training dataset and contain uncommon motifs
(Figure 3C). As expected, every model performs worse on
this test set than predicted by their cross-validated RMSE
estimates; however, model performance on the test dataset
improves substantially upon incorporating higher-order cor-
relations (Figure 3D). In particular, we find that the test set
error improves from 7.85 kgl under model M1 to 4.50 kT
under model M2 to 2.73 kg7 under model M3. Furthermore,
the test set performance of model M3 is superior to that of
model M7 (and of models M1A and M1C), suggesting that
the latter suffers from overfitting. Thus, model M3 strikes
an excellent bias-variance tradeoff, and is thus simultaneously
accurate, generalizable and interpretable.

Generalizing Minimal Models of Hydrophobicity to Pat-
terned Patches of Different Sizes and Shapes

Encouraged by the accuracy of models M2 and M3 in predict-
ing the hydrophobicity of chemically patterned 6 x 6 patches,
we now seek to generalize these models to all rectangular
p X q patches. We do so by exploiting the interpretability
of our models and augmenting it with an understanding of
interfacial thermodynamics (33). We describe this analysis for
model M2 due to its relative simplicity; the analogous exercise
for model M3 yields similar results, and is presented in the SI
(Figure S14). In model M2 (fMQ = Qe+ QoMo + AooMoo ), the in-
tercept, a., corresponds to the hydrophobicity, f., of a uniform
non-polar patch (for which no, = no0 = 0), whereas the coeffi-
cients a, and oo capture the extent to which the presence of
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polar groups, as quantified by n,, and the nearest-neighbor
chemical patterning, as quantified by n.., respectively con-
tribute to patch hydrophobicity, f (Figure 4A). To construct
a generalized version of model M2, we hypothesize that the
intercept, a. (which corresponds to the hydrophobicity of a
non-polar patch, f.), must depend on patch size and shape,
whereas the coefficients, a, and a,o, should be intrinsic prop-
erties of the chosen end-group chemistries and should therefore
be independent of patch geometry.

First, we seek to understand how the intercept, ac, should
depend on patch dimensions, p and ¢, by estimating the hy-
drophobicity, fec, of 62 non-polar patches with sizes that ranged
from 10 to 96 end-groups, and aspect ratios that ranged from
1 (for square patches) to 16 (for a 2 x 32 patch). We then
propose a physically motivated model for f., which is a linear
function of the patch area, pq, as prescribed by macroscopic
interfacial thermodynamics, and is also linear in the patch
dimensions, p and ¢, to account for edge effects that stem from
finite patch sizes. As shown in Figure 4B, the linear model
fe(p, q) = 1.22pq + 5.86p + 4.10q + 3.85 fits the f.-data very
well with an RMSE of only 1.9 kgT. Moreover, this model
can also be generalized to non-rectangular patches, as shown
in the SI (Figure S12). The intercept, ac, in the generalized
model M2 is then defined as: a. = fc.

Next, we test our hypothesis that the coefficients, a, and
oo, should be independent of patch size and shape. To
this end, we generate an expanded dataset that includes 228
square 4 X 4 patches and 682 rectangular 4 x 9 patches in
addition to the 884 square 6 X 6 patches in the original dataset
(Figure 4C), and calculate the hydrophobicity of the addi-
tional patches. From the hydrophobicity, f, of every patch
in the expanded (or original) dataset, we then subtract the
hydrophobicity of the corresponding non-polar patch, f., and
determine the coefficients, a, and a,o, by performing a least
squares fit to the residuals: f — fo = @oNo + QooNoo- As
illustrated in Figure 4D, the coefficients computed over the
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Fig. 5. Rational design of heterogeneous SAM patches with maximal hydrophobicity/hydrophilicity. (A) For the patch pattern shown, we perform an exhaustive screening of
all point mutations, and interrogate their influence on patch hydrophobicity using model M2. (B) An inspection of the changes in patch hydrophilicity, Af, in response to
point mutations, enables identification of ‘hot-spot’ locations (red outline). End-groups mutations that result in the smallest absolute change in patch hydrophobicity are also
highlighted (cyan outline). (C) We employ an iterative greedy design protocol to discover maximally hydrophobic or hydrophilic patches with a particular polar content, n,. The
most hydrophilic patches (top) tend to feature well-dispersed polar and non-polar end-groups, whereas the most hydrophobic patches (bottom) feature a single non-polar cluster.

(D) To quantify the relative dispersion of the optimal patches, we plot the number of polar — non-polar neighbors, n., for the most hydrophilic patches (n gy
hydrophobic patches (n7. ™) as a function of their polar content, n,. Moreover, the difference between n,

attainable hydrophobicities, f™a* — fmin,

expanded dataset, a, = (5.07 £ 0.03) k7T and aoo = (-0.32
£ 0.01) kBT, are in good agreement with those calculated
over the original dataset, a, = (5.39 £ 0.05) kT and oo
= (-0.38 £ 0.02) kgT, thereby validating our hypothesis that
o and aoo are independent of patch geometry. Collectively,
our findings yield the generalized model M2, which can be
used to predict the hydrophobicity of heterogeneous rectan-
gular patches of all shapes and sizes (including uniformly
polar patches): sz(p, q, Moy Noo) = (P, @) + QoMo + AooMoo
= [1.22pq+5.86p+4.10g+3.85]+5.07no — 0.32n0, (Figures S13
and S15).

Rational Design of Chemically Patterned Patches

Our learned models M2 and M3 represent accurate, generaliz-
able and interpretable models for predicting patch hydropho-
bicity, f, as a function of its chemical pattern, . We now
seek to exploit these models to efficiently navigate through
the high-dimensional chemical pattern space and uncover de-
sign rules for optimally enhancing patch hydrophobicity or
hydrophilicity. In particular, we first interrogate the char-
acteristic features of patch locations known as “hot-spots”,
which when mutated bring about the largest change in patch
hydrophobicity or hydrophilicity (56, 57). We then seek to
uncover patches that have the same polar content but vary
widely in their hydrophobicity. We present results obtained
using model M2 here, and include the corresponding results
obtained using model M3 in the SI (Figures S16 and S17).
To identify hot-spot end-groups, we systematically mutate
every end-group and estimate the predicted change in hy-
drophobicity, A f , using model M2. As an example, consider
the patch pattern shown in Figure 5A. Although non-polar to
polar mutations result in an increase in f , and polar to non-
polar mutations result in a decrease in f , certain end-groups
have much larger marginal impacts on patch hydrophobic-
ity /hydrophilicity than others (Figure 5B). Such hot-spots
are highlighted in Figures 5A,B (red outline). The largest
increase in f results from the mutation of a non-polar group
at the center of the non-polar cluster; this location is optimal
because it enables the newly introduced polar group to have
the fewest (zero) polar neighbors. In contrast, the largest
decrease in f results from the mutation of a polar end-group
that is at the periphery of the polar cluster and has the fewest
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o) and the most
and ng. " (for any n.) informs the corresponding range of

max
oc

polar neighbors (including those outside the patch). Thus,
polar mutations optimally enhance patch hydrophilicity when
introduced at the center of a non-polar cluster, whereas non-
polar mutations optimally enhance patch hydrophobicity when
introduced at the edges of a polar cluster or at isolated polar
groups.

