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Abstract. Spatially distributed hydrological models are com-
monly employed to optimize the locations of engineering
control measures across a watershed. Yet, parameter screen-
ing exercises that aim to reduce the dimensionality of the cal-
ibration search space are typically completed only for gauged
locations, like the watershed outlet, and use screening met-
rics that are relevant to calibration instead of explicitly de-
scribing the engineering decision objectives. Identifying pa-
rameters that describe physical processes in ungauged loca-
tions that affect decision objectives should lead to a better un-
derstanding of control measure effectiveness. This paper pro-
vides guidance on evaluating model parameter uncertainty at
the spatial scales and flow magnitudes of interest for such
decision-making problems. We use global sensitivity analy-
sis to screen parameters for model calibration, and to subse-
quently evaluate the appropriateness of using multipliers to
adjust the values of spatially distributed parameters to fur-
ther reduce dimensionality. We evaluate six sensitivity met-
rics, four of which align with decision objectives and two
of which consider model residual error that would be con-
sidered in spatial optimizations of engineering designs. We
compare the resulting parameter selection for the basin out-
let and each hillslope. We also compare basin outlet results
for four calibration-relevant metrics. These methods were ap-
plied to a RHESSys ecohydrological model of an exurban
forested watershed near Baltimore, MD, USA. Results show
that (1) the set of parameters selected by calibration-relevant
metrics does not include parameters that control decision-
relevant high and low streamflows, (2) evaluating sensitiv-
ity metrics at the basin outlet misses many parameters that
control streamflows in hillslopes, and (3) for some multipli-

ers, calibrating all parameters in the set being adjusted may
be preferable to using the multiplier if parameter sensitivities
are significantly different, while for others, calibrating a sub-
set of the parameters may be preferable if they are not all in-
fluential. Thus, we recommend that parameter screening ex-
ercises use decision-relevant metrics that are evaluated at the
spatial scales appropriate to decision making. While includ-
ing more parameters in calibration will exacerbate equifinal-
ity, the resulting parametric uncertainty should be important
to consider in discovering control measures that are robust to
it.

1 Introduction

Spatially distributed hydrological models are commonly em-
ployed to inform water management decisions across a wa-
tershed, such as the optimal locations of engineering con-
trol measures (e.g., green and gray infrastructure). Quantify-
ing the impact of control measures requires accurate simu-
lations of streamflows and nutrient fluxes across the water-
shed (e.g., Maringanti et al., 2009). However, observations
are typically limited to the watershed outlet, and these mod-
els can have hundreds of parameters that cannot feasibly be
measured throughout the watershed or observed at all. Thus,
parameter estimation through calibration leads to equifinality
of parameter sets (e.g., Beven and Freer, 2001) that simulate
similar model output values at gauged locations and different
values elsewhere. Control measures deployed throughout the
watershed ought to be robust to this variability.
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Because there are computational limitations to calibrat-
ing hundreds of parameters, parameter screening exercises
via sensitivity analysis are usually applied to reduce the di-
mensionality of the calibration. Recent reviews of sensitiv-
ity analysis methods for spatially distributed models (Pianosi
et al., 2016; Razavi and Gupta, 2015; Koo et al., 2020b; Lil-
burne and Tarantola, 2009) emphasize the critical need to an-
swer, at the outset of a study, “What is the intended definition
for sensitivity in the current context?” (Razavi and Gupta,
2015). For studies that aim to use the resulting model to spa-
tially optimize decisions, sensitivity should be defined for
the objectives of the decision maker. However, Razavi et al.
(2021) note that “Studies with formal [sensitivity analysis]
methods often tend to answer different (often more sophis-
ticated) questions [than] those related to specific quantities
of interest that decision makers care most about.” The large
majority of studies use calibration-relevant sensitivity met-
rics that aim to discover which parameters most affect model
performance measures (e.g., Nash—Sutcliffe efficiency). It is
less common to use decision-relevant sensitivity metrics that
aim to discover which parameters most influence hydrologi-
cal quantities of concern to decision makers, such as high and
low flows (e.g., Herman et al., 2013a; van Griensven et al.,
2006; Chen et al., 2020). Common calibration performance
measures that are employed as sensitivity metrics evaluate
performance across all flow magnitudes, yet some measures
like the Nash—Sutcliffe efficiency (NSE) lump several fea-
tures of the hydrological time series together (Gupta et al.,
2009), and specific features can govern the resulting perfor-
mance value (e.g., peak flows for NSE in Clark et al., 2021).
Matching a hydrological time series well for all flows might
be important for ecological investigations (Poff et al., 1997),
but may complicate the analysis of engineering control mea-
sures, which are mainly concerned with controlling extreme
high and low flows. Furthermore, calibration data are often
limited to few gauged locations or only the watershed out-
let, so sensitivity analyses based on calibration metrics only
screen parameters that influence flows at gauged locations
(e.g., van Griensven et al., 2006). Yet locations of engineer-
ing control measures will be affected by the parameters that
control physical processes in their local area, which may be
different than the parameters that have the largest signals at
the gauged locations (e.g., Golden and Hoghooghi, 2018).

The combination of these factors could have proximate
consequences on siting and sizing engineering controls if
equifinal parameter sets for the watershed outlet (1) suggest
different optimal sites and/or sizes due to the resulting uncer-
tainty in model outputs across the watershed, or (2) do not
consider all of the decision-relevant parametric uncertainties
across the watershed. This paper provides guidance on eval-
uating parametric model uncertainty at the spatial scales and
flow magnitudes of interest for such decision-making prob-
lems as opposed to using a single location and metrics of
interest for calibration. We use three sensitivity metrics to
capture differences in parameters that control physical pro-
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cesses that generate low flows, flood flows, and all other
flows as in Ranatunga et al. (2016), but extend the analy-
sis to consider the decision-relevant implications for calibra-
tion to ensure robust engineering design. Because stochas-
tic models are required for risk-based decision making (Vo-
gel, 2017), we use another three sensitivity metrics to com-
pare parameters screened for calibration using deterministic
mean values to those screened using upper and lower quan-
tiles of model residual error. We refer to these six metrics as
decision-relevant sensitivity metrics. We compare the param-
eters screened from these metrics to those screened from us-
ing four commonly employed calibration performance mea-
sures as sensitivity metrics. Finally, we illustrate the value
of spatially distributed sensitivity analysis by comparing pa-
rameter selections for the watershed outlet with parameter
selections for each hillslope outlet (i.e., the water, nutrients,
etc., contributed to a sub-watershed outlet by a hillslope).
With these approaches, this paper contributes to a limited lit-
erature on sensitivity analysis to inform parameter screening
of spatially distributed models that are used to inform engi-
neering decision making.

We employ the RHESSys ecohydrological model for this
study (Tague and Band, 2004). We use the results of a com-
prehensive sensitivity analysis of all non-structural model
parameters to provide general guidelines for spatially dis-
tributed models and some specific recommendations for
RHESSys users. We then consider parameter multipliers as a
further dimensionality reduction technique that is commonly
employed for calibrations of spatially distributed models
(e.g., soil and vegetation sensitivity parameters in RHESSys
(Choate and Burke, 2020), soil parameter ratios in an SAC-
SMA model (Fares et al., 2014), climatic multipliers in a
SWAT model (Leta et al., 2015), and many others (Pokhrel
et al., 2008; Bandaragoda et al., 2004; Canfield and Lopes,
2004)). The multiplier adjusts the base values of parameters
in the same category (e.g., soil hydraulic conductivity) and
only the multiplier is calibrated. Thus, the number of calibra-
tion parameters is reduced while capturing spatial trends, but
there are known limitations to the methodology (Pokhrel and
Gupta, 2010). In particular, for a set of parameters with dif-
ferent magnitudes, a multiplier will disproportionately adjust
the mean and variance of parameters’ distributions, and could
lead to poor performance in ungauged locations. We provide
guidance on the use of multipliers by examining model sen-
sitivity to individual parameters in the set that the multiplier
adjusts.

