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Abstract

The Iwasawa theory of CM fields has traditionally concerned Iwasawa modules
that are abelian pro-p Galois groups with ramification allowed at a maximal set of
primes over p such that the module is torsion. A main conjecture for such an Iwa-
sawa module describes its codimension one support in terms of a p-adic L-function
attached to the primes of ramification. In this paper, we study more general and
potentially much smaller modules that are quotients of exterior powers of Iwasawa
modules with ramification at a set of primes over p by sums of exterior powers of
inertia subgroups. We show that the higher codimension support of such quotients
can be measured by finite collections of characteristic ideals of classical Iwasawa
modules, hence by p-adic L-functions under the relevant CM main conjectures.

1 Introduction

Iwasawa theory studies the growth of Selmer groups in towers of number fields. In the
commutative setting, these towers have Galois groups isomorphic to Z; for some r >
1, and their Iwasawa algebras are isomorphic to a power series ring in 7 variables over
Z,. The Selmer groups are typically attached to Galois-stable lattices in p-adic Galois
representations that come from geometry. The local conditions defining the Selmer groups
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are chosen so that the Pontryagin dual of a limit up the tower is a finitely generated
torsion module over the Iwasawa algebra. For example, when the Galois representation is
the trivial representation, these dual Selmer groups are abelian pro-p Galois groups with
restricted ramification. In many instances, one can construct a power series that gives rise
to a p-adic L-function attached to the lattice and the Selmer conditions. In what is known
as a main conjecture, this power series is conjectured to generate the characteristic ideal
of the Iwasawa module.

In this paper, we develop a method to study the support of Iwasawa modules in arbi-
trary codimension, focusing specifically on the Iwasawa theory of CM fields for one-
dimensional Galois representations. To study the codimension n support of a finitely
generated Iwasawa module, we use the nth Chern class of its maximal codimension n
submodule. This Chern class, as defined in [2], is the sum of the lengths of its localiza-
tions at the prime ideals of codimension n. For instance, the first Chern class of a finitely
generated torsion Iwasawa module is the divisor defining its characteristic ideal.

A CM main conjecture describes the first Chern class of an Iwasawa module unrami-
fied outside of a (p-adic) CM type of primes over p in terms of a Katz p-adic L-function.
Recall that a CM type is a set of one from each pair of complex conjugate primes over p in
a CM field, supposing that the primes over p split from the maximal totally real subfield.
We aim to construct an Iwasawa module which has support in higher codimension related
to a tuple of p-adic L-functions for distinct CM types. For this, we take the quotient of
the top exterior power of a p-ramified Iwasawa module by a sum of top exterior powers
of composites of inertia groups at certain of the primes. The main results of this paper re-
late higher Chern classes of these exterior quotients to the first Chern classes of Iwasawa
modules unramified outside of a CM type, and therefore to Katz p-adic L-functions if the
relevant CM main conjectures hold.

The idea of taking top exterior powers occurs frequently in number theory, as charac-
teristic ideals arise as determinants. The quotient of the top exterior power of a finitely
generated free module by the top exterior power of a free submodule of full rank has first
Chern class equal to that of the quotient of the two free modules. For this reason, exterior
powers figure heavily in equivariant formulations of main conjectures using determinants,
as in the work of Fukaya and Kato [4]. They also appear prominently in Stark’s con-
jectures, in which one considers the top exterior powers of isotypic components of unit
groups in order to arrive at regulators which are related to the special values of derivatives
of Artin L-series. Our work has the seemingly unique aspect that we take a quotient of a
top exterior power of an Iwasawa module by a sum of two or more top exterior powers of
submodules.

Let us briefly describe our main theorems, as we shall state after introducting the nec-
essary framework. Theorem A relates the codimension 2 support of an exterior quotient
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to a pair of first Chern classes corresponding to arbitrary distinct choices of CM types. In
Theorem B, by localizing away from bad primes, we obtain an isomorphism between an
exterior quotient and the quotient of an Iwasawa algebra by the ideal generated by a tuple
of first Chern classes. Theorem C involves two CM types differing in a degree one prime,
in which case our quotient is the classical Iwasawa module unramified outside the inter-
section of the two CM types. We relate the sum of second Chern classes of this module
and another for the complex conjugate set to the ideal generated by the two first Chern
classes of the CM types. Finally, in Theorem D, we describe a quotient of second exterior
powers as a Galois group with restricted ramification.

We turn to details of our work, starting with the formal definition of our key invariant.
An index of notations is given in Section B at the end of the paper. For a finitely generated
Iwasawa module M, we let ¢,,(M) denote the nth Chern class of the maximal submodule
T, (M) of M supported in codimension at least n. That is, ¢, (M) is the formal sum

tn(M) = Zlength(Tn(M)p)[P]

over height n prime ideals P in the Iwasawa algebra. In the case that M = T, (M), this is
the nth Chern class ¢, (M) of M considered in [2]. The invariant ¢, (M) is naturally iden-
tified with the characteristic ideal of the torsion submodule of M, matching the classical
definition. Note that ¢,, is not additive on arbitrary exact sequences of finitely generated
modules, but it is on exact sequences of modules supported in codimension at least n.

Now, let p be an odd prime, and let £ be a CM field of degree 2d. We suppose that
each prime over p in the maximal totally real subfield E* of E splits in E. Let F' be a
finite abelian extension of F of degree prime to p containing the pth roots of unity. Let K
be the compositum of I’ with all of the Z,-extensions of F, and let I' = Gal(K/F) and
G = Gal(K/E). Let X be a subset of the set of primes of E over p. We consider the X-
ramified Iwasawa module Xy that is the Galois group over K of the maximal unramified
outside of X abelian pro-p extension of K. Then I' is isomorphic to Z; for some integer
r > d+ 1, where r = d + 1 if the Leopoldt conjecture is true. Let

Yv: A=Gal(F/E) - W~

be a p-adic character, where 1V denotes the Witt vectors of an algebraic closure F,, of F,.
(In our main results, W may be replaced by the ring generated by the values of ¢).) Let A =
W I'] be the completed group ring of I" over W, which is a power series ring in r variables
over . We are interested in the finitely generated A-module X g = Xy ®Zp (a] W for the
map Z,[A] — W induced by v, which is to say the ¢-isotypical component of Xy, or
more precisely of its completed tensor product with 1.

Let Sy be the set of all primes over p in E. A (p-adic) CM type ¥ is a subset of
Sy which contains exactly one prime of each conjugate pair. One has a power series
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Ly, » € A that gives rise to a certain Katz p-adic L-function attached to ¥ and 1. Hida and
Tilouine [8] showed that X g is A-torsion and stated an Iwasawa main conjecture that says
that the characteristic ideal of X g/’ is generated by Ly, ;. They proved an anticyclotomic
variant of this conjecture under certain hypotheses. Work of Hsieh [9] shows that the
characteristic ideal of X% is divisible by Ly, , under certain assumptions. In particular,
this relates the codimension one support of the algebraically defined module X 12/’ to that
of the analytically defined module A/(Ly ). We will use Ly, to denote a choice of
generator of the characteristic ideal of X{,. The CM main conjecture for X is then the
statement that (Ly ;) = (Ly ).

Fix a set S of primes over p properly containing a CM type. Let us write S as a union
of two distinct CM types &; and Ss. Let 6 be a greatest common divisor in A of Lg, , and
Ls, . For a discussion of a possible construction of examples in which 6 is a non-unit,
see Remark 5.8. The first Chern class of the quotient A/(Ls, 4, Ls, ) is the ideal Af. Our
interest in this paper is the more subtle information contained in the pseudo-null module

. ( A ) YN A W
>\ (Lsr.n Lsy) (Lsipr Lsyw) (L)l Lsyw/0) '

We aim to relate the codimension two support of the module (1.1) to that of some

naturally defined algebraic modules, as was done in [2] for imaginary quadratic fields
E under the assumption of coprimality of Ls, , and Ls, . This requires overcoming a
serious obstruction for £ an arbitrary CM field. Namely, the A-rank ¢ of ng may now be
larger than 1: that is, we show in Lemma 3.1 that

(= > [E:Q)

vES—X

where X is any CM type contained in S. If ¢ > 1, then the first Chern class of X}é’i for
i € {1, 2} is insufficient to identify, up to errors supported in codimension greater than 2,
the A-submodule /. % of X}é’ generated by inertia groups at primes over 7, = S — S,.

We make the simple but key observation that the /th exterior powers of Xfé’ and the
I;é are indeed rank one A-modules. We therefore replace the quotient stp /(1L % + I% ) =
Xfé’l s, found in the imaginary quadratic setting by the exterior quotient

(A XE)u
(A" L) + (N 12 (12)

where a subscript “tf” denotes maximal A-torsion-free quotient. Here, we view each
(A Ifé)tf as a submodule of (A" X¥)s and take their sum within the latter group. We
will compare the second Chern classes of the maximal pseudo-null submodules of (1.2)
and of A/(Ls, ¢, Lsy.0)-
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For a compact A-module A, we let A(1) be the Tate twist of A by the cyclotomic
character of I'. Let A* denote the A-module which as a topological Z,-module is A and
on which v € I" now acts by v~!. For A finitely generated, we define

E'(A) = Ext (A", A),
we set Ay = A/T;(A), we let A" A denote the (th exterior power of A over A, and we
let Fitt(A) denote the Oth Fitting ideal of A.

Write ¢ for the set of primes over p not in S. Then ngw ' is a torsion A-module
because S¢ is contained in a CM type of primes over p. To simplify statements of our
main theorems as stated in the body of this paper, we suppose in this introduction that
(resp. wt)~ 1) is nontrivial on all decomposition groups in A at primes p € S (resp. p € S),
for S the complex conjugate set to S. Under this assumption, each I;z’-i is A-free, so each

A I;é = (A’ I%)tf is free of rank one. (The latter comment applies to the theorems in this
introduction, so we omit the “tf”” notation on such groups in them.)

Theorem A. For a union S of two distinct CM types S, and Sy and its complement S¢,

we have an equality of second Chern classes

A ‘XY 0 A
" ( ) _ 4, e(/1> S)Ef o — (1.3)
(L85 Lss0) N I+ N\ I O TFitt(E2(X2Y )(1))
where { = ranky ngb, where 0 is a gcd of the characteristic elements Ls, ., of ngpi for
i € {1,2}, and where 0y is a generator of t1(\' X%).

Remark 1.1. In Theorems 5.6 and 5.9, we generalize Theorem A to treat n-tuples of CM
types, without any assumption on .

The A-module X% is a quotient of X%¥~ for each of the 2 CM types ¥ containing
S°¢, each of which has first Chern class (Ly ,,,-1), and these lack obvious dependencies
in general. When ¢ > 1, we therefore suspect that the A-module Xg’ﬁb B frequently has
annihilator of height greater than 2, in which case the last term in (1.3) vanishes. (Recall
that for a Cohen-Macaulay ring R, the height of the annihilator of a finitely generated I?-
module M is at most the smallest i such that Ext’(M, R) is nonzero [14, Theorem 17.4].)
In fact, the proof of Theorem A and a spectral sequence argument lead to the following.

Theorem B. Let S be a subset of Sy that properly contains a CM type. Let q be a prime
of A not in the support of (Xf;ﬁpfl)‘(l). Then the following hold.

(i) The Ay-module stpﬂ is free of rank (. In particular, (\' stp’q)tf = A\’ X}sﬁ’q.