In addition to uncovering the characteristic features of hot-
spots, it is also instructive to consider mutations that bring
about the smallest change in hydrophobicity or hydrophilic-
ity (Figures 5A,B, cyan outline). We find that the smallest
increase in f occurs on mutating a non-polar group that is
surrounded by polar groups, and conversely, the smallest de-
crease in f occurs on mutating a polar group in a polar cluster.
Collectively, our findings highlight that polar clusters are rel-
atively insensitive to mutations, whereas non-polar clusters
are particularly susceptible to mutations. Such an asymmetry
between the susceptibility of non-polar and polar clusters to
mutations was also observed by Acharya et al. (13), who found
that introducing a polar group at the center of the non-polar
patch substantially suppressed interfacial water density fluc-
tuations, whereas the introduction of a non-polar group at
the center of a polar patch had a much smaller effect on fluc-
tuations. The sensitivity of non-polar clusters to mutations
is also consistent with the findings of Patel et al. (30), who
showed that water near extended non-polar patches sits at
the edge of a dewetting transition and is therefore particularly
susceptible to perturbations.

By building on our ability to identify hot-spots, we now seek
to solve the constrained optimization problem of identifying
6 x 6 patches that maximize hydrophobicity or hydrophilicity
under a fixed budget of polar end-groups, n,. Because exhaus-
tive optimization over all 23¢ possible patches is infeasible,
we adopt an iterative greedy strategy to determine approxi-
mate solutions to the optimization problem for every value
of n, from 0 to 36. To design maximally hydrophilic pat-
terns, we start with a non-polar patch (n,=0), and introduce
a polar mutation at a hot-spot location that results in the
largest increase in f ; if multiple equally favorable hot-spots
exist, we choose one at random. The result of this operation
is a maximally hydrophilic patch containing one polar end-
group (no=1); we then identify the hot-spot location on this
patch, and mutate it to obtain the most hydrophilic patch
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with n, = 2. Repeating this procedure for n,=3, 4, ... 36,
we obtain a maximally hydrophilic patch at each value of n,.
The design of maximally hydrophobic patches proceeds in an
analogous fashion, commencing from a polar patch (n,=36)
and iteratively introducing non-polar mutations that result in
the largest decreases in f . We repeat this greedy optimization
protocol 100 times and identify the most hydrophilic and hy-
drophobic patches for every value of no; the optimal patches
are illustrated in Figure 5C for select values of n,. We find
that the most hydrophilic patches feature highly dispersed
patterns with polar and non-polar groups occupying adjacent
sites (to minimize polar neighbors), whereas the most hy-
drophobic patches cluster their non-polar groups (to maximize
polar neighbors).

To characterize the dispersion of the end-groups in the
optimal patches, we plot the number of polar — non-polar
neighbors, N, for the most hydrophilic (nge™) and hydropho-
bic (n2i™) patches identified at every value of n, (Figure 5D).
We also show the range of hydrophobicities, f’mx — fmi“, at-
tainable for a given polar content, n,, which is proportional to
the difference, n22* — p" and emphasizes the importance
of chemical patterning in determining hydrophobicity. We
find this range to be maximal for n, = 16, where the most
hydrophilic patch has nge™ = 94 and the most hydrophobic
patch has n" = 32, resulting in a hydrophobicity range of
roughly 10.9 kgT. Our findings that the most hydrophilic
patches feature dispersed chemical patterns and that the most
hydrophobic patches display clustering of like groups are in
good agreement with the results of Shell and co-workers, who
used a genetic algorithm to identify heterogeneous patches with
the lowest (or highest) interfacial water diffusivities, and found
that the optimal patches feature well-mixed (or separated)
patterns of polar and non-polar groups (40); the authors also
found that dispersed patches bind small hydrophobic solutes
weakly relative to well-separated patches (41).

Conclusions and Outlook

In this work, we seek to understand the relationship between
the nanoscale chemical patterns displayed by heterogeneous
SAM surfaces and their hydrophobicity using molecular simu-
lations, enhanced sampling techniques and machine learning.
To this end, we characterize the hydrophobicity of a diverse li-
brary of ©(10%) SAM patches that span a range of sizes, shapes
and chemical compositions. Although the hydrophilicity of a
patch generally increases with its polar content, we find that
patches with the same polar content can nevertheless display
substantial variation in hydrophobicity, and that patches with
different polar contents can have similar hydrophobicity. Thus,
simple additive models of hydrophobicity, which account only
for the polar content of a patch, are unable to accurately quan-
tify its hydrophobicity. In contrast, neural network models,
which consider the entire chemical pattern of a patch, are able
to capture the variation in the hydrophobicity of patches with
the same polar content; however, such models are challenging
to interpret from a physical standpoint.

To obtain hydrophobicity models that are both accurate
and interpretable, we incorporate local spatial correlations be-
tween chemical end-groups into our models. By constructing
a series of models that explicitly account for two-body and
higher-order correlations amongst end-groups, we are able to
obtain two- and three-descriptor minimal models M2 and M3,
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respectively, which are just as accurate as the neural network
models in capturing the relationship between chemical pat-
terning and hydrophobicity. Models M2 and M3 incorporate
not just the polar content of patch, but also the number of
polar-polar nearest neighbors; model M3 additionally accounts
for the number of polar trimers. Importantly, our minimal
models are amenable to interpretation, and elucidate that for
patches with the same polar content, clustering of polar groups
results in enhanced patch hydrophobicity. Model M3 further
predicts that bent or straight trimers confer a small increase in
hydrophilicity, whereas compact trimers lead to a decrease in
hydrophilicity. The interpretability of models M2 and M3 also
enables their generalization to rectangular patches of all sizes
and shapes. The accuracy of models M2 and M3 emphasizes
the importance of chemical correlations between surface groups
in determining the hydrophobicity of heterogeneous surfaces,
and exposes the inherent limitations of additive approaches,
such as hydropathy scales, which seek to express hydrophobic-
ity as a sum of contributions from individual chemical groups.

