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We derive the general continuum model for a bilayer system of staggered-flux square lattices, with arbitrary
elastic deformation in each layer. Applying this general continuum model to the case where the two layers
are rigidly rotated relative to each other by a small angle, we obtain the band structure of the twisted bilayer
staggered-flux square lattice. We show that this band structure exhibits a magic continuum in the sense that an
exponential reduction of the Dirac velocity and bandwidths occurs in a large parameter regime. We show that
the continuum model of the twisted bilayer system effectively describes a massless Dirac fermion in a spatially
modulating magnetic field, whose renormalized Dirac velocity can be exactly calculated. We further give an
intuitive argument for the emergence of flattened bands near half filling in the magic continuum and provide
an estimation of the large number of associated nearly zero-energy states. We also show that the entire band
structure of the twisted bilayer system is free of band gaps due to symmetry constraints.
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I. INTRODUCTION

The experimental observations of correlated insulating and
superconducting behaviors in twisted bilayer graphene [1-9]
have generated the era of twistronics [10]. Since then, moiré
physics of various assembled atomically thin systems has been
explored, including transition metal dichalgonide heterostruc-
tures [11-18], other graphene-based heterostructures such
as twisted double bilayer graphene [19-22], ABC-stacked
trilayer graphene/boron nitride [23-25], twisted monolayer-
bilayer graphene [26], and twisted trilayer graphene [27].
There have also been theoretical proposals of other exotic
moiré systems, for example, bilayers of general Bravais
lattices [28], van der Waals magnets [29], superconduc-
tors [30,31], gapped spin liquid [32], surface states of topo-
logical insulators [33,34], and cold atomic systems [35-38],
to name a few.

The correlated behaviors in twisted bilayer graphene are
known to be associated with the flattening of bands near
the charge neutrality. Such band flattening was theoretically
predicted [39-42] and experimentally observed [1,2,43]. In
fact, the widths of the energy bands near the charge neutrality
are highly sensitive to the twist angles in the twisted bilayer
graphene system. The flat bands only occur inside very narrow
windows around certain discrete values of magic angles [39].
However, it is experimentally challenging to precisely control
the twist angles between the two graphene sheets. Different
samples tend to settle into configurations with different twist
angles or even spatially inhomogeneous twist angles. The
high sensitivity of the electronic structure makes it difficult
to interpret experimental measurements of correlated physics
and understand their underlying mechanisms in such systems.
It would then be much more ideal if the band flattening
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happens in a wide range of twist angles. An interesting ex-
ample of such a scenario is given by twisted bilayer WSe;,
which is experimentally shown to exhibit band flattening and
associated correlated physics over a continuum range of twist
angles. This continuum range of twist angles is referred to
as the magic continuum [18]. However, we note that gapless
Dirac cones, a prominent feature of the electronic structure of
twisted bilayer graphene, is not present in the twisted bilayer
WSe, system. It is interesting to search for systems with
both gapless Dirac cones near charge neutrality and a magic
continuum of twist angles where band flattening occurs.

The gapless Dirac cones of twisted bilayer graphene are
inherited from those of each individual graphene sheet. As
a generalization, it is natural to consider twisted bilayer
systems where Dirac cones are present in the electronic
structure of each individual layer. In this paper, we will fo-
cus on a twisted bilayer system consisting of two layers of
staggered-flux square lattice. A single-layer staggered-flux
square lattice describes a tight-binding model with nearest-
neighbor hoppings on the square lattice subject to a staggered
magnetic flux pattern. The band structure of this tight-binding
model contains two gapless Dirac cones at half filling. This
staggered-flux square-lattice model was initially proposed to
capture the band structure of fractionalized particles in un-
derdoped cuprates [44-48] (see Ref. [49] for a review). It
has also been widely investigated as a prominent mean-field
ansatz for an algebraic quantum spin liquid [50-54] that can
be viewed as a parent state of many competing orders [54].
In the contexts of both cuprates and spin liquids, it is the
fractionalized particles (i.e., spinons) that experience the stag-
gered flux on the square lattice. In our paper, we will focus on
the case where the staggered-flux square-lattice tight-binding
model describes the hopping of electrons within each layer
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of our bilayer system. The examination of the moiré physics
of a bilayer staggered-flux square lattice will also serve as a
preceding step toward understanding the physics of a twisted
bilayer of algebraic spin liquids.