(ii) Let Sy,...,S, be distinct CM types contained in S for some n > 1. Then
/\g Xjé}:q ~ Aq

NIL 4+ NI Lsiw L)
where T, = S — S; for each i.
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The rank ¢ of Xfé’ equals 1 if and only if S is a union of two CM types S; and S,
that differ in a single completely split prime. In this case, supposing that Ls, , and Ls,
are relatively prime, we prove the following remarkably clean refinement of Theorem A,

. . 71 . .
which rests on proving that ngpl ns, and Xgipm32 are pseudo-null under this assumption.

Theorem C. Suppose that { = 1, and suppose that Ls, , and Ls, ,, are relatively prime.

Then we have

A ot
“ (m) = o2(X§,s,) + (X5 5,) (1), (1.4)

where S; denotes the conjugate CM type to S; for i € {1,2}.

Remark 1.2. Theorem C is a direct generalization of [2, Theorem 5.2.5], which treated
the case that E is imaginary quadratic. That we could prove this result was far more
surprising to us than it might seem: at the time of the writing of [2], the fact that X g’f has
rank [E7 : Q] stood as a serious obstacle to a generalization to arbitrary CM fields.
While one can derive Theorem C itself through Theorem A (in particular, as X}f 1s
torsion-free when the torsion module Xf;f’ s pseudo-null), we give a finer and more
subtle version without assumption on v and an entirely separate proof in Theorem 5.12.

We will show in Proposition 5.10 that if ¢ = 1, then Ls, , and Ls, , are relatively

prime if and only if both X§ 5 and X%f{g: are pseudo-null.

Remark 1.3. Let us elaborate on a comment made earlier. One can ask about the relation-
ship between Xgpm s, and A/(Ls, 4, Ls, ) when £ > 1. The maximal pseudo-null sub-
modules of Xfé’l and Xfé; are trivial. Therefore, Ls, , and Lg, ,, are annihilators of Xfé’l
and ng, respectively, so they annihilate their common quotient stpm s, Consequently,
any prime ideal in the support of X}fm s, should contain both Ls, 4 and Ls, 4, and hence
should be in the support of A/(Ls, 4, Ls, ). However, even under the simplifying as-
sumption that X }é’ is a free A-module, the converse is unlikely to hold in general. A prime
ideal P of A could be in the support of both X¢/I% and X¢/I} but fail to be in the
support of X;‘f/(]$1 + I%) = Xfém&. For example, A-module bases for I;p-l and I% (as-
suming they are free) could each be linearly dependent modulo P, but their union might
easily contain a linearly independent subset modulo P.

When ¢ > 1, it is natural to ask there is an interpretation of the first term on the right-
hand side of (1.3) as the second Chern class of a suitable Galois group. We provide such
an interpretation in the case that / = 2.

Definition 1.4. Let L be the maximal abelian pro-p extension of K that is unramified
outside of S = §; U Sy, so that Xs = Gal(L/K). Let N be the maximal abelian pro-p
extension of L unramified outside S with the following properties:
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(i) N is Galois over E, and Gal(N/L) is central in Gal(N/K), and

(ii) the natural commutator pairing Xs x Xs — Gal(/N/L) is Hermitian with respect
to the action of G = Gal(K/E).

Let M be the maximal subextension of N containing L such that M /L is unramified
outside S; N Sy. Set U = Gal(N/L) and V' = Gal(M/L).

We show that there is a canonical square root of the conjugation action of G =
Gal(K/E) on U and on V; see Remark 7.6. We consider the 1)-isotypical components
UVY and VV¥ of U and V, respectively, for this square root action. The 12-isotypical
component of the usual conjugation action of A on V is the direct sum of VV¥" over all
characters ¢ for which ¢"? = 2.

Theorem D. Suppose { = 2. Let im(Tor(UV?)) denote the image of Tor(UV?) in VV¥
under the homomorphism induced by the surjection U — V. The commutator pairing on

Xs induces an isomorphism /\?2 ngp = UYY and surjections

T 0 5 o an 2 1y 270 in(Tor(UV®
No I7 + Ao 17, Ao Iy + NIy, im(Tor( )

whose kernels are supported in codimension at least 3.

Theorem D is proved in Theorem 7.9. For a field diagram summarizing the groups and
fields it involves, see Appendix A. The significance of this theorem is that when ¢ = 2,
a particular graded piece of a higher term in the lower central series of the Galois group
of the maximal unramified outside S pro-p extension K ép ) of K arises when one seeks a
Galois-theoretic interpretation of natural modules defined by p-adic L-functions. If V¥
is pseudo-null, one has

t (vﬁ) 1 <$> _— (im(Tor(Uﬁ))) .

However, t5 is not an exact functor on exact sequences of modules that are not pseudo-
null, and we do not know in general whether VVYis pseudo-null.

Remark 1.5. It would be natural to consider how to generalize Theorem D for ¢ > 2. If
N; is the maximal abelian pro-p unramified outside S extension of the field L in Definition
1.4, then Xs = Gal(L/K) and T' = Gal(V;/L) are the first two successive quotients in
the derived series of Gal(Kép)/K). For ¢ = 2, the Galois groups U = Gal(N/L) and
V' = Gal(M/L) are quotients of Hy(Xs,T) = Txs. For ¢ > 2, we expect quotients of
the homology group H, »(Xs,T') to appear.
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We end this introduction with two comments on potential research directions. First, we
remark that though we have restricted ourselves to classical Iwasawa modules, we expect
that the approach we have outlined in this paper will apply to general Selmer groups.
This is already illustrated in the recent work of Lei and Palvannan on Selmer groups of
supersingular elliptic curves [11] and tensor products of Hida families [12].

Secondly, we note that congruences between Eisenstein series and cusp forms play a
key role in proofs of one of the divisibilities in main conjectures, whereby the existence
of residually-reducible Galois representations with certain ramification behavior leads to
lower bounds for the support of Selmer groups. One can ask how to apply such techniques
to directly study the higher codimension behavior of Iwasawa modules. The right hand
side of (1.4) has two terms measuring the size of Galois groups of extensions unramified
outside the intersection of two CM types. It would be interesting if one could construct
Galois representations that separately control each of the two terms. For instance, one
might consider congruences between Hida families modulo Eisenstein ideals attached to
A-adic Eisenstein series with constant terms arising from different p-adic L-functions.

2 Duality

Let p be a prime, let £/ be a number field, and let /' be a finite Galois extension of £ of
prime-to-p degree. We suppose that F' has no real places if p = 2. Let A = Gal(F/E).
Let K be a Galois extension of F that is a Z;-extension of F' for some r > 1, and
set I' = Gal(K/F). Note that K /F is unramified outside p as a compositum of Z,-
extensions. Set G = Gal(K/E) and Q2 = Z,[7].

Let S = S, « be the set of all primes of £ over p and oo, and let Sy be the set of
all primes of E over p. For any algebraic extension F’ of F, let G ¢ denote the Galois
group of the maximal extension F§ of F” that is unramified outside the primes over S.
Let Q = Gal(Fs/FE). For a compact Z,[Q]-module T', we consider the Iwasawa cochain
complex

Cru(K.T) = lim C(Gps.T)
FICK
that is the inverse limit of continuous cochain complexes under corestriction maps, with
F' running over the finite extensions of F'in K. It has the natural structure of a complex
of Q-modules. We let RI'y,, (K, T') denote its class in the derived category and Hi (K, T')
its 7th cohomology group. We similarly let

Corw(K,T) = lim @ C(Gry, T)

FICK glp

for any p € Sy, where G FY, denotes the absolute Galois group of the completion Fqg
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For a finitely generated {2-module, we have
EXtéZ(Mv Q) = EXt%p[[F]] (Ma Zp [[F]D
as Z,[I']-modules (since €2 is Z,[I']-projective). We employ the notation
BY(M) = Exth(M", Q).

where M" is the 2-module M with the new action -, given by f -, m = «(f)m for f € Q,
where ¢: €2 — ) is the continuous Z,-linear involution given on G by inversion. This is a
bit cleaner for the purposes of duality, as it alleviates the need to place involutions in the
statements of various results. We set M* = E°(M) = Homg(M*, Q).

For later use, we note that there are natural isomorphisms of {2-modules

(M) = E{(M)" and E'(M(~1)) = EX(M)(1),

where M (n) for n € Z is the (2-module that is M with the modified G-action g - m =
Xy (g)gm for x,,: G — Z the p-adic cyclotomic character.

Let X be a subset of Sy. Let ¥ = Sy — X. We let Ry, 1, (K, T') be the class in the
derived category of the cone

Cy.1w(K,T) = Cone (CIW(K, T) = P Cou(X, T)) [—1]

vEX
and define Hi, 1 (K, T') to be its ith cohomology group. We define RI'se 1, (K, T) and
Hi. 1, (K, T) similarly.
We have the following two spectral sequences.

Proposition 2.1. Let T' be a compact Z,[Q]-module that is finitely generated and free
over Z,, and let T* be its Z,-dual. There are convergent spectral sequences of Q-modules
F3/(T) = E'(Hy. 3, (K. T)) = FH(T) = Hy, (K, T#(1)),

HY (T) = E'(HS, (K, T#(1))) = H#(T) = H, (K. T).

Proof. By definition, we have the commutative diagram of exact triangles (of which we
write three terms)

@vez RFMIW(K’ T)[_l] —— @vez RFUJW(Ka T) [_1]

l i

Does, RLvw (K, T)[~1] ———— RIs, 1 (K, T) ———— R (K, T)

l l |

@vezc RF%IW(Kv T) [_1] E— RFZC,IW(Ky T) —_— RFIW(K7 T)a
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with the dashed arrow being the induced morphism. The derived Iwasawa-theoretic ver-
sions of Poitou-Tate and Tate duality found in [15, Section 8.5] then yield isomorphisms

in the derived category of finitely generated (2-modules

RFZ,IW(K, T) R RHomQ(RFgc,IW(K, T#(l))L, Q)[—B]

| l

RT} (K, T) —=— RHomq(RTs, 1 (K, T#(1))", 2)[~3]

| l

D,es RTu 1w (K, T) —— @, .. RHomq (R, 1 (K, T#(1))", Q)[—2],

where the lower two isomorphisms yield the isomorphism of cones. (That these are mor-
phisms in the derived category of {2-modules and not simply Z,[I']-modules follows
from their definitions and the fact that 2 is Z,[I']-projective. The case that A is abelian
is treated in [15], and this can be found in a more general context in [13, Theorem
4.5.11.) [

Let us now focus on the case of Z,(1)-coefficients.

Lemma 2.2. We have H (K, Z,(1)) = 0 unless i € {1,2,3}, and H, (K, Z,(1))

vanishes unless ¥° is empty, in which case it is isomorphic to Z, as an )-module.

Proof. The first statement is a consequence of the fact that G g and G, for all p € Sy
have p-cohomological dimension 2, the vanishing in degree 0 following from the fact that
I' is infinite. The first map in the exact sequence

@ H2 (Kv Zp(l)) — H?S'f,lw(K7 Zp(l)) — H%,Iw(Kv Zp(1>> — 0

v, Iw

veEX®

is identified via duality (i.e., invariant maps) with the summation map @wezg( Ly — L,
where X% is the set of places of K over places in 2. The second statement follows. [

Let Xy denote the Y-ramified Iwasawa module over K. Let X% denote the maximal
quotient of X, that is completely split at the primes in Sy — X. We also set

Yy = H3 1, (K, Z,y(1)). (2.1)

For p € Sy, let G, denote the decomposition group in G at a place over the prime p in K,
and set K, = Z,[G/G,], which has the natural structure of a left 2-module. Set

Ks =Pk, 2.2)

peX

so in particular Ky = 0 if X = &. Let

’Czyg = ker(ng — Zp) (23)
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be the kernel of the sum of the augmentation maps.
For p € Sy, letI', = G, N I" be the decomposition group in I' at a prime over p in K,
and let
rp = rankz I 2.4)

By [2, Lem. 4.1.13], we have the following.
Remark 2.3. For j > 0, there are isomorphisms E’ (/) = (IC;)(S’W of (2-modules.

Let ®, denote the Galois group of the maximal abelian, pro-p quotient of the absolute
Galois group of the completion K, of K at a prime over p. Define J, to be the inertia
subgroup of ©,. We have completed tensor products

Dy = Q@16 Dp and I, = Q®z,g,) Jy-

These have the structure of {2-modules by left multiplication. Set

Ds =D, and Iy =PI, (2.5)

pex peX

Lemma 2.4. There is a canonical exact sequence
0— X2 = Yy — Kseg — 0.

Proof. We have a long exact sequence

P H. 1 (K, Z,(1) = HE 1 (K, Z,(1)) = Ha 1, (K, Z,(1)

v, Iw
veEXC

= P H 1 (K, Zy(1) = B 1, (K Z, (1)) = H, 1, (K, Zy(1)).

By Poitou-Tate duality, the second term is Xg . and by Tate duality, the first term is Dy,
and the cokernel of the resulting restriction map Dy — Xg, is X%. Via the invariant
maps of local class field theory, the group P, v H 1, (K, Z,(1)) is identified with Ky

Lemma 2.2 tells us that HngW(K ,Zy(1)) = Z,, and again by class field theory, the map
Kse — 7Z, is given by summation. Ol

In the remainder of this section, we make the following hypothesis:
Hypothesis 2.5. The field K contains all p-power roots of unity.

This allows us to pull twists out of our Iwasawa cohomology groups and to apply
Weak Leopoldt where helpful. One could remove this assumption with appropriate mod-
ifications, but we do not need to do so for our applications.
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Remark 2.6. The canonical surjection Xy — X% is an isomorphism if Dy = [Is. Our
assumption on K implies that r, > 1 for each p € 3¢, so the canonical injection Xy, —>

Yy has torsion cokernel which is pseudo-null if r, > 2 for each p € .
Using the spectral sequences of Proposition 2.1, we obtain the following.

Proposition 2.7. If ¥ ¢ {@, Sy} or r =1, then there is an exact sequence
0 — E'NYse)(1) = Y — Y& — E?(Yse)(1) — 0, (2.6)
and for v > 1, there are isomorphisms
E'(Yg) = BT (Yae) (1) 2.7)

of Q-modules. If ¥ = Sy, then the above statements hold upon localization at any prime
of Q outside the support of Z,, while if ¥ = &, they hold outside the support of Z,(1).
More precisely, if ¥ = Sy, then (2.6) becomes exact upon replacing the rightmost zero
by 7., and the maps in (2.7) are isomorphisms for © > 2. For i = 1, the map in (2.7) is
surjective with procyclic kernel unless it happens that r = 2 and. it is injective with finite

cyclic cokernel.

Proof. Let us first suppose that ¥ ¢ {@, S;}. Consider the spectral sequence F5’(Z,) =
F*9(Z,) of Proposition 2.1. By Lemma 2.2 and the fact that & # & (resp., ¥ # Sy), we
have F5/(Z,) = 0 unless j € {1,2} (resp., F¥(Z,) = 0 unless k € {1,2}). The spectral
sequence then yields an exact sequence of base terms

0 = B'(H2. 1 (K, Z,)) = Yy — Hh 1 (K, Z,)* — E2(H2, 1 (K, Z,)) = 0
and isomorphisms
B (Hhe 1 (K, 7)) = B2 (4, (K, Z,))

of 2-modules for 7 > 1. We then obtain our results by applying two isomorphisms: the
first
Hye 1 (K, Zy) 2 Y5

arises from spectral sequence H;J (Z,) = H'"tI(Z,) of Proposition 2.1 by the vanishing
of the terms H**(Z,) that occurs since ¥ # S}, and the second

He 1 (K, Zp) 2 Yee(—1)

follows by our assumption that K contains all p-power roots of unity.
If ¥ = &, then we have

Fi(2,) = E(HY, (K. Z,)) = B(Z,(~1) 2 Z,(1)"
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by [2, Cor. A.13]. The above arguments go through so long as we localize all terms at a
prime of € outside of the support of Z,(1), as well as if r = 1.

For the more precise statements for ¥ = Sy, we can use the results of [2], as we
explain. Set U = Hj, (K, Z,) for brevity of notation. As in the proof of [2, Cor. 4.1.6],
we have an exact sequence

0— E'Y(Y,)(1) — Yo, = Y5 — E*(Yy)(1) = Z, — E'(U) = E*(Yz)(1) = 0
(2.8)
and isomorphisms E/(U) = E“*%(Yy) for i > 2. As in [2, Thm. 4.1.2], we also have an
exact sequence

0= Zy' = U =Yg, = Zy>. (2.9)

If r > 3, orif r = 2 and the map Y3 s Z,, is zero, we can substitute in the result-
ing isomorphism U = Y to give the result. If 7 € {1,2}, then the maps Ei(YS’“f) —
E2(Y,)(1) are of trivial groups for i > r (see [2, Cor. A.9]). For r = 1, this implies that
the map E'(U) — Z, given by taking Ext-groups of (2.9) is an isomorphism, forcing the
map Z, — E'(U) in (2.8) to also be an isomorphism, hence the result.

Finally, suppose that » = 2 and the map Yg‘f — 2y, of (2.9) is nontrivial, hence has
image isomorphic to Z,. Taking Ext-groups, we then have an exact sequence of the form

0— EYYg) = ENU) = Z, =0

in which the first term is finite (again by [2, Cor. A.9]). Since E3(Y}) is finite as well, it
follows that the map Z, — E*(U) in (2.8) must be injective, and so we also have an exact

sequence
0— Z, — EYU) = E*(Yy)(1) = 0.

From these two sequences and a simple application of the snake lemma, we obtain that
the composite map E'(Yy ) — E*(Y5)(1) is injective with finite cokernel. O

Corollary 2.8. Suppose that Y. is torsion and ¥ # Sy. Then E'(Ys)(1) = Ys., and
E!(Ys)(1) is zero for all i > 2.

Proof. We apply Proposition 2.7 with 3J and 3¢ reversed. Note that 3 # &, since Yy, =
X, has nonzero Z,[I']-rank. As Ys. is torsion, we have Yy = 0, so E*(Y.) = 0 for all
i > 0, and the isomorphisms of (2.7) tell us that E*(Yy) = 0 for all ¢ > 3. Since Y5 = 0,
the exact sequence (2.6) gives the remaining statements. ]

Remark 2.9. The result of Corollary 2.8 remains true for > = S after localization at a
prime away from the support of Z,(1) (and without localization if » = 1), as follows by
Proposition 2.7.
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Let us set

7, ifY=S,andr > 2
Zzz{p ! pandr = 4 (2.10)

0 otherwise.

Theorem 2.10. Let q be a prime ideal of ) outside of the support of Yi.(1) & Zs. Then
the localization Ys. 4 of Ys, at q is a free q-module.

Proof. By Corollary 2.8 and Remark 2.9, we have
Ethq(YE,qu) = (El(YZ)L)q = (Yae(—=1))q = (Yee(1))g = 0,

and Exté2q (Ysq,€) = O0forall i > 2. Since Yy 4 is a finitely generated module over the
regular local ring (2, with vanishing higher Ext-groups to (2, itis free (cf. [1, (4.12)]). [

Proposition 2.11. For any nonempty subset P of 3., we have a map of exact sequences

0—>E1(ICP)<1) > Dp D}k;* Ez(’CP)(l)—>O

I .

0—— B! (Yee)(1) Y — Y E2(Ye ) (1) — Zs

of Q:-modules in which the vertical maps are the canonical ones. If the primes of K over
each p € P have infinite residue field degree, then Dp = Ip and E'(Kp) = 0.

Proof. The exactness of the lower sequence was shown in Proposition 2.7. The exactness
of the upper sequence is shown in [2, Thm. 4.1.14] via the spectral sequence of derived
Tate duality (see (2.11) below), and the map of exact sequences from the corresponding
map of spectral sequences. That Dp = Ip is [2, Lem. 4.2.2], and El(le) = 0 follows
from Remark 2.3 and 7, > 2 (since K is assumed to contain all p-power roots of unity
and its completion at p to contain the unramified Z,-extension). [

Let us refine the above result in the local setting.

Lemma 2.12. Let p € Sy. The Q-module D, has rank d, = [E, : Q,]. We have E'(D,) =
0 unless i € {0,1,r, — 2}. Moreover, the following statements hold.

(i) Ifry = 1, then D; = D;*(—1) is Q-free and fits in an exact sequence
0— K, = Dy(=1) = D, — 0,

(ii) If ry = 2, then D; = D;*(—1) is Q-free and fits in an exact sequence
0= Dp(=1) = D, — K, =0,

and E'(D,) = K,(—1).
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(iii) If ry = 3, then D; = D,(—1), and there is an exact sequence

0 — Kp(—1) = EYD,) = K — 0.

(iv) If 1y > 4, then D} 22 Dy(—1), EX(D,) 2 Cy(—1), and E»~%(D,) = KL,

Proof. The local spectral sequence in the proof of Proposition 2.1 for 1" = Z, has the

form
E'(Hy 2 (K, Z,(1))) = HP (K, Z,). (2.11)
We have H 1, (K, Z,) = Hj 1, (K, Z,(1))(—1) by assumption on K, and H} 1., (K, Z,(1))

is trivial unless ¢ € {1, 2}. Since

1
HvaW

(K,Z,(1)) =~ D, and H?

p’IW

(K, Zy(1)) = Ky,
the spectral sequence (2.11) yields an exact sequence

0 = EY(K,) = Dy(—1) = D; — E*(K,) = K,(=1) = EY(D,) = E*(K,) = 0

(2.12)
and isomorphisms E*(D,) = E‘*?(K,) for i > 2. The exact sequences and isomorphisms
follow easily from this and Remark 2.3. (Here, one must note that the map K, (1) — K,
that arises in (2.12) for r, = 2 can only be zero, as in the proof of [2, Thm. 4.1.14]
already cited.) The statements of freeness for 7, € {1,2} follow from E*(D;) = 0 for
¢ > 1, which is derived from the above and [2, Cor. A.9]. The equality rankq D, = d,
follows from [2, Lem. 4.3.1(b)]. O

We note that Lemma 2.12 tells us that the reflexive {2-module Dy is not free if r, > 3,
since in that case its first Ext-group is nonzero. The following corollary is proven in the
same manner as Theorem 2.10 but using Lemma 2.12.

Corollary 2.13. Let p € Sy, and let q be a prime ideal of §2 that is either
e of codimension less than ry or
e outside the support of IC;(l) and, if r, > 3, also outside the support of IC,.

Then (D,)q is free of rank [E, : Q,] over Q.

3 CM fields

Unless otherwise stated, we maintain the notation of the previous section. Let £ be a CM
extension of Q of degree 2d and E™ its maximal totally real subfield. Let p be an odd
prime such that each prime over p in E* splits in E. By a (p-adic) CM type, we shall
mean a set consisting of one prime of F over each of the primes over p in E*.
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Let E be the compositum of all Z,-extensions of E. If Leopoldt’s conjecture holds
for £/ and p, then E is the compositum of the cyclotomic Z,-extension £“¢ and the
anticyclotomic Z¢-extension E*¥¢ of E. We set I" = Gal(E/E).

As before, we let 7 = ranky, I and r, = rankz, I',, and we also set d, = [E, : Q]
forp € Sy.

Lemma 3.1. Letp € Sy.
(i) One hasry, = d, + 1.
(ii) The extension E / E has infinite residue field degree at p.

Proof. Let X be a CM type containing p. To prove (ii), it suffices to show that p has
infinite order in the inverse limit of the ray class groups of £ of conductor a power of
1T es g Let o € Op generate a positive power of p. By class field theory, it suffices to
prove that no positive power of « lies in the closure U of the image of the unit group
Op in [[ s £y - Here [ [ 5 By is canonically isomorphic to (E* ®7 Z,)*, so the norm
Normpg+ g from E* to Q induces a continuous homomorphism A: [] 4 Ef — Q.
The group O, has finite index in O and Normg+ (O ) € {£1}, so U Nker N is of
finite index in U. Let T be the set of embeddings of £ into @p that send some prime in ¥
into the maximal ideal of the integral closure of Z, in Q,. Then NV'(a) = [[,ero(a)isa
product of non-units of the ring of all algebraic integers, so is certainly not a root of unity.
Thus, no positive power of « lies in ker NV, so no such power lies in U and we have (ii).
From (ii), we see that r, = rankz, J, + 1, where J, denotes the inertia group in I';.
ses; Or, = I withkernel O ®zZ,
and finite cokernel. In particular, rankz, J; < rankz, qu = d, for all ¢ € Sy. As the

Local reciprocity maps provide a homomorphism €5

(—1)-eigenspace of O, ®z Z, under complex conjugation is finite, the sum of the Z,-
ranks of the inertia subgroups at q € ¥ in Gal(E*¥/E) is d. As 3 s,dy = d, this
forces rank J; = d, for all g € X. In particular, we have (i). [

We let ¢ denote a one-dimensional character of the absolute Galois group of E of finite
order prime to p, and we let £, denote the fixed field of its kernel. We set /' = E(11,,) and
A = Gal(F/E). Let w denote the Teichmiiller character of A. We set K = FE. We take
G = Gal(K/F). We shall make the identification I' = Gal(K/F') for the isomorphism
given by restriction.

Let I denote the Witt vectors of IF,,. We set 2 = Z,[G] and A = W [I']. For a compact
)-module A, we define

AY = AQz AW 3.1

for the map Z,[A] — W induced by 1. In particular, we have Q¥ = A. When dealing
with finitely generated A-modules M, we abuse notation and set B/ (M) = Ext? (M*, A),
much as before but now with W -coefficients.
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For any subset P of Sy, let us set

dp =Y _d,. (3.2)
peP
Lemma 3.2. Let S be a subset of Sy containing a CM type ¥, let S¢ = Sy — S, and let
T =38 — 3. We have
ranky X§ = ranky Yo = d — ds.,

where Ys is as in (2.1). Moreover, the canonical map Ifﬁ — Xff is injective with torsion
cokernel.

Proof. We first note that Xs = Xg because of Lemma 3.1(i1). By Lemma 2.4, the cok-
ernel of the injection Xs — Y is isomorphic to the A-torsion module s (noting
'y, # 0). Therefore the ranks of stp and Yg are the same.

We know that Xfé’f has A-rank d = ry(F) by [2, Lem. 4.3.1(a)], and X;‘é’ is A-torsion
by the work of Hida-Tilouine [8, Thm. 1.2.2]. For any subset P of S, we have

ranky I}, = rank, DY = dp (3.3)

by Lemma 3.1, Proposition 2.11, and [2, Lem. 4.3.1(b)]. Since dsc = d, this forces Igc
to have image of rank d in Xg”f. As §¢ C X¢, the image of [}5”6 in Xg’f has rank dg., and
therefore X§ = coker(Ig. — X;ff) has rank d — dge.

Similarly, since Xg is A-torsion, the image of [$ in stz’ must have A-rank dr =
d — dge, and the kernel of the map I;ﬁ- — Xgp is then A-torsion. On the other hand, the
A-torsion in I is isomorphic to a subgroup of (E'(KC7)(1))¥ by Proposition 2.11, but the
latter group is zero by Remark 2.3 since r, > 2 for all p € Sy by Lemma 3.1. O]

As mentioned, for a CM type %, the A-module X7, is torsion. We will use Ly, to
denote a generator of c; (Xg ). The Iwasawa main conjecture for > and the character v
states that Ly, ,, can be taken to be the Katz p-adic L-function for ¥ and v (or more
precisely a power series that determines it).

For p € S¢, let A, be the decomposition group in A = Gal(F'/E). We have IC;;D =0
unless 1|a, = 1, in which case K = W[T/T,]. It follows from Remark 2.3 that

B (1C,) (1) 2 B (1) (1) 2 (™) (1)

is zero unless j = 7, and wi) ™! a, = 1. If nonzero, the latter A-module is isomorphic to
WIL/Ty] (1)

Remark 3.3. In fact, W[I'/T',] and W[I'/T',]* are isomorphic as A-modules via the con-
tinuous Z,-linear map that takes a group element to its inverse. In particular, we have
Ky = (IC;Z’)L as A-modules, while IC;V1 = (IC;”)L as A[A]-modules.
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Remark 3.4. Choose a topological generating set {v1,...,7,.} of I' so that for s =
e, we have I'y = (7{",...,7%) for some p-powers g1, ..., qs. Identifying W[I'] with
WITi, ..., T,] via the continuous W -linear isomorphism taking v;—1to 7; for 1 <i <,
we then have

W[[F/Fp]] = WHTI’ e ’T"‘]]/((Tl + 1)(11 - ]-7 MR (Ts + 1)(15 - 1)
The codimension s primes of W[I'] in the support of the latter module have the form
(g (Ty +1),..., @y (T, + 1)),

where ¢, is a positive divisor of g; for each 7, and ®,, is the nth cyclotomic polynomial.
As for W[I'/T',]*(1), under this identification, we have

W[[F/FPHL(U = W[[Tb ce 7TTH/(XP(71)_q1 (Tl + 1)q1 - 17 ce ’Xp(’YS)_qS (Ts + 1)% - 1)7
F where ,, denotes the p-adic cyclotomic character on I'.

Remark 3.5. For a CM type %, the primes in the support of IC;p for p € ¥ and the primes
in the support of (IC;W_I)L( 1) for p € ¥ yield trivial zeros of the Katz p-adic L-functions
for ¥ and v (cf. [10, Sect. 5.3]). In our terminology, this says that Ly, , lies in each of
these primes.

4 Exterior powers

In this section, we prove some abstract lemmas on exterior powers that we shall use in
our study. We fix an integral domain R. For a finitely generated R-module M, let /\E M
denote the (th exterior power of M over R. Let T, (M) denote the maximal submodule
of M that is supported in codimension at least n. Let Fitt(A/) denote the Oth Fitting ideal
of M. For brevity of notation, we set Q(M) = R/ Fitt(M) and My = M/T,(M). We
use the notation ¢, (M) for the nth Chern class if the support of M has codimension at
least n and set t,,(M) = ¢, (T, (M)) in general. We will identify ¢; (M) with the usual
characteristic ideal of the torsion submodule 7’ (M) of M.

Let X and F be R-modules of rank ¢ > 1 with F free. Let A\: X — F be an R-
module homomorphism with torsion kernel T, (X’) and torsion cokernel £, which in our
applications will be pseudo-null. The induced homomorphism /\Z A /\Z X — /\e F on
exterior powers fits in an exact sequence

0= TyA X) = AL x DA ACF S Que) — o,

essentially by definition. We note that if Z is an R-submodule of X of rank ¢, then the

induced map (A“Z) — (A" &)y on maximal torsion-free quotients is injective, so we
can and do identify (A’ Z) with its image in (A" X )y



Exterior Powers in Iwasawa Theory 19

Lemma 4.1. Suppose that R is a Noetherian UFD. For n > 1 and 1 < 1 < n, let
Z; be a rank { submodule of X mapped injectively under \ into a free submodule [J;
of F with pseudo-null cokernel B; := J;/\Z;). Let 6y, 01, and L; be generators of of
t1(X), c1(E), and c1 (X | T;), respectively. Then 0, divides L;, and L;=0,L, /0o generates
c(FIT) = el N F/ N To).
We have an exact sequence
(A ) L NF Q)

=4 Y

— —=
ANZ)a+-+ (AN NT+-+NTn (Lo L)QE)
where the leftmost map has pseudo-null kernel with support contained in that of the \-
modules Q(B;).

Proof. The existence of and statements about 6, #;, and L; follow from the assumption
that R? is a UFD. For 1 <1 < n, since Z; — J; is injective with pseudo-null cokernel, the
sequence of morphisms

X F
O—>T1(X)—>f—>——>5—>0

is exact when localized at any codimension one prime of K. We conclude that
a(F/T) = ci(X L) + e1(E) — ti(X) = e1(R/RL;). (4.1)

Since J; and F are free of rank ¢, we see from (4.1) that the exterior power /\g J; is equal
to the free rank one submodule ; - A* F of A\' F.
We have a commutative diagram of R-modules with exact rows

DUNL— DN T—= D, QB;) —0 4.2)
0—— (A" Xy s N F > Q(E) ——— 0.

We can pick generators for the free rank one R-modules /\K J; and /\é F so that the map
g: R" — R has the form g(ay,...,a,) = > 0y L;c;. The snake lemma then yields an
exact sequence of [2-modules on cokernels as in the statement, where the kernel of the
first map is the cokernel of the map ker g — ker ¢’ induced by h. ]

Corollary 4.2. In the notation of Lemma 4.1, there are isomorphisms

- N F N R N R,
NI+ N T (L. Ly)  ROLi 4+ ROL,
LetO be a gedin Rof Ly, ..., L,. Then 0y divides 0, so v = 0,0/0y is in R. The maximal

pseudo-null submodule of N is

RO,0 R
T - = =
2 (N) =vN RO\Ly + -+ RO\L,  (Li/0,...,L,/0)
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and we have an exact sequence of pseudo-null modules

ker ¢’ (A" &) vQ(€)
7 hkerg) o ((/\fll)tf +ot (/\Efn)tf> R 4.3)

(Ly,...,L.)Q(E)
where g, ¢/, and h are as in (4.2). In particular, if Q(B;) = 0 for all i then L; € Fitt(€)

for all i and (4.3) becomes a short exact sequence

— 0

(A )i
oo <(/\€Il)tf 4+ 4 (/\eIn)tf> — VN = vQ(€) — 0. (4.4)

Remark 4.3. From the proof of Lemma 4.1, and in particular diagram (4.2), we see that
L - Fitt(B;) C Fitt(€), and the kernel of the first term of the exact sequence in (4.3) is
the cokernel of the map

ker(R" % R) 2 ker (é Q(B)) LR Q(E))

where g(ay,...,a,) = Y., Lic;, the map h is induced by the canonical quotient map
R" — @), Q(B;), and ¢’ is the map induced by g. Alternatively, we have

ker(g') {

where @; denotes the image of ov; € R in Q(15;).

ZL% € Fitt(€ }

D hiker(g)) = {(ai)i

Z EZL Fitt(B }

i=1

5 Main theorems

We keep the notation and assumptions of Section 3. That is, we work with a CM field &
of degree 2d, a prime p such that all primes over it splitin £//E™, and a p-adic character
1 of the absolute Galois group of E. We again have

o the fields /' = Ey(p,) and K = FE for the compositum E of Z.,-extensions of F,
e the Galois groups G = Gal(K/E) and I’ = Gal(E/E), and
e the Iwasawa algebras Q = Z,[G] and A = W[I'] for W the Witt vectors of F,,.

For the definitions of the Iwasawa modules X p, leg, Yp, Kp, Kpo, Ip, and Dp, ranks rp,
and degrees dp attached to subsets P of the set Sy of primes over p, we refer the reader
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to (2.1)-(2.5) and just prior, as well as to (3.2). Recall that for a compact €2-module A, we
denote by /\e AV the (th exterior power over A of the eigenspace A¥ of A defined in (3.1).
Moreover, if A is a finitely generated A-module, then Fitt(AY) denotes its Oth Fitting
ideal in A.

Forn > 1,let Sy,...,S, be distinct CM types of primes over p viewed as subsets of
the set S of all primes over p in E. Let

The complement of S is then given by

y:ﬁg:ﬁ@
1=1 =1

SetT; =8 —S; forl <i<mn,and let

Let
¢ = ranky, Yg =d — dge,

and note that / = rank, I;/’—i for all 7 by (3.3). Recall that Ls, , € A is taken to be an
element satisfying ¢, (Xf;) = (Ls, )

We have that r, = d, + 1 > 2 for each p € Sy by Lemma 3.1. Thus, by Remarks 2.6
and 2.3, for every P C Sy we have

o [p=Dp,

o Xp — X]bg is an isomorphism,

e /Cp is supported in codimension min{r, | p € P}, and
e Xp — Yp is an injective pseudo-isomorphism.

We will use these facts without further reference.
Since we next work with eigenspaces that are A-modules, it is useful to compare their
support with those of the original {2-modules. For this, we have the following remark.

Remark 5.1. Since 2 = Z,[I'][A] and A is of prime-to-p order, every prime ideal of 2
is the inverse image of a prime ideal of the quotient 2 - e;, = O,[I'] for an idempotent
ey € Zy[A] arising from the Gg, -conjugacy class of a p-adic character ¢) of A, where O,
denotes the Z,-algebra generated by the values of ).
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Let us show that a prime q of A is in the support of MY = M ®Z,,[A],¢W for a finitely
generated 2-module M if and only if the inverse image of ¢ = q N Oy[I'] in Q is in
the support of M. This will allow us to apply the results of Section 2 to study the A-
eigenspaces of our arithmetically-interesting {2-modules, as we shall do below.

Let N be the Oy[I']-module M®ZP[A},¢Ow, so that M¥ = Ny, for Ny = N®@wW.
It will suffice to show q is in the support of Ny if and only if q’ is in the support of V. Let
F' — F — N — 0 be an exact sequence of O, [I']-modules in which F' and F” are free
of finite ranks r and s, respectively. This sequence defines an r X s presentation matrix
B after choosing bases for F' and F”. The prime ¢ is not in the support of NV if and only
if some maximal minor of B has determinant not in ¢’. Taking completed tensor products
over W is a right exact functor on pseudo-compact O,-modules by [5, Sect. 0.3.2], so
(F")\w — Fw — Ny — 0 is exact. It follows that q is not in the support of Ny, if and
only if some maximal minor of B has determinant which is not in g. Our claim is now
clear since the determinants of all the maximal minors lie in O [I'], and ¢’ = q N O, [I].

We may now state and prove our first main theorem.
Theorem 5.2. Let q be a prime of A not in the support of
w -1 L W -1 L
(e e (k2 () e KL,
Then we have an isomorphism of A,-modules

5y
/\ XS,q ~ Aq

NI+ + NI Lsiws - Ls,w)

Proof. Let q be a prime of A. If Xgﬂ,q is free, then we have an isomorphism /\E Xfé”q = A,
If I%q is free, then since ¢; (Xfé”q / I%q) = (Ls, ), this isomorphism takes the free rank
one submodule A" [;/’—i,q to (Ls, 4)- So, we need only avoid those ¢ such that X;f” 4 OF some
I%’q is not free.

By Theorem 2.10 (noting Remark 5.1), the module ng q 1s free for q outside the support
of (Y;’Z’_I)L(l) @ Z¥, with Zs as in (2.10). Lemma 2.4 provides an exact sequence

0 — (X! )(1) = () (1) = (K5 () = 0.

So, ngyq is free for ¢ not in the support of (Xf;ipfl)L(l) ® (Kg%il)L(l) @ Z¢. Similarly,
the homomorphism Xg g Y‘;Zj q 1s an isomorphism for ¢ not in the support of ngao by
Lemma 2.4. Finally, Corollary 2.13 tells us that every Ifﬁ q 18 free for q not in the support
of KV @ (K2 )(1).

Together, the above conditions say that the desired isomorphism holds if we avoid
primes in the support of

(X)) @ (K (1)@ Z8 @ Ksey @ Ky @ (K52 )H(1). (5.1)
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This may be simplified to the statement of the theorem by the following observations. If
n =1,then S # Sy, so Zfé =0,and T = @, so K7 = 0. Moreover S° = S in this case.
If n > 2, then note that S = S°U T and 7 C S. Both S and its conjugate set S have
more than one element. This implies that ZY is a subquotient of ICgO and Z;w_l (1)is a
subquotient of (K‘gfﬁfl)L(l). In turn, these two facts yield that the supports of the third,
fourth, and fifth terms in (5.1) are contained in the support of IC%O = ker(lC%p— oKL —
Z;f’), and the support of the last term is contained in the support of the second. [

Remark 5.3. Regarding the disallowed primes in Theorem 5.2, note that
(Ks" ) ) =Ks (1)

as A[A]-modules by Remark 3.3 (in fact, K2 = K%¥ " as A-modules as well), but we
have written it as we have to exhibit a certain symmetry.

The following notation is used in the statements of the various theorems in this section.

Definition 5.4. Let U, ,;, (resp. U, ) denote the set of codimension two primes of A in the
support of Ky (resp. (IC;JWI)L(l)). For all subsets X of S, let

Z/{E,w = U L{W and UE#J = U Hp#,.

peX peX

Define Zy ,, to be the free abelian group on Vs, , = Use ;, UlUs; 5, which we view a direct
summand of the free abelian group on the codimension two primes of A.

Remark 5.5. By the discussion of Section 3, the set 4, ,, is nonempty if and only if r, = 2
and 1|a, = 1, in which case IC;f is isomorphic to W[I'/T,]. Similarly, U, # @ if and
only if r, = 2and wi)~!|5, = 1, in which case (/C;’w_l)b(l) is isomorphic to W[I'/T',](1).

The groups T'y, ®z, Q, and I'y ®z, Q, are the same inside I' ®z, Q, if p and p are
conjugate primes in Sy. For any CM type >, we have

- ®Zp Qp = @(F_>p ®Zp Qp
pes
from the proof of Lemma 3.1. Thus, if p and p’ are distinct, non-conjugate primes, then
', N Ty has rank at most one and 7 > 3, 50 Uy, NUy o, = @ and Uy, NU,y ,, = . Since
I, acts trivially on W[I'/I',] and via the p-adic cyclotomic character on W[I'/I',[(1), we
have that 4, ,, N ijw = o for all p,p’ € Sy, as can also be seen from Remark 3.4.

The following theorem is an extension of Theorem A without its assumption on ).
In Theorem 5.9 below, we will provide a more general result in which we eliminate the
appearance of Zgs, at the cost of introducing kernels and cokernels of maps between
pseudo-null modules which are difficult to compute explicitly.
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Theorem 5.6. Any generator 6, of tl(Xfé’) divides any gcd 0 in A of Ls, .- .., Ls, v

and we have a congruence of second Chern classes

(ﬁshw/ev s 7£5n,w/‘9) (/\g I%)tf + -+ (/\z I%)tf

0 A
Z. : dZsy. (52
+ ¢ (90 Fion (B2 (X2 )(1))) mod Zsy. (5.2)

Proof. To match the notation of Section 4 and Lemma 4.1, let R be the localization of A

at a codimension two prime q not in Vs y, and set X = X;f’q and F = (ng/”q)**. Since
q ¢ Use , Lemma 2.4 tells us that the injection Xfé g Y‘;/’ q 1s an isomorphism. Similarly,
since q ¢ Us,y, we have that

E2(X5)(1)g — EX(YEY (D),

is an isomorphism. By Proposition 2.11, we then have £ = EQ(Xgiﬁl)(l)q, so 6y is a
unit. Moreover, Q(€) is pseudo-null as the cokernel of the map from /\K X to its reflexive
hull.

We also set 7, = I%’q and J;, = (I;p—q)** The canonical maps Z; — J; are isomor-
phisms of free A;-modules by Corollary 2.13 since q ¢ U7 ,,. We may therefore identify
the image (A’ Z;) of A“Z; in A\* X with A Z;. As B; = 0 in the notation of Lemma 4.1,
the result follows from the short exact sequence (4.4) in Corollary 4.2. ]

Corollary 5.7. If n = 2 and Vs, = O, then the following are equivalent.
(i) The class co <m> on the left-hand side of (5.2) is trivial.

(ii) One of Ls,  and Ls,  divides the other; so
(55177/1/97 682,7,!)/0) = A

(iii) We have

t (/\EX‘qé})tf =0 and c ﬁ A =
VNN “\ 0o Fite(E2(X2)(1))

Proof. The equivalence of (i) and (ii) follows from [2, Lem. A.3]. The fact that (ii) and
(iii) are equivalent follows from the fact that the length of the localization of a module at

a prime is a nonnegative integer when this localization has finite length. [

Remark 5.8. We suspect that the greatest common divisor 6 in Corollary 5.7 is sometimes
nontrivial. To be precise, we believe that this may happen if v satisfies the condition
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Y- (1o j) = w, where j is the involution of Gal(E2"/E) given by conjugating by any lift
of the generator of Gal(£/E™). The nontrivial § should be © = 7cyc — /Xp(Veye), Where
Yeye 18 @ topological generator for I'* and x,, is the p-power cyclotomic character. (In this
remark, we assume the validity of Leopoldt’s conjecture for E so that I'" is topologically
cyclic.) Note that X, (7cyc) is a principal unit and the square root should be chosen to be a
principal unit. There exist continuous characters ¥ of G satisfying the conditions

‘I"A:¢7 \I](\DOJ)ZXP

We have U (7eyc) = 1/Xp(Yeye) for any such ¥ and hence ¥(©) = 0. Conversely, ¥(0) =
0 implies that ¥ - (U o j) = x,. Let £ be any CM type, and let Ly, ,, € A be the Katz
p-adic L-function attached to > and . (This L-function is given up to a certain power
of p by integrating the inverse of a character against the Katz measure.) It follows that ©
divides Ly, y if and only if W (ng) = 0 for all ¥ satisfying the above conditions. In fact,
if Wy is one such W, it is sufficient to have ¥ (L ,,) = 0 for all ¥ of the form ¥ = ¥, - p,
where p is a character of I'~ of finite order.

It is possible to choose ¥, to be the Galois character attached to a Grossencharacter of
type Ay for £/ whose infinity type lies in the interpolation range for Ly, ,,. The correspond-
ing complex L-function will have a functional equation relating that L-function to itself.
If the sign in that functional equation is —1, then the central critical value will be forced
to vanish. The same thing will be true for WV = W, - p for any finite order character p of
I'~. That would mean that ¥ (Ly, ;) = 0 for such W if the corresponding sign is —1. Now
it turns out that for a given X and ¢, the signs will be constant, either all +1 or all —1.
We suspect that each sign will occur for half of the CM types, possibly under some extra
assumptions on 1 and E. Therefore, assuming this is the case, if there are at least four
p-adic CM-types for I, then at least two will have the corresponding signs equal to —1.
Hence the corresponding p-adic L-functions will both be divisible by ©. Thus, examples
where 6 is nontrivial may possibly occur when E has at least four primes above p.

An illustration of the kind of behavior described above can be found in [6]. That paper
considers a case where I is an imaginary quadratic field in which p splits. Note however
that there are just two primes above p in that case, and it is proved that O is actually not a
common divisor of the two p-adic L-functions.

The following result provides a more general version of Theorem 5.6 that avoids work-
ing modulo Zs ,, at the expense of a longer statement that includes a new “error term”

62(0571/,).

Theorem 5.9. Let 0 be a generator of t1 (YY), which divides a gcd 0 of Ls, y, . . ., Ls, -
Let g: A — A be given by

n

glla) =3 it

i=1
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and let Cs ., be the cokernel of the map

L n A g A
wer ) e (69 Fite(EX(C5 ) (1) Fitt(E2(Y§w_l)(1>>>

=1

induced by the canonical quotient map, where ¢' is the map induced by g. There is an

equality of second Chern classes of pseudo-null modules

c A _ (A" Y .
i <<£5M/’/9’ e »ﬁsn,w/9)) - <(/\z I;/)'l)tf +- 4 (A ]%)tf> a(Co)

+ Co <ﬁ : —1 A > :
b0 Fitt(E2(Ya (1) + (Lsys/00)A + -+ - + (L, 0/00)A

Proof. Let q be a codimension 2 prime of A. Then the localization Y7 is free as a reflex-
ive module over the local ring A, of Krull dimension 2. Note that (Z,), = 0 if r > 3,
and the map E?(Ys:)(1) — Zyx in Proposition 2.11 is zero if r = 2 by [2, Prop. 4.1.17].
Lemma 3.2 gives the injectivity of I% — Yé’l’ , o we are by Proposition 2.11 in the situa-
tion of Lemma 4.1 with

1

R=1Ay, X=Yd, F=(g)" &=E( ),
L=1y., J=(p )" and Bi=E(KY (1),

Theorem 5.9 then follows from Corollary 4.2, with Remark 4.3 providing the term ¢3(Cls ).
O

We have ¢ = 1 in Theorem 5.6 if and only if n = 2 and the CM types &; and S, differ
by only one prime, which is of degree 1 (i.e., 7, = 2). In this case, we obtain the following
more explicit results. In particular, Proposition 5.10 and Theorem 5.12 imply Theorem C.

Proposition 5.10. Suppose that ¢ = 1 so that n = 2. The following conditions are equiv-

alent:

(a) Xfé’m s, and ng’r;g: are both pseudo-null,

(b) Ls, . and Ls, 4, are relatively prime.

Proof. Let
EleﬂSg and izSczgl mgg

Set L; = Ls, , for brevity. As we have remarked, X5, — Y5 is injective with pseudo-null
cokernel, so X%’ is pseudo-null if and only if Yzw is. Similarly, ng_l is pseudo-null if

and only if Y2 is.
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Suppose that (b) holds. In this case, since both L; and L, annihilate X%’ by defini-
tion and are relatively prime by assumption, X. g is pseudo-null. We now conclude from
Proposition 2.11 and [2, Prop. 4.1.17] that there is a map of exact sequences

0 I (I4)" — B2 (1) —0  (53)

| l

0——ENYEY ) (1) — Y —— (YO)™" — B2 (Y2 )(1)

for i € {1,2}. The leftmost vertical map in (5.3) for a given 7 has torsion cokernel with
first Chern class ¢ (X}sp) = (L;). This forces the map ([i)** — (YZ)™ between free
A-modules of rank one to be injective. From the diagram, we then see that the first Chern
class of the torsion A-module El(ngl)(l) divides (L;). Since L; and L, are relatively
prime, this forces E! (Yg Wl) to be pseudo-null, which can only occur if the torsion mod-
ule Y v s pseudo-null. Thus, X%Wl is pseudo-null as well.

Now suppose that (a) holds. We again use the diagram (5.3) but now have that the
term El(ng_l)(l) is zero since ng’_l is pseudo-null. Since ([#)** — (V)™ is a map
between free A-modules of rank 1, we see that upon appropriate choices of A-bases it is
given by multiplication by L;. Applying the direct sum of the vertical maps in (5.3) for
i € {1,2}, we get a composite map

Xy = YE/IE o — AJ(L1, L)

on cokernels which is a pseudo-isomorphism by the snake lemma. Since Xg is pseudo-
null, sois A/(Ly, Ls), and therefore L; and L are relatively prime. ]

Remark 5.11. We claim that ¢, (E?(M)) = co(M") for any finitely generated pseudo-null
A-module M. Since E>(M)* = Ext3 (M, A), we need only verify that

CQ(EXtiP (Mp, Ap)) = CQ(MP)

upon localization at a height 2 prime P of A. Since Ap is regular of dimension 2, the
localization Mp has a finite filtration with graded pieces isomorphic to Ap/PAp (cf.
[2, Lem. A.2]). For any short exact sequence 0 -+ N — Mp — Ap/PAp — 0 of Ap-
modules, we have Exty (N, Ap) = 0since N is pseudo-null, and Ext} , (Ap/PAp,Ap) =
0 since A p has dimension 2. Since ExtiP(Ap/PAp, Ap) = Ap/PAp and second Chern
classes are additive with respect to short exact sequences of pseudo-null modules, our
claim now follows by induction.

Theorem 5.12. Let ¢ = 1, and suppose that X}é’m s, and Xgﬁé are both pseudo-null.

Then there is an equality of second Chern classes of pseudo-null modules

A wp™ . w1\,
“ (m) = a(Xh ns,) + (X272 ) () + oKL )+ eal(K2s,) (1)):
5.4)
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Proof. If E is imaginary quadratic, this is [2, Thm. 5.2.5], so we assume in what follows
that [E : Q] > 2. As in the proof of Proposition 5.10, we let ¥ = S} NS, and ¥ = S¢ =
S1NSyandset L; = Ls, fori € {1,2}. Consider the set 7 = 7; U 75 of cardinality 2.
The maps of (5.3) for ¢ € {1, 2} yield a diagram of exact sequences

0—— I¥ —— (1Y) —— E2(K%)(1) —— 0 (5.5)

[

0—— Yy —— (Y™ —>E2(Yg¢“)(1) —0.

(Note that Zs = 0 since S # Sy, so we have the right exactness in the lower row.) We
show that f5 is an injection up to modules supported in codimension greater than 2, so

ca(coker(f2)) = ca(coker(f1)) + co(coker(f3)).

From the exact sequence of Lemma 2.4 and the pseudo-nullity of X%w_l, we have an
exact sequence of Ext-groups

0— E2(Kgh ) — EXYEV ) —» EX(X2V ) — E3(KSY ). (5.6)

Since r > 3, the map EQ(ICEWI) — EZ(ICE%A) is an injection, and since &' = S =
T U, the group E2(K%" ") contains E2(K%* ") as a direct summand. It follows that f;
is an injection. Since E3(IC§%71) is supported in codimension greater than 2, using (5.5)
and (5.6), we obtain

) — (B2 )(1)
(1)) + 2 (B (K57 )(1)) — ca( B )(1)
(1) + e BAKTH(D)

) + (K27 (1)),

I
Q
no
>
| €
<
N—
—
[S—
S~—
_|_

the last equality following from Remark 5.11. As in the proof of Proposition 5.10, the
cokernel of f; is pseudo-null with second Chern class

ca(coker(fy)) = co(A/(Ly, Ly)).

The cokernel of f; is similarly pseudo-null by assumption, and it has second Chern class
ker(f1)) = ca(X¥ K%)= ca(XE) + e (KL).
ca(coker(f1)) = 2(X5) + 2(Kge) = 2(Xy) + 2 (K5

The result now follows. ]
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Remark 5.13. The last two terms in equation (5.4) give “common trivial zeros in codi-
mension 2” for Lgs, 4 and Ls, .. Here, by “common zeros”, we mean codimension two
points which are in the support of the maximal pseudo-null submodule of A/(Ls, 4, Ls, 4)-
To illustrate this, note that 7} and 75 in Z,[7}, T3] share a common zero at the point
(T1,T3) = (0,0), viewed as functions on the product of two p-adic open discs of radius
1 around the origin in Q,. This corresponds to the fact that Z,[T1, 1] /(T1, T3) is a non-
trivial pseudo-null module supported on the codimension two prime (77, 7%). By “trivial
zeros”, we mean arising from trivial zeros of the corresponding Katz p-adic L-functions,
as in Remark 3.5.

The common trivial zeros of codimension two arise from the triviality of characters
on decomposition groups and are described by Remark 5.5. That is, IC;/’ forp e S| NS,
(resp., (IC;;W_I)‘(l) for p € &1 N S,) has nontrivial second Chern class if and only if
Yla, = 1 (resp., wyp1 |a, = 1) and r, = 2. For such a p, the resulting second Chern class
comes from the ideal determining the corresponding quotient in Remark 3.4.

6 Canonical subquotients in the lower central series

Let II be a profinite group. The lower central series of II is defined by II, = II, and by
letting IT; be the closure of [IT, II; ;] for ¢ > 1. The maximal abelian quotient of IT in the
category of profinite groups is I1*" = I1/T1;.

We have a canonical commutator pairing

() TP x I — 114, /T,
defined on z,y € Il by
(T, 7) = [z, y] - Tz,

where [7,y] = xyz~ly~! and 7 is the image of z in 1", (Note that I1; /TI, is central in
I1/11,, so this is well-defined.) This is an alternating pairing, and the image of the pairing
generates all of IT; /T1.

Suppose P is a subgroup of the group Aut(II) of continuous automorphisms of II.

Then & acts on all terms in the lower central series of II. The pairing ( , ) is equivariant
for this action in the sense that

(0(Z),0(y)) =0((Z,y)) for o€ d.
The following lemma is clear.

Lemma 6.1. There is a largest quotient (11, /113) s of 11, /11y by a ®-stable subgroup of
the abelian group 11, /115 such that the pairing

< , ><I>: Hab X Hab — (1_[1/1_12)@75
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is self-adjoint in the sense that

<O-(f)7y>‘1> = <E,0‘(?)>¢.
foralloc € ® and T,7y € I1%P.

Remark 6.2. We add an “s” to the subscript so that there is no confusion of (II; /II2)¢ s
with the coinvariants of ® acting on II; /TI5. Suppose that IT is a closed normal subgroup
of a profinite group I1. The conjugation action of I on II gives a subgroup ® of Aut(IT)
to which one can apply Lemma 6.1.

The following result is a topological variant on exercises in [3]. The key ingredient

is the universal coefficient theorem for group homology and group cohomology; see [3,
Exercise 3, §III.1].

Proposition 6.3. Let H be an abelian pro-p group acting trivially on a discrete abelian
group A. Let H Nz, H be the (completed) wedge product of H with itself in the category

of abelian pro-p groups. Then there is an exact sequence
0 — Ext!(H, A) — H2(H, A) & Hom(H Az, H,A) = 0 6.1)

of abelian groups defined in the following way, where here Hom and Ext' are taken in
the category of topological abelian groups. Each class in H*(H, A) is represented by a
continuous two cocycle f: H x H — A normalized so that f(0,h) = f(h,0) = 0 for all
h € H.Theclass f] € H*(H, A) is sent by 0 to the homomorphism ¢ € Hom(H Az, H, A)
defined by c(hy A hy) = f(h1, ha) — f(ha, h1). Moreover, suppose that

0 A H-—H-=0

is a central extension of groups with class represented by f. The function c is given by
c(hy A hy) = [711, iLQ] for any lifts hy and hs of hy and hy to H.

Proof. The map 6 is the topological version of the map defined in Exercise 8 of §IV.3 of
[3]. In part (c) of this exercise, the kernel of @ is identified with Ext'(H, A). The steps
involved in showing that (6.1) is exact are outlined in Exercise 5 of §V.6 of [3]. ]

For the remainder of this section, GG will be a profinite group and II will be its maximal
pro-p quotient. Let X = II*" be the maximal abelian, pro-p quotient of II. Applying
Proposition 6.3 in this context, we get a surjective homomorphism

Ox: H(X,Q,/Z,) = Hom(X Az, X,Q,/Z,), (6.2)

and the kernel of fy is the set of [f] € H?*(X,Q,/Z,) which represent abelian group
extensions of X by Q,/Z,. Let us take B = ker(G — X)), which is a closed subgroup of
G. We have the Hochschild-Serre spectral sequence

EY = H'(X,H(B,Q,/Z,)) = H¥(G.Qy/Z,). (6.3)
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Lemma 6.4. Suppose that H*(G,Q,/Z,) = 0. Both 0x and the transgression map
Tra: Hom(B,Q,/Z,)* — H*(X,Q,/Z,)
are isomorphisms, yielding a composite isomorphism
Hom(B,Q,/Z,)* = Hom(X Az, X,Q,/Z,). (6.4)

Proof. The spectral sequence (6.3) and the triviality of H*(G, Q,/Z,) gives a four-term
exact sequence of base terms

0 — Hom(X,Q,/Z,) 2 Hom(G, Q,/Z,)

Res

2% Hom(B,Q,/Z,)* =2 HA(X,Q,/Z,) — 0.

The inflation map Inf is surjective as Q,/Z, is a direct limit of p-groups and X is the
maximal abelian pro-p quotient of II. Thus Tra is an isomorphism.

We know from Proposition 6.3 that fx is surjective. Since Tra is an isomorphism, we
may write any element in the kernel of fx as Tra(¢) for some ¢ € Hom(B,Q,/Z,)~.
Then ker(¢) is a subgroup of B such that B/ ker(¢) = im(¢) is a finite cyclic p-group.
We have a central extension of pro-p groups

1 — im(¢) — G/ker(¢) » X — 1 (6.5)

since G/B = X and ¢ is fixed by X. This extension provides the class of —Tra(¢) (see
[16, Lemma 1.1]). By Proposition 6.3 and the discussion which follows it, the statement
that 0x(Tra(¢)) = 0 is equivalent to the statement that G/ ker(¢) is an abelian group.
However, GG/ ker(¢) is then an abelian quotient of II, and X is the maximal abelian quo-
tient of II. This proves that B/ ker(¢) is trivial in (6.5). But then ¢ is trivial on B, so
¢ =0. O

Corollary 6.5. Let () be the maximal quotient of 11 that is a central extension of X, and
let Z = ker(QQ — X) be the abelian pro-p group giving the extension. Then

Z =10/, = X Ay, X.

Proof. Inflation provides an injection from Hom(Z,Q,/Z,) to Hom(B,Q,/Z,)*. It is
an isomorphism because the kernel of an element of Hom(B, Q,/Z,)* defines a cen-
tral extension of X. The corollary now follows upon taking the Pontryagin dual of the
isomorphism in (6.4). O]
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7 Central self-adjoint extensions

We continue with the notation of Sections 3 and 5, supposing that n = 2 and that
¢ = ranky Xfé’ = 2. This is equivalent to saying we have two CM types S; and S, with the
property that when S = §; US,, the sum of the local degrees of the primes in 7; = S —&;
is 2, and the same is true for 75, = S — Sy. We let Kgp ) be the maximal pro-p exten-
sion of K inside the maximal S-ramified extension K5 of K. Set Gk s = Gal(Ks/K),
IT = Gal(Kép ) /K), and let L; denote the fixed field of II; for ¢ > 1. In particular, using
our previous notation, L.; = L is the maximal abelian pro-p extension of K which is
unramified outside of S and X5 = Gal(L/K) = TI?".

The conjugation action of IT = Gal(K g’ ) /E) on II gives a subgroup ¢ of Aut(II) to
which one can apply Lemma 6.1, as in Remark 6.2. The resulting pairing

< ) ><I>3 Xs X Xs — (Hl/H2)<I>,s

on I1?" is the projection of the commutator pairing to the maximal quotient of IT; /TI, for
which it becomes self-adjoint with respect to the II-action.

The actions of IT on IT** and on II, /II, factor through Gal(K/F) = G = A x T,
where A = Gal(F/FE) is finite, abelian and of order prime to p and I' = Z;. That is,
[1*" = X and I1, /TI, are modules for the group ring Q = Z,[G].

The following lemma is clear.

Lemma 7.1. The kernel of the natural homomorphism 11, — (111 /1l5) ¢ s is Gal(Kg’) /N),
where N is the maximal extension of L inside Kép ) having the following properties:

(i) N is Galois over E, and Gal(N/L) is central in Gal(N/K);
(ii) the commutator pairing
Xg x Xg = Gal(L/K) x Gal(L/K) — Gal(N/L)

resulting from (i) is alternating and self-adjoint with respect to the action of G by

conjugation on Xg.

We also need the following consequence of weak Leopoldt, which we prove for more
general sets S.

Lemma 7.2. For any subset S of S; containing a CM type, the group H*(Gr s,Q,/Z,)

is trivial.

Proof. First, we recall that the weak Leopoldt conjecture implies the statement in the case
of Sy. That is, [7, Props. 3 and 4] imply that H*(Gal(K, /F'E%°),Q,/Z,) = 0 for any
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number field F’ in Kg i Since £ C K, we then need only take the direct limit over all
finite extensions F” of F contained in K’ to see that H*(G s, Q,/Z,) = 0.

Given this, the exact sequence of base terms of the Hochschild-Serre spectral sequence
arising from the exact sequence

1— Gal(KSf/Ks) — GK,Sf — GK73 —1

yields an exact sequence

Res

H'(Gk,s,,Qp/Z,) — HY(Gal(Kg, /Ks), Qp/Z,) " — H*(Gk.s,Q,/Z,) — 0.
(7.1)
Thus, it will suffice to show that the restriction map Res is surjective.
Setting G = G’k s to shorten notation and letting .J denote the maximal abelian pro-p
quotient of Gal(K, /Ks), the Pontryagin dual of Res is the map on Galois groups

Jo — XSf

from the G-coinvariant group of J to the p-ramified Iwasawa module over K. It then
suffices to see that this map is injective.

By definition, J is generated by its inertia groups at places of K s over S¢. By the usual
transitivity of the Galois action on places, any two decomposition groups at primes over
the same prime of K become identified in the coinvariant group J. In particular, we may
speak of the inertia group T, of J; at a prime w of K lying over a prime in S°.

As any such w is unramified in Ks/K, any decomposition group in G at a place over
w is procyclic. Let IV be the subfield of K's, which is the fixed field of the kernel of the
natural surjection Gal(Ks,/Ks) — Ji. We have an exact sequence

1 —Je— Gal(N/K) —- G — 1.

Consequently, any decomposition group in Gal(N/K) at a place over w is a central exten-
sion of a procyclic group by an abelian group and is therefore itself abelian. In particular,
T\, 1s a quotient of the inertia group J,, in the Galois group of the maximal abelian pro-p
extension of the completion K,,.

The product of all J,, over primes w lying over primes in S¢ can be identified with
Ise of (2.5). Since J 1s generated by its inertia groups 7;,, we obtain a surjective map
Isc — Jg. Composing this with Jo — X Sps it remains only to show that /gc — X S; is
injective. This follows from the injectivity in Lemma 3.2, since S contains a CM type and
the character v therein was arbitrary. ]

Because of Lemma 7.2, 0x of (6.2) is an isomorphism by Lemma 6.4 applied with
G = Gg,s. Dually, we then have canonical isomorphisms

Gal(Lg/L) == Hl/Hg = XS /\ZP XS-
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Remark 7.3. Since X is rank two over (2, and (2 is free of infinite rank over Z,, the
(completed) wedge product Xs Az, X is not finitely generated over (2. Thus Gal(Ly/L)
is by Lemma 6.4 also not finitely generated over (). In other words, the second graded
quotient in the lower central series of the maximal pro-p quotient of G i s is too big for us
to readily attach to it invariants arising from finitely generated {2-modules. We remedy this

by taking (completed) wedge products over €2 and considering the associated quotients of

Remark 7.4. Suppose M is a profinite abelian group with a continuous action of () =
Z,[G]. The completed wedge product M Az, M is the topological completion of the
usual wedge product of M with itself as a Z,-module, and there is a universal continuous
alternating bilinear Z,-module map M x M — M Az, M. Similarly, M Ao M is the
topological completion of the usual wedge product, and there is a universal continuous
alternating bilinear {2-module map M x M — M Aq M. This implies that M Nq M is
the quotient of M Az, M by the closure of the subgroup generated by all elements of the
form gmq A mo — mq A gms with g € G and mq, mo € M.

From this point forward, we use the notation N for the field N of Lemma 7.1. Re-
call that by the 1)-isotypical component of a compact {-module M, we mean MY =
M &z,(a) W for the map Z,[A] — W induced by .

Proposition 7.5. Suppose that n = { = 2.
(i) The commutator pairing induces an isomorphism Xs Nq Xs — Gal(N/L).

(ii) Under the isomorphism in (i), the action of g € G = Gal(K/E) on Gal(N/L) by
conjugation corresponds to the action of g*> on Xs Nq Xs which sends v, N\ vy to

g*v1 A vy = gui A gus.

(iii) The -isotypical component of Xs Nq Xs is isomorphic to ngp Aoy Xfé, where
Qw = W®Z,,Q-

Proof. An element h € Hom(Xs Az, Xs,Q,/Z,) = Hom(Gal(Ly/L),Q,/Z,) lies in
the subgroup Hom(Xs Aq Xs,Q,/Z,) if and only if

h(gzy A x9) = h(x1 A gz2)

forall g € G and x1, 22 € Xg, so if and only if A is self-adjoint for the action of G. In
view of the definitions of Ly and NV, this shows (1).

For (ii), note that the commutator pairing is equivariant with respect to conjugation.
Thus if g € G = Gal(K/E), v1,v2 € Xgand v A vy € Xg N Xs = Gal(N/L), the
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conjugate §(v; Avy)g ! of vy Avy by alift g of g to Gal(N/E) equals g(vy) Ag(vs). Since
the commutator pairing is G-adjoint when we take its values in Gal(/N/L), we find

g(v1) A g(v2) = g*(v1) A va.

For part (iii), we have
W&z, Xs =P XE
()
where the sum is over the characters ): A — W*.Fori € {1,2}, lety; € Hom(A, W*)
and v; € X}f The action of o € A on the element v; A vy of X}fl Ny Xf,;” is given by
both

(ov1) Avg = 1(0)(v1 Avg) and 1 A (0v9) = Pa(0)(v1 A vg).

Thus vy Avy = 0if 9y # 1)y, and st” Ny, Xg is the 1-isotypical component of XsAq Xs.
By Remark 7.4, the canonical surjection

e XE A X§ — X8 Ny X8

is an homomorphism of A-modules which identifies Xfé’ Aoy Xfé’ with the quotient of
X}é’ Ap Xff by the closure of the subgroup generated by all elements of the form gv A v’ —
v A gv withg € Gand v,v € Xff. However, G = A x T', and all such elements are zero
both for g € A and for g € I', so we conclude y is an isomorphism. O]

Remark 7.6. Phrased differently, part (ii) of Proposition 7.5 says that the action of g € G
on Xs/A\qXs given by g(vi Ave) = g(v1) Avy = v1Ag(vg) for vy, v9 € X is identified via
part (i) with a canonical square root for the action of ¢ by conjugation on Gal(N/L). Part
(111) tells us that Xg AA Xf;f’ is identified with the 1)-isotypical component of Gal(N/L)
with respect to this square root action.

Let P be one of T; or 7. We need to characterize the image of /\é Ipin /\?2 Xg, for
Ip associated to inertia groups at the primes over those in P, as defined in (2.5).

Proposition 7.7. Let Np be the maximal extension of L inside N such that all the inertia
subgroups in Gal(Np/K) of primes over P in Np are abelian. Under the map induced

by the commutator pairing, the cokernel of the map

Ip No Ip — Xs Na Xs
induced by the canonical map Ip — Xg is identified with Gal(Np/L).
Proof. We show that the kernel of the restriction map

HOHI(XS /\Q XS, Qp/Zp) — Hom([p /\Q Ip, @p/Zp)
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is Hom(Gal(Np/L),Q,/Z,). Let f € Hom(B,Q,/Z,)*s determine
h = 0X3 o) Tra(f) € HOHI(XS Na Xs, Qp/Zp)

via the isomorphism (6.2). We must determine when A has trivial restriction to Hom(/pAgq
Ip,Q,/Z,). The interpretation of s as a commutator pairing says that this will be the case
if and only if inside the central extension G s/ ker(f) of Xs = Gk .s/B by B/ ker(f),
the inverse image Ip in G s/ ker(f) of the image of Ip in X is abelian. The subgroup I
of Ip generated by inertia groups of primes over P surjects onto /p. So since G s/ ker(f)
is a central extension of Xs by B/ ker(f), the commutators of any two elements of Ip
will be trivial if and only if the same is true of /3. Thus the condition that % has trivial

restriction to Hom(Ip Aq Ip, Q,/Z,) is the same as requiring that I, is abelian. O

Define Mp/L to be the maximal subextension of N/L such that Mp/L is unram-
ified at all primes of Mp over P. One has Mp C Np because the inertia groups in
Gal(Mp/K) at primes over P inject into inertia groups of primes over P in the abelian
group Xs = Gal(L/K), hence are themselves abelian. On the other hand, Np/L need
not be unramified at primes over P, so Np may be a nontrivial extension of Mp. The
following lemma shows that this makes no difference from the point of view of second
Chern classes.

Lemma 7.8. The kernel of the surjection Gal(Np/L) — Gal(Mp/L) is supported in

codimension at least 3.

Proof. Since K C L € Mp C Np C N and Gal(N/K) is finitely generated as an
2-module, the group Gal(Np/Mp) is finitely generated as an (2-module. Since Mp is
the maximal extension of L in N that is unramified over P, it is equal to (Np)’/? for Jp
the subgroup of Gal(Np/L) generated by the inertia groups of primes of Np over P.
Thus Gal(Np/Mp) is generated as an (2-module by finitely many inertia subgroups Jq
of Gal(Np/L) for primes Q over P in Np.

Letp € P, and let Q be a prime of Np above p. By Lemma 3.1(ii) and the definition
of Np, the completion of Np at £ is contained in the maximal abelian pro-p extension
K, P0) of the completion K, of K at the prime under 9. Since Mp/L is completely split
at all primes over p, the completions of Mp and L at primes under £ are equal. Thus Jg
is a quotient of the Galois group H, of K, B.(p)
Q. Since the Jq for Q over p € P generate Gal(Np/Mp) as an Q2-module, this implies

that Gal(Np/Mp) is a quotient of the 2-submodule of Ip given by

over the completion of L at the prime under

P 2 &z, 0, H,. (7.2)

peP
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The v-isotypical component of (7.2) is contained in the kernel of the homomorphism
Iﬁ — Yg since this homomorphism factors through the injection X}f — Yg . By Proposi-
tion 2.11, Remark 2.3 and Lemma 3.1, the homomorphism Iﬁ — (Iﬁ)** is injective. The
localization at codimension two primes of the map (/j)** — (Y&')** is a map between
free modules of the same rank which has torsion cokernel and is therefore injective. Thus,
the kernel of [ﬁ — Yg’ must be supported in codimension at least three. ]

Set U = Gal(N/L) and V = Gal(M/L), where M = My, N My,. We denote by
UVY (resp. VV¥) the 1)-isotypical component of U (resp. V) with respect to the square
root action of the conjugation action described in Remark 7.6. The following is the main
theorem of this section. It contains Theorem D of the introduction.

Theorem 7.9. With the assumptions and notations of Theorem 5.6, there is an isomor-
phism /\?2 X}f = UYY induced by the commutator pairing on Xs. This yields surjections

Ney X& VYT and (Ao X&)t N 1443
im(Ag, 17) +im(Ag I3, (ANaTr)e + (Ao T im(Tor(UVY))
(7.3)

whose kernels are supported in codimension at least 3. (Here, we use “im” to denote
the not necessarily isomorphic image of a module under a canonical map.) Moreover, we

have a congruence of second Chern classes

A B Ve
“ <<csl,w/9,csw/9>) = <im<m<w>>>

0 A
NEPA . d Zsy. (14
Co (90 Fitt(EQ(XgZW )(1))> mo Sy (7.4)

Proof. The isomorphism /\?2 X}f — UVY results from Proposition 7.5 and Remark 7.6.
By Proposition 7.7, we have an identification

2
/\g Xs o Gal(N7. /L) (7.5)
/\Q I;

of {2-modules. Proposition 7.5 further identifies the t)-isotypical component of the left-

hand side of (7.5) with ¢/-isotypical component of the right-hand side for the square root

of the conjugation action on Gal(/N7,/L). From (7.5), we get an isomorphism

5 Ao X‘92 = Gal((Ny; N Ng;)/L). (7.6)

Noln + Aol
By Lemma 7.8, Gal ((N7; N N7,)/(My, N Mry,)) is supported in codimension at least 3
as a module for €2 so (7.6) gives (7.3). Substituting these facts into Theorem 5.6, we obtain
Theorem 7.9. O



38 E M. Bleher, T. Chinburg, R. Greenberg, M. Kakde, R. Sharifi, M. J. Taylor

Acknowledgments. The authors would like to thank G. Pappas for helpful discussions and T. Kataoka for
noticing a mistake in an earlier version of the proof of Lemma 3.1. They also thank the referees for com-
ments and suggestions which helped to improve the article. F. Bleher was partially supported by NSF FRG
Grant No. DMS-1360621 and NSF Grant No. DMS-1801328. T. Chinburg was partially supported by NSF
FRG Grant No. DMS-1360767, NSF SaTC Grants No. CNS-1513671/1701785, and Simons Foundation
Grant No. 338379. R. Greenberg was partially supported by NSF FRG Grant No. DMS-1360902. R. Sharifi
was partially supported by NSF FRG Grant No. DMS-1360583 and NSF Grant No. DMS-1801963.

A Field Diagram

N
U M
14
Xs \ /
Xs, L1N Ly
Xs1n8s
- ' K=FE
AXT=G / \

Q

B Notation Index

& 3

n

%)

Rl

Xs,

N = maximal abelian pro-p extension of L unram-
ified outside S = S;USs satisfying the conditions
of Definition 1.4,

M = maximal subextension of N containing L
such that M /L is unramified outside S; N Sa,

L = maximal abelian pro-p extension of /' unram-
ified outside S = S; U Ss,

L; = maximal abelian pro p-extension of K un-
ramified outside S;, where S; and Ss are distinct
p-adic CM types,

I' = Gal(K/F) = Gal(E/E) 2 Z,r > d + 1,
A = Gal(F/E) = Gal(K/E),

E= compositum of all Z,-extensions of F,
F' = finite abelian extension of E of degree prime
to p containing the pth roots of unity,

E = CM field of degree 2d.

»(M) maximal submodule of M supported in codimension at least n

(M)  nth Chern class of T,,(M)

»(M)  nth Chern class of T,, (M) if M = T,,(M)
a CM field of degree 2d

+ the maximal totally real subfield of £/
a finite Galois extension of E of degree prime to p (with varying extra hypotheses)
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QX

M@D;{O>€§E%<

-
X
<

compositum of F' with all Z,-extensions of £/

Gal(F/E)

Gal(K/F)

Gal(K/E)

the p-adic cyclotomic character of G with values in Z;

the Teichmiiller character of A

the Witt vectors over F,,

a character of A valued in W *

WIr]

Z,[6] A

the tp-isotypical component of A @z, W for a compact {2-module A

the set of primes of E over p

a subset of S

the X-ramified Iwasawa module over K

the power series defining the Katz p-adic L-function of i) when ¥ is a CM type
a choice of generator for the characteristic ideal of X % when X is a CM type
a union of (p-adic) CM types S;

the image under complex conjugation of S

the set of primes over p not in S

the A-rank of X ;«l’ (with a related abstract usage in Section 4)

the Tate twist of a compact A-module A by the cyclotomic character of I'

a compact A-module A in which the I'-action is inverted

Ext’ (A*, A) for a finitely generated A-module A (also with 2 in place of A)
A/T1(A) for a finitely generated module A over an integral domain

the /th exterior power of a finitely generated module A

the Oth Fitting ideal of a finitely generated module A

the i-isotypic component of V' for the canonical square root action of G on V'
the maximal S-ramified pro-p extension of K

the set S, « of all places of E over p and oo

Gal(F¢/F') for F{ the maximal S-ramified extension of F’/F
Gal(Fs/FE)

the Iwasawa cochain complex of a compact Z, [ Q]-module T

the class of Cry, (K, T') in the derived category

the ith cohomology group of Cry, (K, T)

the local Iwasawa cochain complex of T at v € Sy

E°(M) for a finitely generated {2-module M

Cone (Crw(K,T) = @, e, Co,tw(K,T)) [—1] for £ C S

the ith cohomology group of Cx 1, (K, T)

the maximal quotient of Xy, that is completely split at the primes in Sy — X
H2 1, (K. Z,(1))

the decomposition group in G at a place over the prime p in K

Zp[G/Gp]

@pez Ky

the kernel of the augmentation map Kx, — Zj,

the decomposition group G, N I'in T’
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Tp rankz, Ty

Dy the Galois group of the maximal abelian pro-p extension of the completion of K over p
Jp the inertia subgroup of D,

Dy 0 &z,15,1 Dp

1, Q ®7,[6,1 Jp

Dy, peS Dy

Is pex I,

dy [Ep : Q)

Zs Zyp if ¥ = Sy and r > 2, zero otherwise

ds ZpEZ dy

Q(M) R/ Fitt(M) for a finitely generated module M over an integral domain R

T the union of 7; = S — §; for the CM types S; with union S (except in Lemma 3.2)
Up the set of codimension two primes of A in the support of IC;Z’

Up the set of codimension two primes of A in the support of (IC;;”[’_1 )H(1)

Us.y Upes Up.

Us,p Upes Upy B

Zs the free abelian group on Vs, = Use y Ul 4

1I; the closure of the ¢th term in the lower central series of a profinite group II

i) a subgroup of the group Aut(IT)

(IL; /II5)e s the maximal quotient of IT; /II, by a ®-stable subgroup with self-adjoint commutator
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