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1. Introduction

Let G be a finite group and suppose K is a number field. In this paper

we consider the problem of constructing infinitely many unramified Galois G-

extensionsM/L of number fields for which L has bounded degree overK. When

one imposes no conditions on the ramification of M/L, a classical technique is

to specialize a G-cover π : C′ −→ C of curves over K for which C has many

points over such L. To construct M/L that are unramified, a first step is to

ensure that π itself is unramified. One can then find a model of π over a ring

of S-integers of K that is unramified, and control the ramification of M/L over

places in S by imposing conditions on how one specializes π. This approach

was used in [1] by Bilu and the third author (see also [7]) to construct abelian

unramified extensions of quadratic extensions of a given number field, using

abelian covers π of a hyperelliptic curve C.

In this paper we consider nilpotent groups G. The essential obstruction to

the above technique is the construction of an unramified G-cover π : C′ −→ C

over K. When G is abelian, one constructs such π by imposing conditions on

the K-rational torsion points of the Jacobian of C. For more general nilpotent

covers, there is a technique which combines abelian information with data on

cup products and higher Massey products of characters of Galois groups; see

[10, 11] and their references, for example. However, the calculation of cup

products is more difficult when K is not algebraically closed. This is due to the

fact that H2(C, µn) contains a subgroup isomorphic to

Pic0(C)/nPic0(C)

when µn is the étale sheaf of n-th roots of unity, and this subgroup is in general

non-trivial.

The main innovation in this paper is to exploit the action of AutK(C) on cup

products in order to construct unramified nilpotent covers π : C′ −→ C. We

will illustrate this by taking G to be a (generalized) Heisenberg group of the

form H2d+1(Z/nZ); see Section 2 for a definition of this group. It is non-abelian

and nilpotent of order n2d+1 and it is contained in the subgroup of unipotent

upper-triangular matrices in GLd+2(Z/nZ). For example, we will produce by

the above methods some infinite families of everywhere unramified H3(Z/nZ)-

extensions M/L with L a quadratic extension of Q(ζn) (cf. Theorem 1.1). This

method differs from other approaches based on group theory, Hurwitz spaces



Vol. TBD, XXXX UNRAMIFIED HEISENBERG GROUP EXTENSIONS 3

and the Inverse Galois problem which we will describe in Remark 3.4. Previous

work by Völklein and others (see [12] and [13]) leads to alternate proofs of some

of the results in this paper, sometimes with stronger hypotheses, e.g., that n is

prime.

Let C be a smooth projective hyperelliptic curve over a number field K. Our

first result, Theorem 3.1, shows that the existence of an étale H2d+1(Z/nZ)-

cover of C is equivalent to the existence of two families (each one having d

elements) of n-torsion line bundles on C, which are globally orthogonal under

the Weil pairing. We state Theorem 3.1 in the setting of twisted Heisenberg

group schemes, in which Z/nZ is replaced by µn; this allows us to work over

smaller fields in the absence of roots of unity. As an illustration of Theorem 3.1,

we give at the end of Section 3 several explicit examples of Heisenberg Galois

covers of hyperelliptic curves. In this case, the strategy of applying elements of

AutK(C) to control cup products amounts to using the hyperelliptic involution

of C to show that the relevant cup product over K is trivial provided its base

change to K is trivial.

We will apply the specialization results of [1] to the examples of covers con-

structed in Section 3. Suppose one is given a connected étale cover π : C′ −→ C

over a number field K in which some K-rational point P0 splits completely. In

[1], it was shown that one can find infinitely many (in a strong quantitative

sense) points in C(K) such that the extension of number fields that results on

specializing π over these points has the same degree as π and is everywhere

unramified. This leads to the following result.

Theorem 1.1: Let n > 1 be an odd integer, and let ζn be a primitive n-th root

of unity. Then there exist infinitely many quadratic extensions L/Q(ζn) which

admit a Galois extension with group H3(Z/nZ), unramified at all finite places

of L. Moreover, given a finite set S of places of Q(ζn), which may contain finite

and infinite places, there exist infinitely many such L for which primes lying

above S in L are totally split in the corresponding Galois extension.

