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An accurate predictive model of the enhanced pool boiling heat transfer on various surface modifications
is essential to operate the pool boiling and design the optimal surface designs. However, the existing
predictive models generally predict the enhanced pool boiling heat transfer on various surfaces with very
large errors as high as +£50%, mainly due to the complex nature of the pool boiling processes. In this
study, we unlock the complex relations among four geometrical, nine thermophysical properties, and two
operational conditions to accurately predict the Heat Transfer Coefficient (HTC) on the enhanced surfaces
using an optimized Deep Neural Network (DNN) model. The six dimensionless numbers are identified
based on geometries, operation conditions, and thermophysical properties, which are used as input pa-
rameters for the DNN model for the first time. This results in the Mean Absolute Percentage Error (MAPE)
below 5%, compared to the existing empirical correlations having 5.04-45.37% MAPE on the selected 1256
data points. Also, the developed DNN model outperforms the prediction accuracy of the existing correla-
tion for the data in much different experimental conditions, showing the 20% MAPE for the pre-trained
DNN model (without additional training) and 38% MAPE for the existing correlation. Moreover, the sensi-
tivity analysis was performed to identify the key dimensionless parameters for the HTC on the enhanced
surfaces. The developed DNN model with the dimensionless parameters shed light on understanding the
complex pool boiling process on the enhanced surfaces.
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1. Introduction Since the first enhanced surface manufactured by cold met-

alwork was developed in the late 1960s, various tubular en-

The nucleate boiling offers a large heat transfer with a very
small temperature gradient through liquid-vapor phase change
process compared to a single phase heat transfer [1]. Due to such
technical advantages, the nucleate boiling is widely used in refrig-
eration, thermoelectric power generation, and industrial processes
[2-4]. However, the undesired vapor-liquid, two-phase flows near
the boiling surface leads to limited Heat Transfer Coefficient (HTC)
and poor Critical Heat Flux (CHF), which in turn results in ineffi-
cient system performance and catastrophic system burnout. To ad-
dress these technical challenges, various engineered surfaces have
been examined using subtractive and additive manufacturing tech-
niques by providing a greater number of bubble nucleation sites
and tailored two-phase flows near the boiling surface [5-9]. Nucle-
ation sites can be generated by simply roughening the surface or
by employing a microporous coating on the boiling surfaces [10].
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hanced surfaces were developed which can be categorized into
two groups. The one is the structured surface with integral fin-
tubes having reentrant grooves or tunnels, and the other is porous
surface having a plain tube with porous metallic matrix bonded
on it [11,12]. The first enhanced surface with a reentrant cavity
was reported in 1972 [13], and the one of the first studies on en-
hanced surfaces was conducted by Nakayama and Nakajima [14].
They tested the boiling heat transfer of R-11 on the porous sur-
faces by varying the pore diameter and system pressure from 0.05
to 0.15 mm and 0.04 to 0.23 MPa, respectively. The enhanced sur-
face with a pore diameter of 0.1 or 0.15 mm showed the best per-
formance at the system pressure of 0.23 MPa which means the
system pressure and pore diameter have an influence on the heat
transfer. Webb and Pais [15] tested four enhanced tubes (GEWA
K-26, GEWA TX-19, GEWA-SE, and Turbo-B) on five low and high-
pressure refrigerants (R-11, R-12, R-22, R-123, and R-134a) at satu-
ration temperatures of 4.4 and 26.7°C. The high-pressure refriger-
ants (R-12, R-22, and R-134a) showed improved pool-boiling per-
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Nomenclature

C slope of the boiling curve

Cq Hamakar constant (])

Cig growth period constant

Cp specific heat (J/kg-K)

dp departure bubble diameter (m)

dp pore diameter (m)

f bubble generation frequency (1/s)

g gravitational acceleration (m/s?)

h heat transfer coefficient (W/m?2-K)

Ahyg heat of vaporization (J/kg)

k thermal conductivity (W/m-K)

I groove mouth spacing (m)

Ly pore center to center spacing (m)

Ny mean number density of active nucleation sites
(1/m?)

p pressure (N/m?2) or pitch (m)

q heat flux (W/m?)

S surface

T temperature (K)

AT wall superheat (K)

t time (s)

w tunnel width (m)

Greek symbols

w dynamic viscosity (N/m2-s)

0 density (kg/m3)

o surface tension (N/m)