An interesting consequence of the importance of correlations
is that different non-polar (or polar) groups do not contribute
equally to the hydrophobicity of a patch. By leveraging the
efficiency of models M2 and M3, we identify hot-spot locations
that contribute disproportionately to the overall patch hy-
drophobicity or hydrophilicity. In particular, we find that the
center of a non-polar cluster is an optimal location for introduc-
ing a polar mutation to increase patch hydrophilicity, whereas
an isolated polar group or the edge of a polar cluster are
optimal sites for introducing a non-polar mutation to enhance
patch hydrophobicity. We also find that the hydrophobicity of
non-polar clusters is susceptible to mutations, whereas that of
polar clusters is robust against mutations. These observations
may find applications in protein engineering. For example, the
identification and mutation of non-polar hot-spot residues to
polar or charged residues could be used to optimally enhance
the hydrophilicity of proteins, and thereby their aqueous sol-
ubility (58, 59). Similarly, the mutation of polar hot-spots
to non-polar residues, which optimally enhances protein hy-
drophobicity, could facilitate tighter binding between a protein
and its binding partners (35, 60). By exploiting our ability
to identify hot-spots, we also perform iterative greedy design
of patches, which for a given polar content, are maximally
hydrophobic or hydrophilic. We find that the most hydrophilic
patches display well-dispersed patterns with alternating polar
and non-polar groups, whereas the most hydrophobic patches
are distinguished by a single, contiguous non-polar cluster.
These findings may have implications for the rational design of
soft materials (61), such as super-hydrophilic surface coatings
that can resist fouling by proteins (42). Our findings may
also facilitate the design of supramolecular hosts, who like the
proteins they seek to mimic, must strike a delicate balance
between being soluble in water (hydrophilic) and being able
to bind to their guests (hydrophobic) (62, 63).

Protein surfaces have evolved to use chemical patterning,
and not just polar content, to modulate their hydrophobicity
and tune their interactions (30, 64). Although protein surfaces
are substantially more complex than the binary SAM surfaces
studied here (65), employing a much larger palette of chemical
moieties and displaying nanoscale roughness, we hope that
our work will provide a template for developing data-driven
models of protein hydrophobicity that are both accurate and
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interpretable. Along with parallel advances in the development
of methods for accurately and efficiently characterizing protein
hydrophobicity (35, 66), our work thus offers the promise of
being able to not only predict, but also understand how the
hydrophobicity of a protein depends on the nanoscale chemical
and topographical patterns it displays. Our approach should
also be useful in informing the hydrophobicity of other hetero-
geneous solutes, such as patchy nanoparticles, dendrimers or
supramolecular hosts (67-70). Finally, because our character-
ization of hydrophobicity accounts for the collective solvent
response to the chemical patterns displayed by heterogeneous
surfaces, our approach can also be generalized to investigate
how the presence of co-solutes (e.g., salt) or co-solvents (e.g.,
ethanol) modulates the relationship between patterning and
hydrophobicity (71-73).
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Supporting Information Text
1. Generating Libraries of Diverse Chemical Patterns

Given that binary self-assembled monolayer (SAM) patches span a large and high-dimensional chemical pattern space, with
2% patterns possible for the 6 x 6 patches, here we seek to sample a small but diverse subset of such patches. If the patches
are chosen randomly, certain polar contents and patterning motifs are much more likely to appear than others; in particular,
randomly generated patterns are likely to favor roughly equal numbers of polar and non-polar end-groups with the groups
being well-dispersed rather than clustered. To generate a library of diverse patches that span a wide range of polar contents
and degrees of dispersion/clustering, we quantify the former using the number of polar groups, n., and the latter using the
degree of polar clustering, d,, which is defined as the root mean squared deviation of the polar groups from their center of
mass (Figure S1A). For every value of no, we then estimated the number of patterns, Q,,(do), as a function of d, either by
exhaustive sampling (for no-values with fewer than 60,000 patterns) or using the Wang-Landau (1) algorithm with a tolerance
of 107! and a maximum of 60, 000 iterations per round. As illustrated in Figure S1B for n, = 18, Q,_(d,) is sharply peaked,
highlighting that randomly-generated patterns would span a narrow range of do-values. To engender pattern diversity, we
instead sample uniformly across all possible values of n, and d, and obtain 442 distinct patches. To obtain patterns that span
a wide range, not only in their do-values, but also in their degrees of non-polar clustering, we swap the identities of polar and
non-polar end-groups in each of our 442 patches to generate another 442 ‘inverted’ patches (Figure S1C) and arrive at a total
of N = 884 patches for our training library of 6 x 6 patches. This procedure was repeated to additionally generate diverse 4 x 4
patches (N = 228) and 4 x 9 patches (N = 682) for inclusion in the expanded dataset (Figure 4C).

2. Molecular Simulations of Self-Assembled Monolayer (SAM) Surfaces

Simulation set-up. Self-assembled monolayer (SAM) surfaces composed of hexagonally-packed alkyl chains were prepared
following references (2, 3). Each chain contains a sulfur atom, 10 united-atom methylene groups, and either a methyl (non-polar)
or hydroxyl (polar) end-group that is exposed to solvent. Molecular visualizations of the methyl- and hydroxyl-terminated chains
are shown in Figure S2A. The majority of our calculations were performed using a SAM surface, consisting of 12 x 12 = 144
alkyl chains, with chemically patterned patches embedded in a polar background (Figure 1A). An elongated SAM surface,
composed of 6 x 36 = 216 alkyl chains, was used to estimate the hydrophobicity of the 2 x 12, 2 x 18, 2 x 32 and 3 X 12 uniform
non-polar patches (Figure 4B). Moreover, a larger SAM surface, composed of 16 x 16 alkyl chains, was used to study the 12 x 8
non-polar patch, the non-rectangular non-polar patches (Figure S12), and the 12 x 12 patterned patches (Figure S15). SAM
surfaces were solvated using a roughly 4 nm thick slab of water and placed normal to the z-dimension in a 5.2 x 6.0 x 8.5 nm?
simulation box, as shown in Figures 1C and S2B; for the elongated and larger SAM surfaces, simulation boxes of dimensions,
2.6 x 18 x 8.5 nm® and 6.93 x 8.0 x 8.5 nm?, respectively, were used. Following reference (4), a repulsive wall of spherical atoms
was positioned at z = 8.2 nm to induce a buffering vapor layer, which serves to accommodate any water molecules displaced
from the vicinity of the SAM surfaces during the Indirect Umbrella Sampling (INDUS) calculations.

Simulation parameters. All simulations were performed using GROMACS version 4.5.3 (5), suitably modified to incorporate the
biasing potentials used in the INDUS calculations. The equations of motion were integrated using the leap-frog integrator (6)
with a time step of 2 fs and periodic boundary conditions were used in all dimensions. All systems were simulated in the canonical
ensemble with temperature maintained at 7' = 300 K using the stochastic velocity-rescale thermostat (7) and a coupling
constant of 7 = 0.5 ps. Before performing biased (INDUS) simulations, every patterned SAM system was energy-minimized
using the steepest-descent algorithm and equilibrated for 100 ps; biased simulations were run for 500 ps. Water molecules
were represented explicitly using the three-point SPC/E model (8). The united-atom methylene groups were modeled using
Model UAc from reference (9). The Lennard-Jones parameters and bonded potentials for the methyl and hydroxyl end-groups
were modeled using the Amber99SB force field (10), whereas their partial charges were taken from the OPLS-AA force field (11).
Lennard Jones parameters were combined using the Lorentz-Bertholet mixing rules. Van der Waals and short-range electrostatic
interactions were truncated at 1 nm, and long-range electrostatics were treated using the Particle Mesh Ewald method (12). All
bonds to hydrogen atoms were constrained; SAM end-group bonds were constrained using the LINCS algorithm (13), whereas
the bonds in water were constrained using the SETTLE algorithm (14). The sulfur atoms were restrained to lie on a 0.5 nm
hexagonal lattice using harmonic restraints with a spring constant of 40,000 kJ/mol/nm?. The third methylene groups from
the end of the alkyl chain were also position-restrained with the same spring constant (4) to hinder the slow circular motion of
the alkyl chains.

