
PHYSICAL REVIEW B 104, 205142 (2021)

Self-duality protected multicriticality in deconfined quantum phase transitions
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Duality places an important constraint on the renormalization group flows and the phase diagrams. For
self-dual theories, the self-duality can be promoted as a symmetry, this leads to the multicriticalities. This work
investigates a description of the deconfined quantum criticality, the Nf = 2 QED3, as an example of self-dual
theories, and its multicritical behavior under perturbative deformations. The multicriticality is described by
the theory with Gross-Neveu couplings and falls in a different universality class than the standard deconfined
quantum criticality. We systematically calculate the scaling dimensions of various operators in the 3D quantum
electrodynamics with the Chern-Simons term and Gross-Neveu couplings by the large-N renormalization group
analysis. Specifically, we find certain Drelativistic four-fermion interactions which correspond to the dimer-
dimer interactions in the lattice model will drive the deconfined quantum criticality to the first-order transition,
this result is consistent with previous numerical studies.
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I. INTRODUCTION

Duality plays an important role in relating different
phases of matter. One famous example is the Kramers-
Wannier duality [1] in (1+1)D transverse field Ising model
H = ∑

i −JZiZi+1 − hXi, which exchanges J and h and
maps the ferromagnetic (Ising symmetry breaking) phase to
the paramagnetic (Ising symmetric) phase and vice versa.
More generally, two theories are dual to each other when they
have different ultraviolet (UV) descriptions but flow to the
same infrared (IR) theory. A well-known example in (2+1)D
is the particle-vortex duality, which states that the XY model
is dual to the Abelian Higgs model [2–4]. Recent develop-
ments further extend this understanding and discover many
theories and their dual partners, altogether they form a web of
duality [5].

If the theory remains the same under a duality, the duality
will be called a self-duality. For example, the Kramers-
Wannier duality is a self-duality for the (1+1)D Ising model
at the critical point. Recent studies [6–9] further propose to
interpret the self-duality as a categorical symmetry, making
connections to the fusion category of anyon excitations in the
corresponding bulk topological order in one higher dimen-
sion. When the self-duality is imposed as a symmetry, the
system is enforced to stay on the phase boundary between
the two duality-related phases, leading to the self-duality
protected criticality and multicriticality[10–15]. For example,
as illustrated in Fig. 1(a), in the presence of the Kramers-
Wannier duality (enforcing J = h), a generic Ising chain
(with all additional duality-allowed terms like −K (XiXi+1 +
Zi−1Zi+1)) can either preserve the self-duality and remain gap-
less along the Ising critical line (K < Kc), or spontaneously
break the self-duality and becomes gapped along the first-
order transition line (K > Kc). The continuous and first-order

Ising transitions are separated by a multicritical point (K =
Kc), i.e., the tricritical Ising point [16,17]. The multicritical
point can be circumvented if the self-duality is explicitly
broken (e.g., by J �= h). In this sense, the multicriticality is
protected by self-duality.

Similar continuous to first-order transition also happens
in higher dimensions between the duality-related quan-
tum phases. Here we will explore the (2+1)D example of
self-duality-protected multicriticality. In particular, we will
consider the topological transition between the bosonic sym-
metry protected topological (SPT) phase and the trivial phase,
as illustrated in Fig. 1(b), where the two phases across the
transition are related by the self-duality [5,18–21] of the
quantum electrodynamics in (2+1)D (QED3) with fermionic
matters at flavor number Nf = 2. This theory also describes
the deconfined quantum critical point (DQCP) [22–24] be-
tween the XY antiferromagnet (AFM) and the valence bond
solid (VBS) in square-lattice quantum magnets with the easy-
plane spin anisotropy, as shown in Fig. 1(c). In this case,
the two phases are related by a Z2 subgroup of the emergent
O(4) symmetry that maps the two-component XY-AFM order
parameter to the two-component VBS order parameter. Im-
posing these emergent symmetries (including the self-duality)
essentially promotes the tuning parameters to the fluctuat-
ing scalar fields and prohibits the explicit mass terms. This
leads to a unified field theory that describes the continuous-
to-first-order transition in these systems. Such multicritical
point lies in the universality class described by the QED3-
Gross-Neveu [2,5,25] (QED3-GN) theory. More generally, the
Chern-Simons (CS) term for the gauge fields can be included
to describe the multicritical point of the exotic quantum phase
transitions.

To further investigate the stability of this (2+1)D self-
duality-protected multicriticality, we extend the field theory

2469-9950/2021/104(20)/205142(20) 205142-1 ©2021 American Physical Society

https://orcid.org/0000-0001-6453-2602
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.205142&domain=pdf&date_stamp=2021-11-29
https://doi.org/10.1103/PhysRevB.104.205142


DA-CHUAN LU, CENKE XU, AND YI-ZHUANG YOU PHYSICAL REVIEW B 104, 205142 (2021)

FIG. 1. Quantum phases related by the duality or emergent sym-
metry: (a) ferromagnetic (ordered) and the paramagnetic (disordered)
phases across the Ising transition are related by the Kramers-Wannier
duality, (b) bosonic symmetry protected topological (SPT) and trivial
phases are related by the fermionic particle-vortex duality, (c) XY
antiferromagnetic (AFM) and valence bond solid (VBS) phases are
related by an emergent Z2 symmetry. In all phase diagrams, the
vertical axis is the relevant perturbation that drives the transition be-
tween the duality/symmetry-related phases, and the horizontal axis
is always taken to be the square of the transition-driving perturbation.
In phase diagrams (b) and (c), the existence of continuous transitions
between the adjacent phases is assumed, which corresponds to the
Nf = 2 QED3 field theory without four-fermion interactions.

to the large fermion flavor number (large Nf ) limit, and use
the 1/Nf expansion [25–31] to analyze the renormalization
group (RG) flow of the fermion quartic operators, includ-
ing the mass-mass (ψ̄Mψ )2 and current-current (ψ̄γ μMψ )2

interactions, at the QED3-GN fixed point. Our analysis indi-
cates that the DQCP and the multicriticality can be driven to
the first-order transition by current-current interactions. Such
current-current interactions can be realized in the lattice spin
model as a staggered dimer-dimer interaction (or stagger-
Q) as proposed and observed in the recent quantum Monte
Carlo (QMC) studies [32,33]. Unlike the conventional dimer-
dimer interaction that couples the dimers along the vertical
or horizontal directions on the square lattice, the stagger-Q
interaction couples the dimers along the diagonal direction.
The QMC results indicate that such a stagger-Q interaction
may be responsible for driving the DQCP between continuous
and first-order transitions (see Sec. IVB for more concrete
discussion of the QMC results and our theoretical explana-
tion).

The RG analysis can be further generalized to the QED3-
GN theory with additional Chern-Simons (CS) terms for the
gauge field. Although there is a lack of known examples
of self-dual theory with a non-zero-level CS term, a similar
multicritical point separating the continuous and first-order
transition still exists and can be analyzed. The result can
be applied to the direct transition between bosonic fraction
quantum Hall (FQH) and superfluid (SF) phases in interacting
boson systems [34,35].

II. SELF-DUALITY OF Nf = 2 QED3

The fermionic particle-vortex duality [36,37] dualizes a
free Dirac fermion theory to Nf = 1 QED3 theory with CS
terms and the fermion operator is mapped to the fermion oper-
ator combined with gauge fluxes. Since CS terms break parity
symmetry, the orientation reversed version of the fermionic
particle-vortex duality is obtained by changing the sign of the
CS terms. By combining the fermion particle-vortex duality

and its orientation reversed version, one can obtain a duality
between two Nf = 2 QED3 theories [18,19,21] described by
the following Lagrangians:

iψ̄1 /Da+Xψ1 + iψ̄2 /Da−Xψ2 + 1

4π
(a + Y )d (a + Y )

+ 2

4π
(XdX − YdY ) (1)

⇐⇒ iχ̄1 /Dã+Yχ1 + iχ̄2 /Dã−Yχ2 + 1

4π
(ã + X )d (ã + X ), (2)

where ψi, χi are fermion fields, /Da ≡ γ μ(∂μ − iaμ) is the
Dirac operator coupled to the U(1) gauge field a. ada ≡
εμνρaμ∂νaρ is understood as the exterior product a ∧ da, and
the same applies for other CS terms. We adopt the convention
as the lower case letters a, ã represent the dynamical U(1)
gauge fields which will be integrated over in the path inte-
gral, and the upper case letters X,Y represent the background
gauge fields which are used to keep track of the U(1)X and
U(1)Y global symmetries.

The two theories (at least) have the common UV symmetry
U(1)X × U(1)Y . For the U(1) gauge theories in (2+1)D, they
automatically have an emergent global U(1)M magnetic sym-
metry due to the Bianchi identity εμνλ∂μFνλ = 0 where Fνλ is
the gauge field strength. The charged operator of this U(1)M
symmetry is the magnetic monopole operator which creates
the gauge flux and its coupling with the background gauge
field are 1

2π adY, 1
2π ãdX in the both hand sides respectively.

The symmetry charges of the operators are,

U(1)a U(1)X U(1)Y
Ma 1 0 1
ψ1 1 1 0
ψ2 1 −1 0

↔
U(1)ã U(1)X U(1)Y

Mã 1 1 0
χ1 1 0 1
χ2 1 0 −1

(3)

and the gauge invariant operators are built from these
operators.

Renaming the fermion fields ψ ↔ χ will exchange X ↔
Y and add a background term 2

4π (XdX − YdY ) to the La-
grangian, the left-hand side (LHS) Eq. (1) and the right-hand
side (RHS) of Eq. (2) of the duality will be swapped, there-
fore, establishes the self-duality.

This self-duality can also be understood as exchanging the
“electric charge” and the “magnetic charge.” On the LHS of
the duality, the fermion field ψi is charged under the U(1)X
flavor symmetry, and the magnetic monopole operator Ma

which creates 2π flux for a is charged under the magnetic
U(1)Y due to the mixed CS term 1

2π adY (note that Ma is the
bare magnetic monopole operator which is not gauge invariant
due to the CS term 1

4π ada, the gauge-invariant operators are
the combination of the Ma and fermion creation operators).
However, on the RHS, the fermion field χi is charged under
U(1)Y and the magnetic monopole operator Mã is charged
underU(1)X . This suggests that the fermion creation operators
(resp. monopole operators) on the LHS become monopole
operators (resp. fermion creation operators) on the RHS. More
details of the self-duality are presented in Appendix B.
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Here is a side-note on the conventions to regularize the
fermion path integral. One convention is that integrating out
a single Dirac fermion in (2+1)D will contribute a (−1)-level
CS term for the negative fermion mass and a 0-level CS
term for the positive fermion mass. Physically, fermions are
doubled when putting on the lattice, one Dirac fermion is
accompanied by a massive fermionic partner, otherwise, the
single Dirac fermion will have parity anomaly in (2+1)D [38].
This convention assumes that the massive fermionic partner
is not integrated out beforehand and it is more explicit on
the quantization of the level of Chern-Simons term, this is
easier to analyze the symmetry charges of the operators since
the magnetic monopole operator has charge k if there is a
level-k CS term. We will use this convention in discussing the
dualities of quantum field theories, such as the self-duality of
Nf = 2 QED3 .

