MASSEY PRODUCTS AND ELLIPTIC CURVES

FRAUKE M. BLEHER, TED CHINBURG, AND JEAN GILLIBERT

ABSTRACT. We study the vanishing of Massey products of order at least 3 for absolutely irreducible smooth
projective curves over a perfect field with coefficients in Z/¢. We mainly focus on elliptic curves, for which

we obtain a complete characterization of when triple Massey products do not vanish.

1. INTRODUCTION

This paper has to do with the vanishing of triple Massey products on H!(X,Z/f) when ¢ is an odd prime
and X is an absolutely irreducible smooth projective variety over a perfect field F' in which ¢ is invertible.
When d = dim(X) = 0, Minac and Tan showed in [19] that this triple product always vanishes for arbitrary
F, following earlier work by Hopkins and Wickelgren [10], Matzri [14], Efrat and Matzri [6] and others. When
d =0 and F is a number field, Harpaz and Wittenberg showed in [9] that all Massey products of order at
least 3 vanish. For a more detailed account of the case d = 0 see the introduction of [9]. Ekedahl gave an
example in [7] showing that the triple Massey product need not vanish when d = 2 and F = C.

The present paper arose from the problem of determining when triple Massey products vanish when d = 1,
i.e. for curves over an arbitrary perfect field F. Our main result classifies exactly which triple Massey products
do not vanish when X = F is an elliptic curve over F and the /-torsion of E over an algebraic closure F of
F is defined over F. We show that the only case in which these do not vanish is when ¢ = 3 and the three
elements of H!(X,Z//) generate the same one-dimensional space (see Lemma 5.1). The classification when
¢ = 3 of non-vanishing triple Massey products is given in Theorem 5.3. One consequence is the following
result, where Gg’) denotes the pro-3 completion of Gal(F/F):

Theorem 1.1. Let F' be a field whose characteristic is not 3, and let E be an elliptic curve over F such that
the 3-torsion of E(F) is defined over F. There exists a character x € H'(E,Z/3) = Hom(m(E),Z/3) such
that (x,x,x) does not contain zero if and only if either
(i) the action of Gg‘}) on E[9] is not given by multiplication by scalars in (Z/9)*, or
(ii) the action of Ggf) on E[9] is given by multiplication by scalars in (Z/9)* and there exists a primitive
ninth root ¢ € F such that ¢ ¢ F and F(() is not the only cubic extension of F inside F.

As an explicit example, suppose F' is a number field containing Q(\/ﬁ, v/—1) that does not contain a
primitive ninth root of unity. When E is the elliptic curve over F with model 3% = 22 — 1, there is a character
x € HY(E,Z/3) with non-vanishing triple Massey product (see Example 6.2).

We now describe the contents of the paper. In §2 we recall some basic results about Galois and étale
cohomology and about Massey products. In §3 we show that higher Massey products on curves over
algebraically closed fields always contain 0 provided they are not empty. In §4 we prove some necessary
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conditions for higher Massey products to be non-empty and to not contain 0. In §5 we prove our main results,
Theorem 5.3 and Theorem 1.1, concerning triple Massey products when X = F is an elliptic curve. In §6 we
analyze two families of examples arising from specializing the Legendre family of elliptic curves and from
CM elliptic curves. Finally in §7 we treat arbitrary elliptic curves E when F' is a finite field without the
assumption that the (-torsion of E(F) is defined over F.

Acknowledgements. The first and second authors would like to thank the University of Toulouse for its
support and hospitality during work on this paper.

2. PRELIMINARIES

Let F be a perfect field with a fixed algebraic closure I/, and let X be a smooth projective geometrically
irreducible curve over F. Let ¢ be a prime number that is invertible in F. Let 71(X,7n) denote the étale
fundamental group of X with respect to some geometric base point n on X. We always have a natural
isomorphism of first cohomology groups

HY(X,7/0) = H (m(X,n),Z/L).
For higher cohomology groups, we have the following result from [1, §2.1.2] (see also [2, §3]):
Proposition 2.1. If X @ F is not isomorphic to Plf then there is a natural isomorphism
H'(X,Z/¢) = H'(m1(X, 1), Z/¢)
for alli>1.

For the remainder of the paper we assume that X = X ®p F is not isomorphic to ]P’IF, and we identify
HY(X,Z/¢) = Hi(7y(X,n),Z/¢) for all i > 1. Moreover, we let 17 be a geometric point of X, which can then
also be viewed as a geometric point of X, and we write 71(X) := 71 (X, n) and 71 (X) := 71 (X,n) to simplify
notation.

We use the following definition of Massey products from [13, §1].

Definition 2.2. Let ¢t > 2 be an integer, and let x1,...,x: € H(X,Z/f) = Hom(7(X),Z/f). The t-fold
Massey product {x1,...,x:) is the subset of H?(X,Z/¢) consisting of the classes of all 2-cocycles v for which
there exists a collection of continuous maps «; ; : m(X) — Z/¢, 1 < i < j <1, (i,7) # (1,t), such that

(i) kiy =x; for 1 <4 <t, and
(ii) (0kij)(o,T) = — Zi;: k1,7(0) Kry1,5(7) for all o,7 € (X)), when 1 <i < j <t, (i,5) # (1,t), and
(iii) v(0,7) = = S22} K10 (0) Fipyr (1) for all o, 7 € 71 (X).

Any collection of continuous maps {x; ;} satisfying (i)-(iii) is called a defining system for (x1,...,x:)-

Massey products generalize cup products, since if ¢ = 2 then the only defining system for (xi, x2) is
{x1,x2}, and (x1,x2) = {—x1 U x2}-

The definition of Massey products can be motivated as follows. Let U;y1(Z/{) be the group of upper
triangular unipotent (a.k.a. unitriangular) matrices of dimension ¢+1 with entries in Z/¢, and let Z(U,+1(Z/£))
be its center, which consists of the unitriangular matrices for which all entries above the main diagonal that

are not at the (1,¢+ 1) position are zero. The data of a defining system is equivalent to giving a continuous
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group homomorphism

g: m(X) — Ue1(Z/0)] Z(Ue1(Z/)0))
1 k11(0) Ki,4-1(0) *
0 1 Ko,2(0) K2.t(0)
(2.1) . n
0 0 1 Ki(0)
0 . . 0 1

with k;; being the character y; for all i. There is a continuous group homomorphism p = p(¥) : 71 (X) —
Ui+1(Z/0) lifting ¥ if and only if the 2-cocycle v is the coboundary of a continuous function k1, : m1(X) — Z/¢.
Thus (x1,...,Xx:) is not empty if and only if a homomorphism ¥ as in (2.1) exists, and (x1,...,X:) contains
0 if and only if there is such a ¥ that has a lift p(9) to Ui41(Z/¢). For more details, see [5, Thm. 2.4] and
also [18, Lemma 4.2].

We now summarize some useful properties of Massey products.

Let t > 2, and let x1,...,x: € H'(X,Z/{) be non-zero characters such that the ¢-fold Massey product

(X1,---,X¢t) Is not empty.
By [13, (2.3)], we have for all ¢1,...,¢; € (Z/€)* that

(2.2) (e1xas -« eexe) 2 (eree-ce) (X1, Xe)-

Writing x; = ci_l(cixi), for 1 <i <t, and applying (2.2) again, we obtain

(2.3) (e1xa, -y exe) = (er-- ) (Xas -+ Xa)-
In particular, if x € H*(X,Z/¢) is a single non-zero character and ay,...,a; € (Z/€)*, then

(2.4) (a1x,...,atx) contains 0 if and only if (x,...,x) contains 0.
——
t copies

Because of (2.4), it is useful to introduce a “restricted” ¢-fold Massey product when all characters are
the same (see [13, §3]). Namely, when all of x1,..., x: equal a single character y, then the restricted t¢-fold
Massey product
(2:5) 00" (- 5x)

——

t copies

is defined to be the subset of H?(X,Z/{) consisting of the classes of all 2-cocycles v as in Definition 2.2
that are associated to defining systems for which the functions &; ; only depend on ¢ + 7, for 1 <i < j <1,
(i,§) # (1,t). If t = £, then it follows from [13, Thm. 14] that (x)¢ is non-empty and a singleton given by

(2.6) )" ={-Bx)}

where 3 is the Bockstein operator associated to the exact sequence
0—Z/t — Z/1* — 7)1 — 0.

In later sections, we will focus on triple Massey products. These are easier to describe than general Massey
products, as highlighted in the following remark.

Remark 2.3. Let x1, x2,x3 € H'(X,Z/f). Then the triple Massey product (x1, X2, X3) is not empty if and

only if x1 Ux2 =0 = x2 U xs in H?(X,Z/{). Suppose t = {K11, k1,2, K22,k23, K33} is a defining system

for (x1,x2,x3). In particular, k;; = x; for 1 <¢ < 3. Then all defining systems can be obtained from x by
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adding a continuous homomorphism f1 2 : 71(X) — Z/¢ to k12 or by adding a continuous homomorphism
fo,3 :m(X) — Z/L to ka3 (or both). This means that the 2-cocycle v, with
v(o,7) = —k1,1(0)k2,3(T) — k1,2(0)k3,3(T) = —x1(0)k2,3(T) — K1,2(0)x3(T)
for all 0,7 € 1 (X), gives a single well-defined element [v] in the quotient group
H2(X,7Z/¢)
HY(X,Z/¢)Uxs +x1 UHY(X,Z/6)"
In particular, (x1, X2, x3) contains 0 if and only if [v] is the identity element of the quotient group (2.7).

(2.7)

In the next remark we summarize some important properties of the group Uy(Z/¢) of unitriangular 4 x 4
matrices over Z/¢ that we will need in later sections.