3. Characterizing Hydrophobicity using Indirect Umbrella Sampling (INDUS)

The hydrophobicity, f, of a patterned patch was quantified using the free energetic cost, AGeay, of displacing all waters from a
cuboidal probe volume, v, placed adjacent to the patch (Figure 1B).

Probe volume dimensions. The dimensions, [, and [, of the cuboidal probe volume, v, in the x and y directions, respectively,
were chosen to span all end-groups within the patch, as illustrated in Figure S3A. In particular, these dimensions were
determined by running a 5 ns equilibrium simulation of a purely polar patch, and padding the average x and y coordinates of
the top-right and bottom-left hydroxyl end-groups in the patch with a buffer distance of § = 0.275 nm; see Figure S3B) The
dimensions, [, and [, of v are related to the patch dimensions, p and ¢, as follows:
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lz(p) = (28) + 72(p — 1), and
ly(q) = (26) +ry(g — 0.5), (1]

where 7, = 0.5 nm is the lattice spacing in the y direction and r, = @ry is the spacing between end-groups in the z direction.

The width, [, of v was chosen to include waters within the first hydration shell of the SAM patches. The lower bound of v
was chosen to be zmin = 1.7, but to ensure that patches of the same size/shape have the same average numbers of waters in v,
the upper bound, zmax, of v was varied across different patches. An inspection of the normalized density of water oxygens,
g(z), adjacent to the uniform 6 x 6 patches (Figure S3 C-F) makes it clear that a choice of zmax = 2.175 nm for the polar patch
and zmax = 2.3 nm for the non-polar patch results in an average of 100 waters in v for both patches. For patterned patches,
Zmax Was chosen to be between 2.175 nm and 2.3 nm such that the corresponding v contained roughly 100 waters.

Estimating AG... using INDUS. We use the Indirect Umbrella Sampling (INDUS) method (15, 16) to calculate the probability,
P,(N), of observing N water molecules in a probe volume v, placed adjacent to a patch pattern of interest, and estimate
AGcav through the relationship, AGcav = —ksT In P, (0), where kgT is the thermal energy and kg is Boltzmann’s constant.
In particular, we indirectly sampled the number of waters in v by sampling the coarse-grained number, N, of waters in v,
defined using a coarse-graining length of 0.01 nm and a cutoff of 0.02 nm (16). To systematically sample N,, we used a series
of harmonic biasing potentials, U n+(Ny,) = g(NU — N*)?, where the values of k and N* were chosen following reference (17).
The free energetics, —kgT In P, (), of water density fluctuations in v were computed following reference (16), and are shown

in Figure S4 for three 6 x 6 patches along with the corresponding values of AGcay.

4. Training and Evaluating Linear Models

All linear models (M1, M2, M3, and M7) were trained using ordinary least squares regression using the scikit-learn Python
package (18). The performance of each model was evaluated by five-fold randomized cross-validation (CV), and quantified
using the root-mean squared error (RMSE), €, over the five CV rounds. Five-fold CV was repeated 1000 times to obtain error
bars for model errors € and for the parameters of models M2 and M3 (Figure 4D and Figure S14B).

Performance of one-feature models. To asses the usefulness of polar content, n,, as a predictor of hydrophobicity, we compared
the linear model M1 (Figure S5A, ¢ = 3.67 kgT') to non-linear functional forms of no, such as quadratic (Figure S5B,
e = 3.42 kgT) or higher order polynomials. We also considered a ‘conditional average’ model (Figure S5C, ¢ = 3.53 kgT),
where the hydrophobicity of a patch with n, polar groups is predicted to be the average hydrophobicity, fn,, of all patches (in
the training set) with n, polar groups. The non-linear models perform only marginally better than model M1 (Figure S5D),
suggesting that the primary limitation on the accuracy of these one-feature models is their inability to account for the variation
in the hydrophobicity of patches with the same polar content, n,.

5. Artificial and Convolutional Neural Network Models

Artificial (ANN) and convolutional (CNN) neural networks were trained on the N = 884 dataset of 6 x 6 patch patterns using
the PyTorch (19) Python library. All ANN and CNN models were trained on model M1 residuals, f(z) — fami(no(x)).

Data augmentation and featurization of patch patterns. To account for the invariance of patch hydrophobicity under translation,
rotation, and reflection, we augmented our N = 884 training set of 6 X 6 patches with isomorphic variants, as shown in
Figure S6. Every patch in the augmented dataset (N = 74,256) was embedded in a 12 x 11 SAM surface with a background of
polar groups, and was represented using a 132-component feature vector, . The components of & correspond to end-group
positions, and are assigned a value of (+1) for non-polar patch groups, (-1) for polar patch groups and (0) for polar groups
outside the patch.

Training neural network models. The ANN and CNN models were trained by minimizing the mean squared error (MSE) using
stochastic gradient descent with the Adam (20) optimization algorithm included in the PyTorch package. For the Adam
optimizer, the learning rate was set to 1 x 1072, 3 values were chosen to be 0.9 and 0.999, and € = 1 x 10~%. All models were
trained with mini-batch gradient descent using a batch size of 200 samples. Early-stopping was used to terminate training if
model MSE did not improve for 10 consecutive epochs. Rectified linear unit (ReLU) activation functions were employed in all
nodes. CNNs were constructed using the Hexagdly (21) PyTorch plugin to enable convolutions over the hexagonally-packed
lattice of end-groups. Convolutional filters used a kernel size of 1 with a stride length of 1 and max pooling filters employed
a kernel size of 1 with a stride length of 2; the kernel size employed corresponds to the nearest-neighbor kernel shown in
Figure 2B. A padding length of 1 was used for all filters. All CNN architectures employed two convolutional layers applied in
sequence. In each layer, the same number of convolutional filters was applied, in parallel, to each patch pattern; the convolved
patterns were passed through a ReLU activation filter and then through a max-pooling operation to reduce the dimensionality
of the patterns. The output of the second convolutional layer was passed to a fully connected ANN.
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Evaluating ANN and CNN model performance. As with the linear models, the performance of the ANN and CNN models was
evaluated using 5-fold CV. To determine optimal network architectures for models M1A and M1C, we trained models with
different hyper-parameter combinations, and evaluated their performance as an average over 5 independent CV rounds.