In a seminal work [39], a continuum model was developed
to describe the band structure of twisted bilayer graphene.
This continuum model and its generalizations have been the
foundation of theoretical studies of twisted bilayer graphene
and other moiré systems. The method based on continuum
models has proven to be advantageous for general moiré
systems: It restores periodicity in a quasiperiodic system, re-
duces the number of dimensionless parameters, and is flexible
to incorporate general smooth deformations. Following the
method introduced in Ref. [39], continuum models of bilayer
or multilayer moiré systems can be obtained by studying rea-
sonable forms of interlayer tunnelings in momentum space.
Recently, a real-space derivation of the continuum model for
twisted bilayer graphene has been developed [55]. In this
derivation, the original continuum model of twisted bilayer
graphene was directly obtained from symmetry-based boot-
strap analysis. More generally, as shown in Ref. [55], the same
method enables the derivation of the continuum model of
general bilayer graphene systems with arbitrary independent
elastic deformation in each graphene layer. In this paper, we
follow the real-space symmetry-based method to construct the
continuum model for arbitrary elastically deformed bilayer of
the staggered-flux square lattice.

A case of particular interest is the twisted bilayer
staggered-flux square lattice system where the two layers of
square lattices are rigidly rotated relative to each other by
a small twist angle. We solve the corresponding continuum
model for the band structure and find that a gapless Dirac cone
exists near half filling with the Dirac velocity is substantially
renormalized compared to that in a single-layer staggered-flux
square lattice. In particular, it decreases exponentially as the
interlayer tunneling increases and/or as the the twist angle
decreases. Indicated by the drastic reduction of the Dirac
velocity, the flattening of the bands near half filling occurs in a
large regime of the tunneling parameter and twist angles, i.e.,
there is a magic continuum. This magic continuum can be un-
derstood as arising from Dirac fermions subject to a spatially
periodically modulated effective magnetic field induced by the
interlayer tunneling. Also, we show that the band structure
of the twisted bilayer staggered-flux square lattice system is
free of band gaps at any energy. The symmetries of system
enforce all the bands to be connected to the neighboring ones.
This infinite connectivity of all the bands in the twisted bilayer
staggered-flux square lattice system is similar to the “perfect
metal” discussed in graphene-based heterostructures [56,57].

The remainder of this paper is organized as follows. In
Sec. II, we review the tight-binding model of a single-layer
staggered-flux square lattice and its low-energy continuum
model for the band structure. We further extend the contin-
uum model to incorporate an arbitrary elastic deformation of
the square lattice. In Sec. III, we consider a bilayer system
with two elastically deformed staggered-flux square lattice
layers. We present the symmetry-based bootstrap analysis of
the general form of the Hamiltonian of the bilayer system
in Sec. IIT A. In Secs. III B and III C, we apply the general
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FIG. 1. The square lattice with staggered flux is shown. The
blue/black dots correspond to the A/B sublattice, respectively. The
hopping amplitudes from sublattices A to B through solid black links
are given by (it + A), while those through the dashed links are given
by (it — A). The neighboring plaquettes thus host staggered flux
+®. To obtain the spectrum, we consider a four-site unit cell with
the four sites within a unit cell labeled as shown above.