Furthermore, there is a constant c > 0, which depends only on n and S, for

which the following is true. For sufficiently large positive N , the number of

(isomorphism classes of) such fields L whose relative discriminant ∆(L/Q(ζn))

satisfies

|NQ(ζn)/Q∆(L/Q(ζn))|
1/ϕ(n) ≤ N

is at least cNϕ(n)/(4n−2)/ logN , where ϕ is Euler’s function.
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Two potential generalizations of our results are (i) to replace hyperelliptic

curves by more general ones, and (ii) to replace Heisenberg groups by more

general nilpotent groups. These generalizations are connected because to treat

nilpotent groups with higher nilpotency, one must consider higher Massey prod-

ucts. To control such products with automorphisms of the base curve will

require using more than hyperelliptic involutions.

Acknowledgements. The first and second authors would like to thank the

University of Toulouse for its support and hospitality during work on this paper.

The authors would also like to thank the referee for many helpful suggestions.

2. Heisenberg groups

In this section, we fix two integers n > 1 and d ≥ 1. The Heisenberg group of

rank 2d+1 with coefficients in Z/nZ, denoted by H2d+1(Z/nZ), is the subgroup

of GLd+2(Z/nZ) consisting of matrices of the form






1 a c

0 Id b

0 0 1







where Id is the d× d identity matrix, a (resp. b) is a row (resp. column) vector

of length d with coefficients in Z/nZ, and c belongs to Z/nZ. The center of this

group is the set of matrices satisfying a = 0 and b = 0, which is isomorphic

to Z/nZ. It follows that we have an exact sequence of groups

(2.1) 0 −−−−→ Z/nZ −−−−→ H2d+1(Z/nZ) −−−−→ (Z/nZ)2d −−−−→ 0.

Thus H2d+1(Z/nZ) is a central extension of (Z/nZ)2d by Z/nZ.

The twisted Heisenberg group scheme of rank 2d + 1 over Z[ 1n ], denoted

byH2d+1(µn), is defined in the same way as the Heisenberg groupH2d+1(Z/nZ),

but the vectors a and b in the matrix have coefficients in µn, and c belongs

to µ⊗2
n . We have as previously an exact sequence

(2.2) 0 −−−−→ µ⊗2
n −−−−→ H2d+1(µn) −−−−→ (µn)

2d −−−−→ 0

which is in fact an exact sequence of presheaves.

We note that H2d+1(µn) is a finite étale Z[ 1n ]-group scheme. We underline

the fact that µ⊗2
n is not representable by a finite flat group scheme over Z,

so H2d+1(µn) does not extend to a finite flat group scheme over Z. Nevertheless,
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if ζn denotes a primitive n-th root of unity, then we have a non-canonical isomor-

phism between H2d+1(µn) and H2d+1(Z/nZ) over Z[ 1n , ζn]. Hence H2d+1(µn)

extends to a constant group scheme over Z[ζn].

Unless otherwise specified, all torsors we consider are relative to the étale

topology. Thus, if Γ is an étale group scheme over a scheme X , we denote

by H1(X,Γ) the pointed set of isomorphism classes of Γ-torsors over X for the

étale topology. When Γ is abelian, this set is an abelian group.

If φ : Γ −→ Λ is a morphism of X-group schemes, and if ξ is a Γ-torsor

over X , then the image of ξ by the natural map φ∗ : H1(X,Γ) −→ H1(X,Λ) is

a Λ-torsor. We say, by abuse of notation, that this is the Λ-torsor associated

to ξ, the morphism φ being omitted.

Let us recall a result of Sharifi [10] which allows one to produce torsors

for H2d+1(µn) whose associated (µn)
2d-torsor is given.

Theorem 2.1: Let X be a connected Z[ 1n ]-scheme. Suppose we are given two

d-tuples χ1, . . . , χd and χ′
1, . . . , χ

′
d in H1(X,µn) for some integer d ≥ 1. Then

there exists a H2d+1(µn)-torsor ξ over X whose associated (µn)
2d-torsor is the

2d-tuple (χ1, . . . , χd, χ
′
1, . . . , χ

′

d) if and only if

d
∑

i=1

[χi ∪ χ
′

i] = 0

where the sum is computed in the group H2(X,µ⊗2
n ). Moreover, ξ is connected

if and only if the subgroup of H1(X,µn) generated by χ1, . . . , χd, χ
′
1, . . . , χ

′
d is

isomorphic to (Z/nZ)2d.