Determining the optimal ANN architecture. The optimal number of hidden layers and nodes per hidden layer in the ANN model
were determined by training a series of models with different architectures. The performance, ¢, of different ANN architectures
is shown in Figure S7. The best performing ANN architecture had 1 hidden layer with 48 neurons and an output layer with
one neuron, employing a total of 6,433 trained parameters. This architecture was chosen for model M1A, and was trained over
4 independent CV rounds to evaluate its performance (¢ = 2.75 kgT).

Determining the optimal CNN architecture. The number of convolutional filters, hidden ANN layers, and nodes per hidden layer
of the CNN model were similarly determined by training a variety of CNN models with different hyper-parameter combinations
(Figure S8). We chose a near-optimal CNN model that had 5 convolutional filters, 1 hidden layer with 4 nodes and an output
layer with one neuron, employing a total of 349 trained parameters. Although more complicated CNN architectures performed
slightly better, we selected this architecture for model M1C because it corresponds to a very high performing model with the
fewest parameters. The error of model M1C, estimated over 4 independent CV rounds, was € = 2.72 kg7

6. Two-body Feature Constraints and Isomorphic Forms of Model M2

To incorporate two-body or nearest-neighbor end-group correlations into our models, we must consider the number of polar
(Noo), non-polar (nec) and mixed (noc) neighbors. Although the number of neighbors of each type varies with the patch pattern,
x, the total number of nearest neighbors, nxx = noo + Noc + Ncc depends only on patch dimensions, p and ¢, for a rectangular
patch:

Noo + Noc + Nece = nxx(p, q) = 3pq + 2(]7 + q) — 1. [2]

Moreover, stoichiometric and geometric considerations dictate that the number of polar and mixed neighbors must be related
to the total number of polar end-groups through:

Moo + Noc = 616 + [2nxx (P, ¢) — 6pg], 3]

where the last term on the right hand side depends only on the patch dimensions. Thus, once the patch dimensions and n, are
specified, the nearest-neighbor numbers, ngo, noc and ne. are related to one another through equations 2 and 3 with only one
of the three variables being independent. By choosing n.o to be the independent variable (along with n,), we obtain the linear
model M2 for 6 x 6 patches as:

Fn2(10, 00) = 105.68 + 5.39 no — 0.38 100 [4]

By equivalently choosing ne. and n, as the independent variables, we obtain the following isomorphic model M2:
Fri2(Mos oc) = 96.86 + 4.24 no + 0.19 ne [5]

This form of model M2 emphasizes that placing polar and non-polar groups next to one another increases patch hydrophilicity.
We can similarly choose n.. and the number of non-polar groups, n. = pg — no as the independent variables to obtain:

Frz2 (e, nee) = 249.57 — 3.09 ne — 0.38 nee 6]

We emphasize that Equations 4, 5 and 6 contain the same information and that other isomorphic models can also be constructed
by choosing one feature each from the sets, {no,nc} and {noo,Noc, ncc} with different feature choices providing different
perspectives on the chemical determinants of hydrophobicity. For instance, the intercept in equation 6 corresponds to the
hydrophobicity of a uniform polar patch (for which ne = nc.c = 0), whereas the coefficients capture the extent to which the
presence of non-polar groups, as quantified by n., and their non-polar patterning, as quantified by n.c, contribute to patch
hydrophobicity. This form of model M2 clarifies that the addition of a non-polar end-group to a purely polar patch increases
its hydrophobicity (i.e., decreases f by 3.09 kgT), its effect is smaller than the addition of a polar group to a purely non-polar
patch (which increases f by 5.39 kT according to equation 4).

7. Three-body Feature Constraints

There are 16 possible three-body features (Figure S9) that span different chemistries (‘oo0’, ‘cec’, ‘ooc’, ‘cco’, ‘oco’, ‘coc’) and

shapes (‘collapsed’, ‘bent’, or ‘extended’) with certain features considered equivalently due to symmetry; e.g., nSomP2** counts
the number of both ‘ooc’ and ‘oco’ compact clusters. The total number of ‘compact’, ‘bent’, and ‘straight’ three-body terms
(ngompact nlent and nStraieht respectively) must be constant for patches of a given size and shape:

compact compact compact compact __  _compact _
Mooo + Neee + Nooc + Noce = Mxxx (p7 Q) - 2pq + 2(p + Q)
bent bent bent bent bent bent bent

nOOO + nCCC + nOOC + nOCO + nOCC + nCOC = nXXX (p? q) = 6pq + 7p + Sq - 2

straight straight straight straight straight straight __  straight _
Nooo + Neee + Nooc + Noeo + Noce + Neoe = TMxxx (p7 Q) - 3pq + 4(p + Q) -2
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We chose to eliminate the purely non-polar terms nSSmPact nbent and nstraieht  Fyurthermore, by incorporating polar content,

no, and the total number of polar-polar neighbors, n.,, we can construct 8 additional constraint equations, enumerated in
Figure S10:

RGPt 4 BRI — 2noo = 2Ap + q) +2

bent bent

Nooc T 2Mo00 — Aneo = 6p + 8¢

WS o 2, = A(p +q) —2
PESTE g G = 3(p 4 q) — 4
noee’ 4 2ngea’ + 4noo — 1200 = 8(p + q) — 4
piiraieht 4 opstraieht 4 o o — 6no = 4(p+q) — 2

bent bent
Neoc — Nooo T Ango — 6No = p— 2

straight straight _
coc — Nooo + 2noo — 316 =0

These constraints result in the set of 7 linearly independent features, {no, Noo, NEamPact pbent  pstraight ©,bent psiraightl  which

were used to construct model M7.

8. Learning Curves: Model Performance vs Size of the Training Dataset

All our models for predicting the hydrophobicity of 6 x 6 patterned SAM patches were trained using a library comprising
N = 884 patch patterns. To assess how model performance depends on the size of the training dataset, we randomly select
M = 177 (roughly one-fifth of N) patches from the library and designate them to be the test-set. This procedure is repeated
a total of 5 times using a fifth of the dataset as the test set each time. Each model is then trained on increasingly larger
subsets of the remaining N — M = 767 patches, and model error, ¢, is reported using the RMSE calculated on the five different
test sets. As the selection of the testing set is randomized, this procedure is repeated 4 times to estimate uncertainties in
¢ for models M1A and M1C, and 1000 times to estimate the uncertainties in ¢ for the linear models. The learning curves,
which plot model performance, ¢, as a function of training set size, are shown for both the linear (Figure S11A) and neural
network (Figure S11B) models. The performance of the linear models appears to saturate as the size of the training set is
increased, whereas the performance of the neural network models continues to improve (for < 10% patches), suggesting that
increasing the size of the training set is unlikely to significantly improve the performance of models M1 to M7, whereas larger
libraries are likely to improve the performance of models M1A and M1C. In Figure S11B, we also plot the performance of the
best-performing model as a function of training set size (multi-colored line); model M2 (orange segment) initially out-performs
all other models for small libraries (< 30 patches), whereas the model M3 performs optimally when modest training sets (< 300
patches) are used, and model M7 performs best when trained on the largest datasets. These results suggest that as the size
of the training dataset is increased, the neural network models will continue to display improved performance by learning
higher order correlations in the data; in contrast, the linear models will need to employ additional descriptors that capture
increasingly higher order correlations to optimally utilize larger datasets.

