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ABSTRACT
A self-excited system is a nonlinear system with the property that a constant input
yields a bounded, nonconvergent response. Nonlinear identification of self-excited
systems is considered using a Lur’e model structure, where a linear model is con-
nected in feedback with a nonlinear feedback function. To facilitate identification,
the nonlinear feedback function is assumed to be continuous and piecewise affine
(CPA). The present paper uses least-squares optimization to estimate the coeffi-
cients of the linear dynamics and the slope vector of the CPA nonlinearity, as well
as mixed-integer optimization to estimate the order of the linear dynamics and the
breakpoints of the CPA function. The proposed identification technique requires
only output data, and thus no measurement of the constant input is required. This
technique is illustrated on a diverse collection of low-dimensional numerical examples
as well as data from a gas-turbine combustor.
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1. Introduction

A self-excited system (SES) has the property that its response to a constant input is
bounded and nonconvergent. Although an undamped oscillator as well as some linear
systems with time delay are self-excited, these systems lack structural robustness in
the sense that arbitrarily small perturbations of the dynamics can lead to either a
convergent (damped) or divergent (unbounded) response. Structurally robust SES’s
are thus nonlinear. The classical example of an SES is the second-order van der Pol
oscillator, for which all trajectories except for the zero equilibrium converge to a limit
cycle. An SES, however, need not possess a limit cycle.

Self-excited systems arise in surprisingly diverse applications. Specific examples can
be found in chemical and biochemical systems Goldbeter and Berridge (1996); Gray
and Scott (1990), fluid-structure interaction Blevins (1990); Gianikos, Kirschmeier,
Gopalarathnam, and Bryant (2020); Jonsson et al. (2019), and thermoacoustic oscil-
lation Chen and Driscoll (2016); Dowling (1997). Overviews of SES are given in Ding
(2010); Jenkins (2013).

In view of these diverse applications, it is of interest to construct models of SES
based on response data. To this end, a candidate model structure is the Lur’e model,
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where linear dynamics are connected in feedback with a static nonlinear function
Khalil (2002). The ability of Lur’e models to exhibit self-oscillation has been widely
studied Aguilar, Boiko, Fridman, and Iriarte (2009); Chatterjee (2011); Ding (2010);
Mees and Chua (1979); Risau-Gusman (2016); Stan and Sepulchre (2007); Zanette
(2017), and self-excited discrete-time systems are considered in D’Amico, Moiola, and
Paolini (2002); Gentile, Bel, D’Amico, and Moiola (2011); Rasvan (1998). As shown
in Paredes, Islam, Kouba, and Bernstein (2021), a Lur’e model exhibits self-excited
behavior when the linear dynamics are asymptotically stable, the nonlinear feedback
function is sigmoidal, and the loop gain is sufficiently high. In effect, high loop gain
renders the zero equilibrium unstable, driving the state to the saturation region, where
the system operates as an open-loop system driven by a step input. A washout filter
(an asymptotically stable transfer function with a zero at 1 and thus zero asymptotic
step response) drives the state of the open-loop asymptotically stable dynamics back
into the linear region, which yields an oscillatory response.

The present paper applies nonlinear system identification to construct a Lur’e model
for SES. This approach does not assume or require that the SES possess a Lur’e struc-
ture; rather, the goal is to estimate a linear model G and a nonlinear feedback function
φ that, when combined into a Lur’e model, capture the nonconvergent behavior of the
SES. For example, although the van der Pol oscillator is a Lur’e model with a 2-input,
1-output nonlinear feedback function, the present paper uses a Lur’e model with a
1-input, 1-output nonlinear feedback function for system identification.

For nonlinear system identification, the present paper applies a variation of the
technique in Van Pelt and Bernstein (2001). As in Van Pelt and Bernstein (2001), the
nonlinear feedback function is parameterized as a continuous, piecewise-affine (CPA)
function, where the slope of each segment is estimated for a given partition of the
domain of the CPA function. Although the domain of φ is known from data, the num-
ber and locations of the breakpoints of the CPA function were determined in Paredes
and Bernstein (2021) by trial and error. The contribution of the present paper is to
use mixed-integer optimization to automate and optimize a subset of the parameters
needed for the identified Lur’e model, while using least-squares optimization to esti-
mate the remaining parameters. By encompassing both continuous and discrete vari-
ables, the present paper shows that mixed integer optimization Belotti et al. (2013);
Floudas (1995) is advantageous for identifying Lur’e models with a CPA nonlinear
feedback function. Mixed integer optimization has been used for system identifica-
tion in Dua (2010); Förster, Inderka, and Gauterin (2019); Mejari, Naik, Piga, and
Bemporad (2020); Roll, Bemporad, and Ljung (2004).

Since the objective of this paper is to identify self-excited systems, the input is
assumed to be constant. However, the approach of the present paper does not require
knowledge of the constant input, and thus measurements of only the output are needed.
Numerical examples show that measurements of the self-excited response of the system,
including the transient and asymptotic response for systems that are asymptotically
periodic, is sufficient for identifying a Lur’e model that reproduces the asymptotic
waveform and, in many cases, the shape of the nonlinearity as well.

The contents of this paper are as follows. Section 2 introduces the discrete-time
Lur’e (DTL) system and the conditions under which a DTL system is a SES. Section
3 introduces the filtered time-delayed DTL (FTDDTL) system as a special case of
the DTL system. Section 4 introduces the discrete-time Lur’e identification (DTLI)
model, which has the form of the FTDDTL, as well as the parameterization of the
CPA function used to approximate the nonlinear feedback function. Section 5 presents
the nonlinear least-squares technique used for identifying SES using the DTLI model,
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which is an modification of the technique presented in Paredes and Bernstein (2021).
Section 6 presents the mixed-integer optimization framework used in this paper for
identifying SES using the DTLI model. Section 7 presents numerical examples in which
FTDDTL systems are identified using DTLI models. Section 8 presents numerical ex-
amples in which the logistic map DTL system under various parameters is identified
using DTLI models. Section 9 presents the continuous-time Lur’e (CTL) system, and
Section 10 presents numerical examples in which continuous-time systems are identi-
fied using DTLI models. Section 11 presents the results obtained from applying the
proposed identification technique on experimental data obtained from a flute and a
gas-turbine combustor. Finally, Section 12 presents conclusions and future work.

Notation. R 4= (−∞,∞) and N0
4
= {0, 1, 2, . . .}. For x ∈ Rn, ‖x‖2 is the Euclidean

norm of x. For A ∈ Rn×m, vecA ∈ Rnm is the vector formed by stacking the columns
of A, vec−1 satisfies A = vec−1(vecA), ‖A‖F is the Frobenius norm of A, and σmax(A)
is the largest singular value of A. 1n×m ∈ Rn×m is a matrix whose entries are all ones.

2. Discrete-Time Lur’e System

We consider the discrete-time Lur’e (DTL) system shown in Figure 1, which has the
dynamics

xk+1 = Axk +Buk +Dvk, (1)

yk = Cxk. (2)

zk = Exk, (3)

uk = φ(zk), (4)

where k ∈ N0, xk ∈ Rn, uk ∈ Rm, vk ∈ R, yk ∈ R, zk ∈ Rp, A ∈ Rn×n, B ∈ Rn×m,
C ∈ R1×n, D ∈ Rn×1, E ∈ Rp×n, and φ : Rp → Rm. Combining (1)-(4) yields

xk+1 = Axk +Bφ(Exk) +Dvk, (5)

yk = Cxk. (6)

As illustrated by the following examples, many nonlinear discrete-time systems can be
written in the form of (5), (6).

xk+1 = Axk +Buk +Dvk
yk = Cxk
zk = Exk

φ

v

u

y

z

Figure 1. Discrete-time Lur’e system with constant input v, output y, and nonlinear feedback function φ.

Example 2.1. The dynamics of the logistic map are given by

xk+1 = γxk − γφ(xk), (7)

yk = zk = xk, (8)

φ(xk) = x2
k, (9)
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where n = m = p = 1 and xk, yk, zk, γ ∈ R.

Example 2.2. The dynamics of the density-dependent Leslie matrix with two age
classes (equation 4.1 of Guckenheimer, Oster, and Ipaktchi (1977)) are given by

xk+1 =

[
0 0
γ 0

]
xk +

[
1
0

]
φ(xk), (10)

yk =
[
0 1

]
xk, (11)

φ(xk) = (ξ1x1,k + ξ2x2,k)e
−α(x1,k+x2,k), (12)

where n = p = 2, m = 1, zk = xk = [x1,k x2,k]
T ∈ R2, yk ∈ R, and α, γ, ξ1, ξ2 ∈ R.

Examples 2.1 and 2.2 exhibit oscillatory responses, thus motivating the following
definition.

Definition 2.3. The DTL system (5), (6) is a self-excited system (SES) if, for all
constant vk, the following statements hold:

i) For all x0 ∈ Rn, (yk)
∞
k=1 is bounded.

ii) For almost all x0 ∈ Rn, limk→∞ yk does not exist.

Numerical examples given in Section 8 show that ii) in Definition 2.3 may be sat-
isfied when y is asymptotically periodic or chaotic.

3. Filtered Time-Delayed DTL System

In this section we consider a special case of the DTL system structure. In particular,
the filtered time-delayed DTL (FTDDTL) system shown in Figure 2 includes a transfer
function G, a time delay Gd, a washout filter Gf , and a nonlinear feedback function φ.
Under suitable assumptions, it is shown in Paredes, Islam, and Bernstein (2020) that
this structure gives rises to self-excited oscillations.

The nth-order, asymptotically stable, strictly proper transfer function G has the
form

G(q) =
B(q)

A(q)
=

b1q
−1 + · · ·+ bnq

−n

1 + a1q−1 + · · ·+ anq−n
, (13)

where q is the forward-shift operator (used in place of the Z-transform variable in
order to include both the free and forced response), the time delay Gd is given by

Gd(q) = q−d, (14)

where d is a nonnegative integer, the washout filter Gf is given by

Gf(q) =
q− 1

q
= 1− q−1, (15)

and the nonlinear feedback function φ : R→ R satisfies

uk = φ(zk). (16)
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+ G(q)

Gf(q) Gd(q)φ

v

u

y

ydz

Figure 2. Filtered time-delayed discrete-time Lur’e (FTDDTL) system with input v, asymptotically stable

plant G(q), time delay Gd(q), washout filter Gf(q), and nonlinear feedback function φ.