Proof. See [10, Proposition 2.3]. We note that Sharifi’s result is stated in terms

of (twisted) Galois representations over a field K of characteristic prime to n,

instead of torsors over a Z[ 1n ]-scheme X . Nevertheless, his results immediately

extend to our setting by considering representations of the étale fundamental

group of X .

Remark 2.2: If p and q are relatively prime integers, it follows from the Chinese

remainder theorem that

H2d+1(Z/pqZ) ≃ H2d+1(Z/pZ)×H2d+1(Z/qZ),

and similarly for twisted Heisenberg group schemes. Thus, we could assume

that n is the power of some prime number. However, we prefer for simplicity

to work with arbitrary n.
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3. Geometric Heisenberg group extensions

Let K be a field, and let K be an algebraic closure of K. In our terminology,

a hyperelliptic curve over K is a smooth projective geometrically connected

K-curve of genus g ≥ 1, endowed with a degree 2 map π : C −→ P1
K . This

includes elliptic curves over K. In this setting, the Weierstrass points of C are

none other than the ramification points of π. We denote by τ the hyperelliptic

involution of C. The group G = {e, τ} acts on C, and the quotient morphism

is the map π : C −→ P1
K .

If ξ is a Γ-torsor over C, and if P0 ∈ C(K) is a K-rational point of C, we say

that ξ splits over P0 if P ∗
0 ξ is the trivial Γ-torsor over K.

Theorem 3.1: Let n > 1 be an odd integer with char(K) ∤ n, and such that

[K(µn) : K] is prime to n. Let C be a hyperelliptic curve over K, together with

a K-rational Weierstrass point P0 ∈ C(K). Let L1, . . . , Ld and L′
1, . . . , L

′

d in

Pic0(C)[n] be such that

d
∏

i=1

en(Li, L
′

i) = 1

where en denotes the Weil pairing. Then:

(1) For i = 1, . . . , d, there exists a unique étale µn-torsor χi (resp. χ
′
i) overC

which splits over P0, and whose associated Gm-torsor is Li (resp. L
′
i).

(2) There exists an étale H2d+1(µn)-torsor ξ which splits over the point P0,

and whose associated (µn)
2d-torsor is the 2d-tuple

(χ1, . . . , χd, χ
′

1, . . . , χ
′

d).

(3) The torsor ξ is geometrically connected if and only if the subgroup

generated by the Li and the L′
i is isomorphic to (Z/nZ)2d.

Remark 3.2: The Weil pairing is a non-degenerate bilinear pairing of finite K-

group schemes

en : JC [n]× JC [n] −→ µn

where JC denotes the Jacobian of C. In particular, if L and L′ belong to

Pic0(C)[n] = JC [n](K),

then en(L,L
′) belongs to µn(K).



Vol. TBD, XXXX UNRAMIFIED HEISENBERG GROUP EXTENSIONS 7

Remark 3.3: In Theorem 3.1 (2), the H2d+1(µn)-torsor ξ is unique up to a twist

by a µ⊗2
n -torsor over C, which splits over P0. This can be checked by going

through the proof of Lemma 3.7 below.

Remark 3.4: The proof we will give of Theorem 3.1 uses the hyperelliptic in-

volution of C to control cup products. We thank the referee for outlining a

different approach which uses group theory, Hurwitz spaces and work on the In-

verse Galois problem under some additional hypotheses. For simplicity, assume

K(µn) = K, so that µn is isomorphic to Z/nZ and H2d+1(µn) is isomorphic to

the constant group H2d+1(Z/nZ). Theorem 3.1 follows if one can construct a

regular cover of P1
K with group

Γ = H2d+1(Z/nZ)⋊ Z/2Z

having C as the quotient by H2d+1(Z/nZ) and having inertia groups that are

involutions mapping to the hyperelliptic involution of C. Such a Γ-cover is a

central Z/nZ-extension of a cover with group G = (Z/nZ)2d ⋊ Z/2Z. When n

is prime, [13, Theorem 9.17.(1)] describes a method of constructing G-covers

of P1
K of the required kind when C is allowed to vary using Hurwitz spaces. One

can then apply results from [12] to show that the constrained central embedding

problem associated to constructing an appropriate Γ-cover has a solution under

appropriate hypotheses.