9. Explaining Models M1A and M1C using Surrogate Models

To shed light into why our neural network (NN) models perform well as they do, we draw inspiration from the Local Interpretable
Model-agnostic Explanations (LIME) technique (22), proposed by Ribeiro and coworkers to explain predictions made by
black-box models. LIME relies on training interpretable ‘surrogate’ models to explain the predictions of more complex,
un-interpretable models. Based on the excellent performance of our linear models (M2, M3 and M7), we propose using them as
interpretable surrogates for explaining our NN models (M1A and M1C). To this end, we first consider a substantially expanded
dataset with 88,002 patches, which contains not only the 884 patches included in the original training set, but also an additional
87,118 patterns generated using Wang-Landau sampling. We then used a NN model M1Y (where Y € {A,C}) to predict the
hydrophobicity of these 88,002 patches, and using these predictions, we trained a surrogate model MX (where X € {2,3,7}).
We found that all surrogate models MX| M1Y explain the underlying NN model remarkably well with errors of roughly 1 kgT,
and that the coefficients of the surrogate models are in good agreement with those of linear models MX obtained by training
with the simulation dataset of 884 patches. The surrogate models and their performances are as follows:

Name Model = (kaT)
fuz 105.7 + 5.39 no — 0.384 noo -
WSEIVEPN 105.59 + 5.313 1y, — 0.3545 noo 0.99
fuzivac 106.07 4 5.319 15, — 0.3637 noo 1.00
fris 105.8 + 5.40 176 — 049 (noo + ngoa” ) + 0.13 (nBSE® + noae ® ) -
IMs|M1a 106.00 + 5.154 1o — 0.292 (noo + nbos ) + 0.0547 (ngEE* + nguo =) 102
Fusivic 106.42 4 5.191 no — 0.331 (noo + ngoe ") +0.0693 (nbent + ngts =) 0.99
foar 105.7 +5.89 1o — 0.64 10 — 051 ngoo ™" +0.16 ngga’ +0.11 nggs ™" — 0.05 nges® — 0.04 nges™™ -
farivia | 105.08 + 5.703 1o — 0.658 116 — 0.013 nonPa" 1 0.045 nBent + 0.078 nona & — 0.023 nbent — 0.032 nier =t | 0.93
Purimic | 10591 4 5.695 ng — 0.582 noo — 0.202 nSomPa 1 0.103 nbe2t 4 0.025 nin8" — 0.044 nbeot 4 0.014 niieht 0.93
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These findings suggest that the trained NN models, which operate on the entire chemical pattern of the patch, x, extract
information pertaining to local chemical correlations between patch end-groups that is encoded in the descriptors (e.g., noo)
used to construct the linear models (M2, M3 and M7).

10. Uniform Non-Polar Patches of Various Shapes and Sizes

To construct a physically-motivated model for the hydrophobicity of a purely non-polar patch, fc, as a function of its size and
shape, we note that cavity formation is expected to be driven by interfacial physics, and hence its free energetic cost should be
proportional to the cross-sectional area, l,[,, of each cuboidal probe volume v. To account for possible edge-effects due to the
finite size of the patches considered here, we additionally included the perimeter of the v in the x and y dimensions, (2{, and
21y, respectively, for a rectangular p x ¢ patch) to arrive at the following linear model:

fella,1y) = c1(laly) + ca(la) + cs(ly) (7]

We trained this model on a dataset of 62 purely non-polar patches of different sizes and shapes, resulting in the following
learned coefficients:

¢1 = 5.63 kgT/nm”
¢z = 11.85 kgT'/nm
cs = 7.54 kgT/nm

To express f. as a function of patch dimensions p and g, we substituted the relationships, lo (p) and ly(q) (Equation 1), into
Equation 7 to obtain:

fep,q) = fe(la(p), 1y(q))
= [e1r2ry|pg + [(20¢1 — 0.5ryc1 + c2)re|p + [(20¢1 — rzc1 + ¢3)rylq
+ [e1(26 = 72)(26 — 0.57y) + ¢2(26 — 1) + c3(25 — 0.57y)|

The coefficients and intercept of fc (p, q) were then determined from the trained coefficients c1, c2, and c3 and the known values
of §, r» and r, to obtain:

fe(p, q) = 1.22pq + 5.86p + 4.10q + 3.85

This model is able to capture the hydrophobicity of rectangular non-polar patches with an error of ¢ = 1.87 kgT.

Extending f. to non-rectangular patches. To generalize f. to non-rectangular patches, we recast the model in terms of the
total number of patch end-groups, niot, and the number of end-groups along the perimeter of patch in the x and y dimensions,
ng and ny, respectively (Figure S12A). Because niot = pg, ne = 2p and n, = 2q for a rectangular p x ¢ patch, our generalized
model for non-polar patch hydrophobicity becomes:

Fe(ntors naymy) = 1220401 + 2.931, + 2.05n, + 3.85

To test this model, we estimated the hydrophobicity, f., of the 7 non-rectangular non-polar patches shown in Figure S12B, and
found that the generalized model fc(n¢ot, na, ny) is able to accurately predict f. with an error of e = 4.75 kgT.

11. Uniform Polar Patches of Various Shapes and Sizes

We also construct a physically-motivated model for the hydrophobicity of a purely polar rectangular patch, fo, as a function of
its dimensions, p and ¢. To do so, we estimate f, for 62 patches of different sizes and shapes, and use this dataset to train a
model fo(p, q) that is linear in pq, p and g, resulting in:

~

fo(p,q) = 5.81pg + 5.12p + 1.79q + 1.51

As shown in Figure S13, this model is able to predict f, quite well with an error of ¢ = 4.01 kgT.

