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Abstract. We study the concept of ‘categorical symmetry’ introduced recently,
which in the most basic sense refers to a pair of dual symmetries, such as the
Ising symmetries of the 1d quantum Ising model and its self-dual counterpart. In
this manuscript we study discrete categorical symmetry at higher-dimensional
critical points and gapless phases. At these selected gapless states of matter,
we can evaluate the behavior of categorical symmetries analytically. We analyze
the categorical symmetry at the following examples of criticality: (i) (2 + 1)d
Lifshitz critical point of a quantum Ising system; (ii) (3 + 1)d photon phase as an
intermediate gapless phase between the topological order and the confined phase
of 3dZ2 quantum gauge theory; (iii) 2d and 3d examples of systems with both
categorical symmetries (either zero-form or one-form categorical symmetries) and
subsystem symmetries. We demonstrate that at some of these gapless states of
matter the categorical symmetries have very different behavior from the nearby
gapped phases.
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1. Basics of categorical symmetry

Categorical symmetry is a new concept introduced in reference [1], which expanded the
conventional notion of symmetries in physics, and how one should think about them.
The basic examples of categorical symmetry correspond to a pair of dual symmetries,
whose local symmetry charges in general do not commute with each other. The simplest
example of such, are the Z2 and Z̃2 dual symmetry of the 1d quantum Ising model:

H =
∑
j

−Kσ3
j σ

3
j+1 − hσ1

j ↔ Hd =
∑
j̃

−Kτ 1
j̃
− hτ 3

j̃
τ 3
j̃+1

. (1)

This model has a well-known self-duality point K = h; σ3
j and τ 3

j̃
are order parameters of

the original Z2 and the dual Z̃2 symmetry. Let us label the entire categorical symmetries
of the 1d quantum Ising model as Z2 � Z̃2.

For the convenience of generalizing to higher-dimensional systems with higher
form symmetries and more exotic subsystem symmetries that we will discuss in this
manuscript, we will introduce the concept ‘order diagnosis operator’ (ODO) for each
symmetry. The expectation value of the ODO diagnoses the behavior of its correspond-
ing symmetry. An ODO should commute with all the conserved global symmetry charges
(which implies that the expectation value of the ODO is in general nonzero [26]), but

creates local charges of the corresponding symmetry. For the Z2 and Z̃2 symmetries of
the 1d quantum Ising model, the ODOs are respectively

Oi,j = σ3
i σ

3
j , Õĩ,j̃ = τ 3

ĩ
τ 3
j̃
=
∏
i<k<j

σ1
k. (2)

Oi,j creates a pair of Z2 charges at sites i and j (but it preserves/commutes with the

global Z2 charge
∏

jσ
1
j ), while Õĩ,j̃ creates a pair of domain walls of σ3 at ĩ and j̃, which

are local charges of the Z̃2 symmetry.
When K > h, there is a long range correlation of σ3, short range correlation of τ 3

(long range expectation value of ODO Oi,j , and short range expectation value of Õĩ,j̃);
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Figure 1. The 2d square lattice, and its dual lattice. The lattice site is labeled as
x, and the dual lattice site (the plaquette of the original lattice) is labeled as x̃.
The links of the lattice are labeled as (x, μ̂), while the links of the dual lattice are
labeled as (x̃, μ̂).

hence this is a phase that spontaneously breaks Z2, but preserves Z̃2. When K < h,
there is a long range correlation of τ 3, but short range correlation of σ3 (long range

expectation value of Õĩ,j̃ , short range expectation value of Oi,j); hence this is a phase

that spontaneously breaks Z̃2, but preserves Z2. Whether a symmetry is preserved or
spontaneously broken, can be defined by the behavior of its ODO. When K = h, both
order parameters have power-law correlation, hence this is a criticality which preserves
both symmetries.

In what sense is Z̃2 a symmetry, and in what sense is there a spontaneous symmetry
breaking (SSB) of Z̃2? In the 1d quantum Ising model, without changing the physical

Ising Hilbert space, the SSB phase of the Z̃2 symmetry does not lead to ground state
degeneracy (GSD), after all it is just a quantum disordered phase of the Ising model.
However, with some global constraint on the physical Hilbert space, or when we view
the 1d system as the boundary of a 2d topological order [1], neither phase (K > h or
K < h) has GSD. Hence we no longer view GSD as a criterion for SSB . In this work

the notion SSB will be defined solely by the behavior of 〈O〉 and 〈Õ〉.
In higher dimensions, the possible categorical symmetries are much richer. In the 2d

quantum Ising model, there is a Z2 � Z̃
(1)
2 symmetry. Here Z̃

(1)
2 is a one-form symmetry

as a generalization of ordinary symmetries introduced in recent years (see for instance
[2–11]):

H =
∑
〈x,x′〉

−Kσ3
xσ

3
x′ −

∑
x

hσ1
x ↔

Hd =
∑
x̃,μ̂

−Kτ 1
x̃,μ̂ −

∑
x̃

hτ 3
x̃,x̂τ

3
x̃,ŷτ

3
x̃+x̂,ŷτ

3
x̃+ŷ,x̂. (3)

The lattice site x and dual lattice site x̃ are illustrated in figure 1. The subscripts (x̃, x̂)
and (x̃, ŷ) label the links of the dual lattice. The ODO of the Z2 symmetry is still

https://doi.org/10.1088/1742-5468/ac08fe 3

https://doi.org/10.1088/1742-5468/ac08fe


J.S
tat.

M
ech.

(2021)
073101

Categorical symmetries at criticality

Ox,x′ = σ3
xσ

3
x′ ; while the ODO of the Z̃

(1)
2 symmetry is

Õ
(1)
C =

∏
l̃∈C

τ 3
l̃
=

∏
x∈A, ∂A=C

σ1
x. (4)

Here l̃ also labels a link in the dual lattice, which belongs to a contractible loop C. Õ(1)
C

creates an Ising domain wall of σ3, i.e. the one-dimensional domain wall which carries

the dual Z̃
(1)
2 one-form symmetry charge. Here A is a finite 2d patch on the dual lattice,

C is the boundary of A, which is a contractible loop. Again, the ODO Õ
(1)
C commutes

with all the conserved one-form symmetry charges, which is defined as a product of τ 1

along any closed 1d loop C′. Notice that C′ always intersects with the contractible C
for even times, hence the ODO Õ

(1)
C commutes with the conserved one-form symmetry

charges
∏

l̃∈C′τ
1
l̃
.

There are again two phases with K/h greater or smaller than a critical value. These
two phases have the following known behaviors of the ODOs [12], which can be computed
through a reliable perturbation theory protected by the gap in the spectrum of both
phases:

K/h �> 1, 〈Ox,x′ 〉 ∼ Const., 〈Õ(1)
C 〉 ∼ e−α1 log(K/h)A.

K/h 
 1, 〈Ox,x′ 〉 ∼ e−|x−x′|/ξ, 〈Õ(1)
C 〉 ∼ e−α2(K/h)2C. (5)

αi are order 1 numbers. Hence in the phase K � h, the Z̃
(1)
2 symmetry Õ

(1)
C decays

with an area law; while in the phase K 
 h, the domain walls proliferate/condense, and

Õ
(1)
C has a perimeter law. Again, in the phase h � K, even though the domain walls

proliferate/condense, there is no GSD. This is in stark contrast with ordinary one-form
symmetry SSB state, which would lead to topological degeneracy. Hence here we view

the behavior of 〈Õ(1)
C 〉 as a criterion of SSB of Z̃

(1)
2 , rather than the GSD.

At the (2 + 1)d Ising critical point, the Z2 order parameter has a power-law corre-
lation (the expectation value of Ox,x′ falls off as a power-law), hence the Z2 symmetry
is not broken. Intuitively, since Ox,x′ has a power-law correlation, the expectation value

of the dual ODO Õ
(1)
C should be stronger than the area law deep in the K � h phase,

but weaker than the perimeter law deep in the K 
 h phase. But the exact behavior

of Õ
(1)
C is difficult to compute analytically at the 3D Ising critical point, and in other

lattice models that will be discussed in the following sections. The main goal of this
manuscript is to analyze critical points (or fine-tuned multi-critical points) where the
ODOs of the categorical symmetries can be evaluated analytically. The strategy we will
generally take is that, we embed the target lattice model into a larger ‘parent’ system
where the ODOs of the original system have a clear representation. Then we tune the
parent system to a multi-critical point, or even a gapless phase, where we can use tools
in the continuum limit to compute ODOs defined in both sides of the duality. Since
many of the states we discuss in this manuscript do not have Lorentz invariance, we will
focus on expectation value of time-independent operators at static states.

In section 2, we will discuss two examples of criticalities where at the leading order
the ODOs behave similarly to nearby gapped phases. In section 3, we will discuss models

https://doi.org/10.1088/1742-5468/ac08fe 4
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with subsystem symmetries, and in these cases the ODOs no longer always reduce to
a simple correlation function or Wilson loop. Additionally, we will show that at these
criticalities the ODOs can have very different scalings from the nearby gapped phases.

2. Ising categorical symmetries at criticality

2.1. 2d Lifshitz point

In this subsection we discuss 2d systems with a Z2 Ising symmetry and a dual Z
(1)
2 one-

form symmetry, but we will not be restricted by the exact lattice models in equation
(3). We can embed the target 2d quantum Ising model into a parent system described
by a U(1) quantum ‘rotor’:

H =
∑
x,μ

− t cos
(
∇μθ̂(x)

)
+
∑
x

U

2
n̂(x)2 − g cos

(
2θ̂(x)

)
. (6)

θ̂(x) and n̂(x) are a pair of conjugate variables, i.e. [n̂(x), θ̂(x′)] = iδx,x′ . n̂(x) takes

discrete integer eigenvalues, while θ̂(x) is periodically defined: θ̂(x) = θ̂(x) + 2π. The
last g term in equation (6) breaks the U(1) symmetry down to Z2. The operators σ3

x

and σ1
x of the Ising model correspond to the operators in the parent U(1) theory:

σ3
x = eiθ̂(x), σ1

x = eiπn̂(x). (7)

If the g term is ignored, the U(1) model is dual to a lattice QED:

Hd =
∑
x̃

− t cos
(
�̂e(x̃)

)
+
∑
x̃

U

2

(
�∇× �̂a(x̃)

)2
�̂e(x̃) = ẑ × �∇θ̂(x), �∇× �̂a(x̃) = n̂(x). (8)

The electric field êμ and gauge vector potential âμ were defined on the links (x̃, x̂), (x̃, ŷ)

of the dual lattice, but we can also equivalently define �̂e(x̃) = (êx(x̃), êy(x̃)) = (êx̃,x̂, êx̃,ŷ),

�̂a(x̃) = (âx(x̃), ây(x̃)) = (âx̃,x̂, âx̃,ŷ). In the parent U(1) system, the Z2 and Z̃
(1)
2 ODO

are

Ox,x′ = eiθ̂(x)e−iθ̂(x′),

Õ
(1)
C =

∏
A, ∂A=C

σ1
x = exp

(
iπ
∑
x∈A

n̂(x)

)
= exp

(
iπ

∮
C
�̂a · d�l

)
. (9)

In model equation (6), there is a critical point at critical value (U/t)c. Without the g
term, the transition in equation (6) is a 3D XY transition between the superfluid phase
with small U/t, and a boson Mott insulator phase at large U/t. While with the g term,
it is expected that the 3D XY critical point will flow to the 3D Ising fixed point, because
g is obviously relevant at the 3D XY fixed point. However, one can fine-tune the critical

https://doi.org/10.1088/1742-5468/ac08fe 5
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point to reach a Lifshitz point described by the following field theory Hamiltonian and
action in the continuum limit

H =

∫
d2x

U

2
n̂(x)2 +

ρ

2

(
∇2θ̂(x)

)2
,

S =

∫
d2x dτ

1

2U
(∂τθ)

2 +
ρ

2
(∇2θ)2. (10)

It is known that the g operator can be irrelevant at the (2 + 1)d Lifshitz Gaussian fixed
point for certain range of U and ρ, more precisely for large enough U/ρ [13, 14]. The
irrelevance of g guarantees that the continuum limit field theory description in terms of
θ is applicable at this Lifshitz fixed point. One can also compute the expectation value
of O, which is the equal-time correlation function between σ3:

〈O0,x〉 = 〈eiθ̂(0) e−iθ̂(x)〉 ∼ 1

|x|2Δθ
, Δθ ∼

√
U

ρ
. (11)

Hence at the Lifshitz point, the Z2 symmetry is preserved.

The situation is rather different for the Z
(1)
2 ODO ÕC. The dual Hamiltonian and

action of the Lifshitz theory equation (10) is

Hd =

∫
d2x̃

U

2

(
�∇× �̂a

)2
+

ρ

2

(
(∇xêy)

2 + (∇yêx)
2
)
,

Sd =

∫
d2x̃ dτ

1

2ρ

(
âx

∂2
τ

∂2
y

âx + ây
∂2
τ

∂2
x

ây

)
+

U

2
(�∇× �̂a)2. (12)

This is the same Hamiltonian and action describing the 2d quantum dimer model at the
Rohksar–Kivelson point [15, 16]. The correlation function of �a�q,ω is

〈âμ(−ω,−�q)âν(ω, �q)〉 ∼
ρ(q2δμν − qμqν)

ω2 + ρUq4
, 〈âμ(0, 0)âν(0,x)〉 ∼

√
ρ

U

1

|x|2 . (13)

The expectation of Õ
(1)
C can be evaluated using the Gaussian theory of the gauge

field: 〈
exp

(
iπ

∮
C
�̂a · d�l

)〉
∼ exp

(
−π2

2

∮
C

∮
C
〈âμ(x)âν(x′)〉dxμ dx′ν

)
. (14)

Power-counting suggests that this is still a perimeter law: the 1/|x|2 decay of the correla-
tion function of the gauge fields do not lead to extra divergence with large loop size, the

expectation value of Õ
(1)
C is dominated by small distance correlation of the gauge field.

Since in the gapped phase h � K (equation (3)) where the domain walls clearly prolif-

erates, Õ
(1)
C follows a perimeter law, we will use the perimeter law of Õ

(1)
C as a criterion

of SSB of Z̃
(1)
2 . Then this Lifshitz point still spontaneously breaks the Z̃

(1)
2 symmetry,

while preserving the Z2 symmetry. One can also see that when the expectation value

of Ox,x′ is stronger (smaller Δθ at smaller U/ρ), the expectation value of Õ
(1)
C becomes

weaker (larger ρ/U). The results of this section are summarized in the table below.

https://doi.org/10.1088/1742-5468/ac08fe 6
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2d Quantum Ising K � h in K 
 h in Fine-tuned
theory equation (3) equation (3) Lifshitz point

Ox,x′ Long range Short range Power law

Õ
(1)
C Area law Perimeter law Perimeter law

2.2. 3d theory with Z(1)
2 one-form symmetry

In this subsection we move on to 3d systems with the Z
(1)
2 one-form symmetry. The

simplest example of these systems is the 3dZ2 lattice gauge theory with a strictly
enforced Gauss law constraint. It is well-known that the 3d lattice Z2 gauge theory has
a self-dual structure [12, 17, 18]:

H =
∑
x,μ̂,ν̂

−Kσ3
x,μ̂σ

3
x,ν̂σ

3
x+μ̂,ν̂σ

3
x+ν̂,μ̂ − hσ1

x,μ̂

↔ Hd =
∑
x̃,μ̂,ν̂

−Kτ 1
x̃,μ̂ − hτ 3

x̃,μ̂τ
3
x̃,ν̂ τ

3
x̃+μ̂,ν̂ τ

3
x̃+ν̂,μ̂. (15)

This system has a Z
(1)
2 � Z̃

(1)
2 categorical symmetry. The ODOs for Z

(1)
2 and Z̃

(1)
2 are

O
(1)
C =

∏
l∈C

σ3
l , Õ

(1)
C =

∏
l̃∈C

τ 3
l̃
. (16)

The O
(1)
C and Õ

(1)
C are products of the K and h terms of equation (15) within a 2d patch

A with ∂A = C.
There are two phases of this model: for K � h, 〈O(1)

C 〉 decays with a perimeter law,

while 〈Õ(1)
C 〉 decays with an area law; this is a phase with SSB of Z

(1)
2 but preserves Z̃

(1)
2 .

In the opposite limit h � K, 〈O(1)
C 〉 decays with an area law, while 〈Õ(1)

C 〉 decays with
an perimeter law; this is the phase with SSB of Z̃

(1)
2 but preserves Z

(1)
2 .

Unfortunately, model equation (15) does not have a second order transition between

the two phases, hence there is no critical point in model equation (15) where Z
(1)
2 and

Z̃
(1)
2 are on equal footing. But we can go beyond the exact lattice models in equation

(15), and embed the Z2 gauge theory equation (15) into a QED model with U(1)(1)

� Ũ(1)(1) symmetries, and this QED model has a gapless photon phase. As long as the

QED only has even electric charges, this gapless QED would still have Z
(1)
2 � Z̃

(1)
2 as

the ultraviolet (UV) symmetry, while the U(1)(1) � Ũ(1)(1) symmetry are infrared (IR)
emergent symmetries. The IR emergent symmetries are spontaneously broken, which
still leads to gapless photons as their Goldstone modes [27]. In this gapless photon

phase, both O
(1)
C and O

(1)
C′ in equation (16) can be computed using the Gaussian fixed

point theory of the U(1) gauge field, and its self-dual Ũ(1) gauge field. The Gaussian
theory of the U(1) and Ũ(1) gauge bosons indicates that both OC and ÕC follow a
perimeter law at the leading order. Since in the gapped phases of equation (15) OC and

ÕC at most have a perimeter law, we view the gapless photon phase of the U(1) gauge

field as a phase which spontaneously breaks both Z
(1)
2 and Z̃

(1)
2 symmetries [28].

https://doi.org/10.1088/1742-5468/ac08fe 7
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One can also fine-tune the QED to a Lifshitz point with non-Lorentz invariant dis-
persions of the U(1) gauge bosons. However, we have checked and verified that, at
various Lifshitz points (meaning fine-tuned states with different non-Lorentz invariant

dispersion), at least one of the Z
(1)
2 and Z̃

(1)
2 symmetries is spontaneously broken, i.e.

one of OC and ÕC must have a perimeter law.

3. Examples of subsystem categorical symmetries

3.1. 2d example

In previous examples we have seen that at quantum critical points or gapless phases, the
scaling of the ODO associated with the one-form symmetry can still have qualitatively
similar behavior as the nearby gapped phases. In this section we would like to explore
critical phases where the one-form symmetry ODO has different scaling from the nearby
gapped phases, even at the leading order. Let us consider a special 2d lattice Z2 quantum
gauge theory, which was constructed in [19]:

H =
∑
x

−Kσ3
x,x̂σ

3
x,ŷσ

3
x+x̂,ŷσ

3
x+ŷ,x̂ − Jσ1

x,x̂σ
1
x+x̂,x̂ − Jσ1

x,ŷσ
1
x+ŷ,ŷ . (17)

The last two terms of this model are actually identical, due to the Z2 Gauss law gauge
constraint σ1

x−x̂,x̂σ
1
x,x̂σ

1
x−ŷ,ŷσ

1
x,ŷ = 1, which we will impose strictly on the Hilbert space of

the system.

This model has an ordinary Z
(1)
2 one-form symmetry, and extra Z

(sub)
2 subsystem

symmetries. The subsystem symmetry grants the system a series of conserved quantities:

Σx̂,y =
∏

y=Const.

σ3
x,x̂, Σŷ,x =

∏
x=Const.

σ3
x,ŷ . (18)

x and y are the two coordinates of x. The subsystem symmetries of equation (17)

guarantee that Σx̂,y and Σŷ,x are conserved for arbitrary x and y. The ODO for Z
(1)
2 ,

and its expectation value in the topological ordered phase K � J is

O
(1)
C =

∏
l∈C

σ3
l , 〈O(1)

C 〉 ∼ e−α3(J/K)2NC . (19)

The O
(1)
C commutes with the conserved subsystem charges Σx̂,y and Σŷ,x, and it also

commutes with the Z
(1)
2 one-form symmetry charge like any Z 2 gauge theory, hence it

meets the criterion of ODO we introduced in the first section. Due to the conservation
of the extra quantities Σx̂,y and Σŷ,x, the ODO has a generic ‘corner law’ instead of
perimeter law, where NC is the number of corners of loop C. For example, in figure

1, the rectangular loop C has four corners, and O
(1)
C is a product of finite segments of

Σx̂,y and Σŷ,x. The expectation value of the rectangular O
(1)
C does not decay with the

length of C. Because Σx̂,y and Σŷ,x are conserved when the product is along an infinitely

straight line, then for a generic C, if we compute the expectation value of O
(1)
C through

a perturbation of J/K like [12], the value can only decay when C ‘takes a turn’.
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In the other limit of the model, K 
 J , the ODO O
(1)
C decays as an area law like

the ordinary confined phase of a Z2 lattice gauge theory, and there is an SSB of the

subsystem symmetries Z
(sub)
2 . The most convenient way to study this limit, is to take

the dual Hamiltonian of equation (17), which still has subsystem Z̃
(sub)
2 symmetries:

Hd =
∑
x̃

−Kτ 1
x̃ − 2Jτ 3

x̃τ
3
x̃+x̂τ

3
x̃+ŷτ

3
x̃+x̂+ŷ. (20)

The duality mapping between σi and τ i is the same as the standard 2d Ising-gauge

duality discussed in the previous section. Z̃
(sub)
2 inherits and contains Z

(sub)
2 , but is slightly

larger: Z̃
(sub)
2 includes another Z̃2 element which changes the sign of all τ 3

x̃. This extra

Z̃2 element is the dual of Z
(1)
2 , and it does not change σ1

l in equation (17).

The ODO of Z̃
(sub)
2 is a product of τ 3 on four corners of a rectangle:

Õ(sub)
x,y = τ 3

0,0τ
3
x,0τ

3
0,yτ

3
x,y. (21)

The ODO defined above is also a product of the J term in equation (17) within the

rectangle. In the original topological order K � J , Õ
(sub)
x,y can be computed through a

perturbation of J/K, and it decays as an exponential of the area of the rectangle; while

at the SSB phase of Z̃
(sub)
2 (K 
 J), Õ

(sub)
x,y has long range expectation value [20].

Like the previous section, we can embed the dual model equation (20) into a model

with Ũ(1)(sub) symmetry:

Hd =

∫
d2x̃

U

2
n̂(x̃)2 − t cos

(
∇x∇yθ̂(x̃)

)
− g cos

(
2θ̂(x̃)

)
. (22)

The relation between the operators of the Z̃
(sub)
2 theory equation (20) and the Ũ(1)(sub)

theory equation (22) is

τx
x̃ = exp (iπn̂(x̃)) , τ z

x̃ = exp
(
iθ̂(x̃)

)
(23)

When g is relevant, it will break the Ũ(1)(sub) down to Z̃
(sub)
2 .

However, as was studied before [21], the g term can only flow strong and become non-
perturbative under renormalization group through ‘assistance’ from some other terms
such as γ cos(2∇μθ̂). If we tune γ to zero, then there exists a stable gapless phase of

the model equation (22) with a larger Ũ(1)(sub) symmetry, and the g term is irrelevant.
Additionally, in this gapless phase the system is described by the following action:

Sd =

∫
dτ d2x̃

1

2U
(∂τθ)

2 +
t

2
(∇x∇yθ)

2, (24)

where θ can be viewed as a free boson instead of a compact boson. The Ũ(1)(sub) reads

θ(x̃)→ θ(x̃) + f(x̃) + g(ỹ). (25)
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This gapless phase can also be described by a U(1) gauge theory, which can be viewed as
the parent theory where the original Z2 lattice gauge theory equation (17) is embedded
to:

H =

∫
d2x

U

2
(�∇× �̂a)2 +

t

4

(
(∇xêx)

2 + (∇yêy)
2
)
. (26)

In this gapless phase, the expectation value of the ODO of the original Z2 gauge

theory O
(1)
C will depend on the shape of C, but it no longer follows the ‘corner law’

equation (19) as the gapped topologically ordered phase K � J in equation (17). In the

gapless phase, the ODO O
(1)
C can be written as

〈O(1)
C 〉 =

〈 ∏
x̃∈A,∂A=C

τ 1
x̃

〉
∼ 〈e

∑
x̃∈Aiπn̂(x̃)〉. (27)

In order to evaluate 〈O(1)
C 〉 we will make use of another duality of equations (22) and

(24):

Hd2 =

∫
d2x

U

2
(∇x∇yφ̂(x))

2 − t cos
(
N̂(x)

)
. (28)

Now φ̂(x) and N̂(x) are still defined on the sites of the original lattice x (figure 1):

∇x∇yθ̂(x̃) = −N̂ (x), ∇x∇yφ̂(x) = n̂(x̃). (29)

The gapless phase has a new dual description in terms of the continuum limit model of
φ̂(x):

S2d =

∫
d2xdτ

1

2t
(∂τφ)

2 +
U

2
(∇x∇yφ)

2. (30)

In this gapless phase, if we consider a loop C which is a rectangle with four corners

at (0, 0), (x, 0), (0, y), (x, y) (figure 1), the expectation value O
(1)
C is

〈O(1)
C 〉 =

〈 ∏
x̃∈A,∂A=C

τ 1
x̃

〉
∼
〈
exp

(∑
x̃∈A

iπn̂(x̃)

)〉

=
〈
exp
(
iπ
(
φ̂0,0 − φ̂x,0 − φ̂0,y + φ̂x,y

))〉
∼ exp

(
π2
(
〈φ̂0,0φ̂x,0〉+ 〈φ̂0,0φ̂0,y〉+ 〈φ̂x,yφ̂x,0〉+ 〈φ̂x,yφ̂0,y〉

− 〈φ̂0,0φ̂x,y〉 − 〈φ̂0,yφ̂x,0〉
))

∼ exp

(
−cπ2

√
t

U
log |x| log |y|

)
. (31)

This is a faster decay compared with the corner law in the gapped topologically ordered
phase K � J in equation (17). In the same gapless phase, the expectation value of Õsub

x,y
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defined in equation (21) decays in a similar way as equation (31), rather than a long
range expectation value as the phase K 
 J . Hence this gapless phase described by

equations (24), (26) and (30) can be viewed as a symmetric phase for both Z
(1)
2 and Z̃sub

2

symmetries.
The special double logarithmic scaling in equation (31) arises from the subsystem

symmetries equation (25) of the parent U(1) theory. More technically, in order to evalu-

ate O
(1)
C , we need to compute the equal-time correlation function 〈φ̂0,0φ̂x,y〉, which in the

momentum space is [21] Gkx,ky ∼
∫
dω ωt/(ω2 + tUk2

xk
2
y) ∼ 1/|kxky|. The double linear

divergence at kx → 0 and ky → 0 leads to the special double logarithmic scaling in real
space. The results of this subsection is summarized in the table below.

Special 2dZ2 gauge
theory equation (17) K � J K 
 J Gapless phase

O
(1)
C Corner law Area law exp

(
−cπ2

√
t/U log |x| log |y|

)
for rect. C

Õsub
x,y Area law Long range exp

(
−c̃π2

√
U/t log |x| log |y|

)

3.2. 3d example

We now consider a 3d lattice Z2 gauge theory defined on the cubic lattice, which has
both the one-form symmetry, and subsystem symmetries:

H =
∑
x,μ̂,ν̂

−Kσ3
x,μ̂σ

3
x,ν̂σ

3
x+μ̂,ν̂σ

3
x+ν̂,μ̂ − Jσ1

x,μ̂σ
1
x+μ̂,μ̂

↔ Hd =
∑
x̃,μ̂,ν̂

−Kτ 1
x̃,μ̂ −

∑
ρ̂⊥μ̂,ν̂

JB̂x̃,μ̂ν̂B̂x̃+ρ̂,μ̂ν̂ . (32)

where B̂x̃,μ̂ν̂ = τ 3
x̃,μ̂τ

3
x̃,ν̂τ

3
x̃+μ̂,ν̂ τ

3
x̃+ν̂,μ̂. The theory H has an ordinary Z

(1)
2 symmetry like

equation (15), plus subsystem symmetries with conserved quantities:

Σx̂ ;(y,z) =
∏

y,z=Const.

σ3
x,x̂, Σŷ ;(x,z) =

∏
x,z=Const.

σ3
x,ŷ, Σẑ ;(x,y) =

∏
x,y=Const.

σ3
x,ẑ . (33)

x, y, z are the three coordinates of x. The ODO of the Z
(1)
2 one-form symmetry is the

same as equation (15):O
(1)
C =

∏
l∈Cσ

3
l . Due to the extra subsystem conserved quantities in

equation (33), and since O
(1)
C is a product of segments of these extra conserved quantities,

the expectation value of O
(1)
C in the phase K � J also decays with a corner law, i.e. the

expectation value of O
(1)
C decays only when C takes a turn; in the phase K 
 J , there

is an SSB of the subsystem symmetry, and the expectation value of O
(1)
C decays with an

area law.
The dual Hamiltonian Hd has the same Z̃

(1)
2 symmetry as the dual of the ordinary

Z2 quantum lattice gauge theory, with extra subsystem symmetries as well. The ODO
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we will consider for Hd is

Õ
(1)
C,C′ =

∏
l̃∈C

τ 3
l̃

∏
l̃∈C′

τ 3
l̃
. (34)

There are still subsystem symmetries in Hd of equation (32), with conserved subsystem
symmetry charges such as

Σ̃ẑ ;(ỹ,z̃) =
∏

ỹ,z̃=Const.

τ 1
x̃,ẑ, Σ̃ẑ ;(x̃,z̃) =

∏
x̃,z̃=Const.

τ 1
x̃,ẑ, . . . (35)

These conserved subsystem charges are not entirely independent from each other due
to the Gauss-law gauge constraint imposed on τ 1. Due to these subsystem symmetries

in the dual model, we restrict our discussions to the cases when C and C′ in Õ
(1)
C,C′ are

completely parallel with each other, and separated along the direction orthogonal to
both loops, (for example, C and C′ can be identical squares in two XY planes, but
separated along the ẑ direction), because only then would the ODO commute with all
the conserved one-form charges of the dual model equation (15), and also commute with

the subsystem conserved charges Σ̃. When C and C′ are identical loops in XY planes

separated along the ẑ direction, Õ
(1)
C,C′ is also a product of Jσ1

x,ẑσ
1
x+ẑ,ẑ in H of equation

(32) within the 3d region sandwiched between C and C′; while O
(1)
C is still a product of

the K term enclosed by C.
In the phase K 
 J , the expectation value of Õ

(1)
C,C′ can again be computed through

a perturbation of K/J : it decays as a perimeter law of C (or equivalently C′), but it does
not decay with the distance between C and C′. In the phase K � J , the expectation

value of Õ
(1)
C,C′ would decay exponentially with the distance between C and C′, and also

exponentially with the area of C (or C′).
It is unknown whether model equation (32) has a second order transition between

the two phases mentioned above or not. But again we can embed the models into a
parent model with U(1)(1) and Ũ(1)(1) symmetries. For instance, the Hd in equation
(32) can be embedded into

Hd =

∫
d3x̃

∑
μ

U

2
ê2x̃,μ̂ − t cos (∇z(∇xây −∇yâx)) + (permute x, y, z)− g cos(2âμ).

(36)

ê and â are defined on the dual lattice links (x̃, μ̂), which are also the plaquettes of the
original cubic lattice (figure 2). This model admits a gapless phase described by the
following action:

Sd =

∫
d3x̃ dτ

1

2U
(∂τ�a)

2 +
t

2
(∇z(∇xay −∇yax))

2 + (permute x, y, z). (37)

In this gapless phase, the ODO equation (34) becomes

Õ
(1)
C,C′ =

∏
l̃∈C

τ 3
l̃

∏
l̃∈C′

τ 3
l̃
∼ exp

(
i

∮
C
âμ dx

μ

)
exp

(
−i

∮
C′
âν dx

ν

)
. (38)
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Figure 2. The cubic lattice and the dual lattice for models considered in
section 3.2.

The expectation value of Õ
(1)
C,C′ can be evaluated with the continuum limit action equation

(37).

Our goal is to show that, the behavior of Õ
(1)
C,C′ is different from the gapped phases.

This effect can be readily shown by considering the simple case when both C and C′ are
unit plaquettes in the XY planes, separated in the z direction by distance Z. Then

Õ
(1)
C,C′(Z) ∼ exp (〈(∇xây −∇yâx)z=0(∇xây −∇yâx)z=Z〉)

∼ exp

(
−c1

√
U

t
log Z

)
∼ 1

|Z|2ΔC,C′
, ΔC,C′ ∼

√
U

t
. (39)

This power-law decay along the z direction originates from the fact that the correlation
function 〈(∇xây −∇yâx)z=0(∇xây −∇yâx)z=Z〉 has a singularity 1/kz in the momentum
space near kz = 0. This power-law scaling along z is already very different from the

expectation value of Õ
(1)
C,C′(Z) in the gapped phases of the models in equation (32). We

also made efforts to compute Õ
(1)
C,C′ for C, C′ with more general shapes, this calculation

is presented in the appendix.

To evaluate O
(1)
C , again it is more convenient to use a third dual description of the

theory:

Hd2 =

∫
d3x

U

2

(
∇x∇y(φ̂x(x)− φ̂y(x))

)2
− t cos

(
N̂ z(x)

)
+ (permute x, y, z) (40)

The operators in equation (40) are related to the operators in equation (36) through
the mapping (the duality between Hd and Hd2 was first discussed in [22])

êx̃,ẑ = ∇x∇y(φ̂x(x)− φ̂y(x)), and permutation of x, y, z.

∇z(∇xâx̃,ŷ −∇yâx̃,x̂) = −N̂ z(x), and permutation of x, y, z. (41)
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The gapless phase is described by the following action:

Sd2 =

∫
d3x dτ

U

2
(∇x∇y(φx − φy))

2 +
1

2t
(∂τφz)

2 + (permute x, y, z) (42)

φ̂i(x) and N̂ i(x) are three pairs of conjugate variables defined on the sites of the original

cubic lattice x. Let us assume that the loop C in O
(1)
C is a rectangle in the XY plane,

then

O
(1)
C =

∏
l∈C

σ3
l =

∏
(x̃,ẑ)∈A

τ 1
x̃,ẑ =

∏
(x̃,ẑ)∈A

exp(iπêx̃,ẑ)

=
∏
x∈A

exp
(
iπ∇x∇y(φ̂x(x)− φ̂y(x))

)

= exp

(
iπ
∑
x∈A

∇x∇y(φ̂x(x)− φ̂y(x))

)

= exp
(
iπ(φ̂x(0, 0)− φ̂x(x, 0)− φ̂x(0, y) + φ̂x(x, y))

− iπ(φ̂y(0, 0)− φ̂y(x, 0)− φ̂y(0, y) + φ̂y(x, y))
)
. (43)

Again since our goal is to show that O
(1)
C has different behavior from the two gapped

phases K � J and K 
 J , it is sufficient to consider a special ‘narrow rectangular’

shape of C, i.e. y = 1, but x � 1. 〈O(1)
C 〉 in this case is evaluated as exp(π2〈∇y(φx − φy)0,0

∇y(φx − φy)x,0〉). The key correlation function 〈∇y(φx − φy)0,0∇y(φx − φy)x,0〉 has an IR

singularity as 1/|kx| near kx = 0. O
(1)
C with a narrow rectangular C scales as

〈O(1)
C 〉 ∼ 1

|x|ΔC
, ΔC ∼

√
t

U
. (44)

The power law decay of O
(1)
C is very different from the two gapped phases of equation

(32). The results of this subsection are summarized in the table below.

Special 3dZ2 gauge
theory equation (32) K � J K 
 J Gapless phase

O
(1)
C with rect. C in XY Corner law Area law 1

|x|ΔC , with y = 1

and x � 1

Õ
(1)
C,C′ parallel C, C′ in XY Area law of C, C′ Perimeter law of C 1

|Z |2ΔC,C′
, for unit

square
Separated along ẑ Exponential decay with Z Long range with Z C, C′ separated

along z
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4. Summary

In this manuscript we analyzed the behavior of ODOs, at fine-tuned critical points or
gapless phases of lattice systems with microscopic discrete categorical symmetries. The
symmetries on both sides of the duality of the lattice models are constituents of the
entire categorical symmetry of the system. We demonstrate that at these selected criti-
calities, the behavior of ODOs of categorical symmetries can be evaluated analytically,
and they could have rather different scalings from the gapped phases of these models,
where the ODO can be computed using the perturbation theory. The existence of sub-
system symmetries of some of the systems intrinsically modify the behavior of ODOs
at both the gapped phases, and the criticalities. Additionally, in examples with sub-
system symmetries, we found that at these criticalities the scaling of ODOs defined on
both sides of the duality of the lattice models can be very different from the gapped
phases.

While preparing for our manuscript, we became aware of a work that numerically

computed the behavior of ODO of Z̃
(1)
2 at the 3D Ising critical point, combined with

theoretical comparison with free field theories [23]. The conclusion in this work is that,

the Z̃
(1)
2 symmetry is still spontaneously broken at the 3D Ising critical point. The

conclusion is similar to ours at the fine-tuned Lifshitz criticality of 2d lattice quantum
Ising systems.
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Appendix A. More calculations for Õ(1)
C,C′

Let us first analyze the expectation value of Õ
(1)
C,C′ defined in equation (34), which can

be calculated using the continuous gauge theory equation (37) via

〈̃O(1)
C,C′ 〉 ∼ exp

[(∮
C

∮
C′
− 1

2

∮
C

∮
C
− 1

2

∮
C′
∮
C′

)
〈aμ(x)aν (x′)〉dxμ dx′ν

]
. (A1)

With a Faddeev–Popov type gauge fixing ζ term, the gauge field propagator Dμν(ω,k)
is given by

D−1
μν (ω,k) =

⎛⎝ω2/U + 2tk2
yk

2
z −tkxkyk

2
z −tkxkzk

2
y

−tkxkyk
2
z ω2/U + 2tk2

zk
2
x −tkykzk

2
x

−tkxkzk
2
y −tkykzk

2
x ω2/U + 2tk2

xk
2
y

⎞⎠− ζ−1kμkν. (A2)

Our gauge choice is ζ → 0. Since we are interested in the expectation value of ODO of
a static state, we will use the equal time Green’s function. Directly using the full form
of Dμν would be tedious, but we observe that Dxx has linear singularity at ky → 0, and
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kz → 0, which will dominate IR behavior of the Green’s function. We can extract the
most singular part of the Green’s function, then Dxx at τ = 0 reads

Dxx(τ = 0,k) =

∫
dω

2π
Dxx(ω,k)

=

√
U

t

1√
6

(
k2
y(

k2
x + k2

y

)3/2 1

|kz|
+

k2
z

(k2
x + k2

z)
3/2

1

|ky|

)
+ · · · (A3)

This approximate form of Green’s function captures the singularity at ky → 0 and
kz → 0 separately. There is an extra singularity when multiple momenta approach zero
simultaneously. But since this extra singularity occurs at a much smaller measure of
the momentum space compared with the singularities captured by equation (A3), we
take the approximate form of Green’s function equation (A3). Further analysis may be
demanded to address all singularities in the Green’s function.

Similarly, we approximate the off-diagonal term Dxy around its singularity kz = 0

Dxy(τ = 0,k) =

√
U

t

−kxky√
6
(
k2
x + k2

y

)3/2 1

|kz|
+ · · · . (A4)

Other components of Dμν can be obtained by the permutations of kx, ky, kz. The real-
space expression of the Green’s function is then obtained through Fourier transforma-
tion:

Dμν(τ = 0,x) =

√
U

t

−1

2
√
6π2

⎛⎜⎜⎜⎜⎜⎝
x2 log |zδ|
(x2 + y2)3/2

+
x2 log |yδ|
(x2 + z2)3/2

xy log |zδ|
(x2 + y2)3/2

xz log |yδ|
(x2 + z2)3/2

xy log |zδ|
(x2 + y2)3/2

y2 log |xδ|
(y2 + z2)3/2

+
y2 log |zδ|
(y2 + x2)3/2

yz log |xδ|
(y2 + z2)3/2

xz log |yδ|
(x2 + z2)3/2

yz log |xδ|
(y2 + z2)3/2

z2 log |yδ|
(z2 + x2)3/2

+
z2 log |xδ|
(z2 + y2)3/2

⎞⎟⎟⎟⎟⎟⎠ , (A5)

where δ > 0 is a small IR cut-off, which is needed in the Fourier transformation of 1/ |k|.
This is the effective real-space Green function that can be used to calculate the scaling

behaviors of 〈Õ(1)
C,C′〉.

Let us consider two identical squares C, C′ that are completely parallel to each
other. We assume C has four corners (0, 0, 0) , (L, 0, 0) , (L,L, 0) , (0,L, 0), and C′ has four
corners (0, 0,Z) , (L, 0,Z) , (L,L,Z) , (0,L,Z). Based on the real-space Green function
equation (A5), an integral over C, C′ leads to

− log〈Õ(1)

C,C′ 〉 =
√

U

t

4L√
6π2

⎛⎝(2(√L2 + Z2 − Z)/L + log(
√
L2 + Z2 − L)

)
log(L/ε) + log L (log L− 3 log ε)

− log(LZ) +
(√

2− sinh−1(1)
)
log(Z/ε) + 2 log ε(log ε+ 1)

⎞⎠ . (A6)

where ε > 0 is a small UV cut-off. It is important to notice that, although the real space

Green’s function has a dependence on the IR cut-off δ, the final result of Õ
(1)
C,C′ is free

from any IR-divergence. We are most interested in the behaviors of 〈Õ(1)
C,C′〉 under the

large-L and large-Z limits:

〈Õ(1)
C,C′〉 ∼

⎧⎨⎩e
−
√

U
t

4√
6π2

L(log(L/ε)+
√
2−1−sinh−1(1)) log Z

= e−c1
√

U
t log Z L < +∞,Z → +∞

e
−
√

U
t

4√
6π2

(2 log(Z/ε)+1−log 2)L log L
= e−c2

√
U
t L log L Z < +∞,L→ +∞

, (A7)

https://doi.org/10.1088/1742-5468/ac08fe 16

https://doi.org/10.1088/1742-5468/ac08fe


J.S
tat.

M
ech.

(2021)
073101

Categorical symmetries at criticality

where c1 and c2 are two numerical coefficients which depend on the UV cut-off ε.
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