Using yk = G(q)(uk + vk), it follows that

A(q)yk = B(q)(φ(zk)) + vk), (17)

and thus, for all k ≥ n+ d+ 1,

yk =(1−A(q))yk + B(q)(φ(zk) + vk)

=− a1yk−1 − · · · − anyk−n + b1φ(zk−1) + · · ·+ bnφ(zk−n) + b1vk−1 + · · ·+ bnvk−n,
(18)

where

zk = yk−d − yk−d−1, (19)

with the initial output values y0, . . . , yn+d. Note that (18), (19) can be written as

xk+1 =

 AG 0n×d 0n×1

BdCG Ad 0d×1

01×n Cd 0

xk +

[
BG

0(d+1)×1

]
[φ(
[
01×n Cd −1

]
xk) + vk], (20)

yk =
[
CG 01×(d+1)

]
xk, (21)

where xk ∈ Rn+d+1, (AG, BG, CG) is a minimal realization of G, and (Ad, Bd, Cd) is a
minimal realization of Gd. Hence, (20), (21) is special case of (5), (6).

4. Discrete-Time Lur’e Identification Model

To facilitate identification, we consider the discrete-time Lur’e identification (DTLI)
model, which has the form of the FTDDTL. The DTLI model, which is shown in Figure
3, incorporates the n̂th-order, asymptotically stable, strictly proper linear dynamics

Ĝ(q) =
B̂(q)

Â(q)
=

b̂1q
−1 + · · ·+ b̂n̂q

−n̂

1 + â1q−1 + · · ·+ ân̂q−n̂
, (22)

the constant input v̂, the time delay

Ĝd(q) = q−d̂, (23)
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where d̂ is a nonnegative integer, the washout filter Gf given by (15), and the nonlinear

feedback function φ̂ : R→ R written as

ûk = φ̂(ẑk). (24)

+ Ĝ(q)

Gf(q) Ĝd(q)φ̂

v̂

û

ŷ

ŷdẑ

Figure 3. Discrete-time Lur’e identification (DTLI) model with constant input v̂, asymptotically stable plant

Ĝ(q), time delay Ĝd(q), washout filter Gf(q), and nonlinear feedback function φ̂. The structure of the DTLI

model coincides with the structure of the FTDDTL system.

Using ŷk = Ĝ(q)(ûk + v̂), it follows that

Â(q)ŷk = B̂(q)(φ̂(ẑk) + v̂), (25)

and thus, for all k ≥ n̂+ d̂+ 1,

ŷk = (1− Â(q))ŷk + B̂(q)(φ̂(ẑk) + v̂)

= −â1ŷk−1 − · · · − ân̂ŷk−n̂ + b̂1φ̂(ẑk−1) + · · ·+ b̂n̂φ̂(ẑk−n̂) + (b̂1 + · · ·+ b̂n̂)v̂, (26)

where

ẑk = ŷk−d̂ − ŷk−d̂−1. (27)

Since v̂ is not measured in output-only identification and the input to Ĝ is φ̂(ẑk) + v̂,

the range space of φ̂ can be shifted arbitrarily. Hence, we assume without loss of
generality that φ̂(0) = 0.

For system identification, we use a continuous, piecewise-affine (CPA) model φ̂ of
φ with the following parameterization. Let (−∞, ĉ1], (ĉ1, ĉ2], . . . , (ĉp̂−1, ĉp̂], (ĉp̂,∞) be

a partition of the domain R of φ̂, and define the vector

ĉ
4
= [ĉ1 · · · ĉp̂]

T ∈ Rp̂. (28)

Since φ̂(0) = 0, let ĉr̂ = 0, where r̂ ∈ [1, p̂], and thus φ̂(ĉr̂) = φ̂(0) = 0. Furthermore,

for all i ∈ [1, p̂ + 1], let µ̂i denote the slope of φ̂ in the i-th partition interval, and
define the slope vector

µ̂
4
= [µ̂1 · · · µ̂p̂+1]T ∈ Rp̂+1. (29)

Then, for all ẑ ∈ R, φ̂ can be written as

φ̂(ẑ) = µ̂Tη̂(ẑ), (30)
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where η̂ : R→ Rp̂+1 is given by

η̂(ẑ)
4
=

{
η̂1(ẑ), δ̂(ẑ) < r̂ + 1,

η̂2(ẑ), δ̂(ẑ) ≥ r̂ + 1,
(31)

δ̂(ẑ) ∈ [1, p̂+ 1] is the index of the partition interval containing ẑ, and

η̂1(ẑ)
4
= [01×(δ̂(ẑ)−1) ẑ − ĉδ̂(ẑ) ĉδ̂(ẑ) − ĉδ̂(ẑ)+1 · · · ĉr̂−1 − ĉr̂ 01×(p̂+1−r̂)]

T, (32)

η̂2(ẑ)
4
= [01×r̂ ĉr̂+1 − ĉr̂ · · · ĉδ̂(ẑ)−1 − ĉδ̂(ẑ)−2 ẑ − ĉδ̂(ẑ)−1 01×(p̂+1−δ̂(ẑ))]

T. (33)

Figure 4 illustrates the parameterization of the CPA function φ̂ in terms of ĉ, µ̂, and
r̂.

φ̂(ẑ)

ẑĉ1 ĉ2 ĉr̂−2 ĉr̂−1 ĉr̂ ĉr̂+1 ĉr̂+2 ĉp̂−1 ĉp̂
µ̂1

µ̂2

µ̂r̂−1

µ̂r̂

µ̂r̂+1
µ̂r̂+2

µ̂p̂ µ̂p̂+1

Figure 4. Parameterization of the CPA function φ̂. Note that ĉr̂ = 0 and φ̂(ĉr̂) = φ̂(0) = 0.

Next, consider DTLI/CPA, which is DTLI with CPA φ̂. It thus follows from (26)
and (30) that

ŷk = −â1ŷk−1 − · · · − ân̂ŷk−n̂ + b̂1µ̂
Tη̂(ẑk−1) + · · ·+ b̂n̂µ̂

Tη̂(ẑk−n̂) + 11×n̂b̂v̂, (34)

where

â
4
=

â1
...
ân̂

 , b̂
4
=

b̂1...
b̂n̂

 . (35)

Then, (34) can be written as

ŷk = −ϕ̂T
k â+ ϕ̂T

η̂,k b̂+ 11×n̂b̂v̂ = ϕ̂T
k θ̂, (36)

where

ϕ̂k
4
=

−ϕ̂ŷ,kϕ̂η̂,k
1

 ∈ Rn̂(p̂+2)+1, θ̂
4
=

 â

vec(µ̂b̂T)

11×n̂b̂v̂

 ∈ Rn̂(p̂+2)+1 (37)
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and

ϕ̂ŷ,k
4
=

ŷk−1
...

ŷk−n̂

 ∈ Rn̂, ϕ̂η̂,k
4
=

η̂(ẑk−1)
...

η̂(ẑk−n̂)

 ∈ Rn̂(p̂+1). (38)

5. Nonlinear Least-Squares Optimization for System Identification

In this section, we use a technique based on least squares to construct a DTLI/CPA
modelM that approximates the response of the self-excited system S. This technique
is a variation of the method used in Van Pelt and Bernstein (2001). The objective is to

determine a transfer function Ĝ, delay d̂, and CPA function φ̂ such that the response
of the identified model M approximates the response of S. This technique requires a
choice of n̂, d̂, ĉ, r̂; these values are then used to obtain parameter estimates â, b̂, v̂, µ̂. In
the next section, an optimization technique is used to update the parameter estimates
n̂, d̂, ĉ, r̂. In the special case where S is a FTDDTL system with CPA function φ, the
parameters n̂, d̂, ĉ, r̂, â, b̂, v̂, µ̂ are estimates of n, d, c, r, a, b, v, µ.

For system identification, we use measurements of y from a data window, which
may include portions of the transient and asymptotic response. To define the data
window, let lu ≥ ll ≥ n̂+ d̂+ 1, and assume that measurements of yk are available for
all k ∈ [ll− n̂− d̂−1, lu]. The objective is to minimize a cost function involving, for all
k ∈ [ll, lu], the difference yk − ŷk between the measurement yk from S and the output
ŷk of the DTLI/CPA model M, where ŷk is obtained by propagating (34), where, for

all κ ∈ [k − d̂− n̂− 1, k − 1], the initial values are given by ŷκ = yκ. Hence, we define
the least-squares cost

J(â, b̂, v̂, µ̂)
4
= ‖Y − Φθ̂‖2, (39)

where θ̂ is defined by (37),

Y
4
=

yll...
ylu

 ∈ Rlu−ll+1 (40)

and

Φ
4
=
[
−Φy Φη̂ 1(lu−ll+1)×1

]
∈ R(lu−ll+1)×(n̂(p̂+2)+1), (41)

where

Φy
4
=

ϕy,ll...
ϕy,lu

 ∈ R(lu−ll+1)×n̂, Φη̂
4
=

ϕη̂,ll...
ϕη̂,lu

 ∈ R(lu−ll+1)×(n̂(p̂+1)), (42)
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and, for all k ∈ [ll, lu],

ϕy,k
4
=
[
yk−1 · · · yk−n̂

]
∈ R1×n̂, (43)

ϕη̂,k
4
=
[
η̂(yk−d̂−1 − yk−d̂−2) · · · η̂(yk−d̂−n̂ − yk−d̂−n̂−1)

]
∈ R1×(n̂(p̂+1)). (44)

Since θ̂ defined by (37) is a nonlinear function of b̂, v̂, µ̂, we derive an upper bound
for J, which is subsequently minimized by means of a two-step process. To do this, let
θ̂µ̂ ∈ Rn̂(p̂+1) be an approximation of vec(µ̂b̂T) and define

θ̂v̂
4
= 11×n̂b̂v̂ ∈ R, (45)

θ̃
4
=

 âθ̂µ̂
θ̂v̂

 ∈ Rn̂(p̂+2)+1, (46)

and the cost functions

J1(θ̃)
4
= ‖Y − Φθ̃‖2, (47)

J2(θ̂µ̂, µ̂, b̂)
4
= ‖θ̂µ̂ − vec(µ̂b̂T)‖2. (48)