We note that the generalized model M2: fMg (P, @, Moy Moo) = (P, q) + QoNo + GooNoo, discussed in the main text, can also
be used to predict the hydrophobicity, fo(p, q), of polar rectangular patches of all shapes and sizes. In particular, focusing on
the leading order terms (i.e., those proportional to pq), and noting that for a purely polar patch, no, = pg and noo grows as 3pyq,
we obtain the constraint: 5.81 = 1.22 4 a + 3o, where 5.81 and 1.22 are the coefficients of pq in the models for f, (p,q) and
fc (p, q), respectively. Plugging the values of a, = 5.07 and a,, = —0.32, obtained for model M2, into the right hand side of
the constraint equation, we obtain 5.33, which is within 10% of 5.81 (left hand side of the constraint).
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12. Generalizing Model M3 to Rectangular Patches of all Shapes and Sizes

To generalize model M3 | fMg = Qe + QoMo + Qoo (Moo + NIGmPAT) 4 aooo(nf,toré‘ight + nﬁggt)] to rectangular patches of all shapes

and sizes, we first note that the intercept, a., in model M3 corresponds to the hydrophobicity, f., of a uniform non-polar
patch for which ne = nge = nSWPact — pstraight _ pbent _ g Thys we expect a. to depend on patch dimensions according
to: ac(p,q) = fc(p, q) = 1.22pq + 5.86p + 4.10q + 3.85. To assess whether the model M3 coefficients, o, Qoo and ooo, are
independent of patch size and shape, we compare their values obtained by training the original 6 x 6 and the expanded
datasets (Figure S14). We find good qualitative agreement across all the trained coefficients, and reasonable quantitative
agreement, especially for the coefficients that are larger in magnitude (and therefore more important). Our generalized
model M3, trained on the expanded dataset, which can be used to predict the hydrophobicity of heterogeneous rectangular
compact straight bent

patches of all shapes and size, and is thus given by: fars = ac (p,q) + QoMo + Qoo (Moo + NGaaPFY) 4+ Aooo(Nooa ™ + Nogo’) =
1.22pq + 5.86p + 4.10q + 3.85 + 4.98n, — 0.28(noo + nIPY) 4 0.06(nsiaisht 4 pbenty,

13. Patterned Patches of Different Sizes

To interrogate the influence of chemical patterning on hydrophobicity for patches of different sizes, we studied 6 x 6, 8 x 8,
10 x 10 and 12 x 12 patterned patches. For each patch size, we estimated the hydrophobicity, f, of two judiciously chosen
patches that had the same number of polar groups but different chemical patterns; both patches had an equal number of polar
and non-polar groups, but their non-polar end-groups were either clustered or dispersed, as shown in Figure S15. We chose
dispersed and clustered patches with the same n, because model M1 would predict that these patches should have the same
hydrophobicity. In contrast, we found that differences in chemical patterning gave rise to differences in hydrophobicity for all
patch sizes, and that these differences increased with patch size (Figure S15). Moreover, our generalized models M2 and M3
correctly predict that patches with well-dispersed end-groups are more hydrophilic than those with clustered end-groups, and
they capture the differences in hydrophobicity with chemical patterning reasonably well across the different patch sizes.

14. Rational Design of Patterned Patches using Model M3

We used model M3 to perform the hot-spot analysis and the greedy design described in the main text, and found that
the locations of the hot-spot end-groups as well as the characteristics of the maximally hydrophobic or hydrophilic patches
(Figure S16) are qualitatively similar to those discovered by model M2 (Figure 5). Additionally, we compare the hydrophobicity
of the maximally hydrophilic (f™**) and the maximally hydrophobic (f™™) patches with a certain polar content, no, obtained
using models M2 and M3 (Figure S17A). In both cases, the maximum range of attainable hydrophobicities, i.e., fmax — fmi“, is

realized at roughly 50% polar coverage (Figure S17B).

Nicholas B. Rego, Andrew L. Ferguson, and Amish J. Patel 7 of 25



5
0.6 08 1.0 1.2 14 16
do(nm)
C 2
§15
&
= 10
° iepolar
° o®

06 08 1.0 1.2 14 1.6
d. (nm)

Fig. S1. Using polar end-group clustering to construct a library of diverse patterns. (A) The degree of polar clustering, d,, of a patch pattern, x, is defined as the root mean
squared deviation of the positions, r; (black dots), of all n,, polar end-groups (hydroxyl, blue) in the patch around their centroid, 7, (red dot). The radius (red) of the illustrated
circle (gray) corresponds to d,, of the pattern shown here. Non-polar (methyl) end-groups are shown in white and polar groups outside of the patch are shown in light blue. (B)
The number of 6 x 6 patches with n, polar groups, Q2 (do ), shown here for n, = 12, is peaked at d, =~ 1.1 nm, highlighting that highly clustered (lower left) or dispersed
(lower right) patch patterns are improbable. (C) To obtain patterns spanning a wide range of d. (degree of non-polar clustering, defined analogously to d,,) values, we swap the
identities of polar (hydroxyl, blue) and non-polar (methyl, white) end-groups to generate ‘inverted’ patches. The number of 6 x 6 patches with n. non-polar groups, 2, (d.),
is shown here for n, = 12.
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Fig. S2. Simulating self-assembled monolayer (SAM) surfaces. (A) The SAM surfaces are comprised of hexagonally-packed alkyl chains, which contain a sulfur atom (yellow),
10 united-atom methylene groups (teal), and either a non-polar methyl (left, teal/white) or polar hydroxyl (right, red/white) end-group (B) The sulfur atoms are spaced 0.5 nm
apart and are arranged on a hexagonal lattice in the x — y plane. The SAM surface (space-fill representation) is solvated using a roughly 4 nm thick slab of water (red/white,
licorice representation) A repulsive wall is placed at z ~ 8.2 nm (pink spheres) to induce a buffering vapor layer.
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Fig. S3. Defining the cuboidal probe volume, v. (A) A top-down view illustrating a non-polar 6 x 6 pattern and the dimensions, I, and [, of v (orange) in the = and y
directions, respectively. (B) The dimensions, I, and [,,, are determined by calculating the average positions of the lower-left and upper-right patch end-groups in a patch and
padding them with a buffer, J (yellow lines) to ensure that v encompasses all end-groups in the patch. The relationships between the dimensions of v, i.e., I, and l,;, and the
patch dimensions, p or ¢ are shown, where 7, and r,, are the average end-group spacings in the = and y directions, respectively. (C, D) Simulation snapshots of water near
the purely polar and non-polar 6 x 6 patches, and (E, F) the corresponding normalized water density profiles, g(z). To ensure that probe volumes adjacent to all patches have
roughly the same average number of waters, their lower z-bounds were fixed at zmin = 1.7 nm, and their upper bounds, zmax, were varied. Choosing zmax = 2.175 nm for
the polar patch and zmax = 2.3 nm for the non-polar patch results in 100 waters in both probe volumes; for patterned surfaces containing a mixture of polar and non-polar
end-groups, zmax Was chosen to be between these two extremes such that roughly 100 waters were present within the probe volume.
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Fig. S4. The free energetics, — In P, (IN), of observing N waters in a probe volumes, v, adjacent to polar (blue), non-polar (green) and mixed (orange) 6 x 6 patches are
shown (in units of kg T'), and the free energy of cavity creation, — In P, (0), which serves to quantify patch hydrophobicity, f, is highlighted (red circles).
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Fig. S5. Non-linear functions of polar content, n,, do not perform significantly better than model M1, which is linear in n,. (A-C) The hydrophobicity, f, of every patch in the
library is plotted as a function of the polar content, n, of the patch, and the data is fit to (A) linear, (B) quadratic and (C) conditional average models. The cross-validated errors,
e, are also shown for each model. Although the models capture the trend of hydrophilicity increasing with polar content, they fail to capture the variation in f for patches with the
same n,; therefore, the non-linear models perform only marginally better than the linear model M1. (D) The testing (black) and total in-sample training (gray) error of different
one-feature (n,) models are shown. As expected, increasing model complexity (e.g., polynomial degree) results in a decrease in the in-sample training error, but the testing
error increases as more complex models overfit the available data. In fact, the conditional average model, which provides the best-possible in-sample training performance,