Subscripts

b bubble

cric critical

ex external

exp experimental

g growth period

1 liquid

p pore

pred prediction

red reduced

s substrate

sat saturation

tip tip

tun tunnel

v vapor

w waiting period

formance compared to low-pressure refrigerants (R-11 and R-123)
which was due to different thermophysical properties of the re-
frigerants, i.e., surface tension, latent heat of vaporization etc. Fur-
thermore, a high HTC was observed at high saturation tempera-
ture compared to the HTC at low saturation temperature for all the
tested enhanced surfaces. Chien and Webb [16] investigated the
pool boiling with methanol on the finned copper surfaces having
pores of 0.23 mm diameter and sub-surface tunnels. They observed
the tunnel condition through the high-speed camera to find that at
high heat flux, almost all the tunnel area was vapor-filled except
the liquid menisci on the sharp corners. They concluded that the
main heat transfer mechanism in the tunneled surfaces is mainly
dictated by the sharp menisci in the corner. In continuation to the
previous study, Chien and Webb [17] investigated the pool boil-
ing of R-123 on the structured surfaces having pore diameters of
0.18 and 0.23 mm. They also reported the dynamic characteristics
of bubbles such as bubble departure diameter, number of nucle-
ation sites, and bubble generation frequency, and found that the
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enhanced surfaces increased the number of bubbles compared to
the plain surface. The similar trend was observed for the nucle-
ation sites as Kedzierski and Lin [18] investigated the pool boiling
of R514A, R1224yd(Z), and R1336mzz(e) on the flat and turbo-ESP
surfaces. As compared the results with the R-123, they found that
the heat flux increased using R514A, R1224yd(Z), and R1336mzz(e)
by 30%, 57%, and 13%, respectively. Detailed discussions about
the boiling on enhanced surfaces can be found in the literature
[19-25].

As for the predictive models on the pool boiling HTC on the
enhanced surfaces, Nakayama et al. [26,27] developed a semi-
empirical model for the porous surfaces, for the first time based on
their pool-boiling experimental data using N, R-123, R-11, show-
ing 80-90% enhancement compared to the plain surface. They de-
veloped the model based on the suction-evaporation model hav-
ing seven empirical constants, assuming that the total heat flux
in the porous surface is contributed by tunnel and external heat
flux. Webb and Pais [15] tested four enhanced surfaces on five re-
frigerants and proposed a correlation using a power law to pre-
dict the HTC. Later on, through a series of experiments, Chien and
Webb [28] proposed a dynamic model by including the tempo-
ral variation in evaporation through the tunnel, while modifying
Nakayama model [27]. Their model includes only two empirical
constants and external heat flux was predicted through the Haider
and Webb Model [24]. Kim and Choi [29] performed pool boiling
experiments on the three enhanced tubes having pore size of 0.20,
0.23, and 0.27 mm with connecting gaps at two saturation tem-
peratures, 4.4 and 26.7°C. Similar to previous studies, they also
noted that HTC was higher at high saturation temperature owing
to favorable thermophysical properties, i.e., low surface tension and
high heat of vaporization. They modified the Cooper correlation to
incorporate the pore diameter effect to predict the data within the
error band of +£20%. Ramaswamy et al. [30] obtained the bubble
growth data during the boiling of FC-72 on the silicon wafer having
mini channels. They noted that diameter of the departing bubble
increased with the increase in pore diameter and a greater num-
ber of pores got active with the increase in heat flux synergizing
the previous findings that heat flux and pore diameter are one of
the influential parameters and have an impact on the heat trans-
fer performance. Based on bubble dynamics data, they developed
a detailed model to predict bubble departure diameter, frequency,
nucleation site density, and heat flux. Pastuszko et al. [11,31-36]
carried out a series of pool boiling experiments using ethanol, wa-
ter, FC-72, Novec-649 on enhanced surfaces and derived a static
model to predict the bubble dynamics parameters and HTC. Their
model predicts the HTC with the error band between 430 to +40%
[11]. Recently, Kedzierski and Lin [37] developed a model for the
flat turbo-ESP surface during the pool boiling of R1234ze(e), R515A,
and R1233zd(e) which fitted into their experimental data reason-
ably.

However, the previous models did not reasonably predict the
experimental results on different surface geometry or operational
conditions, showing that the error can be as high as +50% [21,22].
The large error is related to the convoluted relations between the
complex boiling process, various surface geometries, thermophys-
ical properties, and operating conditions. Thus, it is imperative to
seek an advanced model to accurately predict the pool boiling per-
formance on various surfaces and operation conditions. Emerging
Artificial Intelligence (Al)-based models offer to predict the pool
boiling performance on enhanced surfaces with the desired accu-
racy by unlocking such convoluted relations [38-45], but it was not
reasonably implemented into the boiling performance prediction
on enhanced surfaces yet. In this study, we examine the complex
relations among four geometrical, nine thermophysical properties,
and two operational conditions to accurately predict the HTC on
enhanced surfaces such as porous, sub-tunnels, reentrant cavity, or
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Table 1
Values for coefficient C and exponent n for Eq. (1).
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Surface type Refrigerant

Saturation temperature, 4.4°C

Saturation temperature, 26.7°C

GEWA K26 - C n
R-11 2.30 0.726
R-12 41.70 0.519
R-22 59.72 0.509
R-123 60.43 0.489
R-134a 287 0.706
GEWA TX19 R-11 1.50 0.779
R-12 155.79  0.394
R-22 191.11 0.389
R-123 105.05  0.423
R-134a 235 0.731
GEWA SE R-11 2.47 0.739
R-12 189.85  0.421
R-22 346.88  0.380
R-123 172.78  0.421
R-134a  1.57 0.776
Turbo-B R-11 830.46  0.298
R-12 20598 0.429
R-22 296.57  0.397
R-123 30444 0.389
R-134a  170.21 0.402

C n

4416 0.470
69.71 0.490
56.71 0.529
102.59 0.452
47.34 0.472
8.53 0.646
78.79 0.476
133.07 0.451
126.02 0.417
12.65 0.591
4.92 0.733
633.58 0.327
392.21 0.385
100.97 0.487
2.85 0.764
1531.97  0.249
646.49 0.326
200.47 0.452
1455.51  0.240
274.72 0.361

fin geometries over a flat plate and tube surfaces, while those pa-
rameters are incorporated into six dimensionless numbers as input
parameters. The obtained predictions are also compared with the
predictions using the existing empirical model to show the accu-
racy improvement.