The remainder of the paper is structured as follows: Sec-
tion 2 details the methods we used to screen parameters and
evaluate parameter multipliers using global sensitivity analy-
sis, Sect. 3 describes the RHESSys model and the parameters
we considered for this study, and Sect. 4 describes the study
watershed. The subsequent sections present the results, dis-
cussion, and concluding thoughts.
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2 Methods

2.1 Uncertainty sources considered for sensitivity
analysis

Uncertainty sources in all environmental systems models in-
clude (e.g., Fig. 1; Vrugt, 2016) the model structure (e.g., se-
lection of process equations (Mai et al., 2020) or grid cell res-
olution (Melsen et al., 2019; Zhu et al., 2019)), initial condi-
tion values (e.g., groundwater and soil moisture storage vol-
umes (Kim et al., 2018)), model parameter values (Beven and
Freer, 2001), and input data (e.g., precipitation and temper-
ature in Shields and Tague (2012)). If employing a stochas-
tic modeling approach to these deterministic models (Farmer
and Vogel, 2016), additional uncertainty sources include the
choice of residual error model shape (e.g., lognormal) (Smith
et al., 2015), the error model parameter values, and the ob-
servation data that are used to compute the residual errors
(McMillan et al., 2018). Each of these uncertainty sources
could be considered in a sensitivity analysis.

In this paper, the sensitivity analyses consider parametric
uncertainty for a fixed model structure and input data time
series (described in Sect. 3). We do not consider stochastic
methods because we evaluate sensitivity in ungauged loca-
tions where no data are available to inform an error model.
However, we do evaluate the impact of considering model
error for the regression model that was used to estimate to-
tal nitrogen concentrations, as described in Sect. 2.2.1. We
address uncertainty in the initial conditions for RHESSys by
employing a 5-year spin-up period before using simulated
outputs for analysis. After 5 years, the water storage volume
(saturation deficit) averaged over the watershed maintained
a nearly stationary mean value for each of the evaluated pa-
rameter sets (Supplement item S3).

2.2 Sensitivity metrics

In many hydrological studies, sensitivity analysis is used to
understand how input parameters influence model perfor-
mance measures (Jackson et al., 2019), such as the Nash—
Sutcliffe efficiency. Performance measures temporally ag-
gregate a time series into a single value that is indica-
tive of model fit to the observed data (e.g., Moriasi et al.,
2007). Gupta and Razavi (2018) note that using such perfor-
mance measures as sensitivity metrics amounts to a param-
eter identification study to discover which parameters may
be adjusted to improve model fit. Therefore, the calibration-
relevant sensitivity metrics in this paper use such perfor-
mance measures on the full time series. Evaluating perfor-
mance measures for subsets of the time series that describe
specific features of interest (Olden and Poff, 2003) should
identify those parameters that control processes that gener-
ate those features (e.g., timing vs. volume metrics in Wagener
et al., 2009). Therefore, the decision-relevant sensitivity met-
rics are evaluated on subsets of the time series that are rele-
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Table 1. Decision-relevant and calibration-relevant sensitivity met-
rics for daily streamflow and total nitrogen.

Sensitivity metric Scale Performance

Decision-relevant metrics measure

High flow days
Low flow days Basin SAE

Streamflow Other days

High flow days
Low flow days
Other days

Hillslope =~ SAMD

High TN, all days
Mean TN, all days  Basin SAE
Low TN, all days

TN concentration

Calibration-relevant metrics

NSE
LNSE
pBias
LogL

Streamflow All flows, all days ~ Basin

vant to decision-making objectives. While such subsets could
be used for model calibration, that is uncommon because the
model would be less likely to perform well on other data sub-
sets (e.g., Efstratiadis and Koutsoyiannis, 2010). The follow-
ing subsections present the decision- and calibration-relevant
sensitivity metrics, which are also summarized in Table 1.

2.2.1 Decision-relevant sensitivity metrics

For the basin outlet, we used the sum of absolute error (SAE)
as the performance measure for decision-relevant sensitivity
metrics. For hillslopes (where observations are not available)
we used the sum of absolute median deviation (SAMD),
where the median value for each hillslope was computed
across all model simulations. For completeness, we com-
pared the results of using SAMD for the basin outlet to the
SAE results in the Supplement (item S9). We found similar
parameter selection and sensitivity ranking results for each
performance measure, which demonstrates that an observa-
tion time series is not necessary to obtain the parameter set to
calibrate, although observations help to check that SA model
simulations are reasonable. The SAE and SAMD expressions
are shown in Eqgs. (1) and (2):

T
Basin:SAE = Z | Qgimlt] — Qopslt]| M

t=1

T
Hillslope: SAMD = | Qi [t] — med(Qgiml:. 1)

t=1

. (@

where T is the total number of time series data points for
the sensitivity metric, Qg;, is the time series of the simu-
lated quantity (e.g., streamflow), Q. is the vector of the
observed quantity, and med(Qsim[:,#]) is the median simu-
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lated quantity at time ¢ over all of the model runs completed
for sensitivity analysis, as stored in matrix Qgim.

We consider sensitivity metrics that are relevant to water
quantity and quality outcomes because they are among the
most common for hydrological modeling studies. For water
quantity, we compute SAE (basin) and SAMD (hillslopes)
for three mutually exclusive flows: (1) high flows greater
than the historical 95th percentile, (2) low flows less than
the historical 5th percentile, and (3) all other flows between
the historical 5th and 95th percentiles. The SAE and SAMD
are computed for the 7 days on which these flows occurred.
The percentiles are estimated based on the calibration data
(described in Sect. 4). Variability in the resulting sensitivity
metrics and screened parameters would be a function of the
physical processes that generate these flows. The dates cor-
responding to flood flows provided a good sampling across
all years of record. For low flows, most dates correspond to
a drought in 2007. Therefore, using the historical 5th per-
centile as a metric could capture decision-relevant low flows,
but could be overly sensitive to one particular period of the
record. We compared results obtained from using each wa-
ter year’s daily flows less than that year’s Sth percentile with
results obtained from using the historical 5th percentile. The
parameters that would be selected for calibration were iden-
tical for the example presented in this paper, so we display
only the historical 5th percentile results.

For water quality, we consider the estimated daily total
nitrogen (TN) concentration. As described in Sect. 3.1, we
use a linear regression model with normal residuals to esti-
mate the log-space TN concentration at the outlet as a func-
tion of time, season, and streamflow at the same location.
As such, we could compute sensitivity metrics for the esti-
mated mean and quantiles from the regression error model.
The water quality sensitivity metrics are the SAE for (1) the
95th percentile of the distribution of estimated TN concentra-
tion, (2) the 5th percentile, and (3) the log-space mean (real
space median) for each of the days on which TN was sam-
pled. Therefore, unlike the streamflow metrics, these metrics
are used to test if different parameters are screened for dif-
ferent error quantiles, and they are only applied to the basin
outlet.