displays as substantial gap between in-sample and testing performance, highlighting the susceptibility of complex models to over-fitting.
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Fig. S6. Augmenting the training library of 6 x 6 patches with translated, rotated and reflected variants. To account for the invariance of patch hydrophobicity under translation,
rotation and reflection, we augmented the training dataset with 83 isomorphic variants for every patch (7 x 6 x 2 for translational, rotational, and reflection factors, respectively);
select variants are shown for a representative patch pattern. To accommodate the variants, every patch was embedded ina 12 x 11 SAM surface with a background of polar

groups; polar end-groups outside the patch are shown in light blue.
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Fig. S7. Determining the optimal ANN architecture for model M 1A. A series of models with different numbers of hidden layers and nodes per hidden layer was systematically
trained and the variation of model performance, e, with the choice of hyper-parameters is shown. The model with the best performance (¢ = 2.75 kgT') contains one hidden
layer with 48 nodes and is highlighted in green.
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Fig. S8. Determining the optimal CNN architecture for model M 1C. A series of models with different numbers of convolutional filters, hidden layers and nodes per hidden layer
were systematically trained and the variation of model performance, e, with the choice of hyper-parameters is shown. The CNN architecture with 5 convolutional filters and 1
hidden ANN layer with 4 hidden nodes (green rectangle) was chosen because it gave rise to the simplest model with high performance.
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Fig. $10. Stoichiometric and geometric constraints relating three-body features to n, and n, as well as the patch dimensions, p and g. The eight constraint equations, listed
here, enable elimination of eight features in favor of the remaining features, n,, no0, p and g. For each constraint equation, the first feature on the left-hand side is eliminated.
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Fig. S11. Dependence of model performance on the size of the training dataset. Learning curves for the (A) linear and (B) neural network models highlight how model error, ¢,
varies with the size of the training dataset. The performance of the linear models plateaus as the training set size is increased, whereas that of the neural network models
continues to improve over the entire range of training set sizes. The orange, purple, and green curve (corresponding to models M2, M3 and M7, respectively) in panel B

corresponds to the convex hull of the best-performing models for each training set size.
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Fig. S12. Predicting the hydrophobicity of uniform non-polar patches with arbitrary (non-rectangular) shapes. (A) To generalize fc to non-rectangular patches, we recast the
model in terms of the total number of patch end-groups, nt.t, and the number of peripheral end-groups, n, and n,, in the x and y dimensions, respectively. The values of
Ntot, N (PUrple segments), and n,, (brown segments) are shown for a sample non-rectangular non-polar patch (orange). (B) To test the performance of the generalized
model, fc (ntot, Na, Ny ), We estimated the hydrophobicity, f., of 7 non-rectangular non-polar patches (gray, outlined in orange), and found that the model accurately predicts
fe (e = 4.75 kpT); the values of not, n4, and n,, for each patch are also shown.
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Fig. S13. Predicting the hydrophobicity of uniform polar patches, f,, as a function of their dimensions, p and q. We estimate f, for 62 patches of different sizes and shapes,
and use this dataset to train a model f,(p, ¢) that is linear in pg, p and g. The resulting model predictions, f,, plotted against the estimated f,-values, illustrate the
performance of the model (¢ = 4.02 kgT).
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Fig. S14. Generalizing model M3 to rectangular patches of different sizes and shapes. (A) In addition to the N = 884 patches (6 x 6) in the original dataset (red box), the
expanded dataset (yellow box) also contains N = 682 patches of a different shape (4 x 9) and N = 228 patches of a different size (4 x 4). (B) The coefficients obtained by
training model M3 on the original and expanded datasets agree reasonably well.
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Fig. S15. The influence of chemical patterning on hydrophobicity for different patch sizes. Two patches with different chemical patterns (clustered and dispersed), but the same
number of polar groups (equal to half of the total groups), display substantial differences in their hydrophobicity, f, for a range of patch sizes (from 6 x 6 to 12 x 12). Because
the dispersed and clustered patterns have the same n.,, the additive model M1 would predict that the difference in their hydrophobicities, f3P — f°!%s should be equal to 0
regardless of patch size. In contrast, the extended models M2 and M3 correctly predict that patches with well-dispersed end-groups are more hydrophilic than those with
clustered end-groups, and they capture the differences in hydrophobicity with chemical patterning reasonably well across the different patch sizes.
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Fig. S16. Using model M3 for the rational design of patterned SAM patches with maximal hydrophobicity/hydrophilicity. (A) For the patch pattern shown, an exhaustive
screening of all possible point mutations is performed using model M3. (B) The changes in patch hydrophobicity, Af,in response to point mutations, enables identification of
‘hot-spot’ locations (red outline). Mutations that result in the smallest absolute change in patch hydrophobicity are also highlighted (cyan outline). (C) The maximally hydrophilic
(top) and hydrophobic (bottom) patches with a particular polar content, n,, were uncovered using an iterative, greedy design protocol; the most hydrophilic patches tend to
disperse their polar end-groups, whereas the most hydrophobic patches cluster their non-polar end-groups. (D) To quantify the relative dispersion of end-groups in the optimal

patches, we plot the number of polar — non-polar neighbors, n.., for the most hydrophilic (ng.**, blue) and the most hydrophobic (nc’j“C‘“, gray) patches as a function of polar
content, n,. We also plot the difference, Ang. = no™™ — ni™.

Nicholas B. Rego, Andrew L. Ferguson, and Amish J. Patel 23 of 25



2501

= 2001
=2
e

1501

100

Fig. S17. (A) The hydrophobicities of the most hydrophilic (fmax, blue) and the most hydrophobic (f"““) patches, uncovered using the iterative greedy design protocol with
either model M2 (left) or model M3 (right), are shown as a function of patch polar content, n,. (B) The difference, f’“a" - f’“‘“, corresponds to the range of hydrophobicities
attainable by patches with given polar content, n,,, and is shown for the optimal patches obtained using models M2 (orange) and M3 (purple); the models predict that this
difference is greatest for patches with roughly 50% polar content.
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