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a b s t r a c t 

An accurate predictive model of the enhanced pool boiling heat transfer on various surface modifications 

is essential to operate the pool boiling and design the optimal surface designs. However, the existing 

predictive models generally predict the enhanced pool boiling heat transfer on various surfaces with very 

large errors as high as ±50%, mainly due to the complex nature of the pool boiling processes. In this 

study, we unlock the complex relations among four geometrical, nine thermophysical properties, and two 

operational conditions to accurately predict the Heat Transfer Coefficient (HTC) on the enhanced surfaces 

using an optimized Deep Neural Network (DNN) model. The six dimensionless numbers are identified 

based on geometries, operation conditions, and thermophysical properties, which are used as input pa- 

rameters for the DNN model for the first time. This results in the Mean Absolute Percentage Error (MAPE) 

below 5%, compared to the existing empirical correlations having 5.04–45.37% MAPE on the selected 1256 

data points. Also, the developed DNN model outperforms the prediction accuracy of the existing correla- 

tion for the data in much different experimental conditions, showing the 20% MAPE for the pre-trained 

DNN model (without additional training) and 38% MAPE for the existing correlation. Moreover, the sensi- 

tivity analysis was performed to identify the key dimensionless parameters for the HTC on the enhanced 

surfaces. The developed DNN model with the dimensionless parameters shed light on understanding the 

complex pool boiling process on the enhanced surfaces. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The nucleate boiling offers a large heat transfer with a very 

mall temperature gradient through liquid-vapor phase change 

rocess compared to a single phase heat transfer [1] . Due to such 

echnical advantages, the nucleate boiling is widely used in refrig- 

ration, thermoelectric power generation, and industrial processes 

 2 –4 ]. However, the undesired vapor-liquid, two-phase flows near 

he boiling surface leads to limited Heat Transfer Coefficient (HTC) 

nd poor Critical Heat Flux (CHF), which in turn results in ineffi- 

ient system performance and catastrophic system burnout. To ad- 

ress these technical challenges, various engineered surfaces have 

een examined using subtractive and additive manufacturing tech- 

iques by providing a greater number of bubble nucleation sites 

nd tailored two-phase flows near the boiling surface [ 5 –9 ]. Nucle- 

tion sites can be generated by simply roughening the surface or 

y employing a microporous coating on the boiling surfaces [10] . 
∗ Corresponding author. 
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Since the first enhanced surface manufactured by cold met- 

lwork was developed in the late 1960s, various tubular en- 

anced surfaces were developed which can be categorized into 

wo groups. The one is the structured surface with integral fin- 

ubes having reentrant grooves or tunnels, and the other is porous 

urface having a plain tube with porous metallic matrix bonded 

n it [ 11 , 12 ]. The first enhanced surface with a reentrant cavity

as reported in 1972 [13] , and the one of the first studies on en-

anced surfaces was conducted by Nakayama and Nakajima [14] . 

hey tested the boiling heat transfer of R-11 on the porous sur- 

aces by varying the pore diameter and system pressure from 0.05 

o 0.15 mm and 0.04 to 0.23 MPa, respectively. The enhanced sur- 

ace with a pore diameter of 0.1 or 0.15 mm showed the best per- 

ormance at the system pressure of 0.23 MPa which means the 

ystem pressure and pore diameter have an influence on the heat 

ransfer. Webb and Pais [15] tested four enhanced tubes (GEWA 

-26, GEWA TX-19, GEWA-SE, and Turbo-B) on five low and high- 

ressure refrigerants (R-11, R-12, R-22, R-123, and R-134a) at satu- 

ation temperatures of 4.4 and 26.7 ̊C. The high-pressure refriger- 

nts (R-12, R-22, and R-134a) showed improved pool-boiling per- 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123395
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2022.123395&domain=pdf
mailto:gisuk.hwang@wichita.edu
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Nomenclature 

C slope of the boiling curve 

C H Hamakar constant (J) 

C tg growth period constant 

c p specific heat (J/kg-K) 

d b departure bubble diameter (m) 

d p pore diameter (m) 

f bubble generation frequency (1/s) 

g gravitational acceleration (m/s 2 ) 

h heat transfer coefficient (W/m 
2 -K) 

�h lg heat of vaporization (J/kg) 

k thermal conductivity (W/m-K) 

l p groove mouth spacing (m) 

L p pore center to center spacing (m) 

N A mean number density of active nucleation sites 

(1/m 
2 ) 

p pressure (N/m 
2 ) or pitch (m) 

q heat flux (W/m 
2 ) 

s surface 

T temperature (K) 

�T wall superheat (K) 

t time (s) 

W tunnel width (m) 

Greek symbols 

μ dynamic viscosity (N/m 
2 -s) 

ρ density (kg/m 
3 ) 

σ surface tension (N/m) 

Subscripts 

b bubble 

cric critical 

ex external 

exp experimental 

g growth period 

l liquid 

p pore 

pred prediction 

red reduced 

s substrate 

sat saturation 

tip tip 

tun tunnel 

v vapor 

w waiting period 

ormance compared to low-pressure refrigerants (R-11 and R-123) 

hich was due to different thermophysical properties of the re- 

rigerants, i.e., surface tension, latent heat of vaporization etc. Fur- 

hermore, a high HTC was observed at high saturation tempera- 

ure compared to the HTC at low saturation temperature for all the 

ested enhanced surfaces. Chien and Webb [16] investigated the 

ool boiling with methanol on the finned copper surfaces having 

ores of 0.23 mm diameter and sub-surface tunnels. They observed 

he tunnel condition through the high-speed camera to find that at 

igh heat flux, almost all the tunnel area was vapor-filled except 

he liquid menisci on the sharp corners. They concluded that the 

ain heat transfer mechanism in the tunneled surfaces is mainly 

ictated by the sharp menisci in the corner. In continuation to the 

revious study, Chien and Webb [17] investigated the pool boil- 

ng of R-123 on the structured surfaces having pore diameters of 

.18 and 0.23 mm. They also reported the dynamic characteristics 

f bubbles such as bubble departure diameter, number of nucle- 

tion sites, and bubble generation frequency, and found that the 
2

nhanced surfaces increased the number of bubbles compared to 

he plain surface. The similar trend was observed for the nucle- 

tion sites as Kedzierski and Lin [18] investigated the pool boiling 

f R514A, R1224yd(Z), and R1336mzz(e) on the flat and turbo-ESP 

urfaces. As compared the results with the R-123, they found that 

he heat flux increased using R514A, R1224yd(Z), and R1336mzz(e) 

y 30%, 57%, and 13%, respectively. Detailed discussions about 

he boiling on enhanced surfaces can be found in the literature 

 19 –25 ]. 