2. Methodology
2.1. Existing models

Although there are several existing empirical/semi-empirical
models for pool boiling HTC on the enhanced surfaces in the liter-
ature [11,15,24,27-29,31,36,37,46-48], only three kinds of models
are selected as a reference. The first one [15] is a conventional cor-
relation similar to power law developed on the database of five re-
frigerants and four enhanced tubes at two operating temperatures,
second one [29] is an extended form of Cooper correlation[49] de-
veloped for the pool boiling of three enhanced tubes on three re-
frigerants operating at two saturation temperatures. The last model
[36] is a detailed bubble dynamics based model developed on the
database of pool boiling of FC-72 and water on micro-finned sur-
faces.

2.1.1. Webb and Pais model

Webb and Pais [15] developed an empirical model based on the
measured HTC, h, using the pool boiling with five refrigerants (R-
11, R-12, R-22, R-123, and R-134a) on four boiling tubes having en-
hanced surfaces (GEWA K-26, GEWA TX-19, GEWA-SE, and Turbo-
B) at saturation temperature of 26.7 and 4.4°C as given as

h=Cq" (M

where C and n are fitting parameters for different refrigerants, op-
erational conditions, and types of enhanced surfaces. The values of
coefficients C and n recommended by the authors are listed below
in Table 1, and the schematics of the enhanced surface structures
are shown in Fig. 1.

2.1.2. Kim and Choi model

Kim and Choi [29] tested three refrigerants on enhanced sur-
faces having pores with connecting gaps. Similar to Cooper corre-
lation [49] for the plain surfaces, they correlated the HTC with sys-
tem pressure and surface geometry. For R-11 and R-123, we have

h = 112.2¢%523 254 (~1.13 — 97600d,, + 9.40 x 10°d2 — 2 x 10'*d3)
(2)
and for R-134a, we have
11 ,0.297 ,,0.632 42.1
h=10"q"*"p.3d; 3)

where q is the heat flux, p,q is the reduced pressure and dp, is the
pore diameter.

2.1.3. Pastsuzko and Wojcik model

Recently, Pastsuzko and Wojcik [36] developed a semi-
analytical model by analyzing the measured bubble dynamics in
the pool boiling using water and FC-72 on micro-finned surfaces
with and without perforated foil at atmospheric pressure. In Past-
suzko and Wojcik model, the HTC is calculated as

_ 9
HTC = AT (4)

where q is total heat flux and AT is the wall superheat.
The total heat flux is obtained from

q:CItun+CIex (5)
The evaporation heat flux in the tunnels, qqn, was calculated as

3
ndb

s f (6)
where the py is the vapor density, Ahyg is the heat of vaporization,
Ny is the mean density of nucleation sites, given as

AWen 1
Na = ﬂdg Pon (7)
where the Py, is the spacing between sub-tunnels, and the Wy,
is the width of the tunnel. Here, the 4Wp,,/md,? denotes the num-
ber of active pores per tunnel, which is obtained by dividing the
tunnel width by the cross-sectional area of the departing bubble.
The bubble departure diameter of the departing bubble, dj,, and
frequency, f, of the bubble are obtained from

Grun = PvAhNa

_ 6od, e
= [g(pl - pu)} ©
1
f=ivt (9)
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Fig. 1. Schematic of enhanced surfaces tested by Webb and Pais [15], (a) Turbo-B, (b) GEWA SE, and (c) GEWA TX19.

Table 2

Summary of the input parameters including range, mean, and standard deviation.

Parameters Range Mean (p) Standard deviation (o)
Liquid thermal conductivity 0.057 < k; < 0.67 Wm-K  0.14 W/m-K 0.179 W/m-K
Latent heat of vaporization 138 < Ahj, < 2256 kj/kg 378 KJ/kg 629 kj/kg
Pore diameter/fin spacing at the tip  0.05 < I, < 1.03 mm 0.24 mm 0.17 mm
Specific heat capacity 640.7 < ¢, < 4215 J/kg-K 1,356 J/kg-K 982 J/kg-K
Absolute pressure 0.039 < p < 1.09 MPa 0.28 MPa 0.295 MPa
Surface tension 7.87 < 0, <58.9 mN/m 17.9 mN/m 14.3 mN/m
Wall superheat 0.39 < AT < 109.6 K 6.29 K 10.95 K
Pore/fin pitch 0.25 <L, <3 mm 1.2 mm 0.86 mm
Temperature 44 < T <100 °C 28 °C 28.3 °C
Heat flux 1.95 < q < 602 kW/m? 49 kW/m? 91.39 kW/m?
where, 2.3. Deep neural network model
tw = 3Atg (10) Artificial neural networks (ANNs) are widely used machine
and learning methods to unlock the complex relations in large multi-
. dimensional datasets. With the help of advance libraries, they of-
1 7 T (dy+dp) / d, —dp 1 fer predictive tools to reasonably identify the underlying functional
ty= 0.0296 | 7 i, 0y AT (dp — dp) 2 (11) relationship among the data for desired accuracy without physics-

The external heat flux, gex, is obtained from Mikic and
Rohsenow [50] correlation, given as