To prove Theorem 3.1 we need the following results.

Lemma 3.5: For all integers j ≥ 0 there is a canonical isomorphism

Hj(P1
K , µn) = Hj(C, µn)

G.

Proof. This is clear from the spectral sequence

Hp(G,Hq(C, µn)) ⇒ Hp+q(P1
K , µn)

together with the fact that G has order 2 and all of the groups Hq(C, µn) are

annihilated by multiplication by the odd integer n.

Lemma 3.6: There are canonical isomorphisms

(3.1) H1(P1
K , µn) = K∗/(K∗)n and H1(P1

K ,Gm) = Pic(P1
K) = Z

and an isomorphism of Brauer groups

(3.2) H2(P1
K ,Gm) = Br(P1

K) = Br(K)
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induced by pulling back Azumaya algebras from K to P1
K . There is an exact

sequence

(3.3) 0 −→ Pic(P1
K)/n −→ H2(P1

K , µn) −→ H2(P1
K ,Gm)[n] −→ 0.

Using the above isomorphisms, the sequence (3.3) becomes

(3.4) 0 −→ Z/nZ −→ H2(P1
K , µn) −→ Br(K)[n] −→ 0.

Moreover, any class in H2(P1
K , µn) that splits over some K-rational point of P1

K

belongs to the kernel of the homomorphism H2(P1
K , µn) −→ Br(K)[n].

Proof. One has H1(P1
K ,Gm) = Pic(P1

K) = Z via the degree map. The cohomol-

ogy of the Kummer sequence

1 −→ µn −→ Gm
[n]
−−→ Gm −→ 1

then gives (3.1) and (3.3). To analyze H2(P1
K ,Gm) we use the Hochschild–Serre

spectral sequence

(3.5) Hp(K,Hq(P1
K
,Gm)) ⇒ Hp+q(P1

K ,Gm).

By Tsen’s theorem, H2(P1
K
,Gm) = 0. The action of the profinite group

Gal(K/K) on H1(P1
K
,Gm) = Pic(P1

K
) = Z is trivial, so

H1(K,H1(P1
K
,Gm)) = 0.

We have

H2(K,H0(P1
K
,Gm)) = H2(K,K

∗
) = Br(K).

Finally, the restriction map

H1(P1
K ,Gm) −→ H1(P1

K
,Gm)

is an isomorphism. Putting these facts into the spectral sequence (3.5) gives

(3.2). The last statement follows from the fact that the pullback from K to P1
K

induces a section of the surjection H2(P1
K , µn) −→ Br(K)[n].

The final lemma we will need to prove Theorem 3.1 has to do with twisting

Heisenberg torsors in order to ensure that they split over a particular point.

Lemma 3.7: Let ξ be a H2d+1(µn)-torsor over C, whose associated (µn)
2d-

torsor splits over P0. Then there exists a H2d+1(µn)-torsor ξ
′ over C with the

same associated (µn)
2d-torsor such that ξ′ splits over P0 and ξ′ is isomorphic

to ξ over K.
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Proof. Consider the following commutative diagram of pointed sets with exact

rows [4, Chap. III, Proposition 3.3.1]:

1 −−−−→ H1(C, µ⊗2
n ) −−−−→ H1(C,H2d+1(µn))

a
−−−−→ H1(C, (µn)

2d)

P∗
0





y

P∗
0





y

P∗
0





y

1 −−−−→ H1(K,µ⊗2
n ) −−−−→ H1(K,H2d+1(µn))

aK−−−−→ H1(K, (µn)
2d)

in which the vertical maps are the restrictions to P0. By definition of an

exact sequence of pointed sets, the kernel of a is exactly the image of the

map H1(C, µ⊗2
n ) −→ H1(C,H2d+1(µn)), and similarly for aK .

By assumption, a(ξ) belongs to the kernel of P ∗
0 , and hence P ∗

0 ξ belongs to

the kernel of aK by commutativity. It follows that P ∗
0 ξ comes from a µ⊗2

n -

torsor over K, which we denote by c0. Let us denote by f : C −→ Spec(K) the

structural morphism. Since the group µ⊗2
n is central in H2d+1(µn), it follows

from [4, Chap. III, Remarque 3.4.4] that the contracted product

ξ′ := ξ ×
µ⊗2

n

C f∗c0

is a H2d+1(µn)-torsor over C, which splits over P0 because

P ∗

0 f
∗c0 = c0.