Hamiltonian to the two special cases, respectively, (1) bilayer
systems with two square-lattice layers rigidly shifted rela-
tive to each other and (2) twisted bilayer systems with two
square-lattice layers rigidly rotated relative to each other by a
small twist angle. We also present the numerical calculation of
band structures of the twisted bilayer system. In Sec. IV, we
perform a more detailed analytical study on the band structure
of twisted bilayer system. In particular, we show analytically
the drastic reduction of Dirac velocity as we increase the
interlayer tunneling (or decrease the twist angle). We present
an intuitive argument for the emergence of flattened bands
and the large number of associated low-energy states in the
same parameter regime. We also discuss a symmetry-based
argument that enforces the infinite connectivity of the entire
band structure. We then conclude with some extensions and
outlook in Sec. V.

II. SINGLE-LAYER CONTINUUM MODEL

In this section, we first review the basics of the staggered-
flux square-lattice tight-binding model, and then derive a
continuum model that incorporates an arbitrary smooth lattice
deformation.

A. Review of staggered-flux square-lattice model

The Hamiltonian of the staggered-flux square-lattice model
describes spinful fermions hopping on the square lattice, di-
vided into two sublattices A and B:

H==>" 3" [it+ )" A fra +Hel, (1)

reA r'en.n.

where )", _, is a summation over the sites in the sublattice
Aand ) ., , sums over the B-sublattice sites 7’ that are the
nearest neighbors of r. The subscript « is the spin index. The
hopping amplitudes are shown in Fig. 1. This Hamiltonian
describes fermions hopping in a background of staggered
magnetic flux. The flux though each square plaquette is given
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by £& = +4arctan(¢/A). The signs of fluxes are opposite for
neighboring plaquettes.

The naive translations by one site along the x and y di-
rections do not leave the Hamiltonian in Eq. (1) invariant.
Such translations, when combined with an extra particle-hole
transformation, become the symmetries of the Hamiltonian.
We denote these spatial translations followed by a particle-
hole transformation as 7, and 7. Similarly, the Hamiltonian
has a mirror symmetry M, that maps the site atr = (ry, ry) to
the site at M,r = (—ry, ry) and, at the same time, maps par-
ticles to holes. Moreover, the Hamiltonian has a time-reversal
symmetry 7 and a plaquette-centered fourfold spatial rotation
symmetry Rz that transform the sites following r — Rzr =
(=ry + 1, r¢). The actions of these symmetries on the lattice
fermions are given by

Te: fra = &0 )apf s 50
]jv : fr,(x g Er(io'z)aﬁf;lﬁ’/ga
Mx : fn(x - fMXr,a, (2)

L GrfR%r,aa
T: ‘fr,ot - 6r.frT,uw

where o = (0!, 0%, 0%) acts in the SU(2)-spin space and e,
takes value 1 for sublattice A and —1 for sublattice B. The
transformation laws for f7’s can be obtained by taking the
Hermitian conjugate on both sides of the transformation laws
above in Eqgs. (2). In the context of algebraic spin liquids,
these transformations were initially introduced as the pro-
jective symmetry group acting on the fermionic spinons that
couples to dynamical gauge fields [51]. In this paper, we
view these transformations as the actual symmetry action on
gauge-neutral fermions hopping on the staggered-flux square
lattice.

To obtain the band structure of the Hamiltonian Eq. (1),
we take a four-site unit cell on the square lattice as shown in
Fig. 1, following the convention in Ref. [54]. Each unit cell is
assigned a coordinate R = (R,, R,) with both R, and R, even
integers. The four sites labeled by the i = 1, 2, 3, 4 are located
atr(R,i) = R + v;, where

0. i=1
2, i=2

YT k4 i=3 3
9, i=4.

Sublattice A corresponds to i = 1, 3 while sublattice B cor-
responds to i = 2, 4. The fermion operator at r(R, i) will be
denoted as friq-

The energy spectrum of the model Eq. (1) is given by

(k) = +2[+2(A% —1*) cos k, cos k,
1/2
+ 1A% +12)(2 + cos 2k, + cos 2k)] %, (4)

where the two =+ signs are independent of each other. The four
combinations of & signs correspond to four different bands. In
the reduced Brillouin zone k,, k, € [0, ), there is a gapless
point at K = (7 /2, 7 /2) at half filling, as shown in Fig. 2.
In this model, half filling occurs at zero energy due to the
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FIG. 2. Spectrum of the monolayer staggered-flux square lattice
with# = A = 1. There are two degenerate Dirac cones for each spin
located at K = (7 /2, = /2) in the reduced Brillouin zone.