As for the predictive models on the pool boiling HTC on the 

nhanced surfaces, Nakayama et al. [ 26 , 27 ] developed a semi- 

mpirical model for the porous surfaces, for the first time based on 

heir pool-boiling experimental data using N 2 , R-123, R-11, show- 

ng 80–90% enhancement compared to the plain surface. They de- 

eloped the model based on the suction-evaporation model hav- 

ng seven empirical constants, assuming that the total heat flux 

n the porous surface is contributed by tunnel and external heat 

ux. Webb and Pais [15] tested four enhanced surfaces on five re- 

rigerants and proposed a correlation using a power law to pre- 

ict the HTC. Later on, through a series of experiments, Chien and 

ebb [28] proposed a dynamic model by including the tempo- 

al variation in evaporation through the tunnel, while modifying 

akayama model [27] . Their model includes only two empirical 

onstants and external heat flux was predicted through the Haider 

nd Webb Model [24] . Kim and Choi [29] performed pool boiling 

xperiments on the three enhanced tubes having pore size of 0.20, 

.23, and 0.27 mm with connecting gaps at two saturation tem- 

eratures, 4.4 and 26.7 ̊C. Similar to previous studies, they also 

oted that HTC was higher at high saturation temperature owing 

o favorable thermophysical properties, i.e., low surface tension and 

igh heat of vaporization. They modified the Cooper correlation to 

ncorporate the pore diameter effect to predict the data within the 

rror band of ±20%. Ramaswamy et al. [30] obtained the bubble 

rowth data during the boiling of FC-72 on the silicon wafer having 

ini channels. They noted that diameter of the departing bubble 

ncreased with the increase in pore diameter and a greater num- 

er of pores got active with the increase in heat flux synergizing 

he previous findings that heat flux and pore diameter are one of 

he influential parameters and have an impact on the heat trans- 

er performance. Based on bubble dynamics data, they developed 

 detailed model to predict bubble departure diameter, frequency, 

ucleation site density, and heat flux. Pastuszko et al. [ 11 , 31 –36 ]

arried out a series of pool boiling experiments using ethanol, wa- 

er, FC-72, Novec-649 on enhanced surfaces and derived a static 

odel to predict the bubble dynamics parameters and HTC. Their 

odel predicts the HTC with the error band between ±30 to ±40% 

11] . Recently, Kedzierski and Lin [37] developed a model for the 

at turbo-ESP surface during the pool boiling of R1234ze(e), R515A, 

nd R1233zd(e) which fitted into their experimental data reason- 

bly. 

However, the previous models did not reasonably predict the 

xperimental results on different surface geometry or operational 

onditions, showing that the error can be as high as ±50% [ 21 , 22 ].

he large error is related to the convoluted relations between the 

omplex boiling process, various surface geometries, thermophys- 

cal properties, and operating conditions. Thus, it is imperative to 

eek an advanced model to accurately predict the pool boiling per- 

ormance on various surfaces and operation conditions. Emerging 

rtificial Intelligence (AI)-based models offer to predict the pool 

oiling performance on enhanced surfaces with the desired accu- 

acy by unlocking such convoluted relations [ 38 –45 ], but it was not 

easonably implemented into the boiling performance prediction 

n enhanced surfaces yet. In this study, we examine the complex 

elations among four geometrical, nine thermophysical properties, 

nd two operational conditions to accurately predict the HTC on 

nhanced surfaces such as porous, sub-tunnels, reentrant cavity, or 
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Table 1 

Values for coefficient C and exponent n for Eq. (1). 

Surface type Refrigerant Saturation temperature, 4.4 ̊C Saturation temperature, 26.7 ̊C 

GEWA K26 – C n C n 

R-11 2.30 0.726 44.16 0.470 

R-12 41.70 0.519 69.71 0.490 

R-22 59.72 0.509 56.71 0.529 

R-123 60.43 0.489 102.59 0.452 

R-134a 2.87 0.706 47.34 0.472 

GEWA TX19 R-11 1.50 0.779 8.53 0.646 

R-12 155.79 0.394 78.79 0.476 

R-22 191.11 0.389 133.07 0.451 

R-123 105.05 0.423 126.02 0.417 

R-134a 2.35 0.731 12.65 0.591 

GEWA SE R-11 2.47 0.739 4.92 0.733 

R-12 189.85 0.421 633.58 0.327 

R-22 346.88 0.380 392.21 0.385 

R-123 172.78 0.421 100.97 0.487 

R-134a 1.57 0.776 2.85 0.764 

Turbo-B R-11 830.46 0.298 1531.97 0.249 

R-12 205.98 0.429 646.49 0.326 

R-22 296.57 0.397 200.47 0.452 

R-123 304.44 0.389 1455.51 0.240 

R-134a 170.21 0.402 274.72 0.361 
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n geometries over a flat plate and tube surfaces, while those pa- 

ameters are incorporated into six dimensionless numbers as input 

arameters. The obtained predictions are also compared with the 

redictions using the existing empirical model to show the accu- 

acy improvement. 