Gex = 2/ ki piCp fAgNA AT, (12)

2.2. Data collection

To check the accuracy of the existing empirical models, i.e., Eqs.
(1)-(3), and train and validate the model, the experimental data
are extracted from previous studies [15,22,29,36,51]. The working
fluids are R-11, R-12, R-123, R-134a, R-22, FC-72 and water, and
the enhanced tubes include GEWA K-26, GEWA TX-19, GEWA-SE,
Turbo-B, tubes having pores with connecting gaps, porous sur-
faces having rectangular tunnels and micro-fins with and without
sintered perforated foil. The total 1256 experimental data points
were used to develop the model and to predict the HTC. The key
thermophysical parameters and operation conditions are given in
Table 2, and the working fluids and the numbers of data points
are provided in Table 3.

based complex equations. There are various types of neural net-
work models available, and their usage depends on the types of
the data. For example, the Recurrent Neural Network (RNN) is im-
plemented by Jiang et al. [52] to predict the surface temperature
of the Li-ion battery at ambient conditions, Nie et al. [53] devel-
oped a Convoluted Neural Network (CNN) based model to recog-
nize the flow pattern though two-phase flow images. A neural net-
work with more than one hidden layer is usually referred as a
deep neural network (DNN) [54]. Deep neural networks are suit-
able for regression problems and have been used for various ther-
mal problems as well. More details can be found in the literature
[39,40,45,55]. In this study, the DNN is developed and used to pre-
dict the heat transfer coefficient due to the regressive nature of the
problem as the detailed approach is given below. The DNN is com-
posed of three layers of nodes: an input layer, an output layer, and
an arbitrary number of dense/hidden layers, placed in between the
inputs and outputs, each with a pre-defined number of neurons. In
the neural network, a number of activation functions can be used,
but in this study, Rectified Linear Unit (ReLU) was implemented in
each layer except the output layer [56]. The selection of the type of
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Table 3
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Pool boiling data on enhanced surfaces including working fluid and number of data points.

Previous work Working fluid

Number of data points

Webb and Pais [15]

R-11, R-12, R-22, R-123, R-134a 313

Kim and Choi [29] R-11, R-123, R-134a 221
Pastuszko and Wojcik [36]  Water, FC-72 122
Mondal and Kim [22] R-134a 288
Mehdi and Kim [51] R-123 312
Input Layer Layer-1 Layer-6
b . ‘
,y ‘ ‘
k,
k, Output Layer
. .
° L]
L] e o . . L4 —| HTC
Rc}.muu ° )
° .
- .
° ]
Re, e ° .
. .
) ‘ ‘

Fig. 2. Schematic of DNN model including the input/dense/output layers, and input and output parameters.

the activation function mainly depends on the problem to be ad-
dressed and the user choice. In this study, as only one prediction
of HTC is needed, so “linear function” was implemented in the out-
put layer. The structure of the neural network used in this study is
shown in Fig. 2. The key input parameters as dimensionless num-
bers and the output parameter, HTC, are also shown. The model
was developed in Python (Version 3.8.8) [57] with Scikitlearn [58],
Keras [59], Matplotlib [60], Pandas [61], and Seaborn [62] libraries
and it was trained by varying:

i Number of dense layers from 2 to 8 and number of neurons
from 30 to 512.
ii Number of epochs between 100 and 20,000.
iii Optimizers and learning rate.
iv Batch size (10, 32, and 64).

The detailed parameters of the optimized DNN model are listed
in Table 4.

2.3.1. Selection of input parameters

The input parameters are selected based on the litera-
ture survey and empirical correlations reported in literature
[6,14,15,21,22,24,25,27-29,35,36,51,63-66]. The nucleate boiling
heat transfer performance strongly depends on the structural, ma-
terial, and operational properties, and the six dimensionless pa-
rameters are identified by combining the properties.

As shown in Fig. 2, the first input parameter is the ratio of the
pore diameter or fin spacing at the tip to the pore or center to
center fin spacing, Iy/Lp, which represents the characteristic boiling
surface geometries. This parameter is a critical geometrical dimen-
sionless number since the pore diameter or groove mouth spacing
and pore or fin pitch control the HTC of the enhanced surfaces
[22,29,64]. The smaller pore or groove mouth spacing increases
the nucleation site density, and capillary pressure, while the larger
pore or groove mouth spacing increases the permeability which is
required at high heat fluxes to increase liquid supply, and it also
increases departure bubble diameter. Similarly, the smaller pore or
fin spacing decreases the bubble departure diameter and increases
the nucleation sites, while the larger pore or fin spacing reduces
the nucleate site density. The typical range of the I, and L, are
0.98 and 2.75 mm in the current DNN model.