Another convention is that integrating out the fermion will
contribute a sgn(m)

2 -level CS term, this assumes that the mas-
sive fermionic partner has been integrated out beforehand and
this is relevant to the analysis of the scaling dimensions of
the critical theory since the massive fermionic partner does
not involve in the transition. Using the later convention, half
level CS term will involve in the massless theory, and now
the Chern-Simons level is effectively −Nf

2 + k where Nf is
the number of fermion flavors. We will adopt this convention
in the discussion of renormalization group analysis on the
critical behavior of the theory.

Schematically, the fermion theory with the level-k CS term
using the first convention is related to that using the second
convention by

i
Nf∑
i=1

ψ̄i /Daψi + k

4π
ada

︸ ︷︷ ︸
the 1st convention

∼= i
Nf∑
i=1

ψ̄i /Daψi + k − Nf /2

4π
ada

︸ ︷︷ ︸
the 2nd convention

.

(4)

The duality presented in Eqs. (1) and (2) will be equivalent to
the self-dual theory presented in Ref. [18] by converting to the
second convention of the fermion path integral regularization.
However, both conventions have the same gauge-invariant
operators and they yield the same response theories in the
gapped phases.

A. Phase diagram

The Nf = 2 QED3 has two relevant fermion mass defor-
mations, the singlet mass mψ̄1ψ ≡ m(ψ̄1ψ1 + ψ̄2ψ2) and the
triplet mass m′ψ̄σ 3ψ ≡ m′(ψ̄1ψ1 − ψ̄2ψ2), where σ i is the
ith Pauli matrix. Under these mass deformations, one can
integrate out the fermions and obtain the following effective
theories for the background gauge fields Eq. (1) [18,20],

2

4π
(XdX − YdY ) m > 0, m′ = 0

0 m < 0, m′ = 0,
(5)

1

2π
ad (Y + X ) + 1

4e2
f 2 + . . . m′ > 0 m = 0

1

2π
ad (Y − X ) + 1

4e2
f 2 + . . . m′ < 0 m = 0.

(6)

FIG. 2. The phase diagram of Nf = 2 QED3 theory. The singlet
mass m drives the SPT transition between two symmetric phases,
and the triplet mass m′ drives AFM-VBS transition between two
symmetry broken phases.

where e is the electron charge. The . . . represents the gapped
degrees of freedom that are not important at low energy since
the low-energy physics is dominated by the Maxwell term
1
4e2 f

2 and the first term which describes the gapless Gold-
stone boson associated to the broken symmetry U(1)Y+X or
U(1)Y−X .

When the singlet mass m is nonzero, the two response the-
ories in Eq. (5) differ by aU(1)X,2 × U(1)Y,−2 CS term, where
the number indicates the level of the CS term, i.e., 2

4π (XdX −
YdY ), which corresponds to the topological response of a
bosonic SPT state with U(1)X × U(1)Y symmetry.1 Therefore
the m > 0 and m < 0 phases should be ascribed to the topo-
logical and trivial SPT phases, respectively.2 When the triplet
mass term m′ is nonzero, the effective theories in Eq. (6)
describe the Goldstone modes in the spontaneous symmetry
breaking (SSB) phases with broken symmetries associated
to Y + X and Y − X, respectively (two different combina-
tions of the generators of U(1)X ,U(1)Y ). In the context of
square-lattice easy-plane quantum magnets [39,40], we might
interpret U(1)Y+X as the in-plane spin rotation symmetry
and U(1)Y−X as the lattice rotation symmetry (ignoring the
discrete nature of the actual C4 rotation), then the m′ > 0
and m′ < 0 phases could be identified as the XY-AFM and
the VBS phases respectively. Figure 2(a) shows the phase
diagram summarizing the above interpretations. Under the
duality transformation, the singlet mass is odd (m → −m)
while the triplet mass is even (m′ → m′), which effectively
swap the SPT and trivial phases but leaving the AFM and VBS
phases unchanged (see Fig. 2). To restore the original phase
diagram after the duality transformation, one should exchange
U(1)X ↔ U(1)Y and add a background U(1)X,2 × U(1)Y,−2

CS term to the Lagrangian.

B. Self-duality as a symmetry

As pointed out in Refs. [19,21], the explicit UV symme-
try U(1)X × U(1)Y in Eq. (1) and (2) can be enhanced to

1Since the gauge-invariant operators in UV are all bosonic (no
single-fermion operators), the resulting gapped phases can possibly
connect to the bosonic theory.
2Which phase is topological/trivial is only a matter of convention,

as the notion of SPT phases is only relative.

205142-3



DA-CHUAN LU, CENKE XU, AND YI-ZHUANG YOU PHYSICAL REVIEW B 104, 205142 (2021)

the emergent symmetry SU(2)X×SU(2)Y
Z2

∼= SO(4) in the IR. To-

gether with the self-duality ZD
2 which exchanges SU(2)X ↔

SU(2)Y and attaches aSU(2)X,1 × SU(2)Y,−1 CS term (which
falls back to the U(1)X,2 × U(1)Y,−2 CS term in the UV), the
IR symmetry becomes SO(4) � ZD

2
∼= O(4). However, as the

IR theory is shifted by the SU(2)X,1 × SU(2)Y,−1 background
response under the self-duality transformation, the ZD

2 and the
SO(4) have the mixed ’t Hooft anomaly, thus they cannot
be simultaneously coupled to the background gauge fields
and promoted to the dynamical ones. Nonetheless, it can
be viewed as the boundary of a (3+1)D SPT with the full
O(4) symmetry. With appropriate counterterm in the bulk,
the whole system can also have time-reversal symmetry ZT

2 ,
altogether gives O(4) × ZT

2 as suggested in Ref. [41].
Note that the singlet mass m is invariant under SO(4)

but is odd under ZD
2 , while the triplet mass m′ explicitly

breaks SO(4) (as it is in the (3, 3) representation [20,41]
of SU(2)X × SU(2)Y ) but is even under ZD

2 . Hence, if both
the emergent SO(4) and the self-duality ZD

2 symmetries are
imposed, no fermion bilinear mass could be included in the
Lagrangian.

C. Self-duality protected multicriticality

Although the mass term cannot be added to the Lagrangian,
squares of the mass term still can, which may take the form of
four-fermion interactions (ψ̄Maψ )2, whereMas are mass ma-
trices acting on the flavor indices. Adding these mass-squared
deformations to the QED theory Eq. (1) could potentially
drive the theory to new fixed points [28]. The fate of the
self-duality ZD

2 and the SO(4) symmetry depends on the
RG flow of such mass-squared deformations. If both sym-
metries are preserved, the theory will remain critical (as no
mass deformation is allowed), which describes the continuous
transition between AFM and VBS phases (as well as the tran-
sition between SPT and trivial phases), which is also known
as the O(4) DQCP. When the self-duality ZD

2 symmetry is
spontaneously broken, the SPT transition becomes first-order.
When the emergent SO(4) symmetry [more specifically the
Z2 subgroup that swaps U(1)Y+X and U (1)Y−X ] is sponta-
neously broken, the AFM-VBS transition becomes first-order.
These first-order transitions are separated from the continuous
transition by the multicritical points/lines. We will analyze
the RG flow of the generic four-fermion interactions at these
multicritical points, aiming to understand how certain kinds of
interactions can drive the DQCP from a continuous transition
to a first-order transition.

The multicritical point happens when Dirac fermion
masses change the sign. To analyze the scaling dimensions
of the operators at the multicritical point, we do not need to
include the massive fermionic parton which is served to cancel
the subtlety in the fermion path integral regularization. We
rewrite Eq. (1) as

iψ̄1 /Da+Xψ1 + iψ̄2 /Da−Xψ2 + 1

2π
adY + 1

4π
(XdX − YdY ).

(7)
The CS terms look different from Eq. (1), because we inte-
grate out the massive fermionic partners beforehand and it
corresponds to the second convention as discussed in the last

FIG. 3. Mean-field phase diagram of Eq. (8).

three paragraphs of Sec. II, following from Ref. [18]. Note
that the changing of convention will not change the gauge
invariant operators as well as the different gapped phases.
The background gauge fields X and Y will not affect the
dynamics and can be set to zero. Adding the mass-squared
deformations amounts to promoting the mass terms m and m′
to the dynamic scalar fields φ1 and φ2, that are coupled to the
fermions via Yukawa-type couplings φaψ̄Maψ , this can also
be seen by using the Hubbard-Stratonovich transformation.
Together with their own boson mass terms raφ2

a , the action
reads as

2∑
i=1

iψ̄i /Daψi + φ1ψ̄1ψ + φ2ψ̄σ 3ψ

+
2∑

a=1

1

2g2
φa(ra − ∂2)φa + λ

4
(φaφa)

2. (8)

For each scalar field φa, the boson mass ra has a corresponding
critical value ra,c. When ra � ra,c, the boson is gapped and
〈φa〉 = 0. When ra � ra,c, the boson is condensed, such that
〈φa〉 �= 0 and the symmetry is spontaneously broken. This will
dynamically generate the corresponding fermion mass terms.
We may loosely set ra,c = 0 and assume the bosons are critical
when ra = 0 in the following discussion.

The qualitative phase diagram of Eq. (8) is shown in Fig. 3,
which can be considered as the extension of the Fig. 2’s origin,
since no fermion mass terms m,m′ are added in the Eq. (8).
In the phase diagram, when r1, r2 � 0 (the blue region), both
bosons are gapped, leaving Eq. (8) to be the Nf = 2 QED3
theory at low energy. As discussed previously, this theory has
an emergent O(4) symmetry and describes the continuous
DQCP transition between the AFM and VBS phases [i.e.,
between the U(1)Y+X and U(1)Y−X SSB phases] when tuning
the triplet fermion mass m′ externally. If r1 is at its critical
value and r2 � 0 (along the red line), the critical theory
becomes Nf = 2 QED3-Gross-Neveu model, which describes
the continuous DQCP with emergent SO(5) symmetry as
proposed in Ref. [41]. If instead, r2 is at its critical value
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and r1 � 0 (across the blue line), the theory describes the
multicriticality between the O(4) DQCP and the first-order
AFM-VBS transition. If both r1 and r2 are critical (the purple
point), the theory describes the multicriticality between the
SO(5) DQCP and the first-order AFM-VBS transition.

To see that the φ2 condensed phase (the orange region)
corresponds to the first-order AFM-VBS transition, we con-
sider driving the AFM-VBS transition by an external triplet
mass m′. The actual mass term seen by the fermion will
be (m′ + 〈φ2〉)ψ̄σ 3ψ , meaning that the driving parameter m′
needs to overcome the expectation value 〈φ2〉 in order to
change the sign of the triplet mass effectively and switch
the system from one phase to another. Therefore 〈ψ̄σ 3ψ〉
will exhibit the hysteresis behavior as m′ is tuned back and
forth, which manifests the first-order transition. Without the
external driving (m′ = 0), the ground state will be degenerated
between AFM and VBS phases.

On the other hand, the φ1 condensed phase (the green
region) is a symmetric gapped phase whose ground state is de-
generated between topological and trivial SPT phases, which
may as well be interpreted as the first-order SPT transition
if the singlet mass m is tuned externally. The φ1 condensed
phase and the φ2 condensed phase do not coexist, because
they compete with each other to gap out the fermion, and
the ground state is determined by the condensate that has a
larger vacuum expectation value |〈φa〉|. When the competition
reaches a balance at |〈φ1〉| = |〈φ2〉| (along the gray dashed
line), it triggers a direct transition between the symmetric and
the SSB phases (either the in-plane magnetic order or the VBS
order), which is of the 3D XY universality.

The multicriticality between the continuous and first-order
transitions cannot be circumvented in the presence of the
anomalous O(4) symmetry. However, it is possible that the
protecting symmetry may be broken spontaneously under
other potentially relevant perturbations, such that the O(4)
DQCP is not stable in general. In the following, we will
explore this possibility by analyzing the effect of generic four-
fermion interactions in the QED-GN theory using the large-N
renormalization group (RG) approach.

III. LARGE-N RENORMALIZATION GROUP ANALYSIS

A. QED-Gross-Neveu-Chern-Simons theory

We extend Eq. (8) to Nf flavors of Dirac fermions ψ =
(ψ1, · · · , ψNf )

ᵀ coupled to the dynamical U(1) gauge field,
together with Yukawa-type couplings to Nb flavors of scalar
bosons φa (a = 1, . . . ,Nb). The bosons will have their kinetic
terms and can be tuned critical by the ra parameters. We also
add the level-k CS term for the dynamical U(1) gauge field
(to be general) and consider the QED3-Gross-Neveu-Chern-
Simons (QED-GN-CS) theory as follows:

L = ψ̄ (1Nf ⊗ γ μ)(∂μ − iaμ)ψ + φaψ̄ (Ma ⊗ 12)ψ

+ 1

2g2
φa(ra − ∂2)φa + λ

4
(φaφa)

2

+ ik
4π

εμνλaμ∂νaλ + 1

4e2
fμν f

μν. (9)

Here, matrices 1Nf ,M
a act on the flavor space, while matrices

12, γ
μ act on the spinor space. We take the γ matrices to be

(σ 3, σ 1, σ 2). Mas are vertices of Yukawa couplings associ-
ated with fermion bilinear masses, which are assumed to be
orthogonal to each other such that tr(MaMb) = Mδab. The last
term is the Maxwell term, with the gauge curvature defined as
fμν = ∂μaν − ∂νaμ.

The multicritical points/lines in the phase diagram Fig. 3
correspond to tuning one or more scalar bosons to critical.
We assume that all scalar fields in the effective theory (9)
correspond to the critical bosons (other gapped bosons will be
dropped from the effective theory automatically). The theory
is tuned to the QED-GN-CS fixed point. The boson mass
term (ra − ra,c)φ2

a is a relevant perturbation that drives the
system away from the multicriticality. It also is possible that
some types of fermion interactions may flow to the boson
mass term φ2

a , as it is equivalent to the mass-mass interaction
(ψ̄ (Ma ⊗ 12)ψ )2 under the Hubbard–Stratonovich transform.
Such fermion interactions will appear relevant at the QED-
GN-CS fixed point and can drive the system away from
multicriticality as well.

B. Renormalization of four-fermion interactions

To explore this possibility, we carry out a systematic
study of the scaling dimension of four-fermion interactions
at the QED-GN-CS fixed point (see Appendix A for techni-
cal details). We will follow the large-Nf expansion approach
recently developed for the QED3-GN model in Ref. [31],
where the scaling dimensions of fermion and boson bilinear
operators were analyzed. Here, we will carry over the analysis
to four-fermion operators, which has not been presented yet.
To be more general, we also include a CS term, such that our
result could potentially be applied to other DQCP such as
the superfluid to bosonic fractional quantum Hall transition
(described by the QED-GN-CS fixed point at level k = 1
[34]).

In particular, our scheme to extend Eq. (8) to large Nf cor-
responds to generalizing the fermion flavor symmetry group
from SU(2) → SU(2N ), such that the fermion flavor number
scales as Nf = 2N with N → ∞. The Yukawa vertices are
generalized to

{Ma} = {12, σ
3} → {

Ma
N

} = {12, σ
3} ⊗ 1N , (10)

where {Ma} denotes the set formed by Mas, similar for {V α}.
The perturbative interactions are

Lint = uα,m(ψ̄V α ⊗ 12ψ )2 + uα,μ(ψ̄V α ⊗ γ μψ )2, (11)

where V α = σα ⊗ 1N (α = 0, 1, 2, and 3). uα,m, uα,μ rep-
resent the coupling coefficient of the mass-mass interactions
and the current-current interactions respectively, which can be
combined to a vector uα,i = (uα,m, uα,0, uα,1, uα,2)ᵀ in each α

channel. The RG equations for uα,i takes the following general
form:

duα,i

d�
=

(
−1 + 64

3π2Nf
M(α,i),(β, j)

)
uβ, j, (12)

where the repeated indices are summed over andM is a matrix
with entries given by the O(1/Nf ) corrections, the detailed
calculations are presented in Appendix A. One can further
diagonalize M to find the eigenchannels. We take Nf → 2
to restore the case of Eq. (8). The large-Nf analysis is not
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well controlled for small Nf , as subleading corrections may
not be sufficiently small. However, in our case, we assume
the Nf = 2 QED3 has the IR conformal fixed point which is
suggested by the QMC simulation [39] and then perform the
analysis on the perturbative four-fermion interactions. It turns
out that our large-Nf RG results are consistent with the latest
QMC simulation [32,33,42].

The first quadrant, O(4) DQCP. Without the contribution
from the critical bosons, there is no relevant channel for α =
0. However, for α = 1, 2, and 3, it has one relevant channel,

duα,i

d�
= 2.24uα,i, with uα,i = (3, 1, 1, 1)ᵀ, (13)

and the spatiotemporal anisotropic channels are irrelevant.
Therefore the mass-mass interaction can be generated from
the current-current interaction under the RG flow, which could
potentially drive the O(4) DQCP to a first-order transition (if
the generated mass-squared interaction is strong enough to
overcome the bare r2 term).

With large-Nf , uα,i are independent parameters. How-
ever, for Nf = 2 (i.e., N = 1), the Fierz identity demands
the uniform combination

∑
α=1, 2, and 3 uα,i “fuses” into the

α = 0 channel, which is irrelevant. Additionally, the explicit
U(1)X × U(1)Y symmetry guarantees u1,i = u2,i, hence for
Nf = 2, there is only one independent channel of the relevant
four-fermion interaction with α = 3.

The positive-r2 axis, SO(5) DQCP. In this case, the
scalar boson associated to the singlet mass is critical, {Ma} =
12. There is still no relevant channel for α = 0. For α =
1, 2, and 3, it has the same relevant channel as the previous
case,

duα,i

d�
= 1.70uα,i, with uα,i = (3, 1, 1, 1)ᵀ. (14)

Hence, the stagger-Q term still overlaps with the relevant
channel atSO(5) DQCP fixed point. Similarly, as discussed in
the last paragraph, for Nf = 2, there is only one independent
channel of the relevant four-fermion interaction with α = 3.

The positive-r1 axis and the origin. Both cases are more
involved. The positive-r1 axis describes the transition between
the O(4) DQCP and first-order transition, and the origin is a
multicritical point where three critical lines joins. Both φ1 and
φ2 scalar fields are critical at the origin, such that the Yukawa
vertices are {Ma} = {12, σ

3}. The eigenchannels will have
mixture of V 0,V 3 or V 1,V 2, because Ma will mix V 0 with
V 3 as well as V 1 with V 2. Considering {V α} = {V 0,V 3},
there is one relevant channel with u03 ≡ (u0,i; u3,i ) =
(−0.03,−0.071,−0.071,−0.071; 0.82, 0.32, 0.32, 0.32)ᵀ,
and the RG equation reads

du03
d�

= 1.89u03 (positive-r1 axis),

du03
d�

= 1.35u03 (origin). (15)

The detailed calculation is presented in Appendix A. With one
more critical boson at the origin compared to the positive-r1
axis, the RG eigenvalue of the relevant interaction is smaller
at the SO(5) multicritical point compared to the O(4) multi-
critical line.

FIG. 4. Extended phase diagram in the presence of relevant in-
teraction u. The u = 0 plane corresponds to the phase diagram in
Fig. 3.

IV. IMPLICATIONS OF RG ANALYSIS

A. Consequence of the relevant interactions

The RG analysis suggests that the SO(5) and O(4) DQCP
may not be stable against the perturbation of certain Lorentz
symmetry breaking four-fermion interactions in the field the-
ory. The interaction is relevant and flows to the following
form:

Lint = u(3(ψ̄σ 3ψ )2 + (ψ̄σ 3γ μψ )2). (16)

Depending on the sign of the coefficient u, the interaction may
drive different instabilities of the QED theory. By analyzing
all possible Wick decomposition of the interaction term, we
found the leading eigen decompositions with both positive
and negative interaction strength is Lint = u(ψ̄σ 3ψ )2 + · · · −
u(ψ̄ψ )2. Therefore, if u < 0, the interaction favors the con-
densation of the triplet mass term ψ̄σ 3ψ , or equivalently the
scalar field φ2 that couples to it. In this case, the emergent
SO(4) symmetry is spontaneously broken, and the AFM-VBS
transition becomes first-order. On the other hand, if u > 0,
the interaction favors the condensation of the singlet mass
term ψ̄ψ , or equivalently the corresponding scalar field φ1,
which spontaneously breaks the self-duality and results in the
symmetric gapped state. Figure 4 shows the extension of the
phase diagram in the presence of four-fermion interaction.

The next leading eigen decompositions of the interac-
tion are the singlet pairing channels − 2

3u|ψᵀσ 2γ 0γ xψ |2 and
− 2

3u|ψᵀσ 2γ 0γ yψ |2 with slightly less interaction strength.
When u > 0, the system may condense the Cooper pairs
ψᵀσ 2γ 0γ x,yψ , breaking the Lorentz symmetry. Since this
term commutes with some of the kinetic terms in the Hamilto-
nian, it will split the Dirac points in the momentum space but
will not gap out the fermions. It will also Higgs theU(1) gauge
group down to Z2. Therefore it opens the possibility for the
gapless Z2 spin liquid phase instead of the symmetric gapped
phase away from the multicritical point, which provides a can-
didate scenario for the phase diagram observed in the recent
QMC study Ref. [42] where the first-order transition and the
gapless Z2 spin liquid phase are separated by the multicritical
point. Another scenario of the gapless Z2 spin liquid phase
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FIG. 5. Illustration of the (standard) Q term (in blue) and the
stagger-Q term (Qs, in red) on the square lattice. Both are dimer-
dimer interactions, but along different directions.

near the DQCP is recently proposed in Ref. [43]. The Lorentz
symmetry is also broken by the Higgs field. However, the
fermion flavors are doubled in that proposal compared to
ours, thus it describes a different gapless Z2 spin liquid phase
(see Appendix C for details). For example, the entanglement
entropy contributed from the massless degrees of freedomwill
be different, which could be distinguished in future numerical
studies.

B. Role of the stagger-Q perturbation

Recent QMC studies revealed the possibility of tuning the
DQCP between continuous and first-order transitions [32,33].
In particular, the stagger-Q term (denoted by Qs, or the
so-called Z deformation) was proposed in Ref. [32] as a mod-
ification of the J-Q model,

H = HJQ + HQs ,

HJQ = −J
∑
i

Px
i − Q

∑
i

Px
i P

x
i+ŷ + (x ↔ y), (17)

HQs = −Qs

∑
i

Px
i P

x
i+x̂+ŷ + (x ↔ y),

where Px
i = 1/4 − Si · Si+x̂ and Py

i = 1/4 − Si · Si+ŷ are the
dimer operators on the x and y bonds respectively. The
stagger-Q term Qs favors a staggered VBS pattern, and hence
the name. The illustration of the Q term and the stagger-Q
term is shown in Fig. 5. Another version of the stagger-Q
term that involves three dimers interacting along the diagonal
direction is studied in Ref. [33]. The three-dimer stagger-Q
term has the same symmetry as the two-dimer stagger-Q term,
and shares the similar physical effect (both favors the same
staggered VBS order). The QMC phase diagram in Ref. [33]
explicitly shows that the stagger-Q term can drive the DQCP
to a first-order transition. We will connect this observation to
our field-theory analysis.

In the momentum space, the stagger-Q term should corre-
spond to the dimer-dimer interaction near momentum (π, π ),
which can be argued as follows. Let Px,y

q = ∑
i P

x,y
i e−iq·ri be

the dimer operator of momentum q. A large Qs term favors
the dimer to order in the staggered pattern (along the diagonal
direction), which corresponds to the condensation of the dimer
order parameter at momentum q = (π, π ), i.e., 〈Px

(π,π )〉 �= 0
or 〈Py

(π,π )〉 �= 0. Therefore the effect of the stagger-Q interac-
tion HQs can be expressed as

HQs ∼ −Qs
((
Px
(π,π )

)2 + (
Py
(π,π )

)2)
, (18)

because a large Qs in Eq. (18) also promotes the ordering of
Px,y
(π,π ), matching the effect of HQs in the real space Eq. (17).
At low energy, the dimer fluctuation near momentum

(π, π ) should correspond to the spatial component of the
Noether current associated with the emergent U(1)Y−X sym-
metry that rotates the VBS order parameters:

Px
(π,π ) ∼ jyVBS,P

y
(π,π ) ∼ jxVBS. (19)

This mapping was derived in Ref. [44] from the fermionic par-
ton construction. A simple symmetry argument is as follows.
We first notice that Px

(π,0) and P
y
(0,π ) are the VBS order param-

eters favored by the standard Q term in the J-Q model. They
can be combined into a complex order parameter �VBS =
Px
(π,0) + iPy

(0,π ). TheU(1)Y−X rotation corresponds to�VBS →
eiθ�VBS, therefore the associated current operator should be

jxVBS = i�†
VBS∂x�VBS + H.c.

= Py
(0,π )∂xP

x
(π,0) − Px

(π,0)∂xP
y
(0,π ),

jyVBS = i�†
VBS∂y�VBS + H.c.

= Py
(0,π )∂yP

x
(π,0) − Px

(π,0)∂yP
y
(0,π ). (20)

Thus both jxVBS and jyVBS carry the total momentum (π, π )
(as a summation of (π, 0) and (0, π )). Under the (site-
centered) reflection about the y axis, i.e., (x, y) → (−x, y),
we have (Px,Py) → (−Px,Py), (∂x, ∂y) → (−∂x, ∂y), thus
( jxVBS, j

y
VBS) → ( jxBVS,− jyBVS) transforms as a pseudovector.

Similarly, under the reflection (x, y) → (x,−y), we have
( jxVBS, j

y
VBS) → (− jxBVS, j

y
BVS). Furthermore, jx,yVBS does not

transform under spin rotation symmetry. All these symmetry
properties are precisely matched by Eq. (19), which speaks for
its validity.

Using the operator correspondence in Eq. (19), Eq. (18)
can be casted into

HQs ∼ −Qs
((
jyVBS

)2 + (
jxVBS

)2)
, (21)

which identifies the stagger-Q term to the current-current
interaction in the spatial channel. We can make further con-
nection to the field theory. Since the U(1)Y−X symmetry is
generated by ψ

†
1ψ1 − ψ

†
2ψ2 in the Nf = 2 QED3 theory, the

corresponding Noether current should be jμVBS = ψ̄σ 3γ μψ ,
therefore, the current-current interaction in Eq. (21) further
translates to the four-fermion interaction in Eq. (11) with
u3,i ∝ Qs(0, 0, 1, 1)ᵀ. According to the RG analysis above,
the current-current interaction will generate the mass-mass
interaction and flow towards the combined interaction in
Eq. (16).

Since the u term in Eq. (16) corresponds to the stagger-
Q term in the lattice model, the original J-Q model may
be very close to u = 0, i.e., the QED-GN fixed point in
the field theory, though u should never be precisely zero.
But the stagger-Q term in the lattice model will turn on a
non-negligible u term in the field theory which is relevant
at the QED-GN fixed point, therefore render the transition
first order, as was observed numerically. In fact, according
to Eq. (14), our calculation of the scaling dimension of the
relevant four fermion term is 1.3 = 3 − 1.7 at the SO(5)
DQCP, which is close to the observed scaling dimension of
the stagger-Q deformation of the J-Q model (�Z ∼ 1.4 in
Ref. [32]).
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FIG. 6. Schematic phase diagram of the easy-plane J-Q model
(22).

The above field theory understanding also applies to the
easy-plane J-Q model [39,40],

H = HJQ + H�,

H� = −J�
∑
i

Szi S
z
i+x̂ + (x ↔ y), (22)

where the parameter � tunes the easy-plane anisotropy. � =
0 is the SU(2) isotropic limit, and � = 1 is the U(1) � Z2

easy-plane limit.
Tuning � away from 0 breaks the spin SU(2) symmetry

and the u term should in principle also exist for the easy-plane
J-Qmodel, but because it is more relevant compared to that in
the SU(2) symmetric case [according to Eqs. (13) and (14)],
the easy-plane J-Q model may be a first-order transition more
obviously than the isotropic limit. Based on the phase diagram
Fig. 4, the system will either enter an intermediate symmetric
gapped phase or exhibit a first-order AFM-VBS transition,
in the presence of spin anisotropy. Given the physical mean-
ing of the anisotropy term �, we can identify the symmetry
gapped phase to the easy-axis anisotropy (� < 0) and the
first-order transition to the easy-plane anisotropy (� > 0). A
schematic phase diagram is presented in Fig. 6 for the lattice
model Eq. (22). The symmetric gapped phase may as well
be interpreted as the Ising ordered phase of 〈Sz〉 �= 0, since
the condensation of φ1 field corresponds to the ordering of
〈Sz〉. The scenario that the AFM-VBS transition becomes first-
order as the easy-plane anisotropy is turned on is consistent
with the recent QMC study Ref. [45].

V. SUMMARY

In this work, we studied the Nf = 2 QED3 with self-
duality. The Nf = 2 QED3 has SO(4) symmetry in the IR,
if imposing the self-duality symmetry, it can be enhanced to
O(4). The singlet mass is invariant under SO(4) but self-
duality odd and the triplet mass is transformed by SO(4) but
self-duality even. Requiring the O(4) symmetry, the theory
cannot have explicit mass terms, which enables us to treat
the mass terms as fluctuation scalar fields and to investigate
the continuous-to-first-order transition driven by the mass
fluctuations. The multicritical points (lines) separating the
continuous and first-order transitions can be described by the
QED-GN theory.

We further analyzed the stability of the theory under the
four-fermion interactions. In particular, we focus on the spa-

tial current-current interaction of fermions in the field theory,
which corresponds to a class of dimer-dimer interaction (the
stagger-Q term) in the lattice spin model [32,33]. This op-
erator has been shown to drive the continuous DQCP to a
first-order transition in recent numerical works. Our analysis
indicates that such dimer interaction can be relevant at the
O(4) DQCP and adjacent multicritical lines, which generally
destabilize the continuous DQCP to first-order transitions (or
intermediate gapped phases). Our finding provides a theo-
retical understanding of the numerically observed first-order
transition driven by the dimer-dimer interaction. Our analysis
also suggests a possibility to have Z2 spin liquid in this model
[42] .

We provide systematically large-N renormalization group
calculation of the general Nf = 2 QED3 with Gross-Neveu
term in Appendix A. Thanks to viewing the Feynman dia-
grams as string diagrams of symmetry group representations
[46], the complicated diagram at O(1/Nf ) can be expressed
by a few group parameters. Scaling dimensions of generic
fermion/boson bilinear terms and four-fermion perturba-
tions are presented. We expect these general results will
find broader applications in other exotic quantum critical
systems.
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APPENDIX A: LARGE-N RENORMALIZATION GROUP

The theory considered in the main text is the QED3 with
level-k Chern-Simons term and Yukawa coupling between the
fermion bilinear terms and the scalar fields,

L = ψ̄ (1Nf ⊗ γ μ)(∂μ − iaμ)ψ + φaψ̄ (Ma ⊗ 12)ψ

+ 1

2g2
φa(ra − ∂2)φa + λ

4
(φaφa)

2

+ ik
4π

εμνλaμ∂νaλ + 1

4e2
fμν f

μν, (A1)

where ψ, ψ̄ represents Nf flavors of two-component Dirac
fermion fields, 1N ,Ma act on the Nf -dimensional flavor space
while 12, γ

μ, �(m),I act on the two-dimensional spinor space.
�(m),μ1,...,μm is defined as γ [μ1 . . . γ μm] (antisymmetrize the
indices) and any product of γ matrices can be reduced to
this form. Since the spacetime dimension is 3, �(i) and �(3−i)

are related by the Levi-Civita tensor. φa with a = 1, . . . ,Nb

represent the scalar fields which are coupled to the fermion
bilinears via a Yukawa type interaction. The last term in the
Lagrangian is the Chern-Simons term with level k.
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The bare propagators and vertices can be read off from the Lagrangian (A1),

(A2)

where ξ is the gauge parameter. The vertices are

. (A3)

The bare gauge and critical boson propagator will receive corrections, in the large-N limit, the corrections are dominated by
fermion loops, for the gauge propagator,

. (A4)

where Nf comes from trace over the identity matrix 1Nf . Similar for the critical boson propagator,

, (A5)

where in the last step we define tr[MaMb] = Mδab, this is true when Ma is irreducible representation. The corrected propagator
can be found by using Dyson’s equation,

�(q) = {[�(0)(q)]−1 − �(0)(q)}−1.

Note that in the large-N limit, this model flows to an interacting conformal field theory in the infrared limit, where the momentum
scale q is much smaller than the coupling constants e and g, therefore the leading order of the dressed gauge and critical boson
propagators are

(A6)

, (A7)

where A = (16−1 + 16κ2)−1,B = ((256κ )−1 + κ )−1, and κ = k/(2πNf ), a simple check is when k = 0, A = 16,B = 0 match
the coefficients in the large-N analysis of QED3 theory. Note that κ is not inverse proportional to the ’t Hooft coupling and can
be any real number, the large-N limit is to take Nf , k to ∞ while keeping κ fixed. We also keep the gauge parameter ξ in the
calculation and check that the final result does not depend on ξ .
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1. Basic diagrams for 1/N corrections: self-energy

We extract the logarithmic divergences from the diagrams and using k and � to denote the external momentum and UV
cutoff, respectively, the self-energy corrections are

(A8)

(A9)

where we define MaMa = CM1Nf in analogy of the Casimir.

2. Basic diagrams for 1/N corrections: vertex corrections

The four-fermion interactions in general can be added to the Lagrangian perturbatively, and assuming the small four-fermion
perturbations will not drive the system to other fixed points. The general form for such interactions is

K(α,(m1 ),I ),(β,(m2 ),J )ψ̄ (V α ⊗ �(m1 ),I )ψψ̄ (V β ⊗ �(m2 ),J )ψ.

For simplicity and physical relevance, we will consider a subset of the four-fermion interactions with the form

L ⊃ Lint = uα,(m),I (ψ̄ (V α ⊗ �(m),I )ψ )2. (A10)

We introduce the diagrams for the interaction vertices as

(A11)

The vertex corrections are

(A12)

(A13)

where we defineCM,α,Cγ ,(m),I asMaV αMa ≡ CM,αV α and γ μ�(m),Iγ μ ≡ Cγ ,(m),I�
(m),I , repeated indices a, μ mean summation.
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Note that there are also two-loop diagrams for the 1/N corrections, we begin with the calculation of the mass bubbles,

(A14)

(A15)

where VL,VR stands for the vertex insertion, they could be gauge-gauge, boson-boson, or gauge-boson. The formula is
complicated in general. For the three-dimensional theory, the γ matrices are simply the Pauli matrices and m in �(m),I is up
to 3. Besides, �(3),{i1,i2,i3} = iεi1,i2,i3�(0), �(2),{i1,i2} = iεi1,i2 l�

(1),l .
a. The gauge-gauge insertion. Only �(0), �(3) will have nonzero contribution, as their relation is discussed previously, we

can calculate �(0) and derive the result for �(3). The mass bubble result for �(0) is

.
(A16)

The two-loop diagrams give similar results for �(0), �(3),

. (A17)

b. The boson-boson insertion. The nonzero contributions will occur only if tr(MiM jV α ) = −tr(MiV αM j ), this requires
nontrivial choices of theMa,V α . If so, the two-loop contributions are

. (A18)

. (A19)

For example, the boson 2-loop will contribute whenMa = {12, σ
1, σ 2} and V α = {12, σ

1, σ 2, σ 3} and it will only contribute to
the current-current interaction.

c. Mixed gauge-boson insertion. The mixed gauge-boson insertion will vanish for all the choices of V α and �(m),I , part
of the reason is because tr(MiV α ) = tr(V αMi ) and it will never have a minus sign.

3. Basic diagrams for 1/N corrections: ladder corrections

The four-fermion interaction vertices as depicted in Eq. (A11) will receive O(1/N ) correction from gauge and boson
propagators as well,

(A20)

(A21)
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where the last equation is the correction for the simplified four-fermion interaction as in Eq. (A10).

(A22)

= u(α,(m),I )

⎛
⎝

⎡
⎣V αMa

⊗
V αMa

⎤
⎦ ⊗

⎡
⎣�(m),Iγ μ

⊗
�(m),Iγ μ

⎤
⎦ −

⎡
⎣V αMa

⊗
MaV α

⎤
⎦ ⊗

⎡
⎣�(m),Iγ μ

⊗
γ μ�(m),I

⎤
⎦

⎞
⎠ −8

6π2M
ln(k/�) + reg. (A23)

the repeated indices μ, a should be summed over.

4. Examples

Above general calculations will be concrete with certain
assumptions.

(1) Since �(i) and �(3−i) are related by Levi-Civita symbol
in three-dimension, we only need to consider �(0) = 12 and
�(1),μ = γ μ.

(2) For the physical relevance, we consider the four-
fermion interactions in the form of uα,m(ψ̄ (V α ⊗ 12)ψ )2 and
uα,μ(ψ̄ (V α ⊗ γ μ)ψ )2 with μ = 0, 1, and 2.

(3) We further assume V α,Ma are represented by Pauli
matrices. This kind of interaction vertices arise when doing
fermionic parton construction of the spin models, i.e., the
spin operators correspond to the fermion bilinears with Pauli
matrices inserted in the middle.

(4) We also view V αs as the basis of certain vector space
and form a set {V α} as well as Mas form a set {Ma},
such that V αMa ∈ {V α}. For example, for {Ma} = {12} or
{Ma} = {12, σ

3}, {V α} can be {V α} = {12, σ
3} or {V α} =

{12, σ
1, σ 2, σ 3}

Since V α,Ma can be represented by Pauli matrices as as-
sumed, we can exploit the underlying algebraic structure of
Pauli matrices. We further define the structure constants when
multiplying the V α,Ma as

V αMb =
∑

β

f αb
β V β, MbV α =

∑
β

f bαβ V β, (A24)

where f αb
β , f bαβ can be viewed as σ aσ b = ∑

c f
ab
c σ c with

a, b, c being restricted. The f abc for Pauli matrices are

f abc = iεabc ,with a, b, c = 1, 2, and 3,

f 0ab = δab, f a0b = δab, f ab0 = δab,with a, b = 0, 1, 2, and 3.
(A25)

The structure constants are also calculated by

f abc = 1
2 tr(σ

aσ bσ c). (A26)

The γ and � matrices are also represented by Pauli matrices
and therefore have this structure as well,

�iγ μ =
∑
j

f iμj � j, γ μ�i =
∑
j

f μi
j � j . (A27)

We arrange the coupling constants in a vector as uα,i =
(uα,m, uα,0, uα,1, uα,2), where the first term is the mass-mass
interaction and the last three terms are the current-current
interactions in the τ, x, and y directions. The corresponding
γ matrices are �i = {12, γ

0, γ 1, γ 2} = {12, σ
3, σ 1, σ 2}.

With the structure constants, the ladder corrections (A20)
can be simplified as

u(α,(m),I )

⎡
⎣V α

⊗
V α

⎤
⎦ ⊗

⎛
⎝

⎡
⎣�(m),Iγ μ

⊗
�(m),Iγ μ

⎤
⎦ +

⎡
⎣�(m),Iγ μ

⊗
γ μ�(m),I

⎤
⎦

⎞
⎠ −2A

6π2Nf
ln(k/�) + reg. (A28)

= u(α,i)

⎡
⎣V α

⊗
V α

⎤
⎦ ⊗

⎡
⎣� j

⊗
� j

⎤
⎦∑

μ

(
f iμj f iμj + f iμj f μi

j

) −2A

6π2Nf
ln(k/�) + reg. (A29)

= u(α,i)

⎡
⎣V α

⊗
V α

⎤
⎦ ⊗

⎡
⎣� j

⊗
� j

⎤
⎦(

1dim{V α} ⊗ (
Fi

j + F̃i
j

)) −2A

6π2Nf
ln(k/�) + reg., (A30)

where Fi
j ≡ ∑

μ={3,1,2} f
iμ
j f iμj , F̃i

j ≡ ∑
μ={3,1,2} f

iμ
j f μi

j , i, j = 0, 3, 1, 2 and Eq. (A22) can be simplified as

u(α,(m),I )

⎛
⎝

⎡
⎣V αMa

⊗
V αMa

⎤
⎦ ⊗

⎡
⎣�(m),Iγ μ

⊗
�(m),Iγ μ

⎤
⎦ −

⎡
⎣V αMa

⊗
MaV α

⎤
⎦ ⊗

⎡
⎣�(m),Iγ μ

⊗
γ μ�(m),I

⎤
⎦

⎞
⎠ −8

6π2M
ln(k/�) + reg. (A31)
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= u(α,i)

⎡
⎣V β

⊗
V β

⎤
⎦ ⊗

⎡
⎣� j

⊗
� j

⎤
⎦((∑

a

f αa
β f αa

β

)(∑
μ

f iμj f iμj

)
−

(∑
a

f αa
β f aαβ

)(∑
μ

f iμj f μi
j

))
−8

6π2M
ln(k/�) + reg. (A32)

= u(α,i)

⎡
⎣V β

⊗
V β

⎤
⎦ ⊗

⎡
⎣� j

⊗
� j

⎤
⎦(

Fα
β ({Ma}) ⊗ Fi

j − F̃α
β ({Ma}) ⊗ F̃i

j

) −8

6π2M
ln(k/�) + reg. (A33)

Both of the ladder contributions will depend on the structure constants with specific forms, and we define Fα
β ({Ma}) ≡∑

a∈{Ma} f
αa
β f αa

β , F̃α
β ({Ma}) ≡ ∑

a∈{Ma} f
αa
β f aαβ , α, β ∈ {V α} similar to the above definition for the � matrices.