. Methodology 

.1. Existing models 

Although there are several existing empirical/semi-empirical 

odels for pool boiling HTC on the enhanced surfaces in the liter- 

ture [ 11 , 15 , 24 , 27 –29 , 31 , 36 , 37 , 46 –48 ], only three kinds of models

re selected as a reference. The first one [15] is a conventional cor- 

elation similar to power law developed on the database of five re- 

rigerants and four enhanced tubes at two operating temperatures, 

econd one [29] is an extended form of Cooper correlation[49] de- 

eloped for the pool boiling of three enhanced tubes on three re- 

rigerants operating at two saturation temperatures. The last model 

36] is a detailed bubble dynamics based model developed on the 

atabase of pool boiling of FC-72 and water on micro-finned sur- 

aces. 

.1.1. Webb and Pais model 

Webb and Pais [15] developed an empirical model based on the 

easured HTC, h , using the pool boiling with five refrigerants (R- 

1, R-12, R-22, R-123, and R-134a) on four boiling tubes having en- 

anced surfaces (GEWA K-26, GEWA TX-19, GEWA-SE, and Turbo- 

) at saturation temperature of 26.7 and 4.4 ̊C as given as 

 = Cq n (1) 

here C and n are fitting parameters for different refrigerants, op- 

rational conditions, and types of enhanced surfaces. The values of 

oefficients C and n recommended by the authors are listed below 

n Table 1 , and the schematics of the enhanced surface structures 

re shown in Fig. 1 . 

.1.2. Kim and Choi model 

Kim and Choi [29] tested three refrigerants on enhanced sur- 

aces having pores with connecting gaps. Similar to Cooper corre- 

ation [49] for the plain surfaces, they correlated the HTC with sys- 

em pressure and surface geometry. For R-11 and R-123, we have 
3 
 = 112 . 2 q 0 . 523 p 0 . 254 red (−1 . 13 − 97600 d p + 9 . 40 × 10 8 d 2 p − 2 × 10 12 d 3 p ) 

(2) 

nd for R-134a, we have 

 = 10 11 q 0 . 297 p 0 . 632 red d 2 . 1 p (3) 

here q is the heat flux, p red is the reduced pressure and d p is the

ore diameter. 

.1.3. Pastsuzko and Wojcik model 

Recently, Pastsuzko and Wójcik [36] developed a semi- 

nalytical model by analyzing the measured bubble dynamics in 

he pool boiling using water and FC-72 on micro-finned surfaces 

ith and without perforated foil at atmospheric pressure. In Past- 

uzko and Wojcik model, the HTC is calculated as 

TC = 

q 

�T 
(4) 

here q is total heat flux and �T is the wall superheat. 

The total heat flux is obtained from 

 = q tun + q ex (5) 

The evaporation heat flux in the tunnels, q tun , was calculated as 

 tun = ρv �h lg N A 

πd 3 
b 

6 
f (6) 

here the ρv is the vapor density, �h lg is the heat of vaporization, 

 A is the mean density of nucleation sites, given as 

 A = 

4 W tun 

πd 2 
b 

1 

P tun 
(7) 

here the P tun is the spacing between sub-tunnels, and the W tun 

s the width of the tunnel. Here, the 4 W tun / πd b 
2 denotes the num-

er of active pores per tunnel, which is obtained by dividing the 

unnel width by the cross-sectional area of the departing bubble. 

he bubble departure diameter of the departing bubble, d b , and 

requency, f , of the bubble are obtained from 

 b = 

[
6 σd p 

g(ρl − ρv ) 

]1 / 3 

(8) 

f = 

1 

t w + t g 
(9) 
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Fig. 1. Schematic of enhanced surfaces tested by Webb and Pais [15] , (a) Turbo-B, (b) GEWA SE, and (c) GEWA TX19. 

Table 2 

Summary of the input parameters including range, mean, and standard deviation. 

Parameters Range Mean (μ) Standard deviation ( σ ) 

Liquid thermal conductivity 0.057 ≤ k l ≤ 0.67 W/m-K 0.14 W/m-K 0.179 W/m-K 

Latent heat of vaporization 138 ≤ �h lg ≤ 2256 kJ/kg 378 kJ/kg 629 kJ/kg 

Pore diameter/fin spacing at the tip 0.05 ≤ l p ≤ 1.03 mm 0.24 mm 0.17 mm 

Specific heat capacity 640.7 ≤ c p ≤ 4215 J/kg-K 1,356 J/kg-K 982 J/kg-K 

Absolute pressure 0.039 ≤ p ≤ 1.09 MPa 0.28 MPa 0.295 MPa 

Surface tension 7.87 ≤ σ l ≤ 58.9 mN/m 17.9 mN/m 14.3 mN/m 

Wall superheat 0.39 ≤ �T ≤ 109.6 K 6.29 K 10.95 K 

Pore/fin pitch 0.25 ≤ L p ≤ 3 mm 1.2 mm 0.86 mm 

Temperature 4.4 ≤ T ≤ 100 °C 28 °C 28.3 °C 
Heat flux 1.95 ≤ q ≤ 602 kW/m 

2 49 kW/m 
2 91.39 kW/m 
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here, 

 w = 3�t g (10) 

nd 

 g = 

1 

0 . 0296 

[
7 

π

ρl T sat 

i lv ρv �T 

(d b + d p ) 

(d b − d p ) 

]1 / 2 (
d b − d p 

2 

)
(11) 

The external heat flux, q ex , is obtained from Mikic and 

ohsenow [50] correlation, given as 

 ex = 2 
√ 

πk l ρl c pl f d 
2 
b N A �T tip (12) 

.2. Data collection 

To check the accuracy of the existing empirical models, i.e., Eqs. 

1) –(3) , and train and validate the model, the experimental data 

re extracted from previous studies [ 15 , 22 , 29 , 36 , 51 ]. The working

uids are R-11, R-12, R-123, R-134a, R-22, FC-72 and water, and 

he enhanced tubes include GEWA K-26, GEWA TX-19, GEWA-SE, 

urbo-B, tubes having pores with connecting gaps, porous sur- 

aces having rectangular tunnels and micro-fins with and without 

intered perforated foil. The total 1256 experimental data points 

ere used to develop the model and to predict the HTC. The key 

hermophysical parameters and operation conditions are given in 

able 2 , and the working fluids and the numbers of data points 

re provided in Table 3 . 
4 
.3. Deep neural network model 

Artificial neural networks (ANNs) are widely used machine 

earning methods to unlock the complex relations in large multi- 

imensional datasets. With the help of advance libraries, they of- 

er predictive tools to reasonably identify the underlying functional 

elationship among the data for desired accuracy without physics- 

ased complex equations. There are various types of neural net- 

ork models available, and their usage depends on the types of 

he data. For example, the Recurrent Neural Network (RNN) is im- 

lemented by Jiang et al. [52] to predict the surface temperature 

f the Li-ion battery at ambient conditions, Nie et al. [53] devel- 

ped a Convoluted Neural Network (CNN) based model to recog- 

ize the flow pattern though two-phase flow images. A neural net- 

ork with more than one hidden layer is usually referred as a 

eep neural network (DNN) [54] . Deep neural networks are suit- 

ble for regression problems and have been used for various ther- 

al problems as well. More details can be found in the literature 

 39 , 40 , 45 , 55 ]. In this study, the DNN is developed and used to pre-

ict the heat transfer coefficient due to the regressive nature of the 

roblem as the detailed approach is given below. The DNN is com- 

osed of three layers of nodes: an input layer, an output layer, and 

n arbitrary number of dense/hidden layers, placed in between the 

nputs and outputs, each with a pre-defined number of neurons. In 

he neural network, a number of activation functions can be used, 

ut in this study, Rectified Linear Unit (ReLU) was implemented in 

ach layer except the output layer [56] . The selection of the type of 
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Table 3 

Pool boiling data on enhanced surfaces including working fluid and number of data points. 

Previous work Working fluid Number of data points 

Webb and Pais [15] R-11, R-12, R-22, R-123, R-134a 313 

Kim and Choi [29] R-11, R-123, R-134a 221 

Pastuszko and Wojcik [36] Water, FC-72 122 

Mondal and Kim [22] R-134a 288 

Mehdi and Kim [51] R-123 312 

Fig. 2. Schematic of DNN model including the input/dense/output layers, and input and output parameters. 
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he activation function mainly depends on the problem to be ad- 

ressed and the user choice. In this study, as only one prediction 

f HTC is needed, so “linear function” was implemented in the out- 

ut layer. The structure of the neural network used in this study is 

hown in Fig. 2 . The key input parameters as dimensionless num- 

ers and the output parameter, HTC, are also shown. The model 

as developed in Python (Version 3.8.8) [57] with Scikitlearn [58] , 

eras [59] , Matplotlib [60] , Pandas [61] , and Seaborn [62] libraries

nd it was trained by varying: 

i Number of dense layers from 2 to 8 and number of neurons 

from 30 to 512. 

ii Number of epochs between 100 and 20,000. 

iii Optimizers and learning rate. 

iv Batch size (10, 32, and 64). 

The detailed parameters of the optimized DNN model are listed 

n Table 4 . 

.3.1. Selection of input parameters 

The input parameters are selected based on the litera- 

ure survey and empirical correlations reported in literature 

 6 , 14 , 15 , 21 , 22 , 24 , 25 , 27 –29 , 35 , 36 , 51 , 63 –66 ]. The nucleate boiling

eat transfer performance strongly depends on the structural, ma- 

erial, and operational properties, and the six dimensionless pa- 

ameters are identified by combining the properties. 
5 
As shown in Fig. 2 , the first input parameter is the ratio of the

ore diameter or fin spacing at the tip to the pore or center to 

enter fin spacing, l p /L p , which represents the characteristic boiling 

urface geometries. This parameter is a critical geometrical dimen- 

ionless number since the pore diameter or groove mouth spacing 

nd pore or fin pitch control the HTC of the enhanced surfaces 

 22 , 29 , 64 ]. The smaller pore or groove mouth spacing increases

he nucleation site density, and capillary pressure, while the larger 

ore or groove mouth spacing increases the permeability which is 

equired at high heat fluxes to increase liquid supply, and it also 

ncreases departure bubble diameter. Similarly, the smaller pore or 

n spacing decreases the bubble departure diameter and increases 

he nucleation sites, while the larger pore or fin spacing reduces 

he nucleate site density. The typical range of the l p and L p are 

.98 and 2.75 mm in the current DNN model. 

The second input parameter is the ratio of the thermal con- 

uctivity of the boiling surface to the thermal conductivity of the 

iquid, i.e., k s /k l . The larger the thermal conductivity of the liq- 

id, the larger heat transfer occurs by the departing bubbles and 

ice-versa. Similarly, the large thermally-conducting surface helps 

uickly evaporate the liquid, and in turn increase active nucle- 

te site density [66] . The values of k l are between 0.057 and 

.67 W/m-K, while only one value of k s = 401 W/m-K is used be-

ause the selected boiling surfaces are copper. 
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Table 4 

Summary of model parameters. 

Parameter Value Parameter Value 

No. of dense layers (No. of neurons per layer) 6 (50-100-150-300-250-150) Random state None 

No. of inputs 6 Regularization L2 

No of outputs 1 Batch size 64 

Learning rate 0.001 Optimizer Adam 

Activation ReLU Drop out 0.01 

Scalar Standard scalar Epochs 15,000 
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The third parameter is the kinetic Reynold number to include 

he effects of the wall superheat, �T , along with the specific heat 

f liquid c p,l and the heat of vaporization �h lg , which is essential 

o HTC [see, Eq. (4) ], given as 

e kinetic = 

c p,l �T 

�h lg 
. (13) 

The fourth parameter is the boiling Reynold number which in- 

orporates the heat flux along with the pore diameter/ groove 

outh spacing at the tip l p , dynamic viscosity μl , and heat of va-

orization, �h lg in the dimensionless form, given as 

e boiling = 

ql p 

μl �h lg 
. (14) 

To include the effects of the bubble dynamics as a result of 

he force balance between the surface tension, σ , and gravity (or 

ouncy force), the bond number, Bo is used as the fifth parameter, 

iven as 

o = 

�ρlg gl 
2 
p 

σ
. (15) 

here �ρ lg is the density different between the vapor and liq- 

id, g is the gravitational acceleration, l p is the pore diameter or 

he groove mouth spacing. Surface tension has a significant impact 

n the size of the generated bubble as reported in various stud- 

es [ 27 , 28 , 66 ]. For instance, in Pastuszko and Wojcik model Eq. (8) ,

he departure diameter was found to be proportional to cube root 

f surface tension. 

Moreover, as reported in literature [ 14 , 29 , 49 , 67 ], the larger sys-

em pressure results in the higher heat transfer mainly due to the 

avorable thermophysical properties, e.g., the larger vapor density 

t the elevated pressure, and the reduced pressure, p red , the ratio 

etween the operational and critical pressure is considered as the 

ixth parameter, given as 

p red = 

p 

p cric 
, (16) 

here the p is the system pressure, and p cric is the critical pres- 

ure. 

Furthermore, a correlation matrix, so called heat map, was gen- 

rated by using the pandas Spearman’s correlation method [68] , as 

hown in Fig. 3 . The association of HTC with the input parameters 

an be seen from the correlation coefficient values in the last row 

f the correlation matrix. As shown in Fig. 3 , we can see that all

he selected parameters have an impact on the experimental heat 

ransfer coefficient, HTC. 

The graphical relations among the six input parameters, i.e., 

eometrical, thermophysical, and operational dimensionless num- 

ers, and one output parameter, HTC, are shown in Fig. 4 . It shows

hat the highest HTC was obtained from water and R-134a due to 

uperior thermophysical properties and lowest values of HTC were 

bserved from FC-72 due to highly wetting nature and other poor 

hermophysical properties. Moreover, the large range of the scat- 

er among the parameters in the dataset is identified, and this in 
6 
urn becomes challenging to predict the HTC using simple empiri- 

al correlations. In this study, this challenge is addressed using the 

eveloped DNN. 

.3.2. Model training 

An accurate neural network model requires reasonable data 

ype and numbers. The most influential parameters were used in 

 dimensionless form to develop the model. In this study, the total 

f 1256 data points were used. The 60–90% of the data were used 

o train the neural network model and validate the model, while 

he remaining 10–40% of the data were used to test the model. As 

he input parameters have different scale so to reduce the bias, the 

ata was normalized by using Scikit learn Standard Scalar function 

69] , and later, the predictions were transformed to original scale. 

urthermore, the random dropping was also implemented to im- 

rove the model accuracy [70] . The model accuracy was measured 

sing the Mean Absolute Percentage Error (MAPE) and the opti- 

ization was performed by Adam optimizer [71] , and the Keras 

ibrary [72] was used to develop the DNN. The MAPE is given as 

APE = 

1 

n 

n ∑ 

i =1 

∣∣∣∣h exp − h pred 

h exp 

∣∣∣∣ × 100 (%) (17) 

here n is the total number of data points, h exp is the experimen- 

al HTC, h pred is the predicted HTC. The best performing model was 

aved, and the HTC was predicted using test data. The model loss 

as calculated for validation, and the predicted MAPEs both for 

he training and validation with respect to the numbers of epochs 

or the train-test ratio of 90/10% are shown in Fig. 5 . The predicted

APE exponentially decreases as the numbers of epochs increase, 

nd the MAPE reaches below 5% at 50 0 0 epochs. The fluctuations 

f MAPE were related to the use of a stochastic gradient descent 

SGD) approach. The predictability of the DNN model depends on 

he nature of the data and the amount of training data. Initially, 

ach dataset was trained and tested separately five times with ran- 

omly selected data to ensure the prediction repeatability and es- 

imate the variations. The predicted mean MAPE is reported with 

he error bar. For each training/testing, the different dataset was 

andomly selected to avoid the duplicate prediction. 

. Results and discussion 

.1. HTC prediction using existing models 

To examine the accuracy of the existing empirical model 

 15 , 29 , 36 ], we calculate the error between the measured and pre-

icted HTC as shown in Fig. 6 . In Fig. 6 (a), Eq. (1) predicts the ex-

erimental HTC with the maximum error of ±20%. This empirical 

orrelation predicts reasonably the experimental results compared 

o other alternatives, e.g., Fig. 6 (b) and (c). However, this correla- 

ion requires numerous empirical coefficients, i.e., 80 combinations 

f the empirical coefficient C and exponent n , for given surface ma- 

erials and refrigerant types (see Table 1 ). Thus, it is challenging to 

redict other geometries, operational conditions, and working flu- 

ds where the fitting parameters are not available. Fig. 6 (b) shows 
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Fig. 3. Correlation matrix heat map between six input parameters (six dimensionless numbers) and one output parameter, HTC. 

t

a

p

F

t  

a  

t

n

o

h

b

p

s

u

r

H

±

C

t

p

H

a  

t

w

t

t

±
t

n

a

d

A

o

d

e

h

f

K

b

u

p

p

C

e

t  

i

e

n

t

p

t

p

he comparison between the predicted HTC using the Pastuszko 

nd Wojcik model and their experimental data [36] . The model 

redicts the 75% and 60% of the experimental data with water and 

C-72 within ±35% and ±40%, respectively. The model overpredicts 

he experimental HTC at the low ( h exp = 300 – 10 0 0 W/m 
2 -K)

nd high ( h exp ∼ 10,0 0 0 W/m 
2 -K) heat fluxes. At low heat flux,

his mainly results from the fact that the model overpredicts the 

umbers of nucleation sites compared to the realistic numbers 

f nucleation poor, i.e., flooded phenomena. Furthermore, at high 

eat flux, this model overpredicts the contribution of the nucleate 

oiling phenomena at small pores < 1 mm compared to the ex- 

erimental observations, i.e., surface dryout phenomena. Fig. 6 (c) 

hows the comparison between the predicted and measured HTC 

sing Eqs. (2) and (3) and the experimental data from the same 

esearch group [29] . These equations predict 81% of the measured 

TC (characteristic pore size of 0.2, 0.23, and 0.27 mm) within 

20%. 

In fact, these equations are a modified model based on the 

ooper correlation (plain surface) [49] , by adding the characteris- 

ic pore size of the enhanced surfaces. To further understand the 

redictability of the model, the comparison between the predicted 

TC and similar experimental data from the same research group 

s shown in Fig. 6 (d). Note that there are small pore size varia-

ions, i.e., ±0.1 mm pore size difference between the experiments 

ith the characteristic pore sizes of 0.1, 0.2, and 0.3 mm. However, 

he model does not predict the similar experimental data, showing 

hat only 48% of the experimental data can be predicted within 
7 
50% error. The large error indicates that the existing model uses 

he oversimplified treatment of the complex nucleate boiling phe- 

omena by using one geometrical parameter, i.e., pore size, Eq. (3) . 

Fig. 7 shows the comparison between measured HTC of Mehdi 

nd Kim [51] and Mondal and Kim [22] and predicted HTC by the 

ynamic models of Chien and Webb [28] and Nakayama et al. [27] . 

s shown in Fig. 7 (a), Chien and Webb [28] model significantly 

verpredicts the data with MAPE of 3557%, and it does not pre- 

ict the HTC of the enhanced surfaces having L p = 3.0 mm. The 

xcessive overprediction is related to a few reasons. Firstly, the en- 

anced surfaces have different geometries, i.e., tubular geometry 

or Chien and Webb [28] , whereas horizontal plate for Mondal and 

im [22] and Mehdi and Kim [51] , which potentially change the 

ubble dynamics near the enhanced surfaces. Secondly, this model 

ses two critical empirical constants based on their original ex- 

erimental work, which may not reasonably predict the other ex- 

erimental data. The first constant is a bubble growth constant, 

 tg = 0.0296, which has a significant impact on the bubble gen- 

ration frequency, and nucleation site density, which are crucial 

o HTC. The second is a Hamaker constant C H = 2 × 10 −12 J, an

nter-molecular interaction parameter, which in turn is critical to 

vaporation rate. A shown in Fig. 7 (b), Nakayama model also sig- 

ificantly overpredicts the data with MAPE of 7019%. The substan- 

ial overpredictions are related to the fact that they use six em- 

irical constants from the best-fit of their experimental data and 

he model was developed on the enhanced surfaces having pore 

itch, L p , between 0.6 and 0.72 mm, which are much smaller than 
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Fig. 4. Complex relations among the six input and one output parameters, i.e., HTC. 

Fig. 5. Variations of MAPE of training and validation dataset with respect to the 

numbers of epochs for the final DNN model. The train-test ratio of 90/10% is shown. 
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 p = 0.75, 1.5, and 3.0 mm in the experimental studies by Mehdi 

nd Kim [51] and Mondal and Kim [22] . This indicates that the 
8 
ore pitch (or pore density) has a significant impact on the heat 

ransfer performance, and the existing dynmic models cannot be 

xtended to other experimental conditions. Details about the mod- 

ls can be found in the previous studies [ 26 –28 , 64 , 73 ]. 

.2. Effects of train-test ratio on model accuracy 

To investigate the effects of train-test ratio and the nature of 

he dataset on the model accuracy, we calculate the variation 

f MAPE with respect to the train-test ratio on various datasets 

 15 , 22 , 29 , 36 , 51 ] as shown in Fig. 8 . 

Note that the mean MAPE is reported with error bars, show- 

ng the maximum difference from the mean value obtained using 

 different test runs for given train-test ratio. Fig. 8 (a) shows the 

APE of the DNN model for three datasets (Webb and Pais [15] , 

im and Choi [29] , and Pastsuzko and Wojcik data [36] ) as a func-

ion of the training ratio from 60 to 90%, and the MAPE monoton- 

cally decreases as the train-test ratio increases. Note that for the 

rediction of Webb and Pais [15] data, the GEWA K26 case was 

xcluded due to the lack of the detailed geometrical information. 

his reduction is related to the fact that the DNN model improves 

he prediction accuracy as more data are used for DNN training. 

ig. 8 (a) also shows that the maximum MAPE of the Webb and 

ais [15] and Kim and Choi [29] datasets is only 12.87%, whereas 

he MAPE of Pastsuzko and Wojcik data [36] is much larger. This 
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Fig. 6. Predicted HTC by empirical correlations (a) Webb and Pais [15] , (b) Kim and Choi [29] , (c) Pastsuzko and Wojcik [36] and (d) Mondal and Kim [22] predicted by Kim 

and Choi correlation [29] . 

Fig. 7. Predicted HTC of the experimental pool boiling HTC by Mehdi and Kim [51] and Mondal and Kim [22] using dynamic models by (a) Chien and Webb [28] , and (b) 

Nakayama et al. [27] . 
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arger MAPE is related to the two reasons. Firstly, the experimen- 

al work by Pastsuzko and Wojcik [36] uses two different working 

uids (water and FC-72), i.e., significantly different thermophysical 

roperties, and this in turn results in large variations of the exper- 

mental HTC, i.e., large error bars. Secondly, the experimental data 

ave only 122 data points. The significant variation in thermophys- 
9 
cal properties and corresponding HTC values within just 122 data 

oints is not ideal to train the DNN, which in turn results in poor 

odel accuracy. However, note that the MAPE drastically reduces 

s the train-test ratio increases. To identify the prediction accuracy 

mprovement of the DNN model compared to existing models, the 

APE of DNN model for each experimental dataset is compared 
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Fig. 8. Effects of the test-train ratio on the MAPE of (a) Webb and Pais [15] , Kim and Choi [29] , Pastsuzko and Wojcik [36] datasets including the predictions using the 

existing models, i.e., Eqs. (1) –(3) and Pastsuzko and Wojcik model, (b) the cumulatively combined datasets. Error bars are also shown. 
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Fig. 9. Predicted HTC using DNN on the randomly selected 10% of the available ex- 

perimental data (126 data points, Table 3 ) [ 15 , 22 , 29 , 36 , 51 ]. The ± 10% error bounds 

are also shown. 
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o their own empirical/semi-empirical models. The DNN model for 

he Pastsuzko [36] and Kim and Choi [29] dataset outperforms 

he existing models for all the train-test ratio, while it shows the 

maller MAPE for Webb and Pais [15] dataset only at 90–10 train- 

est ratio. Note that the correlation uses the specific surfaces at 

iven operational conditions, which in turn results in predicting 

he experimental data reasonably as discussed in Section 3.1 . 

To investigate the effects of different experimental results 

n the DNN model accuracy, the different combinations of the 

atasets are used for the DNN training and testing. The predicted 

APE as a function of train-test ratio is shown in Fig. 8 (b). The

mallest MAPE is predicted using the data from Kim and Choi 

29] which could be due to the minimal variations in the geom- 

try (i.e., pore diameter was varied from 0.2 to 0.27 mm and pore 

itch was varied from 0.37 to 0.4 mm). So, the data of remain- 

ng references [ 15 , 22 , 36 , 51 ] was added gradually to the model. The

APE increases primarily due to the data scatter from the differ- 

nt thermophysical properties of the working fluids and surface 

eometries. For instance, the data of Webb and Pais [15] addition- 

lly add the pool boiling HTC using R-12 and R-22 to the Kim and

hoi [29] dataset. Also, the fin pitch/fin gap size, L p , is larger, i.e.,

.6, 0.94, and 1.33 mm, for the Webb and Pais [15] than those 

ubes, i.e., 0.374, 0.384, and 0.4 mm, tested by Kim and Choi [29] .

dditional increase in MAPE is observed by adding the Pastsuzko 

nd Wojcik datasets [36] , similar to the increased MAPE by adding 

ebb and Pais [15] to Kim and Choi [29] datasets. However, the 

APE reduces by adding Mondal and Kim [22] and Mehdi and 

im [51] datasets to the previous two datasets. This reduction is 

elated to the fact that the dataset [ 22 , 51 ] has 600 data points,

hich were obtained on the working fluids having similar thermo- 

hysical properties to the existing data. In other words, the DNN 

odel accuracy increases as the numbers of the similar data in- 

rease. Similar to Fig. 8 (a), the MAPE also decreases as train-test 

atio increases for all the datasets, and the data heterogeneity ef- 

ects are minimal at train-test ratio of 90/10%. 

.3. HTC Predicted by deep neural network 

To identify the validity of the DNN model accuracy, we use the 

andomly selected 10% of all the pool boiling experimental data 

126 data points, see Table 3 ) to compare with the DNN predicted 

TC as shown in Fig. 9 . The DNN model predicts the 93% of the ex-

erimental data within ±10%, which outperforms one of the state- 

f-the arts existing correlation, i.e., Eq. (1) . Note that it is challeng- 
10 
ng to compare the DNN model with Eq. (1) , due to the lack of the

mpirical coefficients, C and n in Eq. (1) for the different experi- 

ental conditions. However, Eq. (1) predicts only 90% of their own 

xperimental data within ±10%. 

To further validate the developed DNN model, the pre-trained 

odel was used to predict the previous experimental pool boil- 

ng studies [ 34 , 74 –76 ]. The predicted HTC vs the experimental HTC

easured by Li et al. [76] are shown in Fig. 10 (a). The current 

re-trained DNN model predicts 84% of the data within ±30% er- 

or bounds or 20% MAPE, which much improves compared to the 

xisting empirical/semi-empirical models. For instance, Pastuszko 

nd Wojcik model [36] predicts the Li et al. [76] data with only 

0% of the data within ± 30% or 38% MAPE as shown in Fig. 10 (b).

ote that their study uses R141b and copper foam having circular 

hannels, which are not used for the current DNN model training. 

Fig. 11 compares the HTC predictions of the pre-trained DNN 

odel with the experimentally measured HTC [ 34 , 74 75 ]. Fig. 11 (a)

hows the predictions of experimental data by Kumar and Wang 

74] using the pre-trained DNN model. They measured the pool 

oiling HTC on the enhanced surfaces at three saturation temper- 
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Fig. 10. Predicted HTC of Li et al. data [76] using (a) pre-trained DNN, and (b) Pastuszko and Wojcik model [36] . The MAPE and ± 10 and ± 30% error bounds are also 

shown. 

Fig. 11. Predicted HTC of (a) Kumar and Wang [74] , (b) Pastuszko et al. [34] , and (c) Yang and Fan [75] using pre-trained DNN. 

11
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Table 5 

Unseen data of enhanced surfaces including working fluid and number of data points. 

Previous work Working fluid Number of data points 

Tong Li et al. [76] R-141b 135 

Kumar and Wang [74] R1234Ze(E) 15 

Pastuszko et al. [34] Novec-649 46 

Yang and Fan [75] R404A 60 

Table 6 

Summary of the input parameters including range, mean, and standard deviation of chosen data. 

Parameters Range Mean (μ) Standard deviation ( σ ) 

Pore diameter/groove mouth 0.117 ≤ l p ≤ 2 mm 0.76 mm 0.68 mm 

Liquid thermal conductivity 0.059 ≤ k l ≤ 0.0887 W/m-K 0.078 W/m-K 0.012 W/m-K 

Latent heat of vaporization 88 ≤ �h fg ≤ 222 kJ/kg 177 kJ/kg 0.899 kJ/kg 

Specific heat capacity 1103 ≤ c p ≤ 1554 J/kg-K 1233 J/kg-K 146 J/kg-K 

Absolute pressure 0.1013 ≤ p ≤ 1.3 MPa 0.316 MPa 0.4 MPa 

Surface tension 4.35 ≤ σ l ≤ 17.3 mN/m 13 mN/m 4.8 mN/m 

Wall superheat 0.26 ≤ �T ≤ 26.64 K 9.3 K 7.58 K 

Pore/fin pitch 0.46 ≤ L p ≤ 5 mm 2.17 mm 1.5 mm 

Temperature -6 ≤ T ≤ 49 °C 30 °C 14.9 °C 
Heat flux 1.18 ≤ q ≤ 429 kW/m 

2 85 kW/m 
2 79 kW/m 

2 

Fig. 12. Predicted MAPE of DNN excluding each designated input parameter, comparing with all parameters used, i.e., permutation-based sensitivity analysis. The error bars 

and train-test ratio are also shown. 
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tures, -6, 0, and 10 °C using a new low-GWP refrigerant R1234ze. 

he pre-trained DNN predicts the experimental data within ±30% 

rror without additional DNN training with the data on R-1234ze, 

esulting in only MAPE = 17%. Fig. 11 (b) compares the experimen- 

al measured HTC and predicted HTC of Pastuszko et al. [34] . The 

NN predicts 70% of the data within ±30%, leading to the MAPE 

f 27%. Also, Fig. 11 (c) shows the predictions of DNN on the data

f Yang and Fan [75] for the structured tubes during the boiling of 

404A. The pre-trained DNN successfully predicts the 60% of the 

ata within ±30%, showing the MAPE of 26%. Details of the un- 

een (not used for DNN model training) dataset tested on the pre- 

rained model are given in Tables 5 and 6 . 

.4. Input parameter sensitivity on DNN model accuracy 

In this section, the input parameter sensitivity on the DNN 

odel accuracy is investigated by ignoring each input parameter 

ased on the permutation method. The average MAPE of five dif- 

erent test runs with error bars is shown in Fig. 12 to compare 

ith the one including all the input parameters, i.e., 4.7% MAPE. 
12 
he MAPE ignoring Re boiling in the model results in the 12.49% 

verage MAPE, which is nearly 2.5 times higher than that of the 

odel including all the parameters. This large sensitivity of the 

e boiling parameter is related to the fact that it includes the key 

eometrical, thermophysical, and operating parameters such as the 

eat flux q , pore size/fin spacing at the tip l p , dynamic viscosity 

l and heat of vaporization �h lg . The second most sensitive pa- 

ameter is the ratio of pore diameter or groove mouth spacing l p 
o pore pitch L p since the DNN prediction excluding l p / L p results 

n the 10.54% average MAPE, and this indicates the MAPE nearly 

oubles compared to the DNN prediction with all the input param- 

ters. The large sensitivity results from the dominating geometri- 

al parameter controlling the bubble dynamics and nucleate site 

ensities which is in line with the previous studies. For instance, 

ondal and Kim [22] reported that the HTC increases with the in- 

reased pore diameter and/or decreased pore pitch owing to the 

arger bubble size and active nucleation sites, although the opti- 

al pore diameter and pore pitch exist for certain heat flux and 

ype of refrigerant [ 29 , 64 ]. The bond number Bo is the next sen-

itive parameter as the MAPE increases nearly 1.5 times increases 
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xcluding the Bo in the DNN model. The kinetic Reynold number 

e kinetic , the thermal conductivity ratio k s / k l are the next sensitive 

arameters, although the sensitive changes are minimal. The least 

ensitive parameter is the reduced pressure p red as the MAPE in- 

rease only up to 5.74% excluding the reduced pressure in the DNN 

odel. 

. Conclusion 

In this study, we examined the complex relations among four 

eometrical, nine thermophysical properties, and two operational 

onditions to accurately predict the HTC on enhanced surfaces 

uch as porous, sub-tunnels, reentrant cavity, or fin geometries 

ver flat plate and tube surfaces, by incorporated those parame- 

ers into six dimensionless numbers as input parameters. The total 

f 1256 experimental data points is used including 7 working flu- 

ds at different conditions for more than 20 porous and reentrant 

avity surface types. The optimized DNN model was obtained by 

arefully tuning the hyperparameters, which predicts 93% of the 

TC within ±10% error and results in MAPE below 5%. The de- 

eloped DNN model outperformed the prediction accuracy of the 

xisting empirical correlations having ±5.04 - 45.37% MAPE. 

Following key conclusions were drawn: 

• The developed DNN model increased the pool boiling HTC pre- 

diction accuracy by at least 20% in MAPE, compared to the ex- 

isting HTC correlations. 
• The developed DNN model was sensitive to the boiling 

Reynolds number Re boiling and the ratio of fin spacing at the 

tip(or pore diameter) to the pore pitch/center to center fin 

spacing l p / L p . 
• Regardless of the train-test ratio (60/40 to 90/10%), the devel- 

oped DNN model accuracy was always better than the existing 

semi-analytical model [36] . 
• Uncertainty analysis unveiled that there is at least 4 ∼ 5% un- 

certainty in the DNN predictions. 
• Due to its simplicity, flexibility, and high prediction accuracy, 

the developed DNN model can be used over existing complex 

models and empirical correlations. 
• This study focuses on the basic framework of the DNN 

model aiming at understanding the structural-thermophysical- 

operating relations in the pool boiling HTC on the enhanced 

surfaces with relatively small datasets. The prediction accuracy 

can be further improved by including additional existing and 

future experimental studies. Also, this work can be extended to 

other similar scientific and engineering problems such as pool 

boiling with the different operating condition (different surface 

orientation), flow boiling on the enhanced surfaces. 
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