The second input parameter is the ratio of the thermal con-
ductivity of the boiling surface to the thermal conductivity of the
liquid, i.e., ks/k;. The larger the thermal conductivity of the lig-
uid, the larger heat transfer occurs by the departing bubbles and
vice-versa. Similarly, the large thermally-conducting surface helps
quickly evaporate the liquid, and in turn increase active nucle-
ate site density [66]. The values of k; are between 0.057 and
0.67 W/m-K, while only one value of ks = 401 W/m-K is used be-
cause the selected boiling surfaces are copper.
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Table 4
Summary of model parameters.
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Parameter  Value

Parameter Value

No. of dense layers (No. of neurons per layer)

6 (50-100-150-300-250-150)

Random state None

No. of inputs 6 Regularization L2

No of outputs 1 Batch size 64
Learning rate 0.001 Optimizer Adam
Activation ReLU Drop out 0.01
Scalar Standard scalar Epochs 15,000

The third parameter is the kinetic Reynold number to include
the effects of the wall superheat, AT, along with the specific heat
of liquid ¢,; and the heat of vaporization Ahy, which is essential
to HTC [see, Eq. (4)], given as

C JAT
Rekinetic = pAT (13)
g

The fourth parameter is the boiling Reynold number which in-
corporates the heat flux along with the pore diameter/ groove
mouth spacing at the tip I,, dynamic viscosity j;, and heat of va-
porization, Ahy, in the dimensionless form, given as

l
Repoiling = MCITphl .
g

To include the effects of the bubble dynamics as a result of
the force balance between the surface tension, o, and gravity (or
bouncy force), the bond number, Bo is used as the fifth parameter,
given as

_ Apiggly
e

(14)

Bo (15)
where Apjg is the density different between the vapor and lig-
uid, g is the gravitational acceleration, I, is the pore diameter or
the groove mouth spacing. Surface tension has a significant impact
on the size of the generated bubble as reported in various stud-
ies [27,28,66]. For instance, in Pastuszko and Wojcik model Eq. (8),
the departure diameter was found to be proportional to cube root
of surface tension.

Moreover, as reported in literature [14,29,49,67], the larger sys-
tem pressure results in the higher heat transfer mainly due to the
favorable thermophysical properties, e.g., the larger vapor density
at the elevated pressure, and the reduced pressure, p,4, the ratio
between the operational and critical pressure is considered as the
sixth parameter, given as

£ (16)
Dcric

where the p is the system pressure, and p;. is the critical pres-
sure.

Furthermore, a correlation matrix, so called heat map, was gen-
erated by using the pandas Spearman’s correlation method [68], as
shown in Fig. 3. The association of HTC with the input parameters
can be seen from the correlation coefficient values in the last row
of the correlation matrix. As shown in Fig. 3, we can see that all
the selected parameters have an impact on the experimental heat
transfer coefficient, HTC.

The graphical relations among the six input parameters, i.e.,
geometrical, thermophysical, and operational dimensionless num-
bers, and one output parameter, HTC, are shown in Fig. 4. It shows
that the highest HTC was obtained from water and R-134a due to
superior thermophysical properties and lowest values of HTC were
observed from FC-72 due to highly wetting nature and other poor
thermophysical properties. Moreover, the large range of the scat-
ter among the parameters in the dataset is identified, and this in

DPred =

turn becomes challenging to predict the HTC using simple empiri-
cal correlations. In this study, this challenge is addressed using the
developed DNN.

2.3.2. Model training

An accurate neural network model requires reasonable data
type and numbers. The most influential parameters were used in
a dimensionless form to develop the model. In this study, the total
of 1256 data points were used. The 60-90% of the data were used
to train the neural network model and validate the model, while
the remaining 10-40% of the data were used to test the model. As
the input parameters have different scale so to reduce the bias, the
data was normalized by using Scikit learn Standard Scalar function
[69], and later, the predictions were transformed to original scale.
Furthermore, the random dropping was also implemented to im-
prove the model accuracy [70]. The model accuracy was measured
using the Mean Absolute Percentage Error (MAPE) and the opti-
mization was performed by Adam optimizer [71], and the Keras
library [72] was used to develop the DNN. The MAPE is given as

.l n

MAPE = - %

i=1

Hexp — h
—op — Tpred | 100 (%) (17)

hexp

where n is the total number of data points, heyy is the experimen-
tal HTC, hyp,q is the predicted HTC. The best performing model was
saved, and the HTC was predicted using test data. The model loss
was calculated for validation, and the predicted MAPEs both for
the training and validation with respect to the numbers of epochs
for the train-test ratio of 90/10% are shown in Fig. 5. The predicted
MAPE exponentially decreases as the numbers of epochs increase,
and the MAPE reaches below 5% at 5000 epochs. The fluctuations
of MAPE were related to the use of a stochastic gradient descent
(SGD) approach. The predictability of the DNN model depends on
the nature of the data and the amount of training data. Initially,
each dataset was trained and tested separately five times with ran-
domly selected data to ensure the prediction repeatability and es-
timate the variations. The predicted mean MAPE is reported with
the error bar. For each training/testing, the different dataset was
randomly selected to avoid the duplicate prediction.