Proposition 5.1. Let θ̂µ̂ ∈ Rn̂(p̂+1), define θ̃ by (46), and define J, J1, and J2 by
(39), (47), and (48). Then,

J(â, b̂, v̂, µ̂) ≤ J1(θ̃) + σmax(Φη̂)J2(θ̂µ̂, µ̂, b̂). (49)

Proof: Note that (39) can be written as

J(â, b̂, v̂, µ̂) = ‖Y − Φθ̂ + Φη̂ θ̂µ̂ − Φη̂ θ̂µ̂‖2
= ‖Y + Φyâ− Φη̂ vec(µ̂b̂T)− 1(lu−ll+1)×1θ̂v̂ + Φη̂ θ̂µ̂ − Φη̂ θ̂µ̂‖2
= ‖Y − Φθ̃ + Φη̂(θ̂µ̂ − vec(µ̂b̂T))‖2,

which implies that

J(â, b̂, v̂, µ̂) ≤ ‖Y − Φθ̃‖2 + ‖Φη̂(θ̂µ̂ − vec(µ̂b̂T))‖2
≤ ‖Y − Φθ̃‖2 + σmax(Φη̂)‖θ̂µ̂ − vec(µ̂b̂T)‖2
= J1(θ̃) + σmax(Φη̂)J2(θ̂µ̂, µ̂, b̂). �

The upper bound for J given by (49) is minimized by sequentially minimizing J1

and J2. First, J1 is minimized to obtain θ̃, such that

θ̃ =

 âθ̂µ̂
θ̂v̂

 = argmin
θ̄∈Rn̂(p̂+2)+1

J1(θ̄). (50)

Since J1 is a linear least-squares function of θ̃, we use recursive least squares (RLS)
Åström and Wittenmark (1995) with P0 = 106.
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Next, using θ̂µ̂ given by (50), we rewrite (48) as

J2(θ̂µ̂, µ̂, b̂) = ‖ vec−1(θ̂µ̂)− µ̂b̂T‖F. (51)

Then, (Bernstein, 2018, Fact 11.16.39, p. 906) implies that the rank-1 approximation

of µ̂b̂T that minimizes J2 is given by

µ̂b̂T = σmax(vec−1(θ̂µ̂))ψl,1(vec−1(θ̂µ̂))ψr,1(vec−1(θ̂µ̂))T, (52)

where ψl,1(A) denotes the first left singular vector of A and ψr,1(A) denotes the first

right singular vector of A. Since µ̂ and b̂ are not separately identifiable from (52),

choosing an arbitrary nonzero scaling parameter β̂ ∈ R and using it to separate (52)
yields

µ̂ = β̂σmax(vec−1(θ̂µ̂))ψl,1(vec−1(θ̂µ̂)), (53)

b̂ =
1

β̂
ψr,1(vec−1(θ̂µ̂)). (54)

Finally, if θ̂v̂ given by (50) is nonzero, then it follows from (45) that 11×n̂b̂ is nonzero,
and thus v̂ is given by

v̂ =
θ̂v̂

11×n̂b̂
. (55)

Note that β̂ is unidentifiable, and thus it can be chosen arbitrarily.

6. Mixed-Integer Optimization for System Identification

The minimization of (39) in Section 5 depends on the chosen model parameters n̂, d̂,
ĉ, and r̂. In this section, a mixed-integer approach is used to determine optimal model
parameters n̂, d̂, ĉ, and r̂ such that the output of the identified modelM parameterized
by the estimates â, b̂, v̂, and µ̂ matches the output of S.

In order to constrain the width of the partitions in ĉ used to define CPA function
φ, let ε̂ > 0 denote the minimum partition width. Furthermore, let λ̂ be an integer
such that λ̂ε̂ is the uniform distance between consecutive break points in ĉ, and let
ν̂n and ν̂p denote the number of negative and positive components in ĉ, respectively.
With this notation, (28) can be written as

ĉ = ε̂ [−ν̂nλ̂ − (ν̂n − 1)λ̂ · · · (ν̂p − 1)λ̂ ν̂pλ̂]T ∈ Rν̂n+ν̂p+1, (56)

and thus p̂ = ν̂n + ν̂p + 1 and r̂ = ν̂n + 1. Since ε̂ is arbitrarily chosen, note that (56)

requires estimates of only λ̂, ν̂n, and ν̂p. In this paper, ε̂ = 10−3.
Next, suppose yk for all k ∈ [0, lmax] are the measurements available to use for

identification, such that lmax ≥ lu. Given n̂, d̂, λ̂, ν̂n, ν̂p, let â, b̂, v̂, µ̂ minimize (39), let

lMIO,u > lMIO,l ≥ n̂+ d̂+ 1, such that lMIO,u ≤ lmax and let lshift,max be the maximum

10



time-step shift. Then, we define the cost function

JMIO
4
= ‖YMIO − ŶMIO,lshift‖2, (57)

where

YMIO
4
=

ylMIO,l

...
ylMIO,u

 ∈ RlMIO,u−lMIO,l+1, (58)

ŶMIO,lshift
4
=

 ŷlMIO,l−lshift
...

ŷlMIO,u−lshift

 ∈ RlMIO,u−lMIO,l+1, (59)

lshift
4
= argmin

lshift∈[0,lshift,max]
‖YMIO − ŶMIO,lshift‖2, (60)

subject to

d̂ ≥ 0, (61)

n̂, λ̂, ν̂n, ν̂p > 0, (62)

n̂, d̂, λ̂, ν̂n, ν̂p ∈ N0. (63)

Note that JMIO considers shifts of ŷ relative to y by up to lshift,max steps using data yk
for all k ∈ [lMIO,l, lMIO,u], and that (39) is computed using yk for all k ∈ [ll, lu]. Figure
5 illustrates the data sets used to compute JMIO.

k (step)

yk, ŷk

S
M

ll lu

lMIO,l lMIO,u

0 lmax

0 lMIO,u + lshift,max

lshift

Figure 5. Output yk of system S for all k ∈ [0, lmax] available for MIO-ID and output ŷk of estimated
DTLI/CPA model M for all k ∈ [0, lMIO,u + lshift,max] obtained by propagating (26). J in (39) is computed

using yk for all k ∈ [ll, lu], and JMIO in (57) is computed using yk for all k ∈ [lMIO,l, lMIO,u]. To compute
JMIO, the output ŷ of M is shifted by up to lshift,max − 1 steps to minimize the difference between ŷ and the
output y of S. Note that lshift is the number of shift steps that minimize the difference between y and ŷ.
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To perform mixed-integer-optimization identification (MIO-ID), we use an integer

optimization algorithm to minimize JMIO over n̂, d̂, λ̂, ν̂n, and ν̂p. At each iteration, a
DTLI/CPA model is estimated along with its associated JMIO cost. Let ` ∈ N0 be an

MIO-ID iteration, and let n̂`, d̂`, λ̂`, ν̂n,`, ν̂p,`, â`, b̂`, v̂`, µ̂` and JMIO,` be the DTLI/CPA
parameters estimated at the `-th MIO-ID iteration and their associated cost obtained
using (57). For all ` ≥ 1, n̂`, d̂`, λ̂`, ν̂n,`, ν̂p,` are determined by a 1-step mixed-integer

search (1SMIS) algorithm with input JMIO,i, n̂i, d̂i, λ̂i, ν̂n,i, ν̂p,i for all i ∈ [0, `− 1]. For

` = 0, the 1SMIS function initializes n̂0, d̂0, λ̂0, ν̂n,0, ν̂p,0 randomly. Then, for all ` ∈ N0,

Algorithm 1 shows how JMIO,`, â`, b̂`, v̂`, and µ̂`, are computed using n̂`, d̂`, λ̂`, ν̂n,`, ν̂p,`

as input. Note that â`, b̂`, v̂`, and µ̂` are estimated by minimizing (39) using the least-
squares optimization technique in Section 5. The MIO-ID process terminates at step
` ≥ 1 when either JMIO,`−1 < Jmin or ` > `max, where Jmin is a chosen minimal cost
function value and `max is the chosen maximum number of optimization iterations.
Then, the identified DTLI/CPA modelM is characterized by the estimated parameters

n̂ = n̂j , d̂ = d̂j , λ̂ = λ̂j , ν̂n = ν̂n,j , ν̂p = ν̂p,j , â = âj , b̂ = b̂j , v̂ = v̂j , and µ̂ = µ̂j , where

j = argmin
i∈[0,`−1]

JMIO,i. (64)

The flow chart shown in Figure 6 summarizes MIO-ID.
The 1SMIS algorithm, which searches through the n̂, d̂, λ̂, ν̂n, ν̂p variable space, is

a single step of a derivative-free mixed-integer optimization algorithm. To reduce the
optimization time, the search space is constrained by setting minimum and maximum
feasible values of n̂, d̂, λ̂, ν̂n, and ν̂p, which implies that the values of ll and lMIO,l need

to be chosen to be greater than the sum of the maximum values set for n̂ and d̂. In
this paper, the 1SMIS algorithm consists of a single step of a mixed-integer genetic
algorithm and is implemented in Matlab by running a single optimization iteration
of the surrogateopt function. Note that surrogateopt chooses the initial values of
n̂, d̂, λ̂, ν̂n, and ν̂p based on their corresponding minimum and maximum feasible values.

The choice of certain optimization parameters can determine the resulting iden-
tified DTLI/CPA model. In that regard, the following suggestions may improve the
identification results:

• Choosing ll and lu to include the transient response of system S, as shown in
Example 7.2.
• In most cases, choosing ll = lMIO,l and lu = lMIO,u will suffice. However, in cases

where the oscillatory behavior displayed by the output of system S is irregular,
ll and lu may be chosen to include a representative waveform, while lMIO,l and
lMIO,u may be chosen to include more periods of the waveform, as shown in
Example 11.2.
• Increasing the maximum values of n̂ and d̂ in the case where the output of system
S displays richer frequency content, as shown in the examples in Sections 10 and
11.