2.2.2 Calibration-relevant sensitivity metrics

Four performance measures that are typically used to cal-
ibrate hydrological models are used as calibration-relevant
sensitivity metrics (e.g., Moriasi et al., 2007): the Nash—
Sutcliffe efficiency (NSE), the NSE of log-space simulations
(LNSE), the percent bias (pBias), and the log of the like-
lihood model that describes residual errors for streamflow
(e.g., Smith et al., 2015). These metrics can only be com-
puted for gauged locations, which is the basin outlet in this
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study. The first three metrics are defined in Eqgs. (3)—(5):

T
Z(Qsim[t] - Qobs[t])2
NSE=1-— t;I 3)

Z ( Qobs[t] - E[ Qobs])2
t=1

T
Z (In[ Qsim[t]] —In[ Qobs [t]])z
LNSE::l—‘T:1 )

> (In[ Qs [11] — ElIn( Q)
t=1

T
Z ( Qsim[t] - Qobs[t])
t=1

pBias = 100 x , 5)

T
Z Qobs (7]
=1

where In is the natural logarithm, [ is the expectation oper-
ator, and other terms are as previously defined. The NSE is
more sensitive to peak flows due to the squaring of resid-
ual errors, so it is hypothesized that parameters screened
by NSE will be most similar to those screened by the high
flow decision-relevant metric, although there are known is-
sues with using NSE as a peak flow metric (e.g., Mizukami
et al., 2019). The LNSE squares log-space residuals, so it as-
signs more equal weight to all flows; however, it is common
to use LNSE to calibrate low flows. The pBias considers the
scaled error, so it should assign the most equal weight to all
flows.

We selected the skew exponential power (generalized nor-
mal) distribution (Schoups and Vrugt, 2010) as the likelihood
model due to its ability to fit a wide variety of residual dis-
tribution shapes that could result from random sampling of
hydrological model parameters. We used an implementation
with two additional parameters that describe heteroskedas-
ticity as a function of flow magnitude and a lag-1 autocor-
relation, both of which are common in hydrological stud-
ies. The probability density function and resulting log like-
lihood (LogL) have lengthy derivations provided in Schoups
and Vrugt (2010), as summarized in Appendix A with minor
changes for our study. We used maximum likelihood esti-
mation to obtain point estimates of the six likelihood model
parameters, as described in the Supplement (item S0). We
assume that this likelihood model would be maximized in
calibration of the selected model parameters.

2.3 Morris global sensitivity analysis

Sensitivity analysis methods can be local about a single point
or global to summarize the effects of parameters on model
outputs across the specified parameter domain (e.g., Pianosi
et al., 2016). A global method is implemented for this study
because the goal is to screen parameters for use in model
calibration. The Method of Morris (1991) derivative-based
sensitivity analysis is employed as a computationally fast
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method whose parameter rankings have been shown to be
similar to more expensive variance-based analyses (Saltelli
et al., 2010) for spatially distributed environmental models
(Herman et al., 2013a).

The Method of Morris is based on elementary effects
(EEs) that approximate the first derivative of the sensitivity
metric with respect to a change in a parameter value. The
EEs are computed by changing one parameter at a time along
a trajectory, and comparing the change in sensitivity metric
from one step in the trajectory to the next. The change is nor-
malized by the relative change in the parameter value (Eq. 7).
Assuming that the pth parameter is changed on the (s 4 1)th
step in the jth trajectory, the EE for parameter p using the
computed sensitivity metrics (SMs) (SAE, NSE, etc.) is com-
puted as shown in Eq. (6):

_ SMj,s+ 11— SMLj,s]
As+1,s,p

X[jvs + 1»P] _X[jvs’ P]
|max(X[:, :, p]) — min(X[:, :, p])|’

EE[j, p] (6)

@)

As—&-l,s,p =

where EE is the elementary effect matrix consisting of one
row per trajectory and one column per parameter, Agyq s p 1S
the change in the value of the parameter as a fraction of the
selected parameter range, and X is the matrix of parameter
values. The EEs for each parameter are typically computed
in tens to hundreds of locations in the parameter domain,
and are then summarized to evaluate global parameter impor-
tance. The mean absolute value of the EEs computed over all
of the r locations (one for each trajectory) is the summary
statistic used to rank model sensitivity to each parameter, as
recommended by Campolongo et al. (2007). The sample es-
timator is provided in Eq. (8):

N .
fip =~ Zl [EE[/, plI. ®)
j:

We used 40 trajectories that were initialized by a Latin hy-
percube sample, and used the R sensitivity package (Iooss
et al.,, 2019) to generate sample points and compute EEs.
Each parameter had 100 possible levels that were uniformly
spaced across its specified range. Step changes, A, in param-
eter values were set to 50 levels (i.e., 50 % of their range).
For each parameter, this allows for a uniform distribution of
parameter values across all samples (example sampling dis-
tributions for other percentages are provided in Supplement
item S8). We adjusted some trajectory sampling points to sat-
isfy inequality and simplex constraints within the RHESSys
model (described in Supplement item S0).

2.4 Parameter selection based on bootstrapped error

After the hydrological model runs completed for all trajec-
tories, we estimated 90 % confidence intervals for each pa-
rameter’s /:L; by bootstrapping. For each parameter, 1000 EE
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vectors of length r had their elements sampled with replace-
ment from the original r EEs, and ,&; was computed for
each vector. We independently completed bootstrapping for
each parameter (as in the SALib implementation by Herman
and Usher, 2017) instead of sampling whole Morris trajec-
tories (as in the STAR-VARS implementation by Razavi and
Gupta, 2016) to allow greater variation in the resulting quan-
tile estimates.

We used an EE cutoff to determine which parameters
would be selected for calibration. For each sensitivity met-
ric, we determined the bootstrapped mean EE value (Eq. 8)
corresponding to the top Xth percentile, after removing pa-
rameters whose EEs were equal to zero. All of the parameters
whose estimated 95th percentile EE values were greater than
this cutoff value would be selected for calibration for that
metric. The union of parameters selected from all sensitivity
metrics comprised the final set of calibration parameters. We
evaluated the number of parameters selected as a function of
the Xth percentile cutoff for basin and hillslope outlet sen-
sitivity analyses in Sect. 5. Subsequent results are presented
for the 10th percentile as an example cutoff; in practice, the
cutoff value should be defined separately for each sensitivity
metric based on a meaningful change for the decision maker
(e.g., the e-tolerance in optimization problems; Laumanns
et al., 2002). To test the hypothesis of spatial variability in
parameters that affect the sensitivity metrics, we compare pa-
rameters that would be selected based on each hillslope’s EEs
against each other and the basin outlet selection.

2.5 Evaluating the use of parameter multipliers

We compare the EEs for parameters that are traditionally ad-
justed by the same multiplier to determine if all parameter
EEs are meaningfully large and not statistically significantly
different from each other. This would suggest that a multi-
plier or another regularization method may be useful to re-
duce the dimensionality of the calibration problem. Parame-
ters with large and statistically significantly different EEs are
candidates for being calibrated individually, as this suggests
the multiplier would not uniformly influence the model out-
puts across adjusted parameters. More investigation on the
cause for different EEs could inform the decision to calibrate
individually or use a multiplier (e.g., the difference in sen-
sitivity could be caused by the parameters acting in vastly
different proportions of the watershed area). We evaluate sig-
nificance using the bootstrapped 90 % confidence intervals.

3 Hydrological model description: RHESSys

We used the Regional Hydro-Ecologic Simulation System
(RHESSys) for this study (Tague and Band, 2004). RHESSys
consists of coupled physically based process models of the
water, carbon, and nitrogen cycles within vegetation and soil
storage volumes, and it completes spatially explicit water
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routing. Model outputs may be provided for patches (grid
cells), hillslopes, and/or the basin outlet. We used a ver-
sion of RHESSys adapted for humid, urban watersheds (Lin,
2019b), including water routing for road storm drains and
pipe networks, and anthropogenic sources of nitrogen. It also
has modified forest ecosystem carbon and nitrogen cycles
(a complete summary of modifications is provided in the
README file). We used GIS2RHESSys (Lin, 2019a) to pro-
cess spatial data into the modeling grid and file formats re-
quired to run RHESSys. The full computational workflow
that was used for running GIS2RHESSys and RHESSys on
the University of Virginia’s Rivanna high performance com-
puter is provided in the code repository (Smith, 2021a).

For this paper, we classified RHESSys model parame-
ters as structural or non-structural. A key structural mod-
eling decision is running the model in vegetation growth
mode or in static mode, which only models seasonal veg-
etation cycles (e.g., leaf-on, leaf-off), and net photosynthe-
sis and evapotranspiration, and does not provide nitrogen cy-
cle outputs. We found that randomly sampling non-structural
growth model parameters within their specified ranges com-
monly resulted in unstable ecosystems (e.g., very large trees
or unrealistic mortality). It is beyond the scope of this pa-
per to determine the conditions (parameter values) for which
ecosystems would be stable, so we used RHESSys in static
mode. We used a statistical method to estimate total nitrogen
(TN) as a function of simulated streamflow, as described in
Sect. 3.1. Other structural modeling decisions include using
the Clapp—Hornberger equations for soil hydraulics (Clapp
and Hornberger, 1978), the Dickenson method of carbon al-
location (Dickinson et al., 1998), and the BiomeBGC leaf
water potential curve (White et al., 2000). A full list is pro-
vided in a table in the Supplement (item S2).

We categorized non-structural parameters according to the
processes they control. Table 2 displays the parameter cat-
egories, processes, number of parameters in each category,
and how many parameters can be adjusted by built-in mul-
tipliers. A table in the Supplement (item S2) provides a full
description of each parameter, the bounds of the uniform dis-
tribution used for sensitivity analysis sampling, and justifi-
cation for the parameter bounds. Hillslope and zone parame-
ters control processes over the entire modeling domain, while
land use, vegetation, building, and soil parameters could be
specified for each patch modeled in RHESSys. Patch-specific
parameter values for each category would result in more pa-
rameters than the number of calibration data points, so we ap-
plied the same parameter values to each land use type (unde-
veloped, urban, septic), vegetation type (grass and deciduous
tree), and to buildings (exurban households), and grouped
soil parameters by soil texture. To reduce the number of pa-
rameters to calibrate, we did not consider specific tree species
and their composition across the watershed (e.g., Lin et al.,
2019); all forest cover was modeled as broadleaf deciduous
trees. Given the coarse spatial resolution of grouped param-
eters, we did not employ spatial sensitivity analysis methods
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that consider auto- and cross-correlations of parameter val-
ues (Koo et al., 2020b; Lilburne and Tarantola, 2009).

RHESSys is typically calibrated using built-in parameter
multipliers, which for this study would mean using 11 mul-
tipliers to adjust 40 of the 271 possible parameters. While
we know that some of these parameters are more easily mea-
sured than others, we consider all 271 parameters in the sen-
sitivity analysis. Some parameters are structurally dependent,
so we aggregated EEs for these parameters, resulting in 237
unique EEs for each sensitivity metric. (Supplement item SO
describes the aggregation method.) We assume all parame-
ters within an aggregated set would be calibrated, but only
report them as one parameter. Previous studies that imple-
mented sensitivity analyses of RHESSys generally adjusted
a subset of the multipliers by limiting the analysis to process-
specific parameters that are known or expected to affect out-
puts of interest (e.g., streamflow in Kim et al., 2007; nitro-
gen export in Lin et al., 2015 and Chen et al., 2020; car-
bon allocation in Garcia et al., 2016 and Reyes et al., 2017;
and evapotranspiration and streamflow in Shields and Tague,
2012). Most of these studies used local one-at-a-time sensi-
tivity analysis near a best estimate of parameter values from
calibration or prior information, with some exceptions that
employed global sensitivity analyses (Lin et al., 2015; Reyes
etal., 2017).

To our knowledge, this paper presents the first sensitiv-
ity analysis of all non-structural RHESSys model parame-
ters. A global sensitivity analysis approach is used to dis-
cover which parameters and processes are most important to
model streamflow for this study. Consequently, part of our
discussion in Sect. 6 highlights those parameters that are se-
lected for calibration based on the sensitivity analysis, yet
are not adjusted using standard RHESSys multipliers or are
otherwise uncommonly calibrated. Even though the results
are conditional on the specific parameter ranges (Shin et al.,
2013), climatic input data and model outputs (Shields and
Tague, 2012), and structural equations selected (Son et al.,
2019), the resulting parameter identification should be gen-
erally useful to inform future studies that use RHESSys or
other ecohydrological models.

3.1 Modeling total nitrogen with WRTDS regression

We used the Weighted Regression on Time Discharge and
Season (WRTDS) method (Hirsch et al., 2010; Hirsch and De
Cicco, 2015) to estimate daily TN concentration as a function
of simulated streamflows. Equation (9) provides the regres-
sion model

In(C1N,) = Bo+ BiIn(Qy) + Pot + B3sin(2rt)

+ B4cos(2mt) + €, &)
where Ctn,; is the TN concentration, §; is the ith regression
model parameter, Q; is the streamflow (discharge), t € R is

a time index in years, and € is residual error. The sin and cos
terms model an annual cycle. We estimated regression model
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Table 2. RHESSys parameter categories, the processes modeled in those categories for this study, the number of unique parameters in each
category, and the number of parameters that can be adjusted by built-in RHESSys parameter multipliers.

Parameter Number of  Parameters affected  Processes controlled

category parameters by multipliers by parameters

Hillslope 2 2 Controls how groundwater storage volumes are
allocated to streams

Land use 11 0 Describes septic tank water loads, detention
storage, and the imperviousness of each land
cover type

Soil 104 36  Defines soil property values that control hy-
draulic transport, and carbon and nitrogen cy-
cles

Vegetation 135 2 Defines vegetation property values that control
radiation and moisture fluxes, and carbon and
nitrogen cycles

Buildings 7 0  Defined with vegetation parameters that control
detention storage, height, and radiation fluxes

Zone 12 0  Controls atmospheric processes across the wa-

tershed, including transmissivity, and tempera-
ture and precipitation lapse rates, which affect
the assigned patch temperature and precipita-
tion values across the watershed

parameters using the observed basin outlet streamflow and
TN data. The parameter estimation procedure employs a lo-
cal window approach to weight observations by their prox-
imity in ¢, Qy, and day of the year. Default values of these
three WRTDS window parameters did not simulate the in-
terquartile range of TN observations well, so we used a man-
ual selection of WRTDS parameters to improve the model
fit, as described in the Supplement (item SO). Furthermore,
adding a quadratic log flow term did not result in a meaning-
ful improvement, so we used the simpler Eq. (9) model.

In order to use WRTDS for any streamflow value within
the observation time period, we created two-dimensional (z,
0;) interpolation tables for each of the five model param-
eters and the residual error (provided in Supplement item
S6). Simulated flows that were outside of the observed range
of values were assigned the parameters for the nearest flow
value in the table. Extrapolation of the concentration—flow
relationship to more extreme flows than were historically ob-
served may provide inaccurate TN estimates, which is a lim-
itation of this statistical prediction method. We expect the
error from extrapolation in this basin to be low, as N loads
appear to be dominated by effluent from septic systems as ev-
idenced by isotopic sourcing (Kaushal et al., 2011, p. 8§229),
and septic effluent supply should be fairly steady over time.
Zero flows were assigned zero concentration. These interpo-
lation tables apply only to the concentration—flow relation-
ship at the basin outlet. We did not estimate TN for hill-
slopes due to a concern that this basin outlet relationship

https://doi.org/10.5194/hess-26-2519-2022

would overestimate TN in predominately forested hillslopes
that would have different concentration—flow relationships
(Duncan et al., 2015) and in this watershed do not have septic
sources of TN. As a result, parameter selection for hillslopes
is limited to the three streamflow sensitivity metrics.

4 Case study site description

We apply these methods to a RHESSys model of the Baisman
Run watershed, which is an approximately 4km? area that
is located about 20 km north-northwest of Baltimore, Mary-
land, USA, and is part of the larger Chesapeake Bay water-
shed (Fig. 1a inset map). Baisman Run was one of the Long
Term Ecological Research sites for the Baltimore Ecosys-
tem Study (Pickett et al., 2020) and has roughly 20 years of
weekly water chemistry samples and daily streamflow sam-
ples measured at the watershed outlet. The Baisman Run wa-
tershed is about 80 % forested and most trees are deciduous.
Exurban development is located primarily in the headwater
hillslopes 9-14 where nearly all of the impervious surfaces
are located (5 % of the area). The two southwest—northeast
trending linear features correspond to power lines. The re-
maining 15 % of the watershed corresponds to grass vege-
tation. Soil textures are classified as riparian or non-riparian
(referred to as “other” in this study). Because there is de-
veloped land, we further divided soil textures into uncom-
pacted or compacted for a total of four soil types (Fig. 1b).
The hypothetical motivation for this sensitivity analysis is to
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inform the selection of parameters to calibrate a RHESSys
model that could be used to optimize the siting and sizing of
stormwater infrastructure for flood control and nutrient re-
duction. After a 5-year spin-up period, we completed sensi-
tivity analysis for 1 October 2004 to 30 September 2010. The
sensitivity analysis would screen parameters for calibration
and validation using the additional years of data. There was
a drought and several large precipitation events in this time
period that seemed representative of the remaining calibra-
tion dataset. The average annual precipitation total is about
I m and the average monthly temperature ranges from —2
to 25°C. We provide references to code and data used for
this study as well as data processing notes in the Supplement
(item S0).

5 Results

In Sect. 5.1 we present results for the six decision-relevant
sensitivity metrics. In Sect. 5.1.1 we use these results to
evaluate the appropriateness of using multipliers for calibra-
tion. Finally, we compare results for calibration-relevant and
decision-relevant metrics in Sect. 5.2.

5.1 Analysis for decision-relevant sensitivity metrics

We first compare the number of parameters selected for
calibration based upon decision-relevant elementary effects
(EEs) whose mean or 95th percentile estimates are larger
than the Xth percentile cutoff. Figure 2 shows the total num-
ber of unique parameters (out of 102 with non-zero EEs) that
would be selected for calibration as a function of the cut-
off value. The plotted total is the union of the top X percent
across the six decision-relevant metrics for the basin outlet,
and across the three streamflow metrics for hillslope outlets,
so more than X percent may be selected at each cutoff value.
For hillslope outlets, the union is also computed over all hill-
slopes. The gap in number of parameters selected when us-
ing hillslope outlets instead of the basin outlet suggests that
parameters that control physical processes captured by the
streamflow sensitivity metrics are different across the water-
shed, as explored further in Fig. 4. For this problem, con-
sidering sensitivity metrics for hillslope outlets commonly
results in an additional 10-20 parameters selected for cali-
bration compared with only using the basin outlet. There can
be as many as 40 more parameters near the X = 50 % cutoff.
For basin and hillslope outlets, the gap between using the
bootstrapped 95th percentile EE values instead of the mean
values illustrates the importance of considering sampling un-
certainty in parameter screening exercises. For this problem,
sampling uncertainty commonly adds 5-15 additional pa-
rameters. Near the X =50% cutoff, almost all parameters
would be selected for calibration using the hillslope outlets
and 95th percentile EE values. If desired, these sampling
uncertainty gaps can be reduced by evaluating more Mor-
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ris trajectories (e.g., by using progressive Latin hypercube
sampling to add new trajectory starting points, as in Sheik-
holeslami and Razavi, 2017). This should bring the mean and
95th percentile lines closer together in this figure.

For the selected 10 % cutoff in Fig. 2, 21 unique parame-
ters would be selected for the basin outlet using the 95th per-
centile EE values. Of these parameters, 18 are selected based
on the three streamflow metrics and 19 are selected based on
the three TN metrics. This finding supports using sensitivity
metrics for each of a decision maker’s objectives to inform
which parameters to calibrate.

Basin outlet EEs are displayed in Fig. 3 by parameter
category (color) and type within each category (shape). Of
the 237 parameters, 135 had EE values of exactly O for all
metrics (i.e., these parameters do not affect model-predicted
streamflow). These parameters primarily affect the RHESSys
nitrogen cycle and vegetation growth (which are not used
in static mode), buildings, and some snow parameters. For
streamflow sensitivity metrics (left column), differences in
the selected parameters and their EEs across metrics sug-
gest that flows of different magnitudes are affected by dif-
ferent physical processes, as expected (e.g., Ranatunga et al.,
2016). For example, hillslope groundwater controls (index 1)
and saturation to groundwater controls for compacted other
soil (index 93) that affect how water moves from groundwa-
ter to riparian areas are selected parameters for each metric,
but their EEs for low flows are larger than for the other met-
rics. This is likely because groundwater would be the source
of low flows. The EE magnitude for the specific rain capac-
ity (interception storage capacity per leaf area index (LAI))
of trees (index 162) increases from flood flows to low flows.
This result suggests that the impact of water intercepted by
vegetation surfaces matters more for low flows, particularly
in drought-stressed ecosystems, as that water alternatively
reaching the ground would have a larger impact on the result-
ing stormflow hydrograph compared with non-drought con-
ditions (e.g., Scaife and Band, 2017). Septic water loads (in-
dex 13), which are modeled as constant throughout the year,
have a higher mean EE for flood flows than the other stream-
flow metrics. This could result from uncertainty in saturated
soil storage volumes leading to uncertainty in flood peaks.
Similarly, the EE magnitude for tree maximum stomatal con-
ductivity (index 119) is larger for flood flows, likely because
of the impact on how quickly water can be transpired by
trees. Finally, the EE for wind speed is largest for flood flows,
which could be explained by the impact of wind on transpi-
ration and the resulting reduction in the recessive limb of the
hydrograph (e.g., Tashie et al., 2019). Other parameters with
larger EEs generally describe soil properties that are selected
or are near the cutoff point for each streamflow metric. The
largest of these for all metrics is the coefficient that describes
bypass flow for other soils (index 73) which cover the largest
area of the lower elevations in the watershed (Fig. 1b).

For the three TN metrics (Fig. 3, right column), the param-
eters within the top 10 largest mean EEs are the same and
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their order is nearly identical when considering uncertainty.
The largest EEs are close in magnitude to the 5th to 95th per-
centile streamflow metric. These results make sense because
the TN metrics are all affected by the same streamflows, and
sample collection is often limited to low and moderate flow
conditions (Shields et al., 2008). The reason for differences
in which parameters are selected for calibration is uncertainty
in the mean EE. The EE error bars tend to be larger for the
upper 95th percentile TN estimate, which results in the se-
lection of more parameters to calibrate. This result demon-
strates the value of considering both model error (different
TN quantile estimates) and uncertainty in sensitivity (boot-
strapped EE estimates) when selecting which parameters to
calibrate. More parameters are found to be potentially influ-
ential when considering these sources of uncertainty.

For hillslope outlets, 37 unique parameters were selected
using the 10% cutoff and the 95th percentile EE values
(Fig. 2). This parameter set contained all of the parameters
identified using only the basin outlet. Those 37 parameters
are listed in Fig. 4a and b, which compare results for each
hillslope and the basin outlet. Figure 4a provides the rank
of mean EEs for the upper 95th percentile streamflow sensi-
tivity metric. We provide plots for the other two streamflow
sensitivity metrics in the Supplement (item S4). Figure 4b is
aggregated over all decision-relevant sensitivity metrics (and
spatial areas for hillslopes) and indicates whether or not the
parameter would be selected for calibration.

Figure 4a for the flood flow sensitivity metric shows that
the previously described parameters with high mean EE
ranks based on the basin outlet tend to also have high mean
EE ranks in all hillslopes. Septic water load and riparian soil
m (hydraulic conductivity decay with saturation deficit) are
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Figure 3. Mean absolute value of elementary effects for RHESSys model parameters evaluated for the six decision-relevant sensitivity
metrics at the basin outlet. The EEs are normalized such that the maximum error bar value is 1 on each plot. Only parameters that would be
selected by any metric presented in Table 1 are plotted in this figure. Colors indicate to which RHESSys category parameters belong, and
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displayed in the accompanying table. Supplement tables contain the data plotted in this figure (item S1). GW: groundwater; Ksat: saturated
hydraulic conductivity (Cond.); m: describes Cond. decay with Sat.; Poro.: porosity; Trans.: transmissivity.

exceptions, which only affect hillslopes with households and
modeled riparian soils, respectively. Whether or not a hills-
lope is more forested or impervious explains many parame-
ter rank differences among hillslopes (e.g., the percent im-
pervious parameters). Tree parameters overall have higher
ranks for more forested hillslopes, and grass parameters have
higher ranks in more impervious hillslopes, which also have
more grass areas. Compacted soils S108 and S109 have
higher parameter ranks in more impervious hillslopes where
these soils have larger proportions of the total hillslope area
relative to more forested hillslopes. Coverage area of ripar-
ian soils is less than other soils and these soils tend to be wet
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regardless of the conductivity value due to spatial position,
which could explain why riparian parameters tend to have
smaller ranks than other soil parameters. While it is not sur-
prising that parameter EE ranks vary across the watershed
according to the hillslope features and respective processes
that act in those areas (e.g., van Griensven et al., 2006; Her-
man et al., 2013b), this result demonstrates that evaluating
sensitivity metrics across a watershed can lead to a different
interpretation of which parameters are important to calibrate
compared with evaluations completed for the outlet where
calibration data are located.
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Figure 4b further explores this point by showing which
parameters would be selected for calibration using basin
and hillslope analyses if aggregating the top 10 % over all
decision-relevant sensitivity metrics. Comparing the param-
eters selected in Fig. 4b to their ranks for the flood flow sen-
sitivity metric in Fig. 4a reveals that some lower-ranked pa-
rameters for flood flow are ultimately selected for calibration.
This result supports selecting parameters based on multiple
sensitivity metrics that represent all of a decision maker’s ob-
jectives. Furthermore, several parameters that would be se-
lected for hillslope analyses would not be selected for the
basin analysis if sensitivity metrics were not aggregated over
space, with riparian soil parameters being the most com-
mon. Three tree parameters and both grass parameters were
also selected for a few hillslopes that are almost completely
forested or have large grass areas, respectively, yet would
not be selected for the basin analysis. Parameters that are
selected for hillslopes but not for the basin would exert rel-
atively smaller signals when calibrating to the basin outlet
data, and would likely introduce equifinality to the calibra-
tion. However, there is value in considering such parametric
uncertainty if the parameters have a meaningful contribution
to the sensitivity of decision objectives nearer to the spatial
scale of decision making (i.e., within the representative ele-
mentary watershed Reggiani et al., 1998). Specifically, engi-
neering designs that would affect flows at these spatial scales
and locations ought to be robust to the parametric uncertainty
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in flows that would likely result from calibration of these pa-
rameters. This point is discussed further in Sect. 6.

5.1.1 Evaluation of parameter multipliers

We present results for only those multipliers whose adjusted
parameters all have non-zero EEs. Figure 5 shows barplots of
the bootstrapped mean and 90 % confidence intervals of EEs
for each of the 10 multiplier parameters that could be used for
the selected RHESSys model structure. For EEs that were re-
lated by constraints (m and hydraulic conductivity in Fig. 5)
bars are plotted for their raw and aggregated values. These
barplots correspond to the 95th percentile streamflow sensi-
tivity metric. We provide plots for the other five decision-
relevant sensitivity metrics in the Supplement (item S5).

We evaluate the appropriateness of using a parameter mul-
tiplier based on the magnitudes of the EEs and their uncer-
tainty. Parameters within the sets adjusted by m and the satu-
ration to groundwater bypass flow coefficients (Fig. 5a and b)
are candidates for being calibrated individually due to statis-
tically significant differences in EE values, and at least one
soil type with a large EE value. For specific leaf area (Fig. 51),
it would be preferable to simply calibrate the tree parame-
ter instead of using a multiplier. For the maximum snow en-
ergy deficit (Fig. Sh), using one multiplier for riparian soils
and another multiplier for other soils may be preferable. For
all other parameters, a single multiplier or other regulariza-
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tion method could be used based on overlapping error bars
and/or relatively small EE values. These results hold well
across the six decision-relevant sensitivity metrics and sug-
gest that the dimensionality of the calibration could be re-
duced by employing parameter multipliers or another regu-
larization method (e.g., Pokhrel and Gupta, 2010). Specif-
ically for multipliers, if all 38 unaggregated parameters in
this figure were selected for calibration, the aforementioned
suggested multipliers could reduce the calibrated total to 15.
Depending on the EE percentile cutoff used to select param-
eters (Fig. 2), the bottom row and possibly the middle row in
Fig. 5 may not be selected for calibration.

5.2 Analysis for calibration-relevant sensitivity metrics

Figure 6 provides plots of parameter EEs for the four
calibration-relevant sensitivity metrics. The parameters with
the largest EEs are nearly identical for the NSE, LNSE, and
pBias metrics, and the EE magnitudes are closest to the 5th to
95th percentile streamflow metric. (These metrics are highly
correlated, as shown in item S7 in the Supplement.) Contrast-
ing these results with Fig. 3 suggests that the NSE and LNSE
are not sufficient to capture parameters that affect flood and
low flows, contrary to reasoning often provided as justifi-
cation for their use. The log-likelihood metric shows large
EEs for many of the same parameters as other calibration
and decision-relevant metrics; however, the magnitudes and
rankings of parameters are different, and some new param-
eters are selected. Note that all parameters have non-zero
EEs for the LogL metric as a result of equifinality in the
parameters obtained from maximum likelihood estimation.
The 10 % threshold cutoff used to select parameters for cal-
ibration is larger than the resulting noise that is introduced
into the EE values.

Figure 7 presents a plot indicating whether or not each
parameter would be selected for calibration using the
calibration-relevant and decision-relevant sensitivity metrics.
Note that the calibration-relevant metrics did not identify
any new parameters than the decision-relevant metrics evalu-
ated across hillslopes (All, H), so the y axis matches Fig. 4a
and 4b. Considering only basin outlet evaluations (All, B),
decision-relevant metrics identify five parameters that the
calibration-relevant metrics do not identify. These parame-
ters include two atmospheric parameters that were selected
from the flood flow decision metric and a soil parameter that
was selected from the low flow decision metric. The other
two parameters were selected by considering model error in
TN. Of the calibration-relevant metrics, only the log likeli-
hood metric (LogL, B) identifies parameters that are unique
from all other basin-evaluated metrics, but these parame-
ters are selected for hillslopes using decision-relevant metrics
(All, H). Of note is that a set of 10 parameters are selected
for each of the calibration-relevant metrics and the aggre-
gated decision-relevant metrics, and a set of 13 parameters
are only selected from hillslope evaluation of the decision-
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relevant streamflow metrics. This result strengthens the rec-
ommendation to spatially evaluate sensitivity metrics to in-
form parameter selection of spatially distributed models.

6 Discussion

6.1 Importance of decision-relevant sensitivity metrics
for parameter screening

When sensitivity analysis is used to inform model calibra-
tions, a primary goal is usually to reduce the dimensionality
of the search space by screening those parameters that most
affect the outputs to be calibrated. How model outputs are
considered in sensitivity analyses and subsequent screening
exercises can affect which parameters are selected. We found
that specifically evaluating high and low flows as decision-
relevant metrics provided a different parameter selection than
using the calibration-relevant metrics that are often used to
capture parameters that control such flows. While the NSE
is mathematically sensitive (i.e., not robust) to high flows,
the EE magnitudes and parameters that are selected by the
NSE sensitivity metric do not match well with those selected
from the high flows decision-relevant metric. Instead, the EE
magnitudes and selected parameters resemble the 5th to 95th
percentile streamflow metric. A similar result is obtained for
the LNSE metric. A possible explanation for these results is
that the high and low flows sensitivity metrics each repre-
sent only 5 % of the time series used in the NSE and LNSE
metrics, while the 5th—95th percentile metric represents 90 %
of the time series. Another possibility is that in the Baisman
Run watershed, flows greater than the 95th percentile are still
relatively small, and so the model residuals are a similar or-
der of magnitude for peak flows and other flows. Regardless
of the cause, this analysis demonstrates that parameter selec-
tion based on decision-relevant metrics can result in differ-
ent parameters than calibration-relevant metrics. Thus, these
results support future studies that would evaluate which pa-
rameter screening method is ultimately preferable for various
decision problems. For example, this could be assessed by
optimizing engineering designs for controlling high and low
flows using models that calibrate screened parameters from
the two alternative approaches.

Calibration-relevant metrics have limited value for sensi-
tivity analyses of spatially distributed models because they
can only be computed at gauged locations. The sensitivity
analyses that we completed for ungauged hillslope outlets led
to the identification of more parameters to calibrate than were
selected based on sensitivity analysis at the gauged basin out-
let. Calibrating additional parameters that have smaller im-
pact at the gauged location is likely to exacerbate equifinality
in simulated outputs. Equifinality at the basin outlet will of-
ten result in variability in outputs at ungauged locations, such
that calibration of these additional parameters should be im-
portant to better capture the physical processes in hillslopes
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Figure 5. Barplots of the mean absolute value of the elementary effects for parameters that can be adjusted by 10 RHESSys multiplier param-
eters (panel (c) contains two multipliers). Bootstrapped error bars extend from the 5th to 95th percentile estimates. The effects correspond
to the 95th percentile streamflow sensitivity metric and are all normalized using the same maximum error bar value as in Fig. 3. The x axis
of each plot indicates which soil or vegetation type is considered. For hydraulic conductivity, it also indicates which parameter is considered
(vertical (vKsat) or lateral (Kgy¢) conductivity). Note that the plots in the bottom row have different y axes ranges than each other and the

plots above.

where engineering controls could be located. Even if param-
eter values are unchanged from their prior distributions after
calibration, locations of engineering control measures can be
optimized to be robust to the resulting uncertainty in model
outputs across the watershed. Spatially distributed monitor-
ing of model parameters and streamflow gauges within sub-
catchments could help to reduce this uncertainty, particularly
for catchments with spatially heterogeneous characteristics.
In summary, spatial evaluation of sensitivity metrics for spa-
tially distributed models allows for the discovery of paramet-
ric sources of uncertainty across the watershed to which en-
gineering designs would have to be robust.

https://doi.org/10.5194/hess-26-2519-2022

6.2 Determining opportunities for parameter reduction

Spatial sensitivity analyses also reveal opportunities to re-
duce parametric uncertainty by using additional data and data
types. Parametric uncertainty could be reduced for any pa-
rameter by better constraining its prior range. For example,
septic water loads could be constrained with household wa-
ter consumption surveys. Surveys and data collection efforts
for other parameters can target those hillslopes for which
model sensitivity is largest. Alternatively, some of the param-
eters could instead be specified by additional input datasets
to reduce the dimensionality of the calibration. For example,
impervious surface percentage could be specified spatially
from the land cover dataset, and time series of wind speed
may be obtained from weather gauges or satellite data and
then be processed to the spatial scale of the model. These ap-
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Figure 6. Mean absolute value of elementary effects for RHESSys model parameters evaluated for the four calibration-relevant sensitivity

metrics at the basin outlet. The style matches Fig. 3.

proaches would transfer parametric uncertainty to input data
uncertainty, which would ideally be negligible. Finally, un-
certainty may be reduced by better capturing spatial trends
in parameter values, for example, using finer-resolution soils
data products, such as POLARIS estimates (Chaney et al.,
2016), or implementing different vegetation species com-
position in riparian and non-riparian areas. However, both
of these approaches change the RHESSys model structure
and add more parameters, so it is unclear if total uncertainty
would be reduced, even if local hillslope performance is im-
proved. Nevertheless, preliminary analysis with an uncali-
brated RHESSys model in dynamic mode found that simu-
lated streamflow and nitrogen were better aligned with ob-
servations when a more spatially explicit soil and vegeta-
tion parameterization was used (Lin, 2021; vegetation by
plant functional type is described in Lin et al., 2019). Sim-
ilar performance was observed for soils data by Quinn et al.
(2005) using RHESSys and by Anderson et al. (2006) us-
ing a SAC-SMA model. This lends support to future anal-
yses that consider sensitivity analysis of alternative model
structures and parameters to discover dominant processes, as

Hydrol. Earth Syst. Sci., 26, 2519-2539, 2022

in Mai et al. (2020) and Koo et al. (2020a). The selected
parameters across water quantity and quality-focused met-
rics would likely be different if TN concentrations were esti-
mated from a process-based model, as in the dynamic mode
of RHESSys, instead of statistically as a function of stream-
flow using WRTDS (e.g., RHESSys and WRTDS estimations
are compared in Son et al., 2019).

Parameter multipliers and other regularization methods are
a common dimensionality reduction choice for spatially dis-
tributed models. A comparison of model sensitivity results
for parameters that can be adjusted by built-in RHESSys
multipliers revealed opportunities for dimensionality reduc-
tion by a multiplier, and also identified some parameters that
may be better to calibrate individually for this problem. Fu-
ture research is needed to formally test these recommenda-
tions for their impact on model calibration.

For RHESSys streamflow simulations, the global sensitiv-
ity analysis identified some parameters for calibration that
are not commonly calibrated and should therefore be as-
signed priors that are adjusted to local site conditions. Stud-
ies of other models, such as NOAH-MP (Cuntz et al., 2016),
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outlet or hillslope outlet. Vertical white lines divide the calibration and decision-relevant sensitivity metric results. Other styles match Fig. 4b.

have reached similar conclusions about the need to cali-
brate parameters that are commonly fixed. For example, in
RHESSys, zone (atmospheric) parameters are typically as-
signed fixed site values, but this analysis suggests careful
examination should be given to parameters that adjust the
estimated average temperature based on the supplied mini-
mum and maximum temperature time series. For vegetation
species simulated in static mode, this analysis revealed that
stomatal and leaf conductivity parameters, interception stor-
age capacity parameters, and the parameter that sets the first
day leaves show on deciduous trees were among the most im-
portant for modeling streamflow. For primarily forested hill-
slopes, parameters describing the length of time that leaves
open and fall are also important. In addition to these parame-
ters that are not adjusted by built-in RHESSys multipliers,
many of the soil and groundwater parameters that are ad-
justed by multipliers were also identified as important to cal-
ibrate, which is common practice.
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6.3 Opportunities for future research

This paper focuses on the importance of evaluating sensitiv-
ity analyses at the spatial scale and magnitude that is appro-
priate for decision making. Selecting the appropriate tempo-
ral resolution for the sensitivity metric and the time period of
sensitivity analysis is also important to inform parameter se-
lection. All of the sensitivity metrics in this paper are tempo-
rally aggregated measures instead of time-varied. With this
approach, two model runs could have very different simu-
lated time series, yet could have similar metric values. Addi-
tionally, parameters that arise from different generating pro-
cesses (e.g., floods from spring snowmelts vs. summer hur-
ricanes) would not necessarily be parsed out from any one
model run. For engineering problems, a magnitude-varying
sensitivity analysis (Hadjimichael et al., 2020) could be use-
ful to identify those parameters that control specific extreme
events. A time-varying sensitivity analysis (Herman et al.,
2013c; Meles et al., 2021) could discover more seasonally
important parameters. Related to this point, this sensitivity
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analysis was completed for a short 6-year period. For engi-
neering designs that will last several decades, model sensi-
tivity to alternative climate futures would be useful to iden-
tify additional parameters to calibrate that could become im-
portant in future climates, even if they are not historically
important. Considering uncertainty in these parameters for
optimizations under future climatic conditions would allow
engineering designs to be robust to their uncertainty. Outside
of an engineering context, Hundecha et al. (2020) showed
that selecting parameters that control processes within sub-
catchments is important when using calibrated models for
climate change forecasts.

A final consideration for risk-based decision making is
the use of deterministic or stochastic watershed models. We
found that sensitivity metrics for TN model residual error re-
sulted in a different set of parameters to calibrate than using
the mean of TN. This result suggests that sensitivity analysis
of stochastic watershed models could lead to different param-
eter selection. Future work is needed to compare sensitivity
analysis and resulting parameter selection for deterministic
and stochastic watershed models.

7 Conclusions

This paper provides guidance on evaluating parametric
model uncertainty at the spatial scales of interest for engi-
neering decision-making problems. We used the results of
a global sensitivity analysis to evaluate common methods
to reduce the dimensionality of the calibration problem for
spatially distributed hydrological models. We found that the
sensitivity of model outputs to parameters may be relatively
large at ungauged sites where engineering control measures
could be located, even though the corresponding sensitivity
at the gauged location is relatively small. The spatial varia-
tion in parameters with the largest sensitivity could be de-
scribed well by variation in land cover and soil features,
which suggests that different physical processes have impor-
tant controls on model outputs across the watershed. More
calibration parameters result from sensitivity analysis at lo-
cal scales (i.e., ungauged hillslopes) than do from sensitivity
analysis at watershed scales. While the processes affected by
the additional parameters would have a relatively small effect
at the outlet location, thus exacerbating the equifinality prob-
lem during calibration, they would describe important vari-
ability in model outputs at potential engineering control loca-
tions. Thus, due to equifinality, calibration methods that es-
timate parameter distributions are preferable to relying upon
a single “best” parameter set; considering such parametric
uncertainty in optimizations of engineering control measures
should help to discover solutions that are robust to it. Sensi-
tivity analysis results were also useful to inform which pa-
rameter multipliers may be useful to employ for further di-
mensionality reduction.
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Results from this study support two critical avenues of fu-
ture research that could further inform how to employ sen-
sitivity analyses of models that are used in decision-making
problems. The literature on sensitivity analysis of hydrolog-
ical models almost exclusively corresponds to determinis-
tic outputs, whereas a stochastic framework that considers
model residual error should be, and often is, used to develop
engineering designs. We found that considering model error
resulted in selecting additional parameters to calibrate. Fu-
ture research should formally compare sensitivity analysis of
deterministic and stochastic watershed models that are em-
ployed for engineering decision-making problems. We also
found that the parameters screened by using common ex-
treme streamflow calibration performance measures as sen-
sitivity metrics do not match those parameters screened by
specifically evaluating extreme flows. Future work should
compare results of using screened parameters from each
method to calibrate a model that is used to optimize engi-
neering controls, evaluate which method is ultimately prefer-
able for various decision problems, and determine whether
or not there is a meaningful difference in performance of the
resulting controls.

Appendix A

This appendix provides the probability density function
(PDF) and the log-likelihood equations for the skew expo-
nential power distribution that we used for the LogL sensi-
tivity metric. We made minor changes to the equations pre-
sented in Schoups and Vrugt (2010) to apply their deriva-
tions to this problem, but most equations are identical. The
PDF for a standardized skew exponential power distributed
variate, a;, at time ¢ is described in Eq. (A1):

20‘5(1)/3
E+E7D

(1)
xpCplag,l , (A1)

fla:l§, p) =

where £ is the skewness parameter and 8 is the kurtosis pa-
rameter. Terms of the standard exponential power distribu-
tion are a function of $, as described in Egs. (A2) and (A3):

TEA+pD0?

- . (A2)
1+ B [F2 )3

_(TU+B)] (v) A3)

S \ria+p '

Introducing skew into the standard exponential power dis-
tribution involves computing the mean and standard devia-
tion of the skew-transformed variate, which are functions of
the first (M 1) and second (M2) absolute moments of the orig-
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inal distribution. These are described in Eqs. (A4)—(A7):

pe =M E—£" (A4)
as:—\/(Mz—M12)($2+5_2)+2M12—M2 (A5)
T[1+ 8]
= . (A6)
(T3 + A1) (T I3 + DO
My=1. (AT)

The ag, variable in Eq. (A1) is defined in Eq. (A8):
ag, = (g + ogay)§enetosa), (A8)

where a; is defined from the streamflow residuals, ¢;, that
are computed after applying a magnitude-varying coefficient
(Eq. A9) that adjusted RHESSys simulated streamflows, as
shown in Eq. (A10):

we = expﬂthrl (A9)
Er = Oy, (A10)

where Q, is the simulated streamflow at time ¢ and E; is
the adjusted streamflow. As a result of employing the coeffi-
cient to adjust streamflows, ¢, is computed with respect to E;.
Our implementation modeled lag-1 autocorrelation, ¢, and
heteroskedasticity (Eq. Al1) of ¢, which leads to a; being
defined as in Eq. (A12):

oy =00+ o1 |E| (A1)
afzet_6t71¢l, (A12)
Ot

where o; is the heteroskedasticity-adjusted standard devia-
tion. From the above equations, there are six parameters that
must be estimated: 8, &, 0y, o1, ¢1, and . These parame-
ters are estimated by maximizing the log-likelihood provided
in Eq. (A13):

LogL = (T — 1)10g(; o >—CﬁZ|a5t (25)
T
— Y log(oy),
=2

where T is the total number of data points in the time se-
ries. The first two terms result from Eq. (A1) and the final
term results from the residual adjustment in Eq. (A12). Un-
like the implementation in Schoups and Vrugt (2010), we
begin at r = 2 so that no assumptions need to be made about
the value of the t = 0 residual (which is both not simulated
and unobserved). We provide code that implements the max-
imum likelihood estimation in the code repository (the code
is based on the spotpy Python package (Houska et al., 2015))
and provide fitting details in the Supplement (item SO).

(A13)
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(https://doi.org/10.4211/hs.c63ddcb50ea84800a529c7e1b2a2115e,
Smith, 2021b). The code is tracked in the RHESSys_ParamSA-Cal-
GIOpt GitHub repository (https://github.com/jds485/RHESSys_
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