symmetry 7. One observes that the position of the gapless
point is independent of ¢/A. This gapless point can be cap-
tured by two gapless Dirac cones in a continuum description.
The ratio /A controls the Dirac velocity anisotropy of these
Dirac cones. In this paper, we will focus on the isotropic
limit where ¢ /A = 1, but the main features of our final results
remain robust when anisotropy is present [58].

To obtain the continuum model for the gapless Dirac cones
at half filling, we expand the Hamiltonian around the K point
and introduce the Dirac fermions basis ! (R) in the follow-
ing way:

TRl 1 0 0 e 3/ Wlla
TR ~ o—iKR 0 i e 0 Vi ®)
SR3a 1 0 0 e/ Uiy ‘
SR4a 0 —i e/ 0 Ve

(%)

Here the superscript I = 1,2 of ¥/, labels the two compo-
nents of a Dirac spinor, and the subscripts a = 1,2 and o =
1, 2 label the valley and spin degrees of freedom, respectively.
Denoting the deviation of momentum k from the K point as
q, i.e., g =k — K, and further switching to the 45°-rotated
coordinates, g; = \/li(qx +ay), @2 = %fz(—qx + gy), the con-
tinuum Hamiltonian becomes

" =f e v @@t + () 6)
2n ) 1 2 )

where we have set the Dirac velocity to be 1 and 7 =
(z', 72, %) are the Pauli matrices acting in the Dirac spinor
space, the space indexed by the superscript / = 1,2 of the
Dirac fermions ¥ . We also introduce the Pauli matrices
w = (u', u?, u?) that act on the twofold valley space. The
Pauli matrices u generate the SU(2)yqey rotation of the
Dirac fermions . The continuum Hamiltonian manifestly has
the SU(4) D SU2)pin X SU(2)vaney Symmetry generated by
{o', u', o' u'}. Here, remember that o generates the SU(2)pin
rotation of the Dirac fermions.

In the following, we will suppress the Dirac spinor index
I, valley index a, and spin index « and write ¢ as the short-
hand notation for the eight-component Dirac spinor /. The
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symmetries listed in Egs. (2) then act on the Dirac fermions as
L: YR — oty (R),
T: YR — —o’ 1’y R),
Mo Y (R) —> Wiy (MR), (N
¥(R) — Wayy (RzR),
T YR -~ Ty (R),

where W, = (—iuz)exp[%”(’l;\/;)] and W, =
e/ exp[%(“l;ﬁ“z)] exp(Z7?). The transformation laws

for ¥ "’s can be obtained by taking the Hermitian conjugate
on both sides of the transformation laws in Egs. (7).

B. Elastic deformation

Now we move on to the elastically deformed version of
the staggered-flux square lattice. The derivation of the contin-
uum Hamiltonian closely follows the formalism developed in
Ref. [55] in the context of twisted bilayer graphene.

In the following, we will make use of the Eulerian coordi-
nates

x=R+ux), (8)

where x is the spatial coordinate of sites in the deformed
lattice, R is the coordinate of the same lattice site prior to
the deformation, and u describes the deformation. We will
assume that du < 1, such that the elasticity theory applies.
Notice that u(x) and R are both treated as functions of the
Eulerian coordinate x. An alternative choice of coordinate
system is the Lagrangian coordinate where x and u are both
treated as functions of R, the spatial coordinate of the prede-
formed lattice site. We choose to use the Eulerian coordinate
x over the Lagrangian coordinate R for the purpose of our
later discussion on the bilayer system with the two layers
independently deformed. Two points in the two layers that
share the same Lagrangian coordinate R can be far part due
to the independent deformation in each layer. Therefore, the
spatial locality in the deformed bilayer system is not manifest
in the Lagrangian coordinate R. In contrast, being the real-
space coordinates of lattice sites after the deformation, the
Eulerian coordinate x avoids this problem.