The self-energy corrections and the vertex corrections will be diagonal matrices acting on the vector uα,i. The self-energy
corrections are the same for every uα,i, while the vertex corrections depend on the α, i. As listed in Table I, the coefficient
Cγ ,(0), = 3,Cγ ,(1),μ = −1 are distinct for mass-mass and current-current. The structure constants in Eq. (A25) also have these
distinctions, this suggests the RG equations are in block forms.

5. Renormalization group equation for four-fermion interactions

The 1/N corrections for the four-fermion interaction vertices are

−2× + +

⎛
⎝ +

⎞
⎠ +

+ + +

⎛
⎝ +

⎞
⎠ + .

(A34)

As discussed previously, for generic boson-fermion ver-
tices, the ladder correction diagram of one interaction vertex
will contribute to another interaction vertex, therefore, one
need to include all the possible interaction vertices as the
basis. For example, if {Ma} = {12, σ

3} and {V α} = {12, σ
1},

then σ 2, σ 3 also need to be included in {V α}.
We will analyze the example in the main text

Sec. III B in detail. Due to the reason provided in the
previous paragraph, we choose the interaction vertex to
be {V α} = {12, σ

1, σ 2, σ 3} ⊗ 1N and {Ma} = {}, {12} ⊗
1N , {σ 3} ⊗ 1N , {12, σ

3} ⊗ 1N . Combining with the �

TABLE I. The definition for the coefficients that are universal for
chosen fermion-boson vertex and interaction matrix.

Notation Definition

κ k/(2πNf )
A A = (16−1 + 16κ2)−1

B B = ((256κ )−1 + κ )−1

M tr[MaMb] = Mδab
CM MaMa = CM1Nf

CM,α MaV αMa ≡ CM,αV α

Cγ ,(m),I γ μ�(m),Iγ μ ≡ Cγ ,(m),I�
(m),I

Cγ ,(0), = 3,Cγ ,(1),μ = −1

f abc σ aσ b = f abc σ c, 1
2 tr(σ

aσ bσ c )

Fα
β ({Ma}), F̃α

β ({Ma}) Fα
β ({Ma}) = ∑

a∈{Ma} f
αa
β f αa

β ,

F̃α
β ({Ma}) = ∑

a∈{Ma} f
αa
β f aαβ , α, β ∈ {V α}

matrices, the basis of the interaction vertices uα,i =
(uα,m, uα,0, uα,1, uα,2) is 4 × 4 = 16 dimensional. The RG
equation is organized as

duα,i

d�
=

(
−1 + 64

3π2(2N )
M(α,i),(β, j)

)
uβ, j, (A35)

where α, β are the indices of the flavors, and i, j are the
indices of the � matrices, i = 0, 1, 2, and 3 corresponds to
{12, γ

0, γ 1, γ 2} = {12, σ
3, σ 1, σ 2} in 3D.

The matrixM(α,i),(β, j) contains several parts:

M(α,i),(β, j) = Msv
(α,i),(β, j) + MgL

(α,i),(β, j) + MbL
(α,i),(β, j). (A36)

The self-energy and vertex corrections are in the diagonal,

Msv
(α,0),(β,0) =

(
16A

6π2Nf
+ −2tr(V α )

Nf

(A2 − B2)

4π2Nf

+ −16(CM + 3CM,α )

6π2M

)
1α,β, (A37)

Msv
(α,i),(β,i) =

(
0 + −16(CM −CM,α )

6π2M

)
1α,β,

with i = 1, 2, and 3. (A38)

The ladder correction from the gauge vertex contributes the
off-diagonal part,

MgL
(α,0),(β,i) = MgL

(α,i),(β,0) = 8A

6π2Nf
1α,β,

with i = 1, 2, and 3. (A39)
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The ladder corrections from the boson vertex are complicated,
in the (i, j) space, there are two parts,

MbL
(α,0),(β,i) = MbL

(α,i),(β,0) = 16

6π2M
(Fα

β ({Ma}) − F̃α
β ({Ma})),

with i = 1, 2, and 3; (A40)

MbL
(α,i),(β, j) = 16

6π2M
(−Fα

β ({Ma}) − F̃α
β ({Ma})),

with i, j = 1, 2, and 3, i �= j; (A41)

where Fα
β ({Ma}) = ∑

a∈{Ma} f
αa
β f αa

β , F̃α
β ({Ma}) =∑

a∈{Ma} f
αa
β f aαβ , α, β ∈ {V α} is defined previously. This

can be simplified if we take subset of {V α} with proper {Ma},
and restrict the indices α and β in the subset.

The first quadrant, continuous O(4) DQCP. There is no
critical boson in the system, {Ma} = {}. There is no mixture
in the flavor space of the eigenchannel. For V a = 12N ,

du0,i
d�

=
(

−1 + 64

3π2(2N )
M(0,i),(0, j)

)
u0, j,

M = 1

256κ2 + 1

⎛
⎜⎜⎝

4(512κ2−1)
256κ2+1 1 1 1

1 0 0 0
1 0 0 0
1 0 0 0

⎞
⎟⎟⎠. (A42)

In our case, 2N = 2, κ = 0, the RG equation becomes

du0,i
d�

=

⎛
⎜⎜⎜⎜⎜⎝

−1 − 128
3π2

32
3π2

32
3π2

32
3π2

32
3π2 −1 0 0
32
3π2 0 −1 0
32
3π2 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠u0, j (A43)

and the eigenvalues of this matrix are all negative, meaning
the perturbation is irrelevant among all the channels.

For V α = σα ⊗ 1N , α = 1, 2, and 3, the RG equations
are the same for different αs

duα,i

d�
=

(
−1 + 64

3π2(2N )
M(α,i),(α, j)

)
uα, j,

M = 1

256κ2 + 1

⎛
⎜⎝
2 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎞
⎟⎠. (A44)

In our case, there is one relevant channel, and plug that into
Eq. (A44), we get

uα,i = gα (3, 1, 1, 1)
T ,

dgα

d�
= 2.24gα. (A45)

Follow the same procedure, we will present the RG equations
and the relevant channel results for other cases.

The r2 axis, continuous SO(5) DQCP. The boson
corresponding to the singlet mass is critical, {Ma} =
{12N }. There is also no mixture in the flavor space.
For V α = 12N ,

du0,i
d�

=
(

−1 + 64

3π2(2N )
M(0,i),(0, j)

)
u0, j,

M =

⎛
⎜⎜⎜⎜⎜⎝

4(512κ2−1)
(256κ2+1)2

− 1
2

1
256κ2+1

1
256κ2+1

1
256κ2+1

1
256κ2+1 0 − 1

4 − 1
4

1
256κ2+1 − 1

4 0 − 1
4

1
256κ2+1 − 1

4 − 1
4 0

⎞
⎟⎟⎟⎟⎟⎠.

(A46)

There is no relevant channel in this case.
Again, for V α = σα ⊗ 1N , α = 1, 2, and 3, the RG equa-

tions are the same for different αs

duα,i

d�
=

(
−1 + 64

3π2(2N )
M(α,i),(α, j)

)
uα, j,

M =

⎛
⎜⎜⎜⎜⎝

2
256κ2+1 − 1

2
1

256κ2+1
1

256κ2+1
1

256κ2+1

1
256κ2+1 0 − 1

4 − 1
4

1
256κ2+1 − 1

4 0 − 1
4

1
256κ2+1 − 1

4 − 1
4 0

⎞
⎟⎟⎟⎟⎠
(A47)

and the relevant channel is the same as the case of the first
quadrant, but with a smaller eigenvalue,

uα,i = gα (3, 1, 1, 1)
T ,

dgα

d�
= 1.70gα. (A48)

The r1 axis, transition between the O(4) DQCP and first-
order transition. The boson corresponding to the triplet mass
is critical, {Ma} = {σ 3 ⊗ 1N }. There are mixture between
V 0,V 3 and also between V 1,V 2, we will present the RG
equation for V 0,V 3 and V 1,V 2 separately. For {V 0,V 3},

duα,i

d�
=

(
−1 + 64

3π2(2N )
M(α,i),(β, j)

)
uβ, j, (A49)

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝ 4(512κ2−1)

(256κ2+1)2
− 1

2 0

0 2
256κ2+1 − 1

2

⎞
⎠ (256κ2 + 1)−112 (256κ2 + 1)−112 (256κ2 + 1)−112

(256κ2 + 1)−112 02 − 1
4σ

1 − 1
4σ

1

(256κ2 + 1)−112 − 1
4σ

1 02 − 1
4σ

1

(256κ2 + 1)−112 − 1
4σ

1 − 1
4σ

1 02

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A50)
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where the 2 × 2 matrices act on the {V 0,V 3} space, 02 is 2 × 2 matrix with all entries being 0. The only relevant channel is

uα,i = g(0,3)((−0.03, 0.82), (−0.071, 0.32), (−0.071, 0.32), (−0.071, 0.32))T ,
dg(0,3)
d�

= 1.89g(0,3). (A51)

For {V 1,V 2},
duα,i

d�
=

(
−1 + 64

3π2(2N )
M(α,i),(β, j)

)
uβ, j, (A52)

M =

⎛
⎜⎜⎜⎜⎜⎝

(
2

256κ2+1 + 1
4

)
12 (256κ2 + 1)−112 − 1

4σ
1 (256κ2 + 1)−112 − 1

4σ
1 (256κ2 + 1)−112 − 1

4σ
1

(256κ2 + 1)−112 − 1
4σ

1 − 1
412 02 02

(256κ2 + 1)−112 − 1
4σ

1 02 − 1
412 02

(256κ2 + 1)−112 − 1
4σ

1 02 02 − 1
412

⎞
⎟⎟⎟⎟⎟⎠. (A53)

There are two relevant channels,

uα,i = g(1)(1,2)((−3, 3), (−1, 1), (−1, 1), (−1, 1))T ,
dg(1)(1,2)

d�
= 2.78g(1)(1,2), (A54)

uα,i = g(2)(1,2)((4.1, 4.1), (1, 1), (1, 1), (1, 1))
T ,

dg(2)(1,2)

d�
= 2.02g(2)(1,2). (A55)

The first channel is antisymmetric combination of V 1,V 2 and the second is symmetric combination.
The origin, multicritical point. Both bosons are critical, the boson-fermion vertices are {Ma} = {12N , σ 3 ⊗ 1N }. Again, there

will be mixture between V 0,V 3 and also between V 1,V 2. For {V 0,V 3},
duα,i

d�
=

(
−1 + 64

3π2(2N )
M(α,i),(β, j)

)
uβ, j, (A56)

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝ 4(512κ2−1)

(256κ2+1)2
− 1 0

0 2
256κ2+1 − 1

⎞
⎠ (256κ2 + 1)−112 (256κ2 + 1)−112 (256κ2 + 1)−112

(256κ2 + 1)−112 02 − 1
4 (12 + σ 1) − 1

4 (12 + σ 1)

(256κ2 + 1)−112 − 1
4 (12 + σ 1) 02 − 1

4 (12 + σ 1)

(256κ2 + 1)−112 − 1
4 (12 + σ 1) − 1

4 (12 + σ 1) 02

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A57)

The relevant channel is the same as previous case with a smaller eigenvalue,

uα,i = g(0,3)((−0.03, 0.82), (−0.071, 0.32), (−0.071, 0.32), (−0.071, 0.32))T ,
dg(0,3)
d�

= 1.35g(0,3). (A58)

For {V 1,V 2},
duα,i

d�
=

(
−1 + 64

3π2(2N )
M(α,i),(β, j)

)
uβ, j, (A59)

M =

⎛
⎜⎜⎜⎜⎜⎝

(
2

256κ2+1 − 1
4

)
12 (256κ2 + 1)−112 − 1

4σ
1 (256κ2 + 1)−112 − 1

4σ
1 (256κ2 + 1)−112 − 1

4σ
1

(256κ2 + 1)−112 − 1
4σ

1 − 1
412 − 1

412 − 1
412

(256κ2 + 1)−112 − 1
4σ

1 − 1
412 − 1

412 − 1
412

(256κ2 + 1)−112 − 1
4σ

1 − 1
412 − 1

412 − 1
412

⎞
⎟⎟⎟⎟⎟⎠. (A60)

There are two relevant channels,

uα,i = g(1)(1,2)((−3, 3), (−1, 1), (−1, 1), (−1, 1))T ,
dg(1)(1,2)

d�
= 2.24g(1)(1,2), (A61)

uα,i = g(2)(1,2)((4.1, 4.1), (1, 1), (1, 1), (1, 1))
T ,

dg(2)(1,2)

d�
= 1.49g(2)(1,2). (A62)

The first relevant channel is the antisymmetric combination of V 1,V 2, it is interesting that this relevant channel has the same
scaling dimension as the relevant channel V 3 with (3, 1, 1, 1)T in the O(4) DQCP (A45).
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6. Mass scaling

Combining the diagrams in previous sections allows us to calculate the scaling dimension for the fermion mass term, which
corresponds to the vertex ψ̄V α ⊗ �(0)ψ ≡ ψ̄V α ⊗ 12ψ . As discussed in the main text, we use the Nf = 2 QED3 description
of DQCP, and consider its large-N generalization. The vertex of singlet mass is thus V α = 12N and for the triplet mass is
V α = σ 3 ⊗ 1N . The diagram equation for the corrections of the mass scaling dimension is

.
(A63)

For Ma being full rank, M = 2N , CM equals to the num-
ber of critical boson Nb. For singlet mass term, CM,α =
Nb, but for the triplet mass, CM,α depends on the choices
of Ma, the coefficient is calculated explicitly by CM,α =
tr[(

∑
a M

aV αMa)V α]/tr[V αV α]. For boson associated to sin-
glet mass, the result is simple, Ma = 1, with a = 1, . . . ,Nb,
CM,α = Nb.

For the mass scaling, m = 0, Cγ ,(0),{} = 3, and there is no
two-loop correction by critical boson. Collecting the logarith-
mic divergent part, we get

�ψ̄12Nψ = 2 − 128(512κ2 − 1)

3π2(2N )(1 + 256κ2)2
+ 16Nb

3π2(2N )
, (A64)

�ψ̄ (σ 3⊗1N )ψ = 2 − 64

3π2(2N )(1 + 256κ2)
+ 4(3CM,α + Nb)

3π2(2N )
,

(A65)

where the last term in each equation comes from the critical
boson contribution. This general result agrees with previous
work with certain parameters.

7. Boson mass scaling

We can also calculate the scaling dimension of the bo-
son operator φ2

a . Following Ref. [31], we define the scalar
two-point function as Gφ

ab ≡ 〈φa(p)φb(−p)〉, and its O(1/N )
1PI scalar self-energy contribution is represented by �

φ(1)
ab (p).

From the Dyson’s equation, the two-point function toO(1/N )
is

Gφ

ab = Dab(p) + Dac(p)�
φ(1)
cd (p)Gφ

db(p)

� Dab(p) + Dac(p)�
φ(1)
cd (p)Ddb(p), (A66)

where the self-energy is obtained by summing over the basic
diagrams for fermion mass scaling but with nontrivial choices
of Mas. Because of the coupling φaψ̄Maψ , the self-energy
corrections depend onMas and can therefore change the scal-
ing dimensions of the corresponding bosons. The self-energy
has the following generic form:

�
φ(1)
ab (p) = δab

ca|p|
π2N

ln

(
�2

p2

)
. (A67)

For example, for Ma = 1, c = 2
3 − 16(512κ2−1)

3(256κ2+1)2
κ→0= 6, and for

Ma is traceless, c = 2
3 − 8

3(256κ2+1)
κ→0= −2. The self-energy

will contribute to the scaling dimension of the φ2 in the
following diagram:

, (A68)

where the shaded bubble is the self-energy correction
�

φ(1)
ab (p). There is one more diagram at O(1/N ) will con-

tribute to the scaling of φ2:

(A69)

the fermion “box” is the summation of fermions running
clockwise and anticlockwise. The scaling dimension of φ2 is
combining Eqs. (A68) and (A69), this gives

�φ2
a
= 2 − 16ca

π2N
+ 8

π2N
. (A70)

Note that the hourglass diagram [the first diagram in
Eq. (A71)] will not contribute to the anomalous dimension,
a simple argument is that similar diagram with one internal
boson line appears in the self-energy correction (second and
third diagram in Eq. (A71)) and it contributes to the anoma-
lous dimension, while the hourglass diagram has two internal
boson line, the power in the denominator is larger by 1, hence,
it will not contribute to the anomalous dimension.

, ⊂

(A71)
With O(1/N ) correction, the scaling dimension of the boson
operator φ2

a are listed in the Table II. These scaling dimensions
are not trustworthy for small fermion flavors N , but they
show a trend for the scaling dimensions when having different
boson-fermion vertices in large N .
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TABLE II. The scaling dimensions of φ2
a with several choices of

the boson-fermion vertices, these choices correspond to the axis and
origin of the phase diagram Fig. 3 in the main text.

{Ma} �φ2
a

{12} 2 − 8
3π2N

+ 256(512κ2−1)
3π2 (256κ2+1)2N

κ→0= 2 − 88
π2N

{σ 3} 2 − 8
3π2N

+ 128
3π2 (256κ2+1)N

κ→0= 2 + 40
π2N

{12, σ
3} {2 − 40

3π2N
+ 256(512κ2−1)

3π2 (256κ2+1)2N
,

2 − 40
3π2N

+ 128
3π2(256κ2+1)N

} κ→0= {2 − 296
3π2N

, 2 + 88
3π2N

}

APPENDIX B: DETAILS OF Nf = 2 QED3

AND SELF-DUALITY

The single flavor fermion coupled to the U(1) gauge
field is dual to free fermion theory and this is dubbed as
fermion/fermion duality [5,19],

i�̄ /DA1� ⇐⇒ iχ̄ /Da1χ − 2

4π
b1db1 + 1

2π
a1db1

+ 1

2π
A1db1 − 1

4π
A1dA1 − 2CSg, (B1)

i�̄ /DA2� ⇐⇒ iχ̄ /Da2χ + 1

4π
a2da2 + 2

4π
b2db2

− 1

2π
a2db2 − 1

2π
A2db2 + 2CSg, (B2)

where CSg denotes the gravitational Chern-Simons term
which will vanish in the flat space-times. The second line
is the orientation reversed (time-reversal) version of the first
one. We can then product them together on each side with
the substitution A1 → A,A2 → A − 2X . Next, adding the
counterterms 1

2π Ad (Y − X ) + 1
4π (XdX − YdY ) + 1

4π AdA +
2CSg to both sides and gauging A, after integrating out most
of the gauge fields, we get,

i�̄1 /Da�1 + i�̄2 /Da−2X�2 + 1

4π
ada + 1

2π
ad (Y − X )

+ 1

4π
(XdX − YdY ) + 2CSg ⇐⇒ (B3)

iχ̄1 /Dã−2Yχ1 + iχ̄2 /Dãχ2 + 1

4π
ãdã + 1

2π
ãd (X − Y )

+ 1

4π
(YdY − XdX ) + 2CSg, (B4)

the self-duality exchanges X ↔ Y and χi ↔ �ī. After relabel-
ing the dynamical gauge fields a and ã, it gives back Eqs. (1)
and (2).

The self-duality exchanges the monopole symmetry and
the Cartan subgroup of the flavor symmetry. It is also the
duality between strong and weak couplings, this can be seen
from the duality transformations amongst the derivation and
their corresponding transformations in the (3+1)D bulk. Con-
sidering the (2+1)D U(1) gauge matter theories live at the
boundary of (3+1)D U(1) gauge theory with the coupling

constant τ ,

I (A) = 1

8π

∫
X
d4x

√
g

(
2π

e2
FmnF

mn + iθ
4π

εmnpqF
mnF pq

)
(B5)

= i
8π

∫
X
d4x

√
g(τ̄F+

mnF
+mn − τF−

mnF
−mn),

τ = θ

2π
+ 2π i

e2
, (B6)

where g is the metric for the space-time, the theory and the
transformation properties are well-defined also in the curved
space-time. F = dA and F is decomposed into self-dual and
anti-self-dual pieces, F±

mn = 1
2 (Fmn ± (�F )mn) with (�F )mn =

1
2εmnpqF

pq, also (�F )mn(�F )mn = FmnFmn. The S transforma-
tion and T transformation act as

S : τ → τ ′ = −1

τ
,

(
0 −1
1 0

)
,∫

∂X
J · A →

∫
∂X

J · a − 1

2π
adA′; (B7)

− S : τ → τ ′ = −1

τ
,

(
0 −1
1 0

)
,∫

∂X
J · A →

∫
∂X

J · a + 1

2π
adA′; (B8)

T [k] : τ → τ ′ = τ + k,

(
1 k
0 1

)
,∫

∂X
J · A →

∫
∂X

J · A − k

4π
AdA. (B9)

The SL(2,Z) matrix acts on the coupling constant τ as

τ → τ ′ = aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,Z). (B10)

The fermion/fermion duality in the derivation of the Nf = 2
QED3 self-duality is essential in connecting the left-hand-
side and the right-hand-side (the other procedures, adding the
counterterms and gauging the background gauge fields are
the same for both hand sides). Using the above notation, the
fermion/fermion duality and its orientation reversed version
are

T [1] ◦ (−S) ◦ T [2] ◦ (−S), τ → 1

2
− 1

2(2τ − 1)
, (B11)

S ◦ T [−2] ◦ S ◦ T [−1], τ → 1

2
− 1

2(2τ − 1)
. (B12)

Take the coupling of the bulk theory τ = 1
2 + 2π i

e2 , under the

duality τ → 1
2 − 1

2(2τ−1) = 1
2 + e2 i

8π . If e → 0, which is the
weak coupling limit, the dual theory has the strong coupling
with τ → 1

2 + 0i. This suggests the fermion/fermion duality
is a strong-weak duality, and similar calculation can be done
for the Nf = 2 QED3, which involves the U(1) × U(1) gauge
theory in the bulk.
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APPENDIX C: CONNECTION TO THE GAPLESS Z2 SPIN
LIQUID IN REF. [43]

1. Matrix form of fermion operators

The two flavor Nambu spinor can be written in matrix
form,

Xi =
(
fi↑ − f †i↓
fi↓ f †i↑

)
. (C1)

The SU(2) gauge symmetry and physical spin symmetry act
as

SU(2)g : Xi → XiU
†
g,i, (C2)

SU(2)s : Xi → Us,iXi. (C3)

In majorana basis, one has

Xi = 1√
2
(χ0 + iχaσ

a). (C4)

Note that there is a discrepancy in the conventional notation
and this, but it is merely relabeling,⎛

⎜⎜⎝
f↑
f †↑
f↓
f †↓

⎞
⎟⎟⎠ =

⎛
⎜⎝
1 i 0 0
1 −i 0 0
0 0 1 i
0 0 1 −i

⎞
⎟⎠

⎛
⎜⎝

χ1,1

χ1,2

χ2,1

χ2,2

⎞
⎟⎠

=

⎛
⎜⎝
1 0 0 i
1 0 0 −i
0 i −1 0
0 −i −1 0

⎞
⎟⎠

⎛
⎜⎝

χ0

χ1

χ2

χ3

⎞
⎟⎠ (C5)

the relabeling is⎛
⎜⎝

χ0

χ1

χ2

χ3

⎞
⎟⎠ =

⎛
⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎠

⎛
⎜⎝

χ1,1

χ1,2

χ2,1

χ2,2

⎞
⎟⎠. (C6)

χa → χa1,a2 .

2. Hamiltonian and Higgs fields

Define the 4 × 2 matrix operator,

Xα,v;β = 1√
2

(
χ0,v1αβ + iχa,vσ

a
αβ

)
, (C7)

Xv = 1√
2
(χ0,vσ

0 + iχa,vσ
a) (C8)

with χa,v, a = 0 ∼ 3, v = 1, 2. The γ matrices act on the
spinor index m in χm,a,v , and it is left implicit. The mean-field
Lagrangian is

L = iTr{X̄γ μ∂μX }
= iTr

{(
χT
0,vγ

0σ 0 − iχT
a,vγ

0σ a
)
γ μ∂μ(χ0,vσ

0 + iχb,vσ
b)

}
=

∑
a,v

iχT
a,vγ

0γ μ∂μχa,v,

where γ μ = {σ 2, σ 3, σ 1} and X̄ = X †γ 0.
Let’s now proceed to translate the Lagrangian for the Higgs

fields in Ref. [43], the matrix μi acts on the v indices, one of

the Z2 Higgs field is

�a
1Tr{σ aX̄μzγ xX }

= �c
1Tr

{
σ c

(
χT
0,vγ

0σ 0 − iχT
a,vγ

0σ a
)
μz

v,wγ x(χ0,wσ 0

+ iχb,wσ b)

}
= �c

1i
(
χT
0,vγ

0γ xμz
v,wχc,w − χT

c,vγ
0γ xμz

v,wχ0,w
)
, (C9)

one can also get the matrices that act on the index a,

c = 1, δi,0δ j,1 − δi,1δ j,0 = −i(σ 02 + σ 32), (C10)

c = 2, δi,0δ j,1 − δi,1δ j,0 = −i(σ 20 + σ 23), (C11)

c = 3, δi,0δ j,1 − δi,1δ j,0 = −i(σ 12 + σ 21). (C12)

To compare with our model, we need to change the basis
following Eq. (C6),

c = 1,−iM1 = −i(σ 12 + σ 21), (C13)

c = 2,−iM2 = −i(σ 20 + σ 23), (C14)

c = 3,−iM3 = −i(σ 02 + σ 32), (C15)

and using the basis χm,v,a1,a2 , therefore, the Higgs field be-
comes

�c
1χ

T [(γ 0γ x ) ⊗ μz ⊗ Mc]χ. (C16)

The other Z2 Higgs field is

�c
2χ

T [(γ 0γ y) ⊗ μx ⊗ Mc]χ (C17)

and the U(1) Higgs field is

�c
3χ

T [γ 0(γ ykx + γ xky) ⊗ μy ⊗ Mc]χ. (C18)

3. The Higgs configuration

Reference [43] proposes the staggered flux state is
obtained when 〈�3〉 ∝ (0, 0, δφ) and the Z2Azz13 state fol-
lows from 〈�1〉 ∝ (γ1 − γ2, γ1 + γ2, 0) and 〈�2〉 ∝ (−γ1 −
γ2, γ1 − γ2, 0). Recall that, γ μ = {σ 2, σ 3, σ 1} and

c = 1,−iM1 = −i(σ 12 + σ 21), (C19)

c = 2,−iM2 = −i(σ 20 + σ 23), (C20)

c = 3,−iM3 = −i(σ 02 + σ 32). (C21)

When condensing the Higgs fields, it corresponds to generate
the mass for the combination of the fermion bilinears,

�1,2
1 : σ 1312 + σ 1321, σ 1320 + σ 1323, (C22)

�1,2
2 : σ 3112 + σ 3121, σ 3120 + σ 3123, (C23)

�3
3 : σ 1202ky + σ 1232ky, σ

3202kx + σ 3232kx, (C24)

and the kinetic terms are

σ 1000kx, σ
3000ky. (C25)
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The only Pauli matrix commutes with the above matrices is
σ 0230, which is also the symmetry generator.

a. Our model. In our model, the kinetic terms are

σ 100kx, σ
300ky (C26)

and the pairing terms are

σ 323, σ 321, σ 123, σ 121 (C27)

and the Pauli matrices that commute with the above are

σ 012, σ 020, σ 032. (C28)

4. Basis rotation

We can match both theories by examining their symmetry
generators. The only matrix σ 0230 that commutes with other
matrices in Ref. [43] can be rotated to

σ 0012, by ei
π
4 σ 0222

; (C29)

σ 0020, by ei
π
4 σ 0210

; (C30)

σ 0332, by ei
π
4 σ 0102

; (C31)

where the rotation is generated by σ I → e−i π4 σ J
σ I ei

π
4 σ J

. The
Z2 Higgs fields in Eq. (C22) will be rotated to

�1,2
1 : σ 1312 + σ 1321, σ 1102 + σ 1323;

�1,2
2 : σ 3112 + σ 3121,−σ 3302 + σ 3123 by ei

π
4 σ 0222

; (C32)

�1,2
1 : σ 1102 + σ 1321, σ 1320 + σ 1323;

�1,2
2 : −σ 3302 + σ 3121, σ 3120 + σ 3123 by ei

π
4 σ 0210

; (C33)

�1,2
1 : −σ 1210 + σ 1321,−σ 1222 + σ 1323;

�1,2
2 : σ 3112 − σ 3023, σ 3120 + σ 3021 by ei

π
4 σ 0102

. (C34)

If one takes the second index as labeling the original theory
and the dual theory in our model, some terms of the Z2

Higgs fields in Ref. [43] correspond to the pairing in the
form of σ 121, σ 123, σ 321, σ 323 that appear in both the original
theory and the dual theory according to the Eq. (C34). For
example,

· · · + χTσ 1321χ = · · · + χT
1 σ 121χ1 − χT

2 σ 121χ2

∼ · · · + ψᵀσ 2γ 0γ xψ − ψ̃ᵀσ 2γ 0γ xψ̃,

(C35)

· · · + χTσ 3021χ = · · · + χT
1 σ 321χ1 + χT

2 σ 321χ2

∼ · · · + ψᵀσ 2γ 0γ yψ + ψ̃ᵀσ 2γ 0γ yψ̃,

(C36)

where ψ is the original fermion and ψ̃ is the dual fermion,
they are corresponding to the pairing fermion bilinears that ap-
pear in the Z2 Higgs fields (C34). However, the dual fermion
pairings are not explicit in the self-dual Nf = 2 QED3 theory
and the linear combinations with another fermion bilinears are
crucial to obtain the Z2 Higgs fields in Ref. [43], for example,
�1

1χ
T (−σ 1210 + σ 1321)χ in the first line of Eq. (C34).
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