Finally, ξ and ξ′ are isomorphic over K, because c0 is just a Galois cohomology

class over K, hence splits over K.

Proof of Theorem 3.1. Since the curve C is geometrically connected, we have

Gm(C) = Gm(K) = K∗.

Hence the Kummer exact sequence on C gives

0 −→ K∗/(K∗)n −→ H1(C, µn) −→ Pic(C)[n] −→ 0.

Moreover, the map

P ∗

0 : H1(C, µn) −→ H1(K,µn) ≃ K∗/(K∗)n

is a retraction of the natural map K∗/(K∗)n −→ H1(C, µn). One deduces that,

given L ∈ Pic(C)[n], there exists a unique µn-torsor χ on C which splits over

the point P0, and whose associated Gm-torsor is L. This proves part (1).
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For part (2), let us first prove that τ(χi) = −χi for all i. We have a sequence

of canonical isomorphisms

H1(K,µn) ≃ H1(P1
K , µn) ≃ H1(C, µn)

G

and the map P ∗
0 : H1(C, µn)

G −→ H1(K,µn) is the inverse isomorphism. Now,

the µn-torsor χi + τ(χi) is invariant under the action of G, and P0 (which is a

ramification point of C −→ P1
K) is invariant by τ , from which it follows that

P ∗

0 (χi + τ(χi)) = 2P ∗

0 χi = 0.

The map P ∗
0 being an isomorphism, this proves that χi+τ(χi) = 0. It follows

that we have, for i = 1, . . . , d,

τ(χi ∪ χ
′

i) = τ(χi) ∪ τ(χ
′

i) = (−χi) ∪ (−χ′

i) = χi ∪ χ
′

i.

Thus χi ∪ χ
′
i ∈ H2(C, µ⊗2

n )G.

The map

H2(C, µ⊗2
n ) −→ H2(C ⊗K K(µn), µ

⊗2
n )

is injective, because [K(µn) : K] is prime to n. Hence, in order to prove

that
∑d

i=1[χi ∪ χ
′
i] = 0, we may (and we do) assume that K contains a primi-

tive n-th root of unity. Then for any K-scheme X and for all j we have natural

isomorphisms

Hj(X,µ⊗2
n ) ≃ Hj(X,µn)⊗ µn.

By Lemma 3.6, we have a commutative diagram

(3.6)

0−−−−→ (Pic(P1
K)/n)⊗ µn −−−−→ H2(P1

K , µ
⊗2
n ) −−−−→Br(K)[n]⊗ µn −−−−→ 0





y





y





y

0−−−−→ (Pic(C)/n)⊗ µn −−−−→ H2(C, µ⊗2
n ) −−−−→ Br(C)[n]⊗ µn −−−−→ 0





y





y

(Pic(C ⊗K K)/n)⊗ µn
∼

−−−−→H2(C ⊗K K,µ⊗2
n )

in which the rows are obtained by tensoring the Kummer exact sequences by µn,

and the vertical maps are obtained by base change.

We have proved that χi ∪ χ′
i is G-invariant, so that it comes from a class

in H2(P1
K , µ

⊗2
n ) by Lemma 3.5. Moreover, because χi ∪ χ′

i splits over the

point P0, the corresponding class in H2(P1
K , µ

⊗2
n ) splits over the image of P0

in P1
K . By diagram (3.6) and Lemma 3.6, it belongs to the image of

(Pic(P1
K)/n)⊗ µn −→ H2(P1

K , µ
⊗2
n ).
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On the other hand, the map C −→ P1
K has degree 2, hence the natural map

(Pic(P1
K)/n) −→ (Pic(C ⊗K K)/n)

can be identified, via the degree map, with the multiplication-by-2 map

[2] : Z/nZ −→ Z/nZ, which is an isomorphism, since n is odd. It follows

that the composition of the two vertical maps in the first column of (3.6) is

the multiplication-by-2 map µn −→ µn. Hence this composition is an isomor-

phism. Composing with the isomorphism at the bottom of (3.6), it follows

that χi ∪χ
′
i, and more generally

∑d
i=1[χi ∪χ

′
i], can be identified with its image

in H2(C ⊗K K,µ⊗2
n ).