The fermion modes fg;y, its associated Hamiltonian, and
symmetry transformations introduced in Sec. II are all formu-
lated in the Lagrangian coordinate R. In the following, we will
suppress the subscripts i and « in the fermion operator fg for
simplicity. In the presence of elastic deformation, we should
view Eq. (8) as a coordinate transformation that induces a new
set of fermion operators f; = |det(dR,)/(0x,)|"* fre) ~
(1 -V -u)/?e EG—u6Dyy (R(x)), where the Jacobian
|det(0R,,)/(9x,)| 172 ig required to ensure the correct fermionic
anticommutation relations and U is the 4 x4 matrix introduced
in Eq. (5) which only acts on the valley and Dirac spinor
indices (but not the spin index) of ¥. We can define the
Dirac fermion operator v (x) in the Eulerian coordinate via
fe ~ e E*Uyr(x), leading to the relation

YR = (1—V -u)y e ®uy(x). ©)

Note that the Dirac fermion operator ¥ (x) in the Eulerian
coordinate shares the same Dirac spinor, valley, and spin
indices as its Lagrangian-coordinate counterpart ¥ (R). Fur-
thermore, under the coordinate change Eq. (8), the integration
measure and the derivative change as d’R ~ d*x(1 -V -u)
and d/0R; ~ 9/0x; + (du;/0x;)(d/0x;) up to the first order
in the derivative of u. Now, we can rewrite the continuum
Hamiltonian Eq. (6) currently defined on a deformed lattice
as a continuum Hamiltonian in the real space (parameterized
by the Eulerian coordinate x):

Hy = —i/dzx YOIt + T/ (9;u)d; — it K’ 1Y (x).

(10)
Here, we have only kept the terms up to the first-order deriva-
tive of u. In this equation, d; = d/dx; with i = 1,2 are the
derivatives with respect to the 45°-rotated version of the co-
ordinate x. We remark that the second term vt/ (3;u')d; v
captures the rotation of the Dirac cone under the deformation
while the third term K;Vu; in this equation captures the shift
of the Dirac point in the momentum space.

Each symmetry listed in Eqs. (7) leads to a symmetry in
the continuum theory Eq. (10) of the deformed lattice. Due
to the change of coordinates Eq. (8), the form of symmetry
actions on the Dirac fermion v (x) will be different from
Egs. (7). Moreover, for the space-group symmetries, including
the mirror symmetry M, and the fourfold rotation symmetry
Rz, the continuum theory should only be invariant under the
simultaneous transformation of both the Dirac fermion v (x)
and the deformation field u(x). Even though the symmetries
T, , are also space-group symmetry at the lattice scale, they
should be viewed as internal symmetries that only act on the
Dirac spinor and the valley indices in the continuum theory.
Therefore, T, , should not involve any nontrivial action on the
deformation field u(x). The time-reversal symmetry 7 should
also keep the deformation field #(x) invariant.

Now we derive the form of symmetry actions for the con-
tinuum model Eq. (10). Take 7T, as an example: If we were
to take the same transformation law as that in Egs. (7), then
among the three terms in the square bracket of Eq. (10), the
first two terms are invariant, while the third term changes by
a sign. To compensate for this sign change, we introduce an
additional phase to the transformation:

T.:  Y(x) - K ®g201yx(x). (11)

This extra phase will give an additional contribution to the first
term in Eq. (10), thereby keeping the full Hamiltonian invari-
ant [without additional transformation on u(x)]. Physically,
this extra phase factor reflects the shift of the Dirac cones in
the momentum space introduced by the deformation u(x). In
the presence of deformation u(x), all symmetry transforma-
tions of the fermion operators are summarized as follows:

Lo @) — " Wotly " (x),

T,: yx) > "=ty (),
M, Yx) = fEUMIW Y (Mx),  (12)
Ry: v — ¢ Wy Ryx),

T: v&—> -’y x),

wla

I —> —I,
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where K’ = M,K and K” = Rz K. It turns out that K’ = K".
For the symmetries M, and R%, the deformation field must

also undergo the transformation u(x) — O 'u(Ox). Here,
the M, and Rz actions on a vector v are given by M, :
v = (U, 1)) > M = (=, 0y) and Rz v = (v, vy) =
Rzv = (—vy, vy). The symmetry transformation law for VAN
can be obtained by taking the Hermitian conjugate on both
sides of the transformation laws in Egs. (12).