Remark 2.4. Let £ > 3 and let

1 a9 u v
0 1

(2.8) M = M(ay,as, a3, u,v,w) := 4z W
O O 1 as
0 0 0 1

in Uy(Z/2) for ay,az,as,u,v,w € Z/L. Tt is well known that
1 fla; fu+ (g)alag fv + (g)alw + (g)agu + (é)alagag

(2.9) M= 0 1 fas fw + (g)agag
' 0 0 1 lag
0 O 0 1

In particular, if £ > 3 then every non-identity element of Uy(Z/¢) has order £. On the other hand, Uy(Z/3)
contains elements of order 9, which are precisely the matrices M in (2.8) with ajasas # 0.

For ¢ > 3, we have the following formula of the commutator [M, M] = MMM ~'M~! when M is above
and M = M (ay, g, as, @, 0, 0):

1 0 a16~l2 — CLQZLl (alzb — wél) — (0,3’[1, — (ng’u,) — (aldz — agdl)(ag + dg)
~ 1 da — a
(210) [M, M] _ 0 0 asas aszas
0 0 1 0
0 0 0 1

In particular, the commutator subgroup H; of Us(Z/{) is the subgroup of matrices M as in (2.8) for which
a; = as = ag = 0. Tt follows from (2.10) that H; is an abelian subgroup of Uy(Z/¢), which means that the
second derived subgroup of Uy(Z/{) is trivial. As usual, the center of Us(Z/¢) consists of all matrices M as
in (2.8) with a1 = a2 =az3 =u=w=0.

When ¢ = 3, we will also need the subgroup H of U4(Z/3) consisting of all matrices of the form

1 a u v
1
(2.11) N = N(a,u,v,w) := 0 ao
001 a
0 0 0 1

In particular, H; < H. It follows that the matrices of order 9 in H are precisely the matrices in H — Hj.
By (2.10), the center of H consists of all matrices N as in (2.11) with a = 0 and v = w. Moreover, the
commutator subgroup H' of H is the subgroup of Z(H) consisting of all matrices N as in (2.11) with a =0

and u = w = 0.

The following result on cup products will be important in the next sections.
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Lemma 2.5. Let x,v € HY(X,Z/l) with restrictions X, to HY(X,Z/{). Suppose X = 0, x # 0, and
XU = 0. If the {-torsion Pic(X)[{] is defined over F, then ¥ = 0.

Proof. Suppose by way of contradiction that 1 # 0. Since xy U1 = 0, there exists a continuous function
k:m(X) — Z/¢ such that

p: mX) — Us(Z)¢)
1 x(9) x(9)
g > 0 1 ¥(9)

0 0 1

is a continuous group homomorphism. Since ¥ = 0 but 1) # 0, ¢ is not in the group of characters generated
by x. Hence the image of p surjects onto the quotient of Us(Z /) by its center. If p is not surjective then the
image of p has order £2 so is abelian. Since Uz(Z/{) is generated by this image and its center, this would
force Us(Z/€) to be abelian, which is a contradiction. So p is surjective, and in particular the image of p is
not abelian.

Since ¥ = 0, the image p(71(X)) lies in an elementary abelian ¢-subgroup of Us(Z/f). Since 7 (X) is a
normal subgroup of 71 (X) and p is surjective, it follows that p(m;(X)) is a normal subgroup of Us(Z/¢).
Moreover, ¥ = 0 implies that #p(71(X)) < £2. On the other hand, ¢ # 0 implies that #p(m (X)) > ¢
since the only normal subgroup of Us(Z/{) of order / is its center. Therefore, p(m1(X)) is an elementary
abelian subgroup of Us(Z/{) of order ¢. In particular, p is trivial on the subgroup T of 7 (X) generated
by commutators and by /" powers, where 7 (X)/T is the maximal elementary abelian /-quotient group
of m1(X). This group is isomorphic to Pic(X)[¢]. By our assumption, this latter group is defined over F,
which means that Gal(F/F) acts trivially on 7 (X)/T. This implies that p(;(X)) is an elementary abelian
subgroup of p(my (X)) = Us(Z/¢) of order £, and the quotient group p(m1(X))/p(m1(X)) is of order £ and acts

trivially on p(m (X)). This forces p(m (X)) = Us(Z/{) to be abelian, which is not true. The contradiction
completes the proof. O

3. RESTRICTION OF MASSEY PRODUCTS ON CURVES TO THE ALGEBRAIC CLOSURE

We make the same assumptions as in the previous section. In other words, F' is a perfect field with a
fixed algebraic closure F, and X is a smooth projective geometrically irreducible curve over F such that
X = X ®@p F is not isomorphic to ]P’lf. Moreover, / is a prime number such that ¢ is invertible in F. Let
Gr = Gal(F/F).

When F is the algebraic closure of a finite field and Z /¢ is replaced by Qg, Deligne, Griffiths, Morgan and
Sullivan discuss the connection between the Weil conjectures and the vanishing of all higher order Massey
products in [4, p. 246].

We now return to the case with coefficients in Z/¢ over an arbitrary perfect field F.

Proposition 3.1. Suppose t > 3, x1,...,x: € H(X,Z/{), and let X1, ...,X; denote their restrictions to
HY(X,Z/0). If the t-fold Massey product {x1,...,X:) is not empty, then the t-fold Massey product (X1, ..., X;)
s non-empty and contains 0.

Proof. If x; = 0, then (X1, Xz, --->Xz) = (0, Xa; - - -, X;) obviously contains 0.
Suppose now that x; # 0. By our assumption, we have continuous functions «; ; : m1(X) — Z/¢, for
1<i<j<t, (i,5) # (1,t), such that there is a continuous group homomorphism

Vi m(X) — Upa (2/6)/Z(Ui41(Z/0))
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as in (2.1). Then ¢ restricts to a continuous group homomorphism 71 (X) — Us1(Z/€)/Z (U1 (Z/€)) by

restricting the continuous functions x; ; to m1(X). We denote these latter restrictions by %; ;. In particular,
(X1s---,X;) contains the class in H2(X,Z/¢) of the two-cocycle 7 with

(0, 7) = =X1(0)R2,(T) = F1,2(0)R3,4(T) — -+ - = R1,1—2(0)Ri—1,6(T) = F1,—1(0)X(T)

for all 0,7 € m(X). We are free to add to Ko, any element of H!(X,Z/¢). Since we have assumed that
X1 # 0, we can adjust K2, in this way to make the class of ¥ trivial in H?(X,Z/¢) since the Weil pairing
is non-degenerate and H?(X,Z/¢) is one-dimensional over Z/¢. Note that in this process we may have to
add to Ko, an element of H'(X,Z/¢) that is not the restriction of an element of H'(X,Z/¢), though if
HY(X,Z/¢) — HY(X,Z/{) is surjective, we can assume we have such a restriction. O

Corollary 3.2. Lett >3 and vy, ...,¢; € H (X, Z/0). If (1,...,%;) is not empty then it contains 0.

Remark 3.3. For surfaces over an algebraically closed field, the situation is completely different. Ekedahl
gave examples in [7] of smooth projective surfaces S over C and characters x1, 2, x3 € H!(S,Z/¢) such that
(X1, X2, x3) does not contain 0.

In the situation of Proposition 3.1, the question arises when the Massey product (x1,...,x:) contains
zero. This question sometimes reduces to the question of when the t-fold Massey product of ¢ characters in
Hom(GF,7Z/¢) vanishes. The following definition is useful in this context.

Definition 3.4. We say the ¢-fold Massey vanishing property holds for F over Z/¢ if for all ay,...,a; €
HY(F,Z/¢) = Hom(GF,Z/{), the t-fold Massey product (a,...,a;) contains zero provided it is non-empty.

Remark 3.5. Here are some known instances when the ¢-fold Massey vanishing property holds for F' over Z/¢:

e If t =3 and F is arbitrary, this holds by [19].
e If ¢t > 4 and F is a number field, this holds by [9)].
e If F is a finite field this holds for all ¢ > 2 since H(F, Z/{) = 0.

Proposition 3.6. Let t > 3. Suppose the {-torsion Pic(X)[¢] is defined over F' and that the t-fold Massey
vanishing property holds for F over Z/{. Let x1,...,x: € H'(X,Z/{), and suppose the t-fold Massey product
(X15---»X¢) is not empty. If X;,, = 0 for some 1 <ig <t, then (x1,...,X:) contains zero.

Proof. Suppose X, = 0 for some ig. Since x; U x;41 = 0 for i = 1,...,¢ — 1 and since the cup product is
anti-commutative, it follows from Lemma 2.5 that either x;, = 0 for some 4g, or all x¥; =Xy =---=%; = 0.
If xi, = O then it is obvious that (xi,...,x:) contains zero. Otherwise all of x1,...,x: factor through
HY(F,Z/¢) = Hom(GF,Z/?). Since we assume that the t-fold Massey vanishing property holds for F' over
Z /¢, it follows that (x1,...,x:) contains 0. |

4. NECESSARY CONDITIONS FOR THE NON-VANISHING OF MASSEY PRODUCTS

We make the same assumptions as in the previous section. We obtain the following necessary conditions
for the t-fold Massey product to not contain zero.

Proposition 4.1. Suppose that £,t > 3, and that the {-torsion Pic(X)[(] is defined over F'. Moreover, assume
that the t-fold Massey vanishing property holds for F' over Z/{. Let x1,...,x: € H*(X,Z/l) be such that the
t-fold Massey product (x1,...,xt) is not empty and does not contain zero. Then the following is true.
(a) None of the restrictions Xy, ..., X, to HY(X,Z/{) are zero.
(b) If there exist ay,...,as—1 € (Z/)* with x; = a;xt for all 1 <i <t —1 then t > { provided t is an
odd prime number.



(¢) If X has genus 1 then there are always ay,...,a;—1 as in (b).

Proof. If one of x1, ..., Xt is zero, then (x1,...,x:) contains zero. Therefore, we have that none of x1,..., Xz
are zero. Since ¢t > 3, in order for (x1,...,x:) to be not empty, we must have x; U x;4+1 =0 for 1 <i<t¢—1.
If one of the ; is zero, then by Lemma 2.5 and the anti-commutativity of the cup product we conclude that
X; = 0 for 1 <i < t. In other words, x1,...,x: € H'(F,Z/l) = Hom(Gp,Z/¢). Since we assume that the
t-fold Massey vanishing property holds for F over Z/¢, it follows that (x1,...,x:) contains zero. This implies
that none of xy,...,X, are zero, which is condition (a).

Suppose now that there exist ay,...,a;—1 € (Z/¢)* as in (b) and that ¢ is an odd prime number. By (2.4),
it follows that (x1,...,x:) does not contain zero if and only if the t-fold Massey product (x¢,...,x:) of ¢

¢ is non-empty, which implies that if + < £ then (yx;)? is

copies of x; does not contain zero. By (2.6), (x:)
non-empty and contains zero. Therefore, the t-fold Massey product (xi, ..., xt) of ¢ copies of x; is non-empty
and contains zero if ¢ < ¢. Since we have assumed that (x1,...,x:) does not contain 0, this implies ¢ > ¢.

Finally, suppose that X has genus 1, so that X is an elliptic curve and Pic(X)[¢] has dimension 2 over
Z/¢. Since X; UX;41 =0, for 1 <i <t —1, and since Xy, ...,X; are non-zero by part (a), the non-degeneracy
of the Weil pairing implies that there exist ai,...,a,—1 € (Z/€)* with X; = a;X, for all 1 <4 <t — 1. Hence
there exist 1, ...,%;_ 1 € HY(F,Z/l) = Hom(G g, Z/{) such that

Xi = a;xe +; for 1 <i<t—1.
Since x¢—1Ux¢ = 0, and x; Ux¢ = 0 because £ > 3, this implies 1; 1 Ux; = 0. But since X, # 0 and 9, ; = 0,

this is by Lemma 2.5 only possible if ¢);_; = 0. By induction on ¢t we obtain ¢; =0 for all 1 <1i <t — 1.
Therefore, there exist aq,...,a;—1 € (Z/€)* with x; = a;x¢ forall 1 <i <t —1. a

The next result is an immediate consequence of Proposition 4.1 and the Massey vanishing results in [19]
(see Remark 3.5).

Corollary 4.2. Suppose that { > 3, and that the (-torsion Pic(X)[(] is defined over F. Let x € HY(X,Z/{)
be such that the triple Massey product (x, X, x) does not contain zero. Then £ =3 and the restriction Y to
HY(X,Z/¢) is not zero.

Remark 4.3. We obtain the following connection to an invariant suggested by M. Kim in [12]. Suppose £ = 3,

and that the 3-torsion Pic(X)[3] is defined over F. The non-degeneracy and Galois equivariance of the Weil

pairing then imply that F' contains pz(F). Let x : m1(X) — Z/3 be a character whose restriction X to
HY(X,Z/3) is not zero. By (2.6), the restricted triple Massey product (x)? is a singleton

(0?=-B(x) € HX,Z/3)
where [ is the Bockstein operator associated to the exact sequence
0—72/3—72/9—17/3—0.

Since (x)® C {x, X, X) and since the cup product is anti-commutative, it follows from Remark 2.3 that

(X xx) = —B(x) + x UHY (X, Z/3).

Since x U x = 0, we obtain that

(4.1) XU Gxx) = xU () = —xUB(x) € B3 (X, Z/3).

Suppose now that F is a finite field. Then H?(X, u3) is canonically isomorphic to Z/3, so since F' contains
us(F) we get an isomorphism H3(X,Z/3) = u3(F)®~! = Hom(u3(F),Z/3). In this case, (4.1) is the negative
of the invariant Kim defines at the end of [12, Section 1].
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Remark 4.4. Continuing with the hypotheses of Remark 4.3, suppose in addition that X has genus 1 and
that F' is a finite field. We claim that we have an isomorphism of one-dimensional Z/3 vector spaces

H%(X,Z/3)

(42) Y UHL(X,Z/3)

— H3(X,Z/3) = 7/3

defined by 3+ x U for 3 € H%(X,Z/3). Since F is a finite field containing u3(F), the cup product
HY(X,7/3) x H*(X,Z/3) — H*(X,7Z/3)

is non-degenerate, see [16, Cor. V.2.3]. Hence (4.2) is well-defined and surjective. Since X has genus 1
and Y is not zero, the argument proving the last statement of Proposition 4.1 shows that the only elements
¢ € HY(X,Z/3) such that x U ¢ = 0 are those £ that are multiples of y. So x UH!(X,Z/3) has dimension

dimz/3H'(X,Z/3) — 1 = dimg,3H*(X,Z/3) — 1.

This proves both sides of (4.2) have dimension 1, so (4.2) is an isomorphism because it is surjective. The
conclusion is that under the above assumptions, the non-triviality of (x, x, x) in the group on the left side of
(4.2) is equivalent to the non-vanishing of Kim’s invariant. We will analyze the y for which this holds in the

next sections.

5. TRIPLE MASSEY PRODUCTS AND ELLIPTIC CURVES

In this section, we make the same assumptions as in the previous section. But we focus on the case when
t =3 and X = E is an elliptic curve over a field F' whose characteristic is not 3. We fix x1, x2, x3 € HY(E,Z/{)
and we assume that the triple Massey product (x1, X2, x3) is not empty. By Remark 2.3, this is equivalent to
X1 Ux2 = X2 Uxs = 0. We define G = Gal(F/F).

The next result is an immediate consequence of Proposition 4.1 and the Massey vanishing results in [19]
(see Remark 3.5).

Lemma 5.1. Suppose that E is an elliptic curve over a field F' of characteristic different from 3. Assume
that ¢ > 3, and that the {-torsion Pic(E)[(] = E{] is defined over F. Let x1,X2,x3 € H(E,Z/{) be such
that the triple Massey product (x1, X2, X3) s not empty and does not contain zero. Then ¢ = 3, none of the
restrictions X1, Xs, X3 to HY(E,Z/) are zero, and there exist a,b € (Z/€)* with x2 = ax1 = bxs.

In particular, it follows from Lemma 5.1 that if £ > 3 and the ¢-torsion E[{] is defined over F, then
(X1, X2, X3) contains zero unless possibly when ¢ = 3 and x1, x2, x3 all generate the same non-trivial subgroup
of HY(E,Z/3). Using (2.4), we see that the only question that remains to be answered is for which characters
X : m(F) — Z/3 of order 3, the Massey product (x;, x, x) does not contain zero.

For n > 1, let E[3"] be the 3"-torsion of E = E @ F. We assume that Pic(E)[3] = E[3] is defined over F.
Since the Weil pairing is non-degenerate and Galois equivariant, it follows that F' contains a primitive cubic
root (3 of unity. Our goal is to determine all characters x : 71(E) — Z/3 such that the restriction ¥ of x to
71 (E) is non-zero and the triple Massey product (x, X, x) does not contain zero.

Let H be the subgroup of Us(Z/3) defined in Remark 2.4 consisting of all matrices of the form N =
N(a,u,v,w) as in (2.11). There is a character ¢ : H — Z/3 sending each such matrix N to a. Similarly to
the discussion following (2.1), we see that (x, X, x) does not contain zero if and only if there is no continuous
group homomorphism p : 7 (E) — H with x = ¢ o p.

The pro-3 completion of m1(E) is isomorphic to the 3-adic Tate module T3(E) = Z3. Since E[3] =
T3(E)/3T3(E) is defined over F, each 0 € G acts on T3(E) as the identity modulo 3T3(E). Let J®) denote
the pro-3 completion of a profinite group J.



Lemma 5.2. Let F' be a field whose characteristic is not 3, and let E be an elliptic curve over F such that
the 3-torsion E[3] is defined over F. There is an evact sequence

(5.1) 0— T5(E) — m(E)® — 6% — 1.

Proof. 1t is clear that 7r1(E)(3) surjects onto Gg’) by considering the cover E @ F’ of E when F’ is the
maximal pro-3 extension of F' in an algebraic closure of FI(E). Let L be the extension of F'(E) corresponding
to the kernel of the resulting homomorphism 7 (E)®) — Gg’). To prove (5.1) is exact, it will suffice to
show that the natural homomorphism w : 71 (E)®) = T3(E) — Gal(L/F'(E)) resulting from restricting
automorphisms is an isomorphism. The constant field of L is F’ since it is Galois over F' and a pro-3
extension of F’. So the base change of L/F’(E) by the extension F'/F’ gives an isomorphism of Galois groups
Gal(FL/F(E)) = Gal(L/F'(E)). Here Gal(FL/F(E)) is a quotient of T53(E), and this implies w is surjective.
To show w is injective, we first claim that all of the 3-power torsion of E is defined over F’. For this, we use
the hypothesis that E[3] is defined over F. This implies that the action of G on T3(E) is via matrices that
are congruent to the identity mod 3. Since the multiplicative group of such matrices is a pro-3 group, all the
3-power torsion of E is defined over the maximal pro-3 extension F’ of F. Now the tower of isogenies over
E ®p F’ produced by multiplication by powers of 3 gives an extension of F'(E) that is Galois over F'(E) and

has Galois group T3(FE) over F'(E). This shows w is injective and completes the proof of Lemma 5.2. |

Let &( be the decomposition group (inside 71 (E)) of an inverse system of discrete valuations over the
origin of F in a cofinal system of finite étale covers of E. The sequence (5.1) splits since the image of &
inside 71 (E)® is isomorphic to GE,;O’) and disjoint from the image of T3(E) in m (E)®). Since 9T3(E) is a
characteristic subgroup of T3(E), (5.1) leads to an exact sequence

T3(F) T (E)®
. " on@® )

HG%‘?) — 1.

Let 0 € Gg). Since o acts on T3(E) as the identity modulo 3T3(E), we have
(5.3) (o0 — 1)*(T5(E)) C 9T3(E).
Since
(0 —1)= (0 —1)? +30%(c —1)® mod 9Z[0]
we obtain
(5-4) (0° = I)(T3(E)) C (0 = 1)°(T5(E)) + 9T5(E) C 9T5(E)

where the second inclusion follows from (5.3). In (5.2), we view T3(E)/973(E) = E[9] as a (normal)
subgroup of 7 (F)®) /9T3(E), and we identify Gg) with the image of the decomposition group & inside
™1 (E)® /9T3(E). Let (G)? be the (normal) subgroup of G generated by all 9" powers. By (5.4), the
elements of (Gg’))9 commute with the elements of E[9], implying that (G’Sg))9 is a normal subgroup of
71 (E)®) /9T (F) that has trivial intersection with E[9]. Hence (5.2) leads to an exact sequence

(5:5) o BE)  mEYNLE 6
: 9T5(E) (@D Gy :
We define
F.o_ T3(E) T = . Wl(E)(3)/9T3(E) . G(g)
(5.6) T = oTy(B) E]9], G:= (Gg))g and Gp:= (G%ig))g'
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Letting £ : G — Aut(T) = GLa(Z/9) be the continuous group homomorphism induced by (5.5), G is the
semidirect product

é:?NgéF.

We view T as a subgroup of G and we identify G with the image of the decomposition group &g inside G,
which has trivial intersection with 7.

If x : m(E) — Z/3 is a non-trivial character, then x factors through the maximal elementary abelian
3-quotient of 71 (E), and hence through G. Since the group H defined in Remark 2.4 has exponent 9, we see
that (x, X, x) does not contain zero if and only if y, when viewed as a character from G to Z/3, cannot be
lifted to a continuous group homomorphism p : G — H such that y =1 o p.

Theorem 5.3. Let F be a field whose characteristic is not 3, and let E be an elliptic curve over F such that
the 3-torsion E[3] is defined over F. Let x : m(E) —> 7Z/3 be a character. Let K1 be the image in E[9] of

the kernel of x restricted to T5(FE), and let K be the kernel of x restricted to the decomposition group .

Then {x, x,x) does not contain zero if and only if the restriction X of x to w1 (F) is non-zero and one of the
following two conditions holds:

(1) there exist elements a € Kt — 3E[9] and o € ng}) such that o(a) & (Z/9) a, or

(2) the fized field of K inside I is a cubic extension of F that does not contain any primitive ninth root
¢ of unity, and for alla € K —3E[9] and all b € E[9] — K1 and all . € Kp with () = ¢*, we have
(c— 1)) & (Z/9)a.

Proof. We prove Theorem 5.3 by going through all possible cases and showing that (x, x, x) contains zero
unless the restriction X of x to m1(E) is non-zero and either condition (1) or condition (2) holds.

If Y is zero, then it follows from the Massey vanishing results in [19] (see Remark 3.5 and Proposition 3.6)
that (x, X, x) contains zero. For the remainder of the proof, we assume that % is non-zero.

As noted in the paragraph before the statement of Theorem 5.3, we can and will replace 7 (E) by G in
our arguments. In particular, we will replace Y by the restriction of y to T = E[9] and we will identify Kz
with the kernel of this restriction. We will also replace K by the kernel of y restricted to Gz which we
identified with the image of the decomposition group & inside G. Moreover, we will replace the statements
in conditions (1) and (2) about Gg) by the corresponding statements about G (inside G). Let F, C F be
such that we can identify Gr = Gal(Fy /F).

Suppose first that condition (1) of Theorem 5.3 holds. This means there exist elements a € K1 — 3E[9)
and o € G such that o(a) € (Z/9)a. Since ¥ # 0, there exists an element b € E[9] such that x(b) = 1.
Hence {a, b} is a basis of E[9] over Z/9, and we can write £(o) as a matrix in GL2(Z/9) with respect to this
basis. Since £(0)a & (Z/9) a, there exist u1, p2 € Z/9 such that pus # 0 mod 3 and

(5.7) (€(0) — I)a = 31 a + 3z b.

We now want to use the elements a, b, o to show that y cannot be lifted to a group homomorphism p : G — H.
Suppose to the contrary that such a p exists. The entries immediately above the main diagonal of p(a), p(b)
and p(o) are 0, 1 and x(o), respectively. This means that there exist r, s, ¢, u, v, w,z,y, z € Z/3 such that

1 0 r s 1 1 u wv 1 0 =z y
0 1 0 ¢t 01 1 w 01 0 =z
= , b) = d = pYx(@)
pla) 00 1 0 p(b) 00 1 1 and  p(0) 00 1 0 PO
0 0 01 0 0 0 1 00 0 1
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Since p is a group homomorphism and a and b commute, we must have that » = ¢ by (2.10), which implies
that p(a) is in the center of H. Moreover, p must satisfy

[o(a), p(a)] = p(o)p(a)p(o) ™" p(a) ™ = p((&(0) — I) a).
Since p(a) is in the center of H, this means that p((£(c) — I) a) must be the identity matrix in H. However,
by (5.7), we obtain that

1 0 0 125

_ _ 31 3, | 01 0 0
pl(E(0) = Da) = pla) p)P= = | =
0 0 0 1

where the second equation follows from (2.9). Since ps #Z 0 mod 3, this is a contradiction, which means p
does not exist and (x, x, x) does not contain zero.

For the remainder of the proof, we assume that condition (1) does not hold, which means that for all
a € K7 —3E[9] and all o € G, we have o(a) € (Z/9) a. Since X is non-zero, the kernel of y restricted to
E[9] has index 3 in E[9]. Hence there exists an element a € K — 3E[9]. Let b be any element in E[9] — K.
Then {a, b} is a basis of E[9] over Z/9 and with respect to this basis, £(0) is given by a matrix in GLy(Z/9)
of the form
(5.8) o) =1+3 <A1(") “1(0)) for all o € Gp.

0 p2(o)

Suppose first that Kr = G, which means that y(c) = 0 for all 0 € Gr. We will prove that (x, x, x)
contains zero by constructing a group homomorphism p : G — H lifting x. We define p(a) to be the identity
in H, and

1 x® 0 0 100 0

0 1 x(b) 0 0 1 0 —pus(o) _
5.9 b) = d = for all o € Gp.
(5.9 p(b) 0 0 1 X and p(0) 00 1 0 orallo € Gr

o 0 0 1 000 1

Then p(a) commutes with p(b) and p(o) for all o € Gpg. Since (£(0) — I)a = 3A1(0)a, this implies that p
satisfies the commutator relation [p(c), p(a)] = p(a)3*1(®) = p((&(c) — I)a) for all ¢ € Gp. On the other
hand, (2.9) and (2.10) show that for all ¢ € G, we have

10 0 pa(o)x(b)

[p(o’),p(b)] = = p(a)Sﬂl(U)p(b)g’#?(U)

o O O
o = O

1 0
0 0
0 1
which implies by (5.8) that p satisfies the commutator relation [p(c), p(b)] = p((£(c) — I)b) for all o € GF.
Finally, if 0,7 € Gp then £(o7) = £(0) o £(7), which implies that us(o7) = po(0) + po(7). Therefore,
p(o7) = p(o)p(7), which shows that p is a group homomorphism lifting x.

For the remainder of the proof, we assume that Kz # Gp, which means that Kr = Gal(F4/N) for a
degree 3 Galois extension N/F. Since F contains a primitive third root of unity, it follows by Kummer
theory that N = F({/a) for some o € F. Let ¢ € F be a primitive ninth root of unity. Then F(¢) is a cyclic
extension of F' of degree 1 or 3. In particular, ( € Fi.

Suppose ¢ € N. Let {/a € F be a ninth root of a. By Kummer theory, F(J/a) is a cyclic Galois extension
of F of degree 9, so {/a € F,. Let T be the generator of Gal(F(Y«a)/F) with 7({/a) = ¢/« . Since
Gal(Fy/F({/a)) C K, it follows that x factors through T @z Gal(F({/a)/F) where £ is defined by letting
11



&(F) = £(7) when T is an extension of 7 to Gr. We will prove that (x, x, x) contains zero by constructing
a group homomorphism p : T @z Gal(F({/a)/F) — H lifting x. We define p(a) to be the identity in H,
define p(b) as in (5.9), and define

1 x(r) 0 0
(5.10) =1y o T
0 0 0 1

Then p(a) commutes with p(b) and p(7). We argue as above to see that p satisfies the commutator relation
[p(7), p(a)] = p((£(F) — I) a). Moreover, (2.9) and (2.10) show that

=l el e
o o = O

which implies by (5.8) that p satisfies the commutator relation [p(7), p(b)] = p((£(F) — I)b). Hence p is a
group homomorphism lifting x.

For the remainder of the proof, we assume that ( ¢ N. Let 7 be the generator of Gal(F(¢)/F) with
7(¢) = ¢*. Let ¢/a be a ninth root of o in F. Since F(/a, () is a splitting field of 29 — a over F, it is Galois.
Let 7; € Gal(F({/a,¢)/F({/a)) be such that 71(¢) = ¢*, so 73 extends 7, and let 7 € Gal(F(Y/«,¢)/F(¢))
be such that 7({/a) = Ja (. Using Galois theory, we see that Gal(F({/a,()/F) is generated by 7; and T
satisfying the relation 7, o 7 0 7; - = 7*. Notice that {/a € Fy, because Gal(F({/a,¢)/F) is a 3-group. Since
N C F(Ya, (), it follows that )Lfactors through T xz Gal(F({/a, ¢)/F) where £(11) = £(11) and £(F) = £(7)
when ¢; and 7 are elements in G that extend 7; and 7, respectively. In particular, x(¢1) = 0 and x(7) # 0.
The three elements of Gal(F({/a,()/N) that extend 7 are 71, 7o and 73, where 71 (J/@) = Va, 12(Va) = Ja 3
and 73(Y/a) = Ja (. Tt follows that 7o =7 o7 o7 and i3 =T o7y o7 L.

Under the assumptions of the previous paragraph, suppose condition (2) of Theorem 5.3 does not hold.
In other words, there exists a € Kr — 3E[9] and there exists b € E[9] — K1 and there exists ¢« € K with
1(¢) = ¢* such that (¢« — 4)(b) € (Z/9) a. In particular, we can use {a, b} as the basis with respect to which
we write the matrices in (5.8). It follows that po(¢) =1 mod 3 in (5.8). Since ¢ restricts to one of 7, 7o or 73
in Gal(F({/«,¢)/N) and since the latter three elements are conjugate to each other in Gal(F(¥«,()/F),
this implies that also pa(¢1) =1 mod 3 in (5.8) for any ¢; € Kr extending 7;. We will prove that (x, x, x)
contains zero by constructing a group homomorphism p : T xg Gal(F(V/a,()/F) — H lifting x. Define p(a)
to be the identity in H, define p(b) as in (5.9), define p(7) as in (5.10), and define

1 0 0 0

v 010 —pa(u)
p(t1) = 00 1 0
0 0 O 1

Then p(a) commutes with p(b), p(7) and p(71). We argue as above to see that p satisfies the commutator

relations [p(7), p(a)] = p((f( ) —I)a) and [p(), p(b)] = p((£(F) — I)b) for o € {11, 7}. It remains to verify

the equation p(71)p(7)p(z; ") = p(7*), which is equivalent to the commutator relation [p(z;), p(7)] = p(7)°.
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By (2.9) and (2.10), we obtain
p2(e1)x(7)

and p(7)% =

1 0 0
- _ 01 0
OV I

S O =
o = O O
=
HOO\]
N

S O = O

0
0
0 0 0 1

o

Since p2(e1) = 1 mod 3, it follows that p is a group homomorphism lifting x.

Finally suppose that for all a € K7 — 3E[9] and all b € E[9] — K7 and all « € Kr with +(¢) = ¢*, we
have (v —4)(b) € (Z/9) a. In other words, condition (2) of Theorem 5.3 holds. In particular, it follows that
p2(t1) 1 mod 3 in (5.8) for any ¢; € K extending 7;. We want to show that x cannot be lifted to a group
homomorphism p : G — H. Suppose to the contrary that such a p exists. This means that there exist
r, 8, t,u, v, w, x,y,z € Z/3 such that

1 x() r s 1 x(r) w v 1 0 z y
0 1 x( ¢t 0 1 x(n w 01 0 =z
b) = 7 = d _
PO=o o 1 w7 e 0 1 e | P00 1 o
0 0 0 1 0 0 0 1 0 0 0 1
By (2.9) and (2.10), we obtain
1 0 0 x(n)(z—2) 1 0 0 x(n)
01 0 0 . 01 0 0
= d 3 —
[o(e1), p(7)] 00 1 0 and  p(7) 001 o
0 0 O 1 0 0 O 1

Since [11,7] = 72 and p is a group homomorphism and since x(7) # 0, this forces 2 — 2 = 1 mod 3. On the
other hand,

100 xO)a-2) OO A0l
0 1 0 0 01 0 0
b _ d 3.“101) b3ru2(L1):
Pl = 0 0 L o and p(@)00(0) 001 0
0 0 O 1 0 0 O 1

where the second equality follows since x(a) = 0, which implies that p(a)® is the identiy matrix. Since
[t1,0] = (€(¢1) = 1) b =3p1(t1) a + 3ua(e1) b and p is a group homomorphism and since x(b) # 0, this forces
& — z = p2(e1) mod 3. This is a contradiction, since us(t1) £ 1 mod 3. Therefore, p does not exist, which
means that (x, X, x) does not contain zero. This completes the proof of Theorem 5.3. O

We now proceed to the proof of Theorem 1.1 from the introduction.

Proof of Theorem 1.1. If neither condition (i) nor condition (ii) of Theorem 1.1 are satisfied, it follows from
Theorem 5.3 that (x,x, x) contains zero for every character x : m1(E) — Z/3.

Suppose now that either condition (i) or condition (ii) of Theorem 1.1 holds. As noted in the paragraph
before the statement of Theorem 5.3, we can and will replace 7 (E) by G. As before, let F,, C F be such
that we can identify Gr = Gal(F../F).

If condition (i) holds then there exist a € E[9] and o € G such that o(a) € (Z/9)a. In particular,
a ¢ 3E[9] = E[3]. Let b € E[9] be another element such that {a, b} is a basis of E[9] over Z/9. We can define
a character x : G — Z/3 by x(a) =0, x(b) = 1 and x (o) = 0 for all ¢ € Gr. By condition (1) of Theorem
5.3, it follows that (x, x, x) does not contain zero.

If condition (ii) holds, then L := F(() is not the only cubic extension of F inside F. By Kummer theory,

there exists a € F and a cube root ¢/a of « in F' that does not lie in F' such that F({/a) # L. Moreover,
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condition (ii) implies that for each o € G, there exists a character h : Gp — Z/9 such that o acts on E[9]
as multiplication by a scalar of the form {(c) = 1 — 3h(c). By the non-degeneracy of the Weil pairing, there
exist two points Pj, P, € E[9] such that the Weil pairing (P1, Py)weil = (. Since the Weil pairing is Galois
equivariant and bilinear, we obtain that

(5.11) o(Q) = (o(P1), 0 (Pa))wenr = (1= 3h(0))Pr, (1 = 3h(0)) Pa)wen = (731" = ¢15h(@),

Define a map x : G — Z/3 by letting the restriction of x to E[9] be a fixed non-zero character, and by
letting x(o) = i(o) for all ¢ € Gp with o({/a) = /a¢?(?). Then y is a character of G since x([o,c]) =
x((&(o) = 1) ¢) = x(=3h(c) c) = 0 for all 0 € G and c € E[9]. The kernel Kp of x restricted to G consists
of all o € GF that fix ¢/a. Hence the fixed field of Kr is the cubic extension F(¥/a) of F, which does not
contain any primitive ninth root ¢ of unity since F(¢/a) # L. We have that Gal(L/F) = () where 7(¢) = ¢*.
If . € Gr is any extension of 7, we obtain from (5.11) that ¢(¢) = ¢**3“). Since ¢(¢) = ¢*, this implies
that h(¢) = 1 mod 3. Hence £(:) = 1 — 3h(t) =7 mod 9. It follows that (¢ —4)(c) = (£(¢) — 4)c = 3¢ for
all c € E[9]. If a € K7 — 3E[9] and b € E[9] — K7 then {a,b} is a basis for E[9] over Z/9, so 3b & (Z/9) a.
Hence (¢ —4)(b) = 3b & (Z/9) a for all such a and b. By condition (2) of Theorem 5.3, it follows that (x, x, x)
does not contain zero. O

6. NON-VANISHING TRIPLE MASSEY PRODUCTS FOR ELLIPTIC CURVES OVER NUMBER FIELDS

Conditions (i) and (ii) of Corollary 1.1 depend on information concerning the action of G on the 9-torsion
of an elliptic curve F defined over F. In this section we analyze two situations in which one has more control
on this action. The first arises from specializations of results of Igusa on Galois actions of generic Legendre
elliptic curves. The second arises from the Shimura reciprocity law for CM elliptic curves over number fields.

Example 6.1. We first construct E and F for which condition (i) of Corollary 1.1 is satisfied. Let ¢t be an
indeterminate, let n be an odd integer, and let E; be the generic Legendre elliptic curve, defined over the
field &k := Q((,, t) by the equation

yv?=x(z —1)(x —t).
We denote by k(E;[n]) the field obtained from k by adjoining the coordinates of the n-torsion points of E; to
k. According to Igusa [11], the Galois representation

Gal(k(Ex[n])/k) —> GLa(Z/n)
has image equal to SLa(Z/n). If we set n =9, then by Galois theory we have an exact sequence
0 — Gal(k(Ey[9])/k(E¢[3])) — SLa(Z/9) — SLa(Z/3) — 0

(here we use Igusa’s result twice: for n =9 and for n = 3). According to Hilbert’s irreducibility theorem, these
Galois groups remain the same for infinitely many rational specializations ty of the parameter ¢. Therefore,
one obtains infinitely many (non-isomorphic) elliptic curves Ey, over Q((o) such that

#Gal(Q(CgaEfﬁo[g])/Q(C%Eito[SD) = m -

If we let Fy, = Q(Co, Ei,[3]) then the curve Ey, over the field Fy, satisfies condition (i) of Corollary 1.1, since
#(Z/9)* = 6 is strictly smaller than 27.

27.

Example 6.2. Suppose F is a number field containing Q(v/3,v/—1) that does not contain a primitive ninth
root of unity, and let E be the elliptic curve with model y? = 23 — 1. Then E|[3] is defined over F. Since F'
does not contain a primitive ninth root of unity, it follows from Corollary 1.1 that there exists an element
x € HY(E,Z/3) with non-vanishing triple Massey product.
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Note that in Example 6.2 we do not determine which of the conditions (i) or (ii) of Corollary 1.1 holds.
Distinguishing which of these holds involves controlling the action of Gr on E[9]. It is natural then to
consider CM elliptic curves and to analyze the information about this Galois action that is provided by the
Shimura reciprocity law.

Hypothesis 6.3. Let K be an imaginary quadratic field. Fix an embedding of K into C. Let O be an order
in K. Suppose A is a non-zero finitely generated O-submodule of K. Fix an isomorphism ¢ : C/A — E,
where F is an elliptic curve over C with CM by O and this isomorphism is equivariant for the action of O.
Let L be the abelian extension of K that is the ring class field of O. For r = 3,9 define F,. to be the extension
of L obtained by adjoining the coordinates of the r-torsion points of E.

Theorem 6.4. Under Hypothesis 6.3, suppose Zz ®z A is a free module over Zs ®z O, which is the case if
Zs ®z O is étale over Zs. Then:

(a) The curve E over the field F5 satisfies condition (i) of Corollary 1.1.
(b) There is a field N such that F5 C N C Fy and E satisfies condition (ii) of Corollary 1.1 over N.

Remark 6.5. The elliptic curve C/O is isogenous to E = C/ A and Z3 ®z O is clearly free over Z3 ®z O. So
we can always replace E = C/A by an isogenous elliptic curve C/O to which the conclusions (a) and (b) of
Theorem 6.4 apply.

Proof of Theorem 6.4. The Shimura reciprocity law [21, Theorem 5.4] has the following consequence. Let s
be an element of the idele group Jx of K. Let K2 be the maximal abelian extension of K, and let o be
an extension to C of the element of Gal(K?"/K) which is the image of s under the Artin map. The ring
class field L is by definition the class field associated to the subgroup K> - (I, OF x KX) of the ideles of K,
where v runs over the finite places in K and K., = C is the completion of K at the unique infinite place.
Suppose s € [], OF x KX, so that o fixes L and s~*A = A. By [21, Theorem 5.7], E is defined over L. So
the twist E? of E by o is isomorphic to E. The Shimura reciprocity law therefore shows that there is an
automorphism A(¢) € Aut(E) = O such that the following diagram commutes:

K/A—° E
KA §

Here £ is equivariant with respect to the action of O, so A(g) 0 & = £ 0 A(0) and we can write this diagram as

(6.1) KA —°

E
Ao)-st i la
E

KjA—*

We first use this to bound the extension F3 of L generated by the coordinates of the 3-torsion points of E.

Define O3 = Z3 ®7 O C Hv\3 O,. Multiplication by elements s3 € (14 303)* fixes the 3-torsion 3714/ A in

K/A. Let Ly be the abelian extension of K which is the class field to K - ([]5, O;f x (14 303)* x KZ),

so that L C Li. The above diagram for s € [, O x (1 +305)* x K gives 0 € Gal(C/L1) and a
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commutative square

(6.2) 371A/A ¢ E
/\(U)l la
3-14/4 —* E

By hypothesis, Z3 ®z A is a free rank one Oz-module, so 3714/ A is isomorphic to O3/303 = 0/30. If
multiplication by A(o) € O* is trivial on 371 A/ A, it follows that A(c) — 1 € 30 C 30k. However, (o) is
a root of unity of order dividing 4 or 6, and the only such root of unity for which Normg g(A(o) — 1) is
divisible by 9 is A(¢) = 1. It now follows from (6.2) that the map o — A(c) must be a homomorphism from
Aut(C/Ly) to the cyclic group O*. Let Ly be the cyclic extension of L which is the fixed field of the kernel
of this homomorphism. Then either [Ly : L;] divides 4 or else O* has an element of order 3.

We focus for the moment on the case in which [Lo : L;] is divisible by 3. Then O = Z[(3] and K = Q({3) = L
when (3 is a primitive cube root of unity. The elliptic curve F must be isomorphic to y? = 23 — 1, since
O has class number 1. The 3-torsion points of E then consist of the point at infinity together with the
points with (z,y)-coordinates given by elements of {(0,4v/—1), (413, £v/3), (34173, £V/3), ((34'/3, £/3)}.
Thus F3 = K(y/—1,4'/3) is cyclic of degree 6 over K, totally ramified over the prime 20 and unramified
over all other primes of Og. Accordingly, there is a subgroup T of index 6 in the units (’)ﬁ)Q = O3 of the
completion O 2 of K at 20k such that the group U = K> - (T x [[ 150, Oy % KX) has trivial image under
the Artin map to Gal(F3/K). We now let s3 be an element of (1 4+ 303)* C OF, and we let s be the idele
with component s3 above 3 and trivial components at all other places. Then s € U, since the component of s
at the place over 2 is 1. Hence the automorphism [s, K] € Gal(K?*"/K) fixes F3 as well as L;. Therefore if o
is any extension of [s, K] to Aut(C/F5L1) we find that A(o) is the identity. Hence (6.1) gives a commutative

diagram
(6.3) 9 1A/A —* E
91 A/A —* E

Since O3 is a discrete valuation ring in this case, A3 = Z3 ®z A is automatically free of rank 1 over O3. Hence
multiplication by the elements of (1 4+ 303)* produces 9 distinct endomorphisms of 97*A/A. Thus (6.3)
shows that the action of Gal(K?"/F3L;) on the 9-torsion of 971 4/.A has image a group of order at least 9.
Here Gal(K*/F3L;) fixes the 3-torsion 371.4/A. On picking generators for the 9-torsion, we get a map
from Gal(K®/F3L;) into the kernel of the reduction map GLa(Z/9) — GL2(Z/3) whose image has order
at least 9. Thus this image cannot just consist of scalar matrices, so the curve E over the field F3 satisfies
condition (i) of Corollary 1.1 when O* has order divisible by 3. To produce an N as in part (b) of Theorem
6.4, let N be the class field associated to the subgroup U" = K> - (T' x Uz x [[ 50, O % KX ) where Uj is
the subgroup of elements of O3 = (9;3 that are congruent to elements of 1 4+ 3Z3 mod 9. Using the same
arguments as above, the elements of Gal(K®P/N) act on E[9] by multiplication by elements of 1+ 3Z3. Since
(14 3)? # 1 mod 9, the Weil pairing shows Gal(K?®P/N) acts non-trivially on the ninth roots of unity, so the
curve F over N satisfies condition (ii) of Corollary 1.1.

It is interesting to note that in this case, there are elements s3 of O3 so that if s is the idéle with component
s3 above 3 and trivial components at all other places, the action of sgl on 371 A/ A is of order 6 but the
Artin automorphism [s, K] fixes F3 since F3/K is unramified above 3. Thus when o € Aut(C/K) extends

[s, K], the value of A\(c) € O* in diagram (6.1) must be a sixth root of unity.
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From now on we suppose that #(0*) divides 4. Then A(c)? is the identity. We conclude that for
s3 € (0F)* and s the idele with component s3 above 3 and component 1 at all other places, the diagram
(6.1) becomes

(6.4) K/A E
K/A—° E

Since A is an O-module, the subgroup (1 4 303)* of O3 acts trivially by multiplication on the 3-torsion
371A/ A, while (1 +903)* acts trivially on 9714/ A. Here (1 + 303)* C (O5)* since (1 + 303)* is a pro-3
group, so (6.4) shows o acts trivially on the 3-torsion of E if s3 € (1 + 303)*. Thus such o lie in Aut(C/F3)
because Fj is the extension of L obtained by adjoining the coordinates of the 3-torsion points of E.

We now use the hypothesis that Zz ® A is a free rank one Oz-module to be able to say that 971 A/ A is a free
rank one module for O3/905. This implies that the multiplication by the 9 elements of (14+303)* /(14+903)*
give distinct automorphisms of 9714/ A, each of which fix 3714/ A elementwise. The diagram (6.4) together
with (14+303)* C (O5)* now shows that the elements of (1+303)* /(14903)* give 9 distinct automorphisms
of the field Fy obtained from Fj by adjoining the coordinates of the 9-torsion points of E. Each of these
automorphisms fixes F3, so we have shown Gal(Fy/F5) has order at least 9. We now argue as in the case
when O has order divisible by 3 that the curve E over the field F3 satisfies condition (i) of Corollary 1.1,
and that there is a field N as in part (b) of Theorem 6.4. This completes the proof. O

Example 6.6. Let E be the modular curve X((32) (which is the strong Weil curve 32A1(B) in Cremona’s
notation [3]). By [8], E has complex multiplication by Z[i] with multiplication by ¢ arising from the map
z z+ % on the upper half plane, which normalizes I'g(32). The four rational points are all cusps (and
there are four cusps not defined over Q). Note that there is an isomorphism of E with the curve y? = 2 — 1,
which is the quotient of the Fermat quartic by an involution. The conductor of E is 32 and the complex
multiplication of E by Z[i] is defined over K = Q(7). Since 32 is prime to 3, F has good reduction above 3
and the hypotheses of Theorem 6.4 are satisfied.

Remark 6.7. Suppose E and Fj3 are as in Theorem 6.4. One can show by an easy Cebotarev argument that
there are infinitely many prime ideals p of Op, such that the reduction of E at p satisfies condition (i) of
Corollary 1.1 over the residue field of p.

7. TRIPLE MASSEY PRODUCTS AND ELLIPTIC CURVES OVER FINITE FIELDS

In this section, we assume £ > 3 and that F is an elliptic curve over a finite field F' = F; such that ¢ is not
divisible by £. In particular, Gy, is profinitely generated by a Frobenius automorphism ®, which we write as
Gr, = (D).

Our goal is to classify all characters x1,x2,x3 : m1(E) — Z/{¢ such that the triple Massey product
(X1, X2, x3) does not contain zero. If E[¢] is defined over F,, a complete answer is given by Lemma 5.1 and
Theorem 5.3. Since F, is finite, condition (2) of Theorem 5.3 never holds, which simplifies the statement; see
Theorem 7.1 below. Additionally, we will analyze all cases when E[f] is not defined over Fy. We will see that
in these cases ¢ > 3 is possible.

Recall from Remark 2.4 that if ¢ > 3 then every element of Uy(Z/¢) has order 1 or £. On the other hand,
U4(Z/3) contains elements of order 9. Define

y 9 if¢=3, and
(1) ¢ :{ 0 ife>3.
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For ¢ > 3, we have a short exact sequence

0— Wl(E) — 771(E) — <<I)> — 1.

Denote by P the set of all positive rational primes. Defining
™ (E)

(7.2) I:= m

we obtain an exact sequence

—

(7.3) 0— Ty(E) — T — (®) — 1.

As before, let & be the decomposition group (inside 71 (F)) of an inverse system of discrete valuations over
the origin of E in a cofinal system of finite étale covers of E. The sequence (7.3) splits since the image of &
inside I' is isomorphic to @ and disjoint from the image of T;(E) inside T.

With ¢ as in (7.1), we obtain an exact sequence

TE) T —

(7.4) UT,(E) 0T,(B) — (P) — 1.

—

We view Ty(E) /¢ Ty(E) = E[{'] as a (normal) subgroup of I'/¢' T;,(E), and we identify (®) with the image of
&g inside '/ T;(E). Let (®%) be the subgroup of (®) that is profinitely generated by @Y. By considering

the action of (®) on I'/¢' T;(E), we see that the minimal normal subgroup of I'/¢' T,(E) that contains (®*')
is profinitely generated by ®¢ together with (®¢ — 1)(E[¢']). Hence (7.4) leads to an exact sequence

5) o, By . rven® @)
(@ =DEW]) (@ —1)(E) (@) (2
We define
Vo= (of — 1\(Elen. T .o P
(7.6) Ne= (@ =)@, Toi=
(7.7) (D) = @ and Gy := L@.
(@) N - (@)

Letting & : (®,) — Aut(7;) be the group homomorphism induced by (7.5), Gy is the semidirect product
(7.8) Gy =Ti %, (D).

We view T; as a subgroup of G, and we view ®, as an element of G, of order #'. Note that the commutator
subgroup égl of Gy is contained in the abelian subgroup 7; which implies that ég// is trivial.
For all ¢ > 3, let Hy be the subgroup of Uy(Z/¢) defined in Remark 2.4 and let

(p1,p2,p3) 0 Us(Z[O) — (Z/0)%®

be the homomorphism that sends each matrix M = M (ay, ag, az, u,v,w) in (2.8) to the triple (a1, az,as). If
X1, X2, X3 : ™1 (E) — Z/{ are non-trivial characters, then they factor through the maximal elementary abelian
(-quotient of 71 (E), and hence through G,. Recall that the group Uy(Z/¢) has exponent 9 if £ = 3, and it has
exponent ¢ if £ > 3. Hence we see, similarly to the discussion following (2.1), that the triple Massey product
(X1, X2, X3) contains zero if and only if x; Ux2 = x2 U x3 = 0 and the map (x1,x2,x3) : G¢ — (Z/£)®? can

be lifted to a continuous group homomorphism p : G, — U4(Z/) such that (x1, X2, X3) = (p1, P2, p3) © p-
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7.1. Suppose the /(-torsion E[/] is defined over F,. By (2.4) and Lemma 5.1, we are reduced to the case
when ¢ =3, ¢/ =9, and x; = x2 = X3 is given by a single character y : Gz — Z/3. Since ® — 1 acts trivially
on E[3], (® — 1)? acts trivially on E[9], which implies as in §5 that T3 = E[9]. Since there is precisely one
cubic extension of [, inside E, we get the following simplification of Theorem 5.3.

Theorem 7.1. Suppose E is an elliptic curve over a finite field F, such that q is not divisible by 3 and such
that the 3-torsion E[3] is defined over F,. Let x : Gg — Z/3 be a character. Then (x, X, x) does not contain
zero if and only if the restriction of x to E[9] is non-zero and there exists an element a € E[9] — 3E[9] such

that x(a) =0 and ®3(a) & (Z/9) a.

7.2. Suppose the /(-torsion E[/] is not defined over F,. This means that the set of fixed points in
E[f] under the action of ® has either order 1 or £. If this set has order 1, then it follows that the maximal
elementary abelian ¢-quotient group of 71 (E) is a group of order ¢ given by @/ (<I>/7>. Hence all characters
in HY(E,Z/¢) are in H'(F,,Z/¢). Since H*(F,,Z/¢) = 0, every triple Massey product that is non-empty
contains zero.

For the remainder of this subsection, we assume that the set of fixed points in E[¢] under the action of ®

has order ¢. We need the following remark.

—

Remark 7.2. Let £ > 3 and let T be as in (7.2). Letting A : (®) — Aut(T,(E)/¢Ty(E)) = Aut(E[{]) be the
group homomorphism induced by the sequence (7.3), I'/¢ Ty(E) is the semidirect product

(7.9) T/ Ty(E) = E[f] x5 (D).

Since we assume that the set of fixed points in E[¢] under the action of ® has order ¢, there exists a basis
{m1,my} of E[f] over Z/{ such that the action of ® on E[f] with respect to this basis is given by the matrix
Ag € Aut(E[f]) = GL2(Z/?), where

— 1
(7.10) either Ag = (O 0) for some element € € (Z/0)* — {1},
5

— 1 1
(7.11) or Ap = <0 1).

In both cases (7.10) and (7.11), the subgroup of E[/] generated by m; equals the set of fixed points in E[/]
under the action of ®. In the case (7.10), the image of (® —1) on E[{] is given by (Z/f)ms, whereas in the case
(7.11), the image of (® — 1) on E[{] is given by (Z/¢)m;. Therefore, every character x : I'/¢Ty(E) — Z/¢
satisfies x(72) = 0 if Ag is as in (7.10) and it satisfies x(7;) = 0 if Ag is as in (7.11).

The following result pins down the structure of G, for £ > 3.

Lemma 7.3. Let £ >3, let /' be as in (7.1), and let G, be as in (7.8). Extend the action of ® on E[{] from
(7.9) to an action of the integral group ring Z[®] on E[f].
(a) If (& — 1)? does not act as zero on E[l], i.e. Ag is given as in (7.10) with respect to some basis of
E[l] over ZJ{, then T, 2 Z/¢' and

Gy = (Z/U) ¢, ()

where & : () — (Z/0')* is given by &(®y) = 1+ Lo for a certain o € Z/0'. If £ = 3 then there is
a unique o € {0,1,2} such that £3(®3) = 1+ 3a, and if £ > 3 then &(®y) = 1 and we let a = 0.
(b) If (® — 1)2 acts as zero on E[l], i.e. Ag is given as in (7.11) with respect to some basis of E[{] over
7./¢, then Ty = E{'] and
Ge = E[l] x¢, ()
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where & : (D) — GLo(Z/V') is given by

_ 1+bla 1470
5"(@):< :ﬁ 115?)

for certain o, 8,v,6 € Z/U'. If £ = 3 then there are unique such «, 3,7,8 in {0,1,2}. On the other
1

hand, if £ > 3 then &(®;) = 0

1
1) and we let a =3 =~v=0 =0.
Proof. Suppose first that we are in part (a), i.e. there exists a basis {m,ma} of E[¢] over Z/{ such that the
action of ® on E[¢] with respect to this basis is given by the matrix Ag in (7.10).

If £ = 3 then ¢/ = 9 and € = 2. In this case, let {m;,my} be a basis of E[9] that reduces to the basis
{m, M2} modulo 3. Then there exist o, 3,7, € Z/9 such that the action of ® on E[9] is given by the matrix

1+3a 38
Ag = .
3y 2436

0 3[3). In particular, we have N3 = (Z/9)(38m1 + Tma) = (Z/9)(38my + my) in (7.6),

3y 7
and hence T3 = Z/9. Moreover, since ®(m;) = (1 + 3a) m; mod N3, we obtain that &5(®3) = 1+ 3a.
If £ > 3 then ¢/ = {. In this case, the action of ® on E[{] is given by the matrix Ag in (7.10). Hence

Hence A% — I = (

0 -1
since ®(my) = my, we obtain that £(®,) = 1. This completes the proof of part (a).

Zi I = (0 0 > Since e — 1 € (Z/£)*, we have Ny = (Z/f)m in (7.6), and hence T; = Z/{. Moreover,

Suppose next that we are in part (b), i.e. there exists a basis {my,m2} of E[{] over Z/{ such that the
action of ® on E[f] with respect to this basis is given by the matrix Ag in (7.11).

If £ = 3 then ¢ = 9. In this case, let {m;,ma} be a basis of E[9] that reduces to the basis {1, ma}
modulo 3. Then there exist «, 3,7, € Z/9 such that the action of ® on E[9] is given by the matrix

1+3a 1+38
Agp = .
3y 1436

Hence A% — I is the zero matrix. It follows that N3 = 0 in (7.6), and hence T3 = E[9]. In particular, £3(®3)
has the desired shape.

If £ > 3 then ¢ = {. In this case, the action of ® on E[f] is given by the matrix Ag in (7.11). Hence
Zfb — I is the zero matrix. It follows that Ny = 0 in (7.6), and hence 7; = E[¢]. In particular, &(®;) has the
desired shape. This completes the proof of part (b). |

We have the following result on cup products:

Lemma 7.4. Let £ > 3. Suppose I is an elliptic curve over a finite field F, such that q is not divisible by ¢
and such that the set of fized points in E[f] under the action of ® has order £. Let x1,x2 € HY(E,Z/l) =
Hom(m (F),Z/¢) be non-trivial characters.

(a) If (® — 1)? does not act as zero on E[€], then x1 U x2 = 0 if and only if there exists a € (Z/€)* such
that xo = ax:.
(b) If (® — 1)? acts as zero on E[{], then we always have x1 U x2 = 0.

Proof. Since ¢ > 3, every non-identity element of Us(Z/{) has order £. It follows that x1 Ux2 = 0 as elements
of H'(m(E),Z/¢) if and only if this is so when we consider them as elements of H!(G,/(Gy)*, Z/¢) with cup
product in H2(G,/(Gy)*, Z/1).
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Suppose first that we are in part (a), i.e.
G/(G)f =27/t xZ/t forall £>3.

In particular, we write Gy/(Gy)¢ additively. The cup product on HY(Z/¢ x Z/¢,7Z/¢) is a non-degenerate

alternating bilinear form on a two-dimensional vector space over Z//f with values in H%(Z/¢ x Z/¢,7Z/{). So it

factors through the determinant and vanishes exactly on pairs that span the same space. This proves part (a).
Suppose next that we are in part (b), i.e.

Go/(Gr) = E[l] xg (@) forall £>3

—

where <$) = (7{3\)/@)4) and there exists a basis {m,ms} of E[f] such that, with respect to this basis,
&(®) = Ag asin (7.11). We want to show that x; Uy = 0, which is equivalent to the statement that there
exists a map x : G¢/(Gy)* — Z/¢ such that the map

p: éz/(ée)g — Ug(Z/f)
1 xi1(9) «(g)
(7.12) g = 0 1 x209
0 0 1

is a group homomorphism. Since the cup product is alternating and H'(G,/(G,)¢,Z/¢) has dimension two, it
will suffice to consider the case in which {x1, x2} is the dual basis over Z/¢ to the basis for the maximal abelian
quotient of Gy/(Gy)? formed by the images of i, and 3. One then checks by a commutator computation
that x can be defined by

k(1) = x1(®)X2(T) — x2(®)x1 (M) and k(M) = 0 = w(®).

Note that in this case p is a group isomorphism, which completes the proof. (I

As a consequence, we obtain the following result when G is as in part (a) of Lemma 7.3:

Lemma 7.5. Suppose £ > 3 and that E is an elliptic curve over a finite field F, such that q is not divisible by ¢
and such that the set of fived points in E[¢] under the action of ® has order £. Moreover, suppose that (® —1)?
does not act as zero on E[f]. Let x1,x2,Xx3 € H'(E,Z/l) be characters such that x1 U x2 = x2 U x3 = 0.
Then (x1, X2, X3) contains zero.

Proof. If any of x1, x2, X3 is trivial, then (x1, x2, X3) contains zero. Suppose now that none of these characters
is trivial. Since x1 U x2 = x2 U x3 = 0, we are, by (2.4) and Lemma 7.4, reduced to consider the case when
X1 = X2 = X3 is a single character x. If the restriction ¥ to H'(E,Z/f) is trivial, then (x, x, x) contains zero
since H?(F,,Z/¢) = 0.

Suppose now that X is non-trivial. Using the properties of Uy(Z/f), we can replace 7 (E) by G in our
arguments and assume that x : Gy — Z/f. As in part (a) of Lemma 7.3, we write

Go = (Z/U') xg, (P0)

where £(®) = 1 + la for some o € Z/¢'. Moreover, if £ = 3 then ¢/ = 9 and we choose « € {0, 1,2}, and if
£ > 3 then ¢ = £ and we choose a = 0.
Let m be a generator of Z/¢'. In particular, since ¥ # 0, we have that x(m) # 0. By replacing m by a

multiple if necessary, we can assume without loss of generality that x(m) =1. Let ¢ € {0,1,...,£—1} be
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such that x(®;) = ¢ mod £. We define a map p : Gy — Uy(Z/¢) by

110 0 10 a0
01 10 _ 01 0 0
= d p(®,) = v
p(m) 00 1 1 and p(®y) 00 10 p(m)
00 0 1 00 0 1
Then it follows that
1 0 0 «
_ _ . 01 0 0 ‘o
[p(®¢), p(m)] = [p(Pr)p(m) =%, p(m)] = 00 1 0 = p(m)™ = p((P¢ — 1) m)
00 0 1

where the second equality follows from (2.10), the third equality follows from (2.9) and our choice of «, and
the last equality follows since (®; — 1) m = fam. This shows that p is a group homomorphism, completing
the proof. O

When G/ is as in part (b) of Lemma 7.3, we obtain the following result:

Proposition 7.6. Suppose { > 3 and that E is an elliptic curve over a finite field F, such that q is not
divisible by ¢ and such that the set of fized points in E[f] under the action of ® has order £. Moreover, suppose
that (® — 1) acts as zero on E[l]. Let x1,X2,x3 € HY(E,Z/¢) be characters such that x1 U x2 = x2 Ux3 = 0.

Then (x1, X2, X3) contains zero if and only if there exists m € E[{'] whose image T € E[f] is not fized by
® such that the following two conditions hold when we write x; = x;(m) and ; = xi(®y) for 1 <i < 3:

(1) (p2x3 — p3m2) 21 — (P172 — pax1) 3 =0 mod £, and
(2) (p2x3 — p312) 1 — (Y122 — Y2x1) Y3 = cx1x2x3 mod £,
where ¢ € Z, ¢ =0 if £ >3, and (® — 1)%(m) = 3cm mod (3(® —1)(m)) if £ = 3.

Proof. Let m € E[{'] be such that its image m € E[f] is not fixed by ®. Define m’ := (® — 1)(m), so the
image m’ € E[f] is not zero. Since the action of (® — 1)? is zero on E[f], it follows that m’ is fixed by ®. In
particular, x;(m’) = 0 for all 1 <4 < 3 by Remark 7.2, implying that {m/,m} is a basis of E[¢'] over Z/¢'. Tt
follows, as in part (b) of Lemma 7.3, that the action of ® on E[¢'] with respect to this basis {m’,m} is given
by a matrix of the form

— 1+7 1+7
(7.13) &(@)( P ;;)

for certain «, 8,7, € Z/¢'. Moreover, if £ = 3 then ¢/ = 9 and we choose «a, 8,7,0 € {0,1,2}, and if £ > 3
then ¢/ = ¢ and we choose o = 8 = v = § = 0. Hence, we obtain

3la+d)m +3ym iff=3
7.14 @—12 = (P —1 N — )
(719 (® = 1)2(m) = (& ~ 1) { ' o
Define

v if £ =3,
7.15 =
(7.15) ¢ {o if 0> 3.

In particular, (® — 1)%(m) =3cm mod (3(® — 1)(m)) if £ = 3.
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The Massey product (x1, X2, X3) contains zero if and only if there exists a group homomorphism p : Gy —
Uy(Z/2) such that

1 0 r s 1 21 u w 1 o1 d e

0 1 0 ¢ 0 1 zo w — 0 1 ¢ f
p(m') = ;o p(m) = ’ and p(®) = ?

0 010 0 0 1 =z3 0 0 1 3

0 0 0 1 0 0 0 1 0o 0 o0 1

for certain 7, s,t,u,v,w,d, e, f € Z/{. Using (7.13), such a p exists if and only if the following three relations
are satisfied in Uy(Z/?):

(7.16) [p(m'), p(m)] = Iy,
(7.17) @), pm)] = plm)Yp(m) = p(m)?,
(7.18) [p(®),p(m)] = p(m/)"Pp(m)* = p(m')p(m)*,

where I is the identity matrix in U4(Z/¢) and the second equality in both (7.17) and (7.18) follows since
p(m’) has order ¢ in Uy(Z/?) for all £ > 3. Using (2.9) and (2.10), we see that equations (7.16), (7.17) and
(7.18) are equivalent to the following equalities in Z/¢:

(7.19) res = tx1,

(7.20) Yr1T2x3 = b1 — s,

(7.21) r o= (p1T2 — Paly,

(7.22) t = p2x3 — par,

(7.23) s+o0xixors = (prw— fx1) — (psu—dxsg) — (p122 — pax1) (s + 3).

It follows that (x1,x2,Xx3) contains zero if and only if there exists at least one choice of r, s, t,u, v, w,d, e, f €
Z/¢ such that all equations (7.19) - (7.23) are satisfied. Letting u = w =d = f =0 and s = —§ z1x2x3 —
(p122 — w2x1) (3 + x3) satisfies (7.23). Since (7.19) - (7.22) only involve r and ¢, we see that (x1, X2, X3)
contains zero if and only if there exist r,¢ € Z/¢ such that all equations (7.19) - (7.22) are satisfied. Since, by
(7.15), c=+ mod 3 if £ = 3 and since ¢ = = 0 if £ > 3, substituting (7.21) and (7.22) into (7.19) and (7.20)
finishes the proof of Proposition 7.6. O
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