Finally, by [8, Chap. V, Remark 2.4 (f)], the following diagram commutes

H1(C ⊗K K,µn)×H
1(C ⊗K K,µn)

∪
−−−−→ H2(C ⊗K K,µ⊗2

n )
∥

∥

∥

∥

∥

∥

∥

∥

∥

Pic0(C ⊗K K)[n]×Pic0(C ⊗K K)[n]
en−−−−→ µn

We deduce that the image of
∑d

i=1[χi ∪ χ
′
i] in H

2(C ⊗K K,µ⊗2
n ) = µn can be

identified with
d
∏

i=1

en(Li, L
′

i)

which is trivial by hypothesis. Now according to Theorem 2.1, there exists

a H2d+1(µn)-torsor C
′ −→ C whose associated (µn)

2d-torsor is the 2d-tuple

(χ1, . . . , χd, χ
′
1, . . . , χ

′

d). By Lemma 3.7, we can make a constant field twist of

the central action of the twisted Heisenberg group on C′ to ensure that C′ −→ C

splits over P0. This completes the proof of part (2).

For part (3), we use that by Kummer theory, we have an isomorphism

H1(C ⊗K K, (µn)
2d) ≃ Hom((Z/nZ)2d,Pic0(C ⊗K K))

under which connected torsors correspond to injective morphisms. But the im-

age of the (µn)
2d-torsor (χ1, . . . , χd, χ

′
1, . . . , χ

′

d) is none other than the map de-

fined by the 2d-tuple (L1, . . . , Ld, L
′
1, . . . , L

′

d). Therefore, our (µn)
2d-torsor is ge-

ometrically connected if and only if the subgroup generated by the Li and the L′
i

in Pic0(C⊗KK) is isomorphic to (Z/nZ)2d. The map Pic0(C)−→Pic0(C ⊗KK)

being injective, it suffices to check this over K. The conclusion of part (3) fol-

lows from the last statement in Theorem 2.1.
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3.1. An example with d = 1 over Q.

Corollary 3.8: Let λ ∈ Q×, λ2 6= 1, and let n > 1 be an odd integer. Let C

be the hyperelliptic curve defined over Q by the affine equation

y2 = x2n − (1 + λ2)xn + λ2,

and let K be a number field such that [K(µn) : K] is prime to n. Then there

exists a geometrically connected H3(µn)-torsor over C ⊗Q K, which splits over

the point P0 = (1, 0).

We note that, if n is prime, or more generally if ϕ(n) is prime to n, then the

hypotheses of Corollary 3.8 are satisfied for K = Q.

Proof. We note that P0 is a rational Weierstrass point of C. It is proved in [2,

Lemma 3.3] that Pic0(C) contains two independent classes of order n, which we

denote by L and L′. The Weil pairing en(L,L
′) takes values in µn(Q) = {1},

therefore en(L,L
′) = 1. If we consider the classes L and L′ in Pic0(C ⊗Q K),

then their Weil pairing over K has the same value, hence the assumptions of

Theorem 3.1 are satisfied, and the result follows.

3.2. An example with d = 2, n = 3 over Q.

Corollary 3.9: There exists a hyperelliptic curve C defined over Q, together

with a rational Weierstrass point P0, and a geometrically connected H5(µ3)-

torsor over C which splits over P0.

Proof. Following an idea of Craig, a construction is given in [3, Theorem 2.3] of a

hyperelliptic curve C over Q, together with a rational Weierstrass point P0, and

four independent classes in Pic(C)[3]. The same argument as in Corollary 3.8

proves that the assumptions of Theorem 3.1 are satisfied, hence the result.

3.3. A remark on the general case. Let F be a number field, and let C

be a hyperelliptic curve of genus g over F , with an F -rational Weierstrass

point P0. Let K be the field of definition of the points of JC [n], the full n-

torsion subgroup of the Jacobian of C. Then K(µn) = K, because the Weil

pairing is non-degenerate. It is easy to check that the hypotheses of Theorem 3.1

are satisfied for the curve C over K when putting d = g. Hence there exists a

geometrically connected, étale H2g+1(Z/nZ)-torsor over C which splits over P0,

and whose associated (Z/nZ)2g-torsor is the maximal (pointed) étale Galois

cover of C whose Galois group is an n-torsion abelian group.
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Given F and n, one may ask which number fields K can be obtained as the

field of definition of the points of JC [n] for some hyperelliptic curve C of genus g.