III. CONTINUUM MODEL FOR BILAYER
STAGGERED-FLUX SQUARE LATTICE
WITH GENERAL DEFORMATIONS

In this section, we consider two layers of staggered-flux
square lattices with general deformations u,(x), u,(x) for
the top and bottom layers, respectively. As pointed out in
Ref. [55], one can start by considering the general form of
interlayer tunneling:

H = [ d’x Y} (oM [u, (x), up(0)] (x) + He.  (13)

Here, y, ;, refers to the Dirac fermions in the two layers of the
staggered-flux square lattices with their subscripts the layer
index. Each of v, ¥ is an eight-component Dirac fermion
with suppressed Dirac spinor, valley, and spin indices. In
this paper, we assume spin-independent interlayer tunneling.
Therefore, the interlayer tunneling matrix elements can be
organized into a 4x4 matrix M that only act on the fourfold
space labeled by the Dirac spinor index and the valley index.
The form of Eq. (13) guarantees the locality of the interlayer
tunneling, which is a natural expectation for the continuum
model. All the subdominant terms depending on the gradients
of the displacements and/or the gradients of the Dirac fermion
fields v, have been omitted. Now we use the symmetries
given in Eqgs. (11) and (12) to bootstrap the general form
of M.

A. Bootstrap

First, the deformation of both layers by a uniform vec-
tor should not change the interlayer physics. Therefore
Mlu;, up] = Mu; — u,] = M[u], where u =u, — u;. Sec-
ond, deformation of a single layer by two lattice vectors
should leave the physics invariant, which is due to the unit cell
structure given by R = (Ry, R,) with R, , both even integers:

M[u] = Mlu + 2%] = M[u + 25], (14)

which leads to the Fourier expansion

Z XM (15)

ke(nZ,n7)

Mlu] =

Now, we consider the invariance of Eq. (13) under the simul-
taneous translation of both layers by one lattice spacing. For
example, under the T, of both layers, we have v, M[u]y, +
Hc. — yle 2 Kurlo?Mule? o2ty * + Hee.. The in-
variance of Eq. (13) requires the two expressions before and
after the 7, transformation to be identical, namely, M[u] =
—e 2K url G2 M*[u)o?t!. In terms of the Fourier components

of M[u], the requirement imposed by 7, can be written as
T,: M_j ok =—t'0*Mjo’c". (16)

Similarly, the interlayer tunneling Eq. (13) should also be
invariant when both layers are simultaneously acted on by the
symmetry actions 7y, M,, Rz, and T . We can summarize all
the symmetry constraints on the Fourier components of M[u]
as

T,: M_jox= —rlon,fozrl,
T,: Mgk = —rllﬁazM,faz/frl,
Mo Mpgiex—x = Wi MW, (17)

Rz : MR%HKLK = W;Msz,
T: My=—-T1w’M’t.