• Let z be given by (19) with y as the output of system S and d = 0. Then, the

maximum values of λ̂, ν̂n, and ν̂p can be chosen so that the values of z are within

−ε̂ν̂nλ̂ and ε̂ν̂pλ̂.
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Algorithm 1: Computation of JMIO,`

Input: n̂`, d̂`, λ̂`, ν̂n,`, ν̂p,`

Output: JMIO,`, â`, b̂`, v̂`, µ̂`
1 ĉ` ← ε̂ [−ν̂n,`λ̂` − (ν̂n,` − 1)λ̂` · · · (ν̂p,` − 1)λ̂` ν̂p,`λ̂`]

T

2 â`, b̂`, v̂`, µ̂` ← argmina∗,b∗,v∗,µ∗ J(a∗, b∗, v∗, µ∗)

. Given n̂`, d̂`, ĉ`, and yk for all k ∈ [ll, lu], minimize (39) using the
least-squares optimization technique in Section 5.

3 ŷ ←
[
0 · · · 0

]T ∈ RlMIO,u+lshift,max

4 for k ← n̂` + d̂` + 1 to lMIO,u + lshift,max do

5 ŷk ← ϕ̂T
k

[
âT` (vec(µ̂`b̂

T
` ))T v̂`11×n̂` b̂`

]T
. Simulates DTL model with identified parameters given n̂`, d̂`, and ĉ`.

6 NaNFlag ← isNaN(ŷ)
. Determines whether the output of the simulated model yields a NaN
response.

7 JMIO,` ← ∞
8 if NaNFlag is true then

9 return JMIO,`, â`, b̂`, v̂`, µ̂`
10 for j ← 0 to lshift do

11 stemp ←
∑lMIO,u

k=lMIO,l
(yk − ŷk+j)

2

12 if stemp < JMIO,` then
13 JMIO,` ← stemp

. Local cost function computation with shift to account for the phase shift of
the identified model.

14 return JMIO,`, â`, b̂`, v̂`, µ̂`

Start

`← −1, JMIO,−1 ←∞

`← `+ 1

EndFlag ← JMIO,`−1 < Jmin or ` > `max

EndFlag is True?

n̂`, d̂`, λ̂`, ν̂n,`, ν̂p,` ←
1SMIS((JMIO,i)

`−1
i=0 , (n̂i)

`−1
i=0 , (d̂i)

`−1
i=0 ,

(λ̂i)
`−1
i=0 , (ν̂n,i)

`−1
i=0 , (ν̂p,i)

`−1
i=0 , `)

JMIO,`, â`, b̂`, v̂`, µ̂` ← Computation of JMIO,` (n̂`, d̂`, λ̂`, ν̂n,`, ν̂p,`)

End

n̂← n̂j , d̂← d̂j , λ̂← λ̂j ,
ν̂n ← ν̂n,j , ν̂p ← ν̂p,j , â← âj ,

b̂← b̂j , v̂ ← v̂j , µ̂← µ̂j

j ← argmin
i∈[0,`−1]

JMIO,i

Mixed-Integer Optimization

No

Yes

Figure 6. Flow chart of mixed-integer-optimization identification (MIO-ID).
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7. Application of MIO-ID to FTDDTL Systems

In this section, we apply MIO-ID to FTDDTL systems. Since these systems have
the form of the DTLI model, we evaluate the accuracy of MIO-ID by comparing
the estimates Ĝ and φ̂ with G and φ, respectively. Hence, in these examples, the
unidentifiable parameter β̂ is chosen to minimize the root-mean-square (RMS) fit

between φ and φ̂. Furthermore, the power spectral density (PSD) and the waveforms
of the outputs, the nonlinearities, and the frequency responses of the linear dynamics
of FTDDTL system S and the estimated DTLI/CPA modelM are compared. Table 1
summarizes details of the FTDDTL systems considered in this section, including the
signal-to-noise ratio (SNR) considered in each example.

Table 1. Examples with FTDDTL systems

Example System Type n d SNR (dB) φ

7.1

FTDDTL

2 4

∞ and 30

CPA, monotonic, odd

7.2 3 4 C∞ monotonic, not odd

7.3 6 0 C∞ nonmonotonic, odd

All computational results in this paper were obtained using a PC running Windows
10 Education, version 21H2, OS build 19044.1586 with 8-core 16-thread AMD Ryzen
3700X running at 3.59 GHz and 32GB DDR4 3600 MHz RAM running in dual channel
with MATLAB version R2020a Update 7.
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Example 7.1: FTDDTL with monotonic, odd φ

Consider the FTDDTL system S with d = 4,

G(q) =
q− 0.5

q2 − 1.6q + 0.8
, (65)

and the CPA, monotonic, odd φ shown in Figure 7. The domain of φ is partitioned by

c =
[
−10 −9 · · · 9 10

]T
, and φ is constructed such that, for all i ∈ [1, 21], φ(ci) =

18.75 tanh(1.2ci/2.5). To obtain data for identification, yk is generated by simulating

S subject to v = 37.5. For MIO-ID, we let n̂ ∈ [1, 10], d̂ ∈ [0, 10], λ̂ ∈ [1, 2000],
ν̂n ∈ [1, 30], and ν̂p ∈ [1, 30], with ll = lMIO,l = 100, lu = 500, and lMIO,u = 10000, that
is, yk for all k ∈ [100, 500] is used for least-squares optimization, and yk and ŷk for all
k ∈ [100, 10000] is used to compute JMIO.

Figure 8 compares the response of the model M identified using MIO-ID with the
response of S. The estimated DTLI/CPA model parameters are

Ĝ(q) =
1.0002q− 0.4996

q2 − 1.6000q + 0.8001
, (66)

d̂ = 4, v̂ = 37.46, ν̂n = 20, ν̂p = 26, and φ̂ shown in Figure 8. The optimization
process required 30.29 s, during which JMIO was computed 263 times. The minimum
values of JMIO up to each optimization iteration ` are shown in Figure 9. Further-
more, the response of the identified model as the number of optimization iterations
increase is displayed in Figure 10 at three snapshots during MIO-ID, that is, for all
` ∈ {1, 50, 250}.

Figure 7. Example 7.1: Continuous piecewise-affine feedback mapping φ(z) partitioned by c and the estimated
φ̂(z) partitioned by ĉ.
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Figure 8. Example 7.1: MIO-ID of FTDDTL system using noiseless measurements. (a) compares the PSD

of the output of S with the PSD of the output of M. (b) shows φ of S and φ̂ of M. (c) shows the output yk
of S with v = 37.5 for all k ∈ [0, 100]. (d) shows the output ŷk of M with v̂ = 37.46. (e) shows the output yk
of S and the output ŷk of M for all k ∈ [800, 900]. (f) and (g) compare the frequency responses G and Ĝ.

Figure 9. Example 7.1: Minimal cost min
i∈[0,`]

JMIO,i up to iteration ` used in MIO-ID. The identified model

M, whose response is shown in Figure 8 is obtained by minimizing (57).

Figure 10. Example 7.1: Responses of S and the identified modelM that minimizes JMIO as the number of
optimization iterations increases. The responses of M are displayed for all ` ∈ {1, 50, 250}.

Now, consider the output of S with sensor noise with standard deviation
√

1.5,
which yields an output signal with 30 dB SNR. Figure 11 compares the response of
the modelM identified using MIO-ID in the presence of noisy measurements with the
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response of S. The estimated DTLI/CPA model parameters are

Ĝ(q) =
1.0911q2 − 0.1186q− 0.2134

q3 − 1.2092q2 + 0.1745q + 0.3128
, (67)

d̂ = 4, v̂ = 34.345, ν̂n = 4, ν̂p = 12, and φ̂ shown in Figure 11. The optimization
process required 95.55 s, during which JMIO was computed 767 times.

Figure 11. Example 7.1: MIO-ID of FTDDTL system using noisy measurements. (a) compares the PSD of

the output of S with the PSD of the output ofM. (b) shows φ of S and φ̂ ofM. (c) shows the output yk of S
with v = 37.5 for all k ∈ [0, 100]. (d) shows the output ŷk of M with v̂ = 34.345 for all k ∈ [0, 100]. (e) shows

the output yk of S and the output ŷk of M for all k ∈ [800, 900]. (f) and (g) compare the frequency responses

of G and Ĝ.

Figure 12 shows the time domain responses of identified models estimated via MIO-
ID by fixing n̂ and d̂, such that {n̂, d̂} ∈ {1, 2, 3} × {2, 3, 4} . Note that small changes

in n̂ and d̂ can yield significantly different responses and thus different values of JMIO.
The complex changes of JMIO over the n̂, d̂, λ̂, ν̂l, ν̂p parameter space motivated the use
of a genetic algorithm for mixed-integer optimization. Furthermore, note that, in the
cases where d̂ = d and n̂ > n, the responses of the identified models are very similar
to those of S, which implies that, under appropriate coefficients, higher order linear
systems can approximate the response of lower order linear systems. �
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Figure 12. Example 7.1: MIO-ID of FTDDTL system with fixed n̂ and d̂, such that {n̂, d̂} ∈ {1, 2, 3} ×
{2, 3, 4} . These plots compare the output ŷk of the identified model M with the output yk of system S for all

k ∈ [0, 400].

Example 7.2: FTDDTL system with monotonic, not odd φ

Consider the FTDDTL system S with d = 4,

G(q) =
q2 − 2.3q + 1.5725

q3 − 2.35q2 + 2q− 0.6
, (68)

and a C∞, monotonic, not odd φ, such that, for all z ∈ R,

φ(z) = 15 tanh(1.2(z − 3)/2.5) + 2.2342. (69)

To obtain data for identification, yk is generated by simulating S subject to v = 40. For
identification, we let n̂ ∈ [1, 20], d̂ ∈ [0, 20], λ̂ ∈ [1, 2000], ν̂n ∈ [1, 30], and ν̂p ∈ [1, 30],
with ll = lMIO,l = 100, lu = 1500, and lMIO,u = 10000, that is, yk for all k ∈ [100, 1500]
is used for least-squares optimization, and yk and ŷk for all k ∈ [100, 10000] is used
to compute JMIO. Figure 13 compares the response of the model M identified using
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MIO-ID with the response of S. The estimated DTLI/CPA model parameters are

Ĝ(q) =
0.1209q2 + 0.1204q + 0.1043

1.0000q3 − 0.5577q2 + 0.0173q− 0.0494
,

d̂ = 17, v̂ = 39.5712, ν̂n = 5, ν̂p = 6, and φ̂ shown in Figure 13. Note that, although the
MIO-ID parameter estimates are different from those of S, the output of the identified
system M closely matches that of S.

Figure 13. Example 7.2: MIO-ID of FTDDTL system using noiseless measurements. (a) compares the PSD

of the output of S with the PSD of the output of M. (b) shows φ of S and φ̂ of M. (c) shows the output yk
of S with v = 40 for all k ∈ [0, 1000]. (d) shows the output ŷk of M with v̂ = 39.5712 for all k ∈ [0, 1000]. (e)
shows the output yk of S for all k ∈ [2500, 2550] and the output ŷk of M for all k ∈ [2508, 2558]. (f) and (g)

compare the frequency responses of G and Ĝ.

Next, consider the output of S with sensor noise with standard deviation
√

40, which
yields an output signal with 30 dB SNR. Figure 14 compares the response of the model
M identified using MIO-ID in the presence of noisy measurements with the response
of S. The estimated DTLI/CPA model parameters are n̂ = 8, d̂ = 9, v̂ = 60.1698,

ν̂n = 8, ν̂p = 12, and φ̂ shown in Figure 14. Similarly to the noiseless case, while the
parameters of the identified model differ from those of S, the output of the identified
system M closely matches that of S.
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Figure 14. Example 7.2: MIO-ID of FTDDTL using noisy measurements. (a) compares the PSD of the

output of S with the PSD of the output of M. (b) shows φ of S and φ̂ of M. (c) shows the output yk of S
with v = 40 for all k ∈ [0, 200]. (d) shows the output ŷk of M with v̂ = 60.1698 for all k ∈ [0, 200]. (e) shows
the output yk of S for all k ∈ [2500, 2550] and the output ŷk ofM, for all k ∈ [2499, 2549]. (f) and (g) compare

the frequency responses of G and Ĝ.

Now, we show that the parameters of the identified system estimated by MIO-ID
can match those of S in the case where the input is known and nonconstant. In order
to do this, the inner-loop nonlinear least-squares optimization shown in Section 5 is
modified for nonconstant v, as shown in Section 5 of Paredes and Bernstein (2020).

Consider the system (68) simulated with v as a Gaussian random variable with
mean 5 and standard deviation

√
1.5. Figure 15 compares the response of the model

M identified using MIO-ID with the response of S, both driven by the constant input
v = v̂ = 40. The estimated DTLI/CPA model parameters are

Ĝ(q) =
1.0147q2 − 2.3314q + 1.5921

1.0000q3 − 2.3500q2 + 1.9999q− 0.6000
, (70)

d̂ = 4, ν̂n = 6, ν̂p = 10, and φ̂ shown in Figure 15. Note that, unlike the cases where
the input is assumed to be unknown and constant, the estimated DTLI/CPA model
parameters are similar to those of S, which shows that MIO-ID is more accurate when
the input is known and more persistent, as shown in Figure 16.
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Figure 15. Example 7.2: MIO-ID of FTDDTL system using noiseless measurements with a Gaussian random

variable as input. (a) compares the PSD of the output of S with the PSD of the output of M. (b) shows φ of

S and φ̂ of M. (c) shows the output yk of S with v = 40 for all k ∈ [0, 200]. (d) shows the output ŷk of M
with v̂ = 40 for all k ∈ [0, 200]. (e) shows the output yk of S for all k ∈ [2500, 2550] and the output ŷk for M
for all k ∈ [2503, 2553]. (f) and (g) compare the frequency responses of G and Ĝ.

Figure 16. Example 7.2: (zk, uk) pairs from S for all k ∈ [2, 300], plotted with φ using Gaussian white noise

as input. Note the persistency in the data.

Next, we consider the identification of S using noiseless measurements that include
the transient response of the system. Let ll = n̂ + d̂ + 1, lu = 1500, lMIO,l = 100,

and lMIO,u = 10000, that is, yk for all k ∈ [n̂ + d̂ + 1, 1500] is used for least-squares
optimization, and yk and ŷk for all k ∈ [100, 10000] is used to compute JMIO, such
that the transient response of S is used for identification, unlike previous cases. Figure
17 compares the response of the model M identified using MIO-ID in the presence
of noiseless measurements that include the transient response with the response of S.
The estimated DTLI/CPA model parameters are

Ĝ(q) =
1.0147q2 − 2.2974q + 1.5604

1.0000q3 − 2.3499q2 + 1.9997q− 0.5999
, (71)

d̂ = 4, v̂ = 39.87, ν̂n = 20, ν̂p = 22, and φ̂ shown in Figure 17. Furthermore, Figure 18

plots the (zk, uk) pairs from S for all k ∈ [2, 300], which implies that the φ̂ estimate of
φ is more accurate in regions with more data points. Compared to the identification
results in Figure 13, the estimated DTLI/CPA model parameters are similar to those
of S when the transient response is included in identification data window, which show
that MIO-ID is more accurate when the measurements are more persistent. �
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Figure 17. Example 7.2: MIO-ID of FTDDTL system using noiseless measurements that include the transient

response of the system. (a) compares the PSD of the output of S with the PSD of the output ofM. (b) shows

φ of S and φ̂ of M. (c) shows the output yk of S with v = 40 for all k ∈ [0, 200]. (d) shows the output ŷk of
M with v̂ = 39.87 for all k ∈ [0, 200]. (e) shows the output yk of S for all k ∈ [2500, 2550] and the output ŷk
for M for all k ∈ [2503, 2553]. (f) and (g) compare the frequency responses of G and Ĝ.

Figure 18. Example 7.2: (zk, uk) pairs from S for all k ∈ [2, 300], plotted with φ and φ̂ obtained from MIO-ID

of FTDDTL system using noiseless measurements that include the transient response of the system. Note that

the φ̂ estimate of φ is less accurate in regions with scarce data points and large changes in φ, such as for all
z ∈ [0, 8]. Note that |z| ≥ 20 is truncated since they exceed the maximum possible estimates of ν̂nλ̂/ν̂pλ̂ and

are therefore saturated.

Example 7.3: FTDDTL system with nonmonotonic, odd φ

Consider the FTDDTL system S with d = 0,

G(q) =
q2 + 1.5q + 0.8125

q6 − 3.5442q5 + 5.21974q4 − 3.92160q3 + 1.5316q2 − 0.2722q− 0.02153
,

(72)
and the C∞, nonmonotonic, odd φ, such that, for all z ∈ R,

φ(z) = −φmax
1

σφ
√

2π
e−

1

2
((z+µφ)/σφ)2 + φmax

1

σφ
√

2π
e−

1

2
((z−µφ)/σφ)2 , (73)

with φmax = 4, σφ = 1.75, and µφ = 4. To obtain data for identification, yk is generated

by simulating S subject to v = 2. For identification, we let n̂ ∈ [1, 20], d̂ ∈ [0, 20],

λ̂ ∈ [1, 2000], ν̂n ∈ [1, 30], and ν̂p ∈ [1, 30], with ll = lMIO,l = 100, lu = 1500, and
lMIO,u = 10000, that is, yk for all k ∈ [100, 1500] is used for least-squares optimization,
and yk and ŷk for all k ∈ [100, 10000] is used to compute JMIO. Figure 19 compares
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the response of the model M identified using MIO-ID with the response of S. The
estimated DTLI/CPA model parameters are

Ĝ(q) =
0.1228q + 0.1579

q2 − 1.5938q + 0.7528
,

d̂ = 4, v̂ = 19.6144, ν̂n = 15, ν̂p = 9, and φ̂ shown in Figure 19. As in Example 7.2,
although the MIO-ID parameter estimates are different from those of S, the output
of the identified system M closely matches that of S.

Figure 19. Example 7.3: MIO-ID of FTDDTL system using noiseless measurements. (a) compares the PSD

of the output of S with the PSD of the output of M. (b) shows φ of S and φ̂ of M. (c) shows the output yk
of S with v = 2 for all k ∈ [0, 1000]. (d) shows the output ŷk of M with v̂ = 19.6144 for all k ∈ [0, 1000]. (e)

shows the output yk of S for all k ∈ [8500, 8550] and the output ŷk of M for all k ∈ [8496, 8546]. (f) and (g)

compare the frequency responses of G and Ĝ.

Next, consider the output of S with sensor noise with standard deviation
√

45,
which yields an output signal with 30 dB SNR. Figure 20 compares the response of
the model M identified using MIO-ID in the presence of noisy measurements with
the response of S. The estimated DTLI/CPA model parameters are n̂ = 9, d̂ = 10,

v̂ = 9.03, ν̂n = 9, ν̂p = 20, and φ̂ shown in Figure 20. Similarly to the noiseless case,
while the parameters of the identified model differ from those of S, the output of the
identified system M closely matches that of S.
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Figure 20. Example 7.3: MIO-ID of FTDDTL system using noisy measurements. (a) compares the PSD of

the output of S with the PSD of the output of M. (b) shows φ of S and φ̂ of M. (c) shows the output yk of

S with v = 2 for all k ∈ [0, 1000]. (d) shows the output ŷk of M with v̂ = 9.03 for all k ∈ [0, 1000]. (e) shows
the output yk of S for all k ∈ [8500, 8550] and the output ŷk ofM for all k ∈ [8493, 8543]. (f) and (g) compare

the frequency responses of G and Ĝ.

Next, we show that the parameters of parameters of the identified system estimated
by MIO-ID can match those of S in the case where the input is known and nonconstant,
as in Example 7.2. Consider the system (72) simulated with v as a Gaussian random
variable with mean 3 and standard deviation

√
5. Figure 21 compares the response of

the modelM identified using MIO-ID in the presence of noisy measurements with the
response of S, both driven by the constant input v = 5. The estimated DTLI/CPA
model parameters are

Ĝ(q) =
4.3 · 10−4q5 + 1.4 · 10−5q4 − 8.2 · 10−4q3 + 0.9872q2 + 1.4816q + 0.8030

q6 − 3.5442q5 + 5.1973q4 − 3.9160q3 + 1.5317q2 − 0.2723q + 0.0154
,

d̂ = 0, ν̂n = 12, ν̂p = 14, and φ̂ shown in Figure 21. As in Example 7.2, MIO-ID is
more accurate when the input is more persistent. �
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Figure 21. Example 7.3: MIO-ID of FTDDTL system using noiseless measurements with Gaussian random

variable as input. (a) compares the PSD of the output of S with the PSD of the output of M. (b) shows φ of

S and φ̂ of M. (c) shows the output yk of S with v = 2 for all k ∈ [0, 1000]. (d) shows the output ŷk of M
with v̂ = 2 for all k ∈ [0, 1000]. (e) shows the output yk of S for all k ∈ [8500, 8550] and the output ŷk of M
for all k ∈ [8498, 8548]. (f) and (g)compare the frequency responses of G and Ĝ.
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8. Application of MIO-ID to the Logistic Map

In this section, we apply MIO-ID to data obtained from the logistic map given by (7)-
(9) under various parameters. Note that, although the logistic map is a DTL system,
it does not include a washout filter, and thus it does not have the form of an FTDDTL
model. We thus set β̂ = 1. Table 2 summarizes the details of the examples considered
in this section.

Table 2. Examples with logistic map

Example System Type Parameter SNR (dB) Remark

8.1.1

Logistic Map

γ = 3

∞

Response has a
2-step oscillation

8.1.2 γ = 3.5
Response has a

4-step oscillation

8.1.3 γ = 3.565
Response has a

8-step oscillation

8.1.4 γ = 4
Response is

chaotic
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Example 8.1: Logistic map

Let S be the discrete-time model described by the logistic map is given by (7)-(9)
where γ ∈ R. Note that, in the case where γ ∈ [3, 1 +

√
6], response of the logistic map

approaches to a solution that oscillates between two γ-dependent values, that is, there
exists k0 > 0 such that, for all k ≥ k0,

yk ∈

{
1

2
+

1−
√

(γ − 3)(γ + 1)

2γ
,

1

2
+

1 +
√

(γ − 3)(γ + 1)

2γ

}
. (74)

For all k > 1, the logistic map equation is propagated to obtain data. Since the value
of γ determines the response of the logistic map, MIO-ID is applied to data obtained
from the logistics map with γ ∈ {3, 3.5, 3.565, 4}.

Example 8.1.1: Logistic map with γ = 3

Let γ = 3 and x0 = 0.5. For identification, we let n̂ ∈ [1, 20], d̂ ∈ [0, 20], λ̂ ∈ [1, 50000],
ν̂n ∈ [1, 20], and ν̂p ∈ [1, 20], with ll = lMIO,l = 3000, lu = 3100, and lMIO,u =
10000 that is, yk for all k ∈ [3000, 3100] is used for least-squares optimization, and
yk and ŷk for all k ∈ [3000, 10000] is used to compute JMIO. Figure 22 compares
the response of the model M identified using MIO-ID with the response of S. The
estimated DTLI/CPA model parameters are n̂ = 1, d̂ = 0, ν̂n = 12, ν̂p = 10, v̂ =

−3.076, Ĝ with a frequency response shown in Figure 23, and φ̂ shown in Figure 23.

Figure 22. Example 8.1.1: MIO-ID of the logistic map equations (7)-(9) with γ = 3, using noiseless measure-
ments. (a) compares the PSD of the output of S with the PSD of the output of M. (b) shows the output yk
of S for all k ∈ [0, 50]. (c) shows the output ŷk of M with v̂ = −3.076 for all k ∈ [0, 50]. (d) shows the output
yk of S for all k ∈ [2500, 2510], and the output ŷk of M for all k ∈ [2500, 2510].
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Figure 23. Example 8.1.1: MIO-ID of the logistic map equations (7)-(9) with γ = 3, using noiseless measure-

ments. (a) and (b) show the frequency response of Ĝ. (c) shows the estimated nonlinearity φ̂.

Example 8.1.2: Logistic map with γ = 3.5

Let γ = 3.5 and x0 = 0.5. Note that, in the case where γ ∈ (1 +
√

6, 3.544), the
response of the logistic map has a 4-step oscillation. For identification, we let n̂ ∈
[1, 50], d̂ ∈ [0, 50], λ̂ ∈ [1, 50000], ν̂n ∈ [1, 20], and ν̂p ∈ [1, 20], with ll = lMIO,l = 3000,
lu = 3100, and lMIO,u = 10000 that is, yk for all k ∈ [3000, 3100] is used for least-
squares optimization, and yk and ŷk for all k ∈ [3000, 10000] is used to compute JMIO.
Figure 24 compares the response of the model M identified using MIO-ID with the
response of S. The estimated DTLI/CPA model parameters are n̂ = 1, d̂ = 1, ν̂n = 3,

ν̂p = 2, v̂ = −2.8305, Ĝ with a frequency response shown in Figure 25, and φ̂ shown
in Figure 25.

Figure 24. Example 8.1.2: MIO-ID of the logistic map equations (7)-(9) with γ = 3.5, using noiseless mea-

surements. (a) compares the PSD of the output of S with the PSD of the output of M. (b) shows the output
yk of S for all k ∈ [0, 50]. (c) shows the output ŷk of M with v̂ = −2.8305 for all k ∈ [0, 50]. (d) shows the

output yk of S for all k ∈ [2500, 2510], and the output ŷk of M for all k ∈ [2502, 2512].

28



Figure 25. Example 8.1.2: MIO-ID of the logistic map equations (7)-(9) with γ = 3.5, using noiseless mea-

surements. (a) and (b) show the frequency response of Ĝ. (c) shows the estimated nonlinearity φ̂.

Example 8.1.3: Logistic map with γ = 3.565

Let γ = 3.565 and x0 = 0.5. For this value of γ, the response of the logistic map has a
8-step oscillation. For identification, we let n̂ ∈ [1, 50], d̂ ∈ [0, 50], λ̂ ∈ [1, 50000], ν̂n ∈
[1, 20], and ν̂p ∈ [1, 20], with ll = lMIO,l = 3000, lu = 3100, and lMIO,u = 10000 that
is, yk for all k ∈ [3000, 3100] is used for least-squares optimization, and yk and ŷk for
all k ∈ [3000, 10000] is used to compute JMIO. Figure 26 compares the response of the
modelM identified using MIO-ID with the response of S. The estimated DTLI/CPA

model parameters are n̂ = 2, d̂ = 0, ν̂n = 14, ν̂p = 19, v̂ = 5.0736, Ĝ with a frequency

response shown in Figure 27, and φ̂ shown in Figure 27.

Figure 26. Example 8.1.3: MIO-ID of the logistic map equations (7)-(9) with γ = 3.5, using noiseless mea-

surements. (a) compares the PSD of the output of S with the PSD of the output of M. (b) shows the output
yk of S for all k ∈ [0, 50]. (c) shows the output ŷk ofM with v̂ = 5.0736 for all k ∈ [0, 50]. (d) shows the output

yk of S for all k ∈ [2500, 2510], and the output ŷk of M for all k ∈ [2502, 2512].
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Figure 27. Example 8.1.3: MIO-ID of the logistic map equations (7)-(9) with γ = 3.5, using noiseless mea-

surements. (a) and (b) show the frequency response Ĝ. (c) shows the estimated nonlinearity φ̂.

Example 8.1.4: Logistic map with γ = 4 (chaotic response)

Let γ = 4 and x0 = 0.1. For this value of γ, the response of the logistic map is
chaotic. For this example, we remove the washout filter in the DTLI/CPA model

such that yf = yd, and the method in Section 5 is applied with n̂ = 1, d̂ = 0,
ĉ = [−1.2 − 1.19 · · · 1.19 1.2], r̂ = 121, ll = 2 and lu = 1500. Figure 28 shows
the response of the model M, estimated using the method in Section 5, as well as the
estimated nonlinearity. Note that (7)-(9) can be written as

xk+1 = φ(xk), (75)

where φ(xk) = γ(xk − x2
k), which corresponds to the identified feedback nonlinearity,

as shown in Figure 28. Since xk = yk ∈ [0, 1] for all k ≥ 0, the nonlinearity is identified
within only this interval, remaining 0 otherwise. �

Figure 28. Example 8.1: Nonlinear identification of the logistic map equations (7)-(9) with γ = 4, using
noiseless measurements. (a) shows the output yk of S for all k ∈ [0, 50]. (b) shows the output ŷk of M with

v̂ = 0 for all k ∈ [0, 50]. (c) shows the nonlinearity of the logistic map φ in (75) and the estimated nonlinearity

φ̂ of M.
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9. Continuous-Time Lur’e System

For all t ≥ 0, consider the continuous-time Lur’e (CTL) system shown in Figure 29,
which has the dynamics

ẋ(t) = Ax(t) +Bu(t) +Dv(t), (76)

y(t) = Cx(t). (77)

z(t) = Ex(t), (78)

u(t) = φ(z(t)), (79)

where x(t) ∈ Rn, u(t) ∈ Rm, v(t) ∈ R, y(t) ∈ R, z(t) ∈ Rp, A ∈ Rn×n, B ∈ Rn×m,
C ∈ R1×n, D ∈ Rn×1, E ∈ Rp×n, and φ : Rp → Rm. Combining (76)-(79) yields

ẋ(t) = Ax(t) +Bφ(Ex(t)) +Dv(t), (80)

y(t) = Cx(t). (81)

It is assumed that, for all T > 0, (80), (81) has a unique solution on [0, T ). This
assumption rules out equations that lack either uniqueness or global existence or both,
such as ẋ =

√
|x|, ẋ = x2, and ẋ = x1/3 + x3.

ẋ(t) = Ax(t) +Bu(t) +Dv(t)
y(t) = Cx(t)
z(t) = Ex(t)

φ

v

u

y

z

Figure 29. Continuous-time Lur’e system with input v, nonlinear feedback function φ, and output y.

Example 9.1. The dynamics of the van der Pol oscillator can be written as

ẋ(t) =

[
0 1
−1 0

]
x(t) +

[
0
γ

]
φ(x(t)), (82)

y(t) =
[
1 0

]
x(t), (83)

φ(x(t)) = (1− x2
1(t))x2(t), (84)

where n = p = 2, m = 1, x(t) = [x1(t) x2(t)]T, y(t) = x1(t), and γ ∈ R.

Example 9.2. The dynamics of the Lotka-Volterra predator-prey system where the
output is the number of prey can be written as

ẋ(t) =

[
α 0
0 −γ

]
x(t) +

[
−ζ
ξ

]
φ(x(t)), (85)

y(t) =
[
1 0

]
x(t), (86)

φ(x(t)) = x1(t)x2(t), (87)

where n = p = 2, m = 1, x(t) = [x1(t) x2(t)]T, y(t) = x2(t), and α, γ, ζ, ξ ∈ R.
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10. Application to Continuous-Time Numerical Examples

In this section, we present examples to illustrate the application of MIO-ID to data
obtained from numerical simulations from continuous-time systems. In these examples,
since no true nonlinearity is available, the scaling parameter is chosen to be β̂ = 1.
Furthermore, the phase portrait of the responses of both the continuous-time system
S and the estimated model M are displayed, in which an estimate of the output
derivative is used, such that, for all k > 1,

ẏk
4
=
yk+1 − yk−1

2Ts
, (88)

˙̂yk
4
=
ŷk+1 − ŷk−1

2Ts
, (89)

where Ts denotes the sampling time. Table 3 summarizes the details of the considered
continuous-time systems.

Table 3. Examples with continous-time models

Example System Type
System
Order

Ts (s) SNR (dB) Remark

10.1 van der Pol
2

0.1 ∞ and 30
CTL system.

10.2 Lotka-Volterra

10.3 Mackey-Glass 1 Time-delay system.
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Example 10.1: van der Pol Oscillator

Let S be the continuous-time van der Pol system, given by (82)-(84), where, for all
t ≥ 0, γ = 1, x1(0) = 0.1, and x2(0) = 0. To obtain data for identification, for all
t > 0, the van der Pol model is simulated using ode45, and the output is sampled
with sampling time Ts = 0.1 s. The integration accuracy of ode45 is set so that
approximately 160 integration steps are implemented within each sample interval. For
identification, we let n̂ ∈ [1, 20], d̂ ∈ [0, 25], λ̂ ∈ [10, 1000], ν̂n ∈ [1, 15], and ν̂p ∈ [1, 15],
with ll = lMIO,l = 500, lu = 3000, and lMIO,u = 20000 that is, yk for all k ∈ [500, 3000]
is used for least-squares optimization, and yk and ŷk for all k ∈ [500, 20000] is used to
compute JMIO.

Figure 30 compares the response of the model M identified using MIO-ID in the
presence of noiseless measurements with the response of S. Figure 30 also compares
the phase portraits of the continuous-time system S, and the identified modelM using
(88) and (89) to approximate the derivative of the output. The estimated DTLI/CPA

model parameters are n̂ = 13, d̂ = 11, ν̂n = 9, ν̂p = 10, v̂ = −70.77 · 10−4, Ĝ with a

frequency response shown in Figure 31, and φ̂ shown in Figure 31.

Figure 30. Example 10.1: MIO-ID of the continuous-time van der Pol oscillator using noiseless measurements.

For the sampling time Ts = 0.1 s, (a) compares the PSD of the output of S with the PSD of the output of M.
(b) shows the phase portraits of the response y of the continuous-time van der Pol system S and the response ŷ

of the identified model M. The derivatives of the outputs are approximated using (88) and (89) with Ts = 0.1
s. (c) shows the output yk of S for all k ∈ [0, 500]. (d) shows the output ŷk of M with v̂ = −70.77 · 10−4 for
all k ∈ [0, 500]. (e) shows the sampled output yk of S for all k ∈ [500, 1000], and the output ŷk of M for all

k ∈ [521, 1021].
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Figure 31. Example 10.1: MIO-ID of the continuous-time van der Pol oscillator using noiseless measurements.

(a) and (b) show the frequency response of Ĝ. (c) shows the estimated nonlinearity φ̂ of M.

Next, consider the output of S with sensor noise that yields an output signal with
30 dB SNR. Figure 32 compares the response of the modelM identified using MIO-ID
in the presence of noisy measurements with the response of S. Figure 32 also compares
the phase portraits of the continuous-time system S, with and without sensor noise,
and the identified model M using (88) and (89) to approximate the derivative of the

output. The estimated DTLI/CPA model parameters are n̂ = 47, d̂ = 7, ν̂n = 16,

ν̂p = 10, v̂ = −0.4624, Ĝ with a frequency response shown in Figure 33, and φ̂ shown
in Figure 33. �

Figure 32. Example 10.1: MIO-ID of the continuous-time van der Pol oscillator with 30 dB SNR. For the
sampling time Ts = 0.1 s, (a) compares the PSD of the output of S with the PSD of the output of M. (b)

shows the phase portraits of the response y of the continuous-time van der Pol system S with sensor noise,

response of the continuous-time van der Pol system S without sensor noise in green, and the response ŷ of the
identified model M. The derivatives of the outputs are approximated using (88) and (89) with Ts = 0.1 s. (c)
shows the output yk of S for all k ∈ [0, 500]. (d) shows the output ŷk ofM with v̂ = 0.6444 for all k ∈ [0, 500].

(e) shows the sampled output yk of S for all k ∈ [500, 1000], and the output ŷk of M for all k ∈ [490, 990].
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Figure 33. Example 10.1: MIO-ID of the continuous-time van der Pol oscillator with 30 dB SNR. (a) and

(b) show the frequency response of Ĝ. (c) shows the estimated nonlinearity φ̂.

Example 10.2: Lotka-Volterra Model

Let S be the continuous-time Lotka-Volterra model, given by (85)-(87) where, for all
t ≥ 0, α = 2/3, γ = 1, ζ = 4/3, ξ = 1, and x(0) = y(0) = 1. To obtain data
for identification, for all t > 0, the Lotka-Volterra model is simulated using ode45,
and the output is sampled with sampling time Ts = 0.1 s. The integration accuracy
of ode45 is set so that approximately 160 integration steps are implemented within
each sample interval. For identification, we let n̂ ∈ [1, 30], d̂ ∈ [0, 30], λ̂ ∈ [10, 5000],
ν̂n ∈ [1, 10], and ν̂p ∈ [1, 10], with ll = lM,l = 100 and lu = lM,u = 10000, that is, yk for
all k ∈ [100, 10000] is used for identification. Figure 34 compares the response of the
model M, identified using MIO-ID, with the response of S. Figure 34 also compares
the phase portraits of the continuous-time system S and the identified modelM using
(88) and (89) to approximate the derivative of the output. The estimated DTLI/CPA

model parameters are n̂ = 14, d̂ = 16, ν̂n = 7, ν̂p = 7, v̂ = 0.258, Ĝ with a frequency

response shown in Figure 35, and φ̂ shown in Figure 35.
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Figure 34. Example 10.2: MIO-ID of the continuous-time Lotka-Volterra model using noiseless measurements.

(a) compares the PSD of the output of S with sampling time Ts = 0.1 s, with the PSD of the output ofM. (b)

shows the phase portraits of the response y of the continuous-time van der Pol system S and the response ŷ of
the identified model M. The derivatives of the outputs are approximated using (88) and (89) with Ts = 0.1 s.

(c) shows the output yk of S for all k ∈ [0, 500]. (d) shows the output ŷk ofM with v̂ = 0.258 for all k ∈ [0, 500].

(e) shows the sampled output yk of S for all k ∈ [2500, 3000], and the output ŷk of M for all k ∈ [2487, 2987].

Figure 35. Example 10.2: MIO-ID of the continuous-time Lotka-Volterra model using noiseless measurements.

(a) and (b) show the frequency response of Ĝ. (c) shows the estimated nonlinearity φ̂.

Next, consider the output of S with sensor noise that yields an output signal with
30 dB SNR. Figure 36 compares the response of the modelM identified using MIO-ID
in the presence of noisy measurements with the response of S. Figure 36 also compares
the phase portraits of the continuous-time system S, with and without sensor noise,
and the identified model M using (88) and (89) to approximate the derivative of the

output. The estimated DTLI/CPA model parameters are n̂ = 48, d̂ = 25, ν̂n = 7,

ν̂p = 12, v̂ = −3.3042, Ĝ with a frequency response shown in Figure 37, and φ̂ shown
in Figure 37. �
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Figure 36. Example 10.2: MIO-ID of the continuous-time Lotka-Volterra model with 30 dB SNR. (a) com-

pares the PSD of the output of S with sampling time Ts = 0.1 s, with the PSD of the output of M. (b) shows

the phase portraits of the response y of the continuous-time van der Pol system S with sensor noise, response of
the continuous-time Lotka-Volterra model S without sensor noise in green, and the response ŷ of the identified

model M. The derivatives of the outputs are approximated using (88) and (89) with Ts = 0.1 s. (c) shows the

output yk of S for all k ∈ [0, 500]. (d) shows the output ŷk of M with v̂ = 0.258 for all k ∈ [0, 500]. (e) shows
the sampled output yk of S for all k ∈ [2500, 3000], and the output ŷk of M for all k ∈ [2487, 2987].

Figure 37. Example 10.2: MIO-ID of the continuous-time Lotka-Volterra model with 30 dB SNR. (a) and

(b) show the frequency response of Ĝ. (c) shows the estimated nonlinearity φ̂.

Example 10.3: Mackey-Glass Model

Let S be the continuous-time, time-delayed Mackey-Glass model, given by the delay
differential equation

ẋ(t) = −γx(t) +
ζx(t− τ)

1 + xξ(t− τ)
, (90)

y(t) = x(t), (91)
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where γ = 0.1, ζ = 0.2, τ = 6, ξ = 10, and, for all t ≤ 0, x(t) = 0.1. Note that this
system cannot be represented by the structure proposed in Section 9. This example
illustrates that MIO-ID is able to identify systems with continuous-time delay. To
obtain data for identification, for all t > 0, the Mackey Glass equation is simulated
using dde23, and the output is sampled with sampling time Ts = 0.1 s. The integration
accuracy of dde23 is set so that approximately 160 integration steps are implemented
within each sample interval. For identification, we let n̂ ∈ [1, 50], d̂ ∈ [0, 50], λ̂ ∈
[1, 50000], ν̂n ∈ [1, 20], and ν̂p ∈ [1, 20], with ll = lMIO,l = 1000, lu = 3000, and
lMIO,u = 20000, that is, yk for all k ∈ [1000, 3000] is used for least-squares optimization,
and yk and ŷk for all k ∈ [1000, 20000] is used to compute JMIO. Figure 38 compares the
response of the modelM identified using MIO-ID with the response of S. Figure 38 also
compares the phase portraits of the continuous-time system S and the identified model
M using (88) and (89) to approximate the derivative of the output. The estimated

DTLI/CPA model parameters are n̂ = 44, d̂ = 13, ν̂n = 9, ν̂p = 14, v̂ = 25.965, Ĝ

with a frequency response shown in Figure 39, and φ̂ shown in Figure 39. �

Figure 38. Example 10.3: MIO-ID of the continuous-time Mackey-Glass model using noiseless measurements.

(a) compares the PSD of the output of S with sampling time Ts = 0.1 s, with the PSD of the output ofM. (b)
shows the phase portraits of the response y of the continuous-time van der Pol system S and the response ŷ

of the identified model M. The derivatives of the outputs are approximated using (88) and (89) with Ts = 0.1
s. (c) shows the output yk of S for all k ∈ [0, 1000]. (d) shows the output ŷk of M with v̂ = 25.965 for all

k ∈ [0, 1000]. (e) shows the sampled output yk of S for all k ∈ [48500, 48700], and he output ŷk of M for all

k ∈ [48503, 48703].
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Figure 39. Example 10.3: MIO-ID of the continuous-time Mackey-Glass model using noiseless measurements.

(a) and (b) show the frequency response of Ĝ. (c) shows the estimated nonlinearity φ̂.

Next, consider the output of S with sensor noise that yields an output signal with
30 dB SNR. Figure 40 compares the response of the modelM identified using MIO-ID
in the presence of noisy measurements with the response of S. Figure 40 also compares
the phase portraits of the continuous-time system S, with and without sensor noise,
and the identified model M using (88) and (89) to approximate the derivative of the

output. The estimated DTLI/CPA model parameters are n̂ = 50, d̂ = 48, ν̂n = 15,

ν̂p = 14, v̂ = 0.1604, Ĝ with a frequency response shown in Figure 41, and φ̂ shown
in Figure 41. �

Figure 40. Example 10.3: MIO-ID of the continuous-time Mackey-Glass model with 30 dB SNR. (a) compares
the PSD of the output of S with sampling time Ts = 0.1 s, with the PSD of the output of M. (b) shows the

phase portraits of the response y of the continuous-time van der Pol system S, response of the continuous-

time van der Pol system S without sensor noise in green, and the response ŷ of the identified model M. The
derivatives of the outputs are approximated using (88) and (89) with Ts = 0.1 s. (c) shows the output yk of S
for all k ∈ [0, 1000]. (d) shows the output ŷk of M with v̂ = 25.965 for all k ∈ [0, 1000]. (e) shows the sampled

output yk of S for all k ∈ [48500, 48700], and he output ŷk of M for all k ∈ [48503, 48703].
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Figure 41. Example 10.3: MIO-ID of the continuous-time Mackey-Glass model with 30 dB SNR. (a) and (b)

show the frequency response of Ĝ. (c) shows the estimated nonlinearity φ̂.
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11. Application to Experimental Data

In this section, we present examples to illustrate the application of MIO-ID to data
obtained via experiments from sensor data sets and show that MIO-ID may be used to
identify a wide range of systems that exhibit oscillatory behavior. In these examples,
since no true nonlinearity is available, the scaling parameter is chosen to be β̂ =
1. Furthermore, the phase portrait of the responses of both the system S and the
estimated model M are displayed, in which the estimate of the output derivative
shown in (88) and (89) is used. Table (4) summarizes the details of the experimental

data sets considered, where fs
4
= 1/Ts denotes the sampling rate in Hz.

Table 4. Examples with experimental data

Example System Type fs (Hz)

11.1 Flute A4 Note 22050

11.2 Gas-Turbine Combustor 15000
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Example 11.1: Experimental data from flute (A4 note)

In this example, the experimental data obtained from the recording of an A4 note
from a flute used in Petersen (2004) is used for identification. Let S be the flute and
consider a sampling rate of fs = 22050 Hz. For identification, we let n̂ ∈ [1, 150],

d̂ ∈ [0, 150], λ̂ ∈ [1, 50000], ν̂n ∈ [1, 30], and ν̂p ∈ [1, 30], with ll = lMIO,l = 500,
lu = 2500, and lMIO,u = 50000 that is, yk for all k ∈ [500, 2500] is used for least-squares
optimization, and yk and ŷk for all k ∈ [500, 50000] is used to compute JMIO. Since
the flute was played by a human, the recorded waveform shows significant variation as
time increases, which is why a consistent subset of the data during the beginning of
the recording (between 0.3810 s and 0.6122 s) was chosen for identification. Figure 42
compares the response of the model identified using MIO-ID with the measurements
obtained from the flute. Figure 42 also compares the phase portraits of the flute
data (system S) and the identified model M using (88) and (89) to approximate the
derivative of the output with Ts = 1/fs s. The estimated DTLI/CPA model parameters

are n̂ = 87, d̂ = 29, ν̂n = 25, ν̂p = 24, v̂ = 0.7513, Ĝ with a frequency response shown

in Figure 43, and φ̂ shown in Figure 43. �

Figure 42. Example 11.1: MIO-ID using the data from a recording of a flute (A4 note). (a) compares the

PSD of the sampled output of S with the PSD of the output ofM. (b) shows the estimated phase portraits of
the response y of S and the response ŷ of the identified model M. The derivatives of the outputs of S and M
are approximated by using (88) and (89) with Ts = 1/fs s and fs = 22050 Hz. (c) shows the output yk of S
for all k ∈ [0, 1000]. (d) shows the output ŷk of M with v̂ = 0.7513 for all k ∈ [0, 1000]. (e) shows the output
yk of S for all k ∈ [2500, 2700], and the output ŷk of M for all k ∈ [2480, 2780].
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Figure 43. Example 11.1: MIO-ID using the data from a recording of a flute (A4 note). (a) and (b) show

the frequency response of Ĝ. (c) shows the estimated nonlinearity φ̂.

Example 11.2: Experimental data from gas-turbine combustor
(thermoacoustic oscillations)

In this example, experimental data obtained from a recording of the sound gener-
ated by thermoacoustic oscillations during the operation of a gas-turbine combustor
is used for identification. Let S be the Dual Independent Swirl Combustor Facility
(DISCo), featured in Ramesh, Obidov, Paredes, Bernstein, and Gamba (2021). This
model combustor was designed to exhibit thermoacoustic instabilities, which are typi-
cally generated by the coupling of the unsteady combustion process with the acoustic
properties of the combustion chamber and air/fuel plenums. The commissioned DISCo
facility is shown in Figure 44. The combustor allows for the independent manipulation
of the mass flow rate through each of a total of five flowpaths: fuel (ṁf), primary air
outer swirler (ṁso), primary air inner swirler (ṁsi), secondary air outer axial swirler
(ṁao) and secondary air inner axial swirler (ṁai) lines. The data used for identification
was obtained from a microphone (Kulite type MIC-190L) placed in the combustion
chamber, as is shown in Figure 44, with a sensitivity of 9 Pa/mV, computed after the
signal is amplified. The pressure measurements from this sensor were acquired at a
sampling rate of fs = 15000 Hz.

Figure 44. Example 11.2: DISCo facility. a) Commissioned DISCo facility in atmospheric condition. b)
Placement of microphone in the combustion chamber used for pressure data recording.

Consider a run of the DISCo system where the mass flow rates of the flowpaths
are kept constant, such that ṁf ≡ 0.52 g/s, ṁso ≡ 3.84 g/s, ṁsi ≡ 6.16 g/s, ṁao ≡ 0
g/s, and ṁai ≡ 0 g/s. The microphone measurements show that, after some time, the
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pressure fluctuations display oscillatory behavior, as is shown in Figure 45.

Figure 45. Example 11.2: Original signal from DISCo combustor

For identification, we let n̂ ∈ [1, 75], d̂ ∈ [0, 75], λ̂ ∈ [1, 20000], ν̂n ∈ [1, 30], and
ν̂p ∈ [1, 30], with ll = 2505, lu = 2685, lMIO,l = 1000, and lMIO,u = 60000 that is,
yk for all k ∈ [2505, 2685] is used for least-squares optimization, and yk and ŷk for
all k ∈ [1000, 60000] is used to compute JMIO. This arrangement was chosen due
to the irregularity of the oscillatory behavior displayed by the data. A representative
waveform from the available data is chosen to minimize J , and this waveform is used to
determine the accuracy of the identified model. Figure 46 compares the response of the
model identified using MIO-ID with the measurements obtained from the combustor.
Furthermore, Figure 46 compares the phase portraits of the combustor data (system
S) and the identified model M using (88) and (89) to approximate the derivative of
the output with Ts = 1/fs s. The estimated DTLI/CPA model parameters are n̂ = 59,

d̂ = 26, ν̂n = 9, ν̂p = 8, v̂ = 0.7765, the frequency response of Ĝ is shown in Figure

47, and φ̂ is shown in Figure 47. �

Figure 46. Example 11.2: MIO-ID using the data from a recording of sound generated by thermoacoustic
oscillations during the operation of a gas-turbine combustor. (a) compares the PSD of the sampled output of

S with the PSD of the output of M. (b) shows the estimated phase portraits of the response y of S and the
response ŷ of the identified modelM. The derivatives of the outputs of S andM are approximated using (88)

and (89) with Ts = 1/fs s and fs = 15000 Hz. (c) shows the output yk of S for all k ∈ [0, 1000]. (d) shows the
output ŷk of M with v̂ = 0.7765 for all k ∈ [0, 1000]. (e) shows the output yk of S for all k ∈ [1600, 1900], and
the output ŷk of M for all k ∈ [1611, 1911].
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Figure 47. Example 11.2: MIO-ID using the data from a recording of sound generated by thermoacoustic

oscillations during the operation of a gas-turbine combustor. (a) and (b) show the frequency response of linear
dynamics Ĝ of M. (c) shows the estimated nonlinearity φ̂ of M.
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12. Conclusions

This paper presented a framework for identifying SES’s based on a DTL model. The
nonlinear feedback function was chosen to be CPA parameterized by its slope in each
interval of a partition of the real line. A mixed-integer optimization approach was
used for parameter estimation within the DTLI model as an extension of the tech-
nique presented in Paredes and Bernstein (2021). This approach allows optimization
of the model parameters that were previously chosen manually, thus improving the
identification accuracy and reducing the effort required by the user. Numerical ex-
amples included both discrete-time and continuous-time systems with noiseless and
noisy sampled data. Finally, the MIO-ID was applied to a data set obtained from a
gas-turbine combustor, which resulted in a DTLI model that closely reproduced the
oscillatory behavior displayed by the combustor. Although the combustor does not
have the structure of a DTL model, the system identification technique was able to
approximately reproduce the phase-plane dynamics of these systems. Future research
will focus on adapting this approach to the case where the nonlinearity is a hysteresis.
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