We note that, in any case, K/F is Galois and

Gal(K/F ) →֒ GSp2g(Z/nZ)

where GSp denotes the general symplectic group. Indeed, JC [n] is a Galois

module with underlying abelian group isomorphic to (Z/nZ)2g , and the Weil

pairing on JC [n] is non-degenerate and alternating. It follows that Gal(K/K)

acts on JC [n] via GSp2g(Z/nZ), so [K : F ] divides #GSp2g(Z/nZ). Sharper

bounds on [K : F ] can be obtained with more hypotheses on C, e.g. by assuming

that JC has complex multiplication.

In view of such constructions involving torsion points on hyperelliptic curves,

the following question naturally arises (see also [2, Question 3.5]):

Question 3.10: Given positive integers n and r, does there exist a hyperellip-

tic curve C defined over Q such that Pic0(C) contains a subgroup isomorphic

to (Z/nZ)r?

The curve defined in Corollary 3.8 gives a positive answer to this question

when r = 2 and n is arbitrary. To our knowledge, this is currently the strongest

known general result concerning this question. Solutions for specific small

pairs (n, r) are given in [5].

In view of the previous discussion, one may of course replaceQ by an arbitrary

number field F .

4. Arithmetic specialization

Throughout this section, K denotes a number field, and S a finite set of places

of K. We denote by OK,S the ring of S-integers of K, obtained by inverting in

the full ring of integers of K all finite places which belong to S.

Let us consider a finite étale (not necessarily commutative) OK,S-group

scheme G. We denote by H1
ét(OK,S , G) the cohomology set which classifies

étale G-torsors over OK,S . We denote by GK the generic fiber of G, and

by H1(K,GK) the (possibly non-abelian) Galois cohomology set

H1(Gal(K̄/K), GK(K̄)).
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Let us recall that the “restriction to the generic fiber” map

H1
ét(OK,S , G) −→ H1(K,GK)

is injective. This allows us to identify H1
ét(OK,S , G) with a subset ofH1(K,GK).

We now define a set of cohomology classes which are locally trivial at all

places in S. These classes will be called S-split.

Definition 4.1: If S is a finite set of places of K, we let

H1
S-split(OK,S , G) := ker

(

H1
ét(OK,S , G) −→

∏

v∈S

H1
ét(Kv, GKv

)

)

.

In more algebraic terms, H1
S-split(OK,S , G) is the subset of H1(K,GK) con-

sisting of K-algebras which are unramified at finite places outside S, and in

which all places in S (including the infinite ones) are totally split. In particular,

such algebras are unramified at all finite places of K.

We are now ready to state our specialization theorem, which follows immedi-

ately from the results of Bilu and the third author [1].

Theorem 4.2: Let us consider the setting of Theorem 3.1, with the additional

assumption that K is a number field. Let ψ : C̃ −→ C be a geometrically

connected étaleH2d+1(µn)-torsor which splits over the point P0, whose existence

is ensured by Theorem 3.1. Then there exists a finite set S of places of K with

the following properties:

(1) S contains all places above n;

(2) the torsor ψ : C̃ −→ C extends to a H2d+1(µn)-torsor between smooth

OK,S-curves.

Moreover, given any such S, there exist infinitely many (isomorphism classes

of) quadratic extensions L/K with the following properties. There is a point

P ∈ C(L) such that the specialization of ψ at P is a connectedH2d+1(µn)-torsor

and belongs to the subset H1
S-split(OL,S ,H2d+1(µn)).

Furthermore, there is a constant c > 0 depending only on K, ψ and S for

which the following is true. Let g(C) denote the genus of C. For sufficiently

large positive N , the number of (isomorphism classes of) such fields L whose

relative discriminant ∆(L/K) satisfies

|NK/Q∆(L/K)|1/[K:Q] ≤ N

is at least cN [K:Q]/(4g(C)+2)/ logN .
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In the statement above, slightly abusing notation, we denote by the same

letter S the set of places of L lying above places in S.

Here is another way to state the conclusion of Theorem 4.2. For infinitely

many quadratic extensions L/K, we obtain by specializing ψ an extension of

degree n2d+1 of L that is a H2d+1(µn)-torsor, in which all finite places are

unramified and places above S are totally split.

In the case where K(µn) = K, H2d+1(µn) is isomorphic to the constant

Heisenberg group scheme H2d+1(Z/nZ), and we obtain by specializing ψ a Ga-

lois extension of L with group H2d+1(Z/nZ), in which all finite places are un-

ramified and places above S are totally split.

Remark 4.3: Given a set S satisfying (1) and (2) in Theorem 4.2, any larger

set also satisfies these conditions. When enlarging S, the condition that the

specialization of ψ at P belongs to H1
S-split(OL,S ,H2d+1(µn)) is stronger, which

has the effect of enlarging the constant c in the quantitative statement.

Proof of Theorem 4.2. The existence of a set S satisfying conditions (1) and (2)

follows by elementary considerations on the reduction of covers of curves, known

as the Chevalley–Weil theorem; see for example [9, Section 4.2]. A hyperelliptic

curve with a rational Weierstrass point admits an affine model of the form

y2 = f(x) where f ∈ K[x] is a polynomial of degree 2g + 1. Theorem 4.2 now

follows from [1, Theorems 4.3 and 4.7].

4.1. Unramified twisted Heisenberg torsors over quadratic fields.

By combining Corollary 3.8 and Theorem 4.2, we obtain the following result.

Corollary 4.4: Let p be an odd prime. Then there exist infinitely many

(imaginary and real) quadratic fields L which admit a connected H3(µp)-torsor,

unramified at all finite places of L. Moreover, given a finite set T of prime

numbers containing p, there exist infinitely many such L for which primes lying

above T in L are totally split in the extension corresponding to the H3(µp)-

torsor.

We assume here that p is prime in order to ensure that [Q(µp) : Q] is prime

to p, which is required in the statement of Corollary 3.8. When applying The-

orem 4.2, we choose a sufficiently large set S containing T and satisfying the

required conditions.
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One can also deduce from Theorem 4.2 a quantitative version of the statement

above.

4.2. Unramified Heisenberg Galois extensions over quadratic exten-

sions of cyclotomic fields. By combining Corollary 3.8 and Theorem 4.2

over the cyclotomic field Q(ζn), one obtains Theorem 1.1 stated in the intro-

duction.

4.3. General remarks about the unramified Inverse Galois problem.

It is a folklore conjecture that every finite group occurs as the Galois group of an

unramified Galois extension of some quadratic number field. In the case of finite

abelian groups, this would be an immediate consequence of the Cohen–Lenstra

heuristics.

In fact, in the abelian case, the strongest general result concerning this folklore

conjecture is obtained by arithmetic specialization from the hyperelliptic curve

of Corollary 3.8. More precisely, one obtains from this curve infinitely many

imaginary quadratic fields whose class group contains a subgroup isomorphic to

(Z/nZ)2, and the rest follows from class field theory.

The construction of unramified Galois extensions of small degree number

fields has a long history. Shafarevich proved that the Inverse Galois problem

over Q has a solution for solvable groups. Using Shafarevich-type methods, it

was recently proved by Kim [6] that, if G is a solvable group of exponent g, there

exists a number field K of degree g such that G can be realized as the Galois

group of an everywhere unramified extension of K. Since H2d+1(Z/nZ) is a

metabelian group of exponent n, one deduces from Kim’s result that there exist

number fields K of degree n over which H2d+1(Z/nZ) can be realized as the

Galois group of an everywhere unramified extension. However, the approach in

[6] by itself does not apply to the folklore conjecture as soon as G has exponent

larger than 2.

Our Theorem 1.1 is a result in the direction of the folklore conjecture, using

a completely different, geometric approach. The advantage of this approach is

that it can in principle lead to proofs of the folklore conjecture for various G

of large exponent provided one can construct hyperelliptic curves with suitable

properties. More explicitly, the proof of Theorem 1.1 suggests a connection

between Question 3.10 and the folklore conjecture.
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[4] J. Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wis-

senschaften, Vol. 179, Springer, Berlin–New York, 1971.
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