Here, remember that K’ = M,.K = Rz K. In addition, we im-
pose an extra symmetry S that exchanges the two layers: v, <>
Y and u; <> u, (or, equivalently, u <> —u). The invariance
of the interlayer tunneling under S leads to the additional
constraint

S: My=M,. (18)

The set of conditions in Eqgs. (17) and (18) relate the Fourier
component My of M[u] with other Fourier components
within the set {My |k’ = M?R’%(k +K)—-K,m=0,1,n=
0, 1, 2, 3} which contains either four or eight elements, de-
pending on momentum k. In general, we expect that the
Fourier components M}, decay rapidly for large |k|. As exem-
plified by the twisted bilayer graphene case, it should suffice
to take the minimal set of Fourier components that contains
the smallest allowed k and other symmetry-related Fourier
components. (The general form of higher-momentum Fourier
components M}, is discussed in Appendix.) In our case, the
minimal set is given by {My—o, M2k, Mg _x, M_g _g} with
k = 0. The symmetry constraints require that

My—o = —M_og = wit! +wap’t! = My,
My g = —M_ g g =wit> —wyp’t> = My, (19)

where the coupling constants w; and w, are both real num-
bers. Within the minimal set of Fourier components, the
general form of interlayer tunneling is specified by

Mlu] = 2ie **[Mm, sin(K - u) + M, sin(K' - u)] (20)

and the full continuum Hamiltonian of the deformed bilayer
staggered-flux square lattice is given by Egs. (10), (13), (20).

From Eq. (20), it is interesting to notice that in the case
where two undeformed square-lattice layers are stacked on top
of each other with no relative displacement, i.e., u = 0, the
interlayer continuum Hamiltonian vanishes. In fact, this state-
ment on the vanishing of M[u] at u = 0 is not just restricted
to the minimal set of Fourier components (see Appendix for
more details). It is satisfied even without any truncation in
the Fourier components of M[u]. However, we would like to
point out that M[u = 0] = 0 does not imply the vanishing of
interlayer tunneling at the lattice scale. Rather, it means that
the lattice-scale interlayer tunneling, if it exists, can at most
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FIG. 3. The bilayer staggered-flux square lattice with a uniform
relative deformation (u,, uy) = (1, 0) is depicted. The blue, green,
orange, and pink vertices correspond, respectively, to the lattices site
indexed by i = 1, 2, 3, 4 following Eq. (3). In the horizontal plane,
the unit cell of the bilayer system still covers two lattice spacings
in both the x and y directions. There are four vertical plaquettes in
each unit cell labeled F, B, L and R. There are four vertical links in
each unit cell colored blue, green, orange, and pink. The interlayer
tunneling only occurs along vertical links. See the main text for the
tunneling strength along each link. The interlayer tunneling corre-
sponds to having magnetic fluxes 2 +2¢ — w, —20 — 2¢ + 7,
T —20 4 2¢, — + 2® — 2¢ through the F, B, L, and R plaquettes,
respectively.

lead to subdominant terms such as terms with derivatives of
Y12 in the continuum theory. Here, we have made an implicit
assumption that the lattice-scale interlayer tunneling is weak
compared to the energy scale of the hopping within each
layer. We will neglect the subdominant terms in the interlayer
tunneling.

Whenu = 0, u = £X%, or u = %9, the sites of the top layer
are directly on top of the sites of the bottom layer. In the
general setting where u depends on the spatial location, the
factors sin(K - u) and sin(K’ - u) of the interlayer tunneling
Eq. (20) suggest that the most contribution to the interlayer
tunneling comes from the regimes where u is locally close
to % or £y. In Sec. III B, we will discuss the case with a
uniform deformation where u = % is constant in space. The
physical meaning of the parameters w; » will become clear in
this discussion. Other cases with # = —X or £J are similar to
case of u = x.

B. Uniform deformation

To gain some intuition of the interlayer tunneling term
Eq. (20), we will first discuss the case in which the top layer
is rigidly shifted along the x direction by one lattice spacing
while the bottom layer is intact. In this case, the relative
deformation u is uniform in space and is given by u = %,
namely, (i, u,) = (1, 0) in the unrotated coordinates (which
can also be written as u = (uy, uy) = (1, —1)/ﬁ in the 45°-
rotated coordinates). Rewritten in terms of the undeformed
lattice positions R, the Lagrangian coordinates, the interlayer
tunneling term is given by

H =2 / ARy (RY(My — M)y (R +u)+ He,  (21)