3. Results and discussion
3.1. HTC prediction using existing models

To examine the accuracy of the existing empirical model
[15,29,36], we calculate the error between the measured and pre-
dicted HTC as shown in Fig. 6. In Fig. 6(a), Eq. (1) predicts the ex-
perimental HTC with the maximum error of +20%. This empirical
correlation predicts reasonably the experimental results compared
to other alternatives, e.g., Fig. 6(b) and (c). However, this correla-
tion requires numerous empirical coefficients, i.e., 80 combinations
of the empirical coefficient C and exponent n, for given surface ma-
terials and refrigerant types (see Table 1). Thus, it is challenging to
predict other geometries, operational conditions, and working flu-
ids where the fitting parameters are not available. Fig. 6(b) shows
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the comparison between the predicted HTC using the Pastuszko
and Wojcik model and their experimental data [36]. The model
predicts the 75% and 60% of the experimental data with water and
FC-72 within +£35% and +40%, respectively. The model overpredicts
the experimental HTC at the low (hey = 300 — 1000 W/m?-K)
and high (hexp ~ 10,000 W/m?2-K) heat fluxes. At low heat flux,
this mainly results from the fact that the model overpredicts the
numbers of nucleation sites compared to the realistic numbers
of nucleation poor, i.e., flooded phenomena. Furthermore, at high
heat flux, this model overpredicts the contribution of the nucleate
boiling phenomena at small pores < 1 mm compared to the ex-
perimental observations, i.e., surface dryout phenomena. Fig. 6(c)
shows the comparison between the predicted and measured HTC
using Eqs. (2) and (3) and the experimental data from the same
research group [29]. These equations predict 81% of the measured
HTC (characteristic pore size of 0.2, 0.23, and 0.27 mm) within
+20%.

In fact, these equations are a modified model based on the
Cooper correlation (plain surface) [49], by adding the characteris-
tic pore size of the enhanced surfaces. To further understand the
predictability of the model, the comparison between the predicted
HTC and similar experimental data from the same research group
as shown in Fig. 6(d). Note that there are small pore size varia-
tions, i.e.,, £0.1 mm pore size difference between the experiments
with the characteristic pore sizes of 0.1, 0.2, and 0.3 mm. However,
the model does not predict the similar experimental data, showing
that only 48% of the experimental data can be predicted within

+50% error. The large error indicates that the existing model uses
the oversimplified treatment of the complex nucleate boiling phe-
nomena by using one geometrical parameter, i.e., pore size, Eq. (3).

Fig. 7 shows the comparison between measured HTC of Mehdi
and Kim [51] and Mondal and Kim [22] and predicted HTC by the
dynamic models of Chien and Webb [28] and Nakayama et al. [27].
As shown in Fig. 7(a), Chien and Webb [28] model significantly
overpredicts the data with MAPE of 3557%, and it does not pre-
dict the HTC of the enhanced surfaces having L, = 3.0 mm. The
excessive overprediction is related to a few reasons. Firstly, the en-
hanced surfaces have different geometries, i.e., tubular geometry
for Chien and Webb [28], whereas horizontal plate for Mondal and
Kim [22] and Mehdi and Kim [51], which potentially change the
bubble dynamics near the enhanced surfaces. Secondly, this model
uses two critical empirical constants based on their original ex-
perimental work, which may not reasonably predict the other ex-
perimental data. The first constant is a bubble growth constant,
Cig = 0.0296, which has a significant impact on the bubble gen-
eration frequency, and nucleation site density, which are crucial
to HTC. The second is a Hamaker constant Cy = 2 x 10712], an
inter-molecular interaction parameter, which in turn is critical to
evaporation rate. A shown in Fig. 7(b), Nakayama model also sig-
nificantly overpredicts the data with MAPE of 7019%. The substan-
tial overpredictions are related to the fact that they use six em-
pirical constants from the best-fit of their experimental data and
the model was developed on the enhanced surfaces having pore
pitch, L, between 0.6 and 0.72 mm, which are much smaller than
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] Train-Test Ratio(90/10%) transfer performance, and the existing dynmic models cannot be
1004 Train MAPE extended to other experimental conditions. Details about the mod-
—— Validation MAPE | - els can be found in the previous studies [26-28,64,73].
@ 80 3.2. Effects of train-test ratio on model accuracy
<
s | 4
S 604 To investigate the effects of train-test ratio and the nature of
= the dataset on the model accuracy, we calculate the variation
1 A of MAPE with respect to the train-test ratio on various datasets
40 [15,22,29,36,51] as shown in Fig. 8.
] Note that the mean MAPE is reported with error bars, show-
20 A ing the maximum difference from the mean value obtained using
5 different test runs for given train-test ratio. Fig. 8(a) shows the
1 . A MAPE of the DNN model for three datasets (Webb and Pais [15],
0 T = ? i 4 Kim and Choi [29], and Pastsuzko and Wojcik data [36]) as a func-
0 5000 10000 15000 tion of the training ratio from 60 to 90%, and the MAPE monoton-

No. of Epochs

Fig. 5. Variations of MAPE of training and validation dataset with respect to the
numbers of epochs for the final DNN model. The train-test ratio of 90/10% is shown.

L, = 0.75, 1.5, and 3.0 mm in the experimental studies by Mehdi
and Kim [51] and Mondal and Kim [22]. This indicates that the

ically decreases as the train-test ratio increases. Note that for the
prediction of Webb and Pais [15] data, the GEWA K26 case was
excluded due to the lack of the detailed geometrical information.
This reduction is related to the fact that the DNN model improves
the prediction accuracy as more data are used for DNN training.
Fig. 8(a) also shows that the maximum MAPE of the Webb and
Pais [15] and Kim and Choi [29] datasets is only 12.87%, whereas
the MAPE of Pastsuzko and Wojcik data [36] is much larger. This
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larger MAPE is related to the two reasons. Firstly, the experimen-
tal work by Pastsuzko and Wojcik [36] uses two different working
fluids (water and FC-72), i.e., significantly different thermophysical
properties, and this in turn results in large variations of the exper-
imental HTC, i.e., large error bars. Secondly, the experimental data
have only 122 data points. The significant variation in thermophys-

ical properties and corresponding HTC values within just 122 data
points is not ideal to train the DNN, which in turn results in poor
model accuracy. However, note that the MAPE drastically reduces
as the train-test ratio increases. To identify the prediction accuracy
improvement of the DNN model compared to existing models, the
MAPE of DNN model for each experimental dataset is compared
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to their own empirical/semi-empirical models. The DNN model for
the Pastsuzko [36] and Kim and Choi [29] dataset outperforms
the existing models for all the train-test ratio, while it shows the
smaller MAPE for Webb and Pais [15] dataset only at 90-10 train-
test ratio. Note that the correlation uses the specific surfaces at
given operational conditions, which in turn results in predicting
the experimental data reasonably as discussed in Section 3.1.

To investigate the effects of different experimental results
on the DNN model accuracy, the different combinations of the
datasets are used for the DNN training and testing. The predicted
MAPE as a function of train-test ratio is shown in Fig. 8(b). The
smallest MAPE is predicted using the data from Kim and Choi
[29] which could be due to the minimal variations in the geom-
etry (i.e., pore diameter was varied from 0.2 to 0.27 mm and pore
pitch was varied from 0.37 to 0.4 mm). So, the data of remain-
ing references [15,22,36,51] was added gradually to the model. The
MAPE increases primarily due to the data scatter from the differ-
ent thermophysical properties of the working fluids and surface
geometries. For instance, the data of Webb and Pais [15] addition-
ally add the pool boiling HTC using R-12 and R-22 to the Kim and
Choi [29] dataset. Also, the fin pitch/fin gap size, Ly, is larger, i.e,,
0.6, 0.94, and 1.33 mm, for the Webb and Pais [15] than those
tubes, i.e., 0.374, 0.384, and 0.4 mm, tested by Kim and Choi [29].
Additional increase in MAPE is observed by adding the Pastsuzko
and Wojcik datasets [36], similar to the increased MAPE by adding
Webb and Pais [15] to Kim and Choi [29] datasets. However, the
MAPE reduces by adding Mondal and Kim [22] and Mehdi and
Kim [51] datasets to the previous two datasets. This reduction is
related to the fact that the dataset [22,51] has 600 data points,
which were obtained on the working fluids having similar thermo-
physical properties to the existing data. In other words, the DNN
model accuracy increases as the numbers of the similar data in-
crease. Similar to Fig. 8(a), the MAPE also decreases as train-test
ratio increases for all the datasets, and the data heterogeneity ef-
fects are minimal at train-test ratio of 90/10%.

3.3. HTC Predicted by deep neural network

To identify the validity of the DNN model accuracy, we use the
randomly selected 10% of all the pool boiling experimental data
(126 data points, see Table 3) to compare with the DNN predicted
HTC as shown in Fig. 9. The DNN model predicts the 93% of the ex-
perimental data within +10%, which outperforms one of the state-
of-the arts existing correlation, i.e., Eq. (1). Note that it is challeng-
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Fig. 9. Predicted HTC using DNN on the randomly selected 10% of the available ex-
perimental data (126 data points, Table 3) [15,22,29,36,51]. The & 10% error bounds
are also shown.

ing to compare the DNN model with Eq. (1), due to the lack of the
empirical coefficients, C and n in Eq. (1) for the different experi-
mental conditions. However, Eq. (1) predicts only 90% of their own
experimental data within +£10%.

To further validate the developed DNN model, the pre-trained
model was used to predict the previous experimental pool boil-
ing studies [34,74-76]. The predicted HTC vs the experimental HTC
measured by Li et al. [76] are shown in Fig. 10(a). The current
pre-trained DNN model predicts 84% of the data within £30% er-
ror bounds or 20% MAPE, which much improves compared to the
existing empirical/semi-empirical models. For instance, Pastuszko
and Wojcik model [36] predicts the Li et al. [76] data with only
40% of the data within + 30% or 38% MAPE as shown in Fig. 10(b).
Note that their study uses R141b and copper foam having circular
channels, which are not used for the current DNN model training.

Fig. 11 compares the HTC predictions of the pre-trained DNN
model with the experimentally measured HTC [34,74 75]. Fig. 11(a)
shows the predictions of experimental data by Kumar and Wang
[74] using the pre-trained DNN model. They measured the pool
boiling HTC on the enhanced surfaces at three saturation temper-
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Unseen data of enhanced surfaces including working fluid and number of data points.

Previous work Working fluid Number of data points
Tong Li et al. [76] R-141b 135

Kumar and Wang [74] R1234Ze(E) 15

Pastuszko et al. [34] Novec-649 46

Yang and Fan [75] R404A 60

Table 6

Summary of the input parameters including range, mean, and standard deviation of chosen data.

Parameters Range Mean (1) Standard deviation (o)
Pore diameter/groove mouth ~ 0.117 <[, <2 mm 0.76 mm 0.68 mm
Liquid thermal conductivity 0.059 < k; < 0.0887 W/m-K  0.078 W/m-K  0.012 W/m-K
Latent heat of vaporization 88 < Ahg < 222 KJ/kg 177 KJ/kg 0.899 KkJ/kg
Specific heat capacity 1103 < ¢, < 1554 J/kg-K 1233 J/kg-K 146 J/kg-K
Absolute pressure 0.1013 < p < 1.3 MPa 0.316 MPa 0.4 MPa
Surface tension 435 <0, <173 mN/m 13 mN/m 4.8 mN/m
Wall superheat 0.26 < AT < 26.64 K 93K 7.58 K
Pore/fin pitch 046 <L, <5 mm 2.17 mm 1.5 mm
Temperature -6 <T<49°C 30 °C 14.9 °C
Heat flux 1.18 < q < 429 kW/m? 85 kW/m? 79 kW/m?
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Fig. 12. Predicted MAPE of DNN excluding each designated input parameter, comparing with all parameters used, i.e., permutation-based sensitivity analysis. The error bars

and train-test ratio are also shown.

atures, -6, 0, and 10°C using a new low-GWP refrigerant R1234ze.
The pre-trained DNN predicts the experimental data within £30%
error without additional DNN training with the data on R-1234ze,
resulting in only MAPE = 17%. Fig. 11(b) compares the experimen-
tal measured HTC and predicted HTC of Pastuszko et al. [34]. The
DNN predicts 70% of the data within +30%, leading to the MAPE
of 27%. Also, Fig. 11(c) shows the predictions of DNN on the data
of Yang and Fan [75] for the structured tubes during the boiling of
R404A. The pre-trained DNN successfully predicts the 60% of the
data within +30%, showing the MAPE of 26%. Details of the un-
seen (not used for DNN model training) dataset tested on the pre-
trained model are given in Tables 5 and 6.

3.4. Input parameter sensitivity on DNN model accuracy

In this section, the input parameter sensitivity on the DNN
model accuracy is investigated by ignoring each input parameter
based on the permutation method. The average MAPE of five dif-
ferent test runs with error bars is shown in Fig. 12 to compare
with the one including all the input parameters, i.e., 4.7% MAPE.

12

The MAPE ignoring Repjing in the model results in the 12.49%
average MAPE, which is nearly 2.5 times higher than that of the
model including all the parameters. This large sensitivity of the
Repoiling Parameter is related to the fact that it includes the key
geometrical, thermophysical, and operating parameters such as the
heat flux q, pore size/fin spacing at the tip I,, dynamic viscosity
wy and heat of vaporization Ahj,. The second most sensitive pa-
rameter is the ratio of pore diameter or groove mouth spacing I,
to pore pitch L, since the DNN prediction excluding I,/L, results
in the 10.54% average MAPE, and this indicates the MAPE nearly
doubles compared to the DNN prediction with all the input param-
eters. The large sensitivity results from the dominating geometri-
cal parameter controlling the bubble dynamics and nucleate site
densities which is in line with the previous studies. For instance,
Mondal and Kim [22] reported that the HTC increases with the in-
creased pore diameter and/or decreased pore pitch owing to the
larger bubble size and active nucleation sites, although the opti-
mal pore diameter and pore pitch exist for certain heat flux and
type of refrigerant [29,64]. The bond number Bo is the next sen-
sitive parameter as the MAPE increases nearly 1.5 times increases
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excluding the Bo in the DNN model. The kinetic Reynold number
Reyinetic» the thermal conductivity ratio ks/k; are the next sensitive
parameters, although the sensitive changes are minimal. The least
sensitive parameter is the reduced pressure p,, as the MAPE in-
crease only up to 5.74% excluding the reduced pressure in the DNN
model.

4. Conclusion

In this study, we examined the complex relations among four
geometrical, nine thermophysical properties, and two operational
conditions to accurately predict the HTC on enhanced surfaces
such as porous, sub-tunnels, reentrant cavity, or fin geometries
over flat plate and tube surfaces, by incorporated those parame-
ters into six dimensionless numbers as input parameters. The total
of 1256 experimental data points is used including 7 working flu-
ids at different conditions for more than 20 porous and reentrant
cavity surface types. The optimized DNN model was obtained by
carefully tuning the hyperparameters, which predicts 93% of the
HTC within +10% error and results in MAPE below 5%. The de-
veloped DNN model outperformed the prediction accuracy of the
existing empirical correlations having +5.04 - 45.37% MAPE.

Following key conclusions were drawn:

The developed DNN model increased the pool boiling HTC pre-
diction accuracy by at least 20% in MAPE, compared to the ex-
isting HTC correlations.

The developed DNN model was sensitive to the boiling
Reynolds number Reyjing and the ratio of fin spacing at the
tip(or pore diameter) to the pore pitch/center to center fin
spacing Ip/Lp.

Regardless of the train-test ratio (60/40 to 90/10%), the devel-
oped DNN model accuracy was always better than the existing
semi-analytical model [36].

Uncertainty analysis unveiled that there is at least 4 ~ 5% un-
certainty in the DNN predictions.

e Due to its simplicity, flexibility, and high prediction accuracy,
the developed DNN model can be used over existing complex
models and empirical correlations.

This study focuses on the basic framework of the DNN
model aiming at understanding the structural-thermophysical-
operating relations in the pool boiling HTC on the enhanced
surfaces with relatively small datasets. The prediction accuracy
can be further improved by including additional existing and
future experimental studies. Also, this work can be extended to
other similar scientific and engineering problems such as pool
boiling with the different operating condition (different surface
orientation), flow boiling on the enhanced surfaces.
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