Transforming it back to the lattice fermions, the interlayer
Hamiltonian can be understood via Fig. 3. Within the 2x2
unit cell of each layer, the four sites, which are labeled
by i=1,2,3,4 in Eq. (3), are colored as blue, green, or-
ange, and pink vertices, respectively. The spin-independent
interlayer tunneling occurs between sites in the two layers that

wi—wy 0 wy—-w; wi+wy

q1

FIG. 4. The shifted Dirac cones at half filling for a uniform
deformation u = x. The two colors correspond to the two valleys
3
w = =+l1.

are connected by vertical links. Depending on the color of the
link shown in Fig. 3, the hopping terms are different. The am-
plitudes of the tunneling terms from the top to the bottom layer
are given by (1) 2we™ for the blue links and (2) 2we' ¢~
for the orange links. Here w is given by w = |w; + iw;|, and
¢ = arctan(w;, /w1 ) + 7w /4.

One can understand the interlayer tunneling terms as fol-
lows. The unit cell of this bilayer system in the horizontal
plane is still 2x2 in lattice spacings. Each such unit cell
contains four vertical plaquettes labeled as F, B, L, and R,
respectively, as shown in Fig. 3. The interlayer tunneling
terms described above correspond to having magnetic fluxes
204+2¢p —m, =20 —-2¢ 47, m =20 +2¢, -7 +2P —
2¢ through the F', B, L, and R vertical plaquettes.

In this bilayer system, when the interlayer tunneling is
turned off, i.e., w; = wy = 0, the band structure is gapless
only at ¢ = (0,0). The continuum theory equivalently de-
scribes 8 copies of two-component Dirac fermions. These
eight copies come from twofold valley, twofold spin, and
twofold layer degrees of freedom. As we turn on a finite
interlayer tunneling w; and w,, one observes that the origi-
nal gapless point at ¢ = (0, 0) splits into four gapless Dirac
points located at (q1, ¢2) = £(w; + wy, wy — wy), £(w; —
wy, —w; — wy) in the 45°-rotated coordinates, see Fig. 4 be-
low. Each of these Dirac points is described by two copies
of two-component Dirac fermion with the two copies coming
from the twofold spin degrees of freedom.

C. Rigid twist

Now we consider the case of a twisted bilayer staggered-
flux square lattice where the two layers are deformed by rigid
rotations by angles £6/2. We assume the twist angle 6 is
small. Hence, the deformation field can be written as u, =
—up = %2 x x, where Z is the unit vector along the z direction.
The interlayer tunneling can be obtained directly by plugging
u = 07 x x in Eq. (20). The Hamiltonian terms within each of
the top and bottom layers are obtained by plugging u,; into
Eq. (10). Here, we’ve also assumed that there is no chemical
potential difference between the top and bottom layers. We
note that the terms v, t/(3;ul)3;y, and ¥, T/ (d;u)3; ¥, that
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capture the rotation of the Dirac cones in each layer each
contains two derivatives and, hence, is parametrically small
compared to other terms for small twist angle 6 as the rel-
evant physics happens at the moiré lattice length scale. We
drop these two terms to simplify the Hamiltonian. One can
further simplify the Hamiltonian by the redefining the fields
Y (x) — e®*(x) for the two layers [ = ¢, b. The contin-
uum model Hamiltonian for the twisted bilayer staggered-flux
square lattice now reads

H= / dzxi Y v @it d)n @)

I=t,b
+ Qi (0)[Mo sin(Kuy) + M, sin(Kuz)]v, (x)+H.c.) |,

(22)

where K = |K| = 71/\/5 and (uy, ur) = (—6x,,0x;) in the
45°-rotated coordinate. If we did not drop the terms
¥, T/ (8;ul)d; ¥, and Klf; T/(9;ul )d;y, for each layer, we would
need to do an extra layer-dependent rotation of the Dirac
spinor v/, — ejF"fse/“w, /» to remove these terms from the
Hamiltonian. Such a layer-dependent rotation in fact leaves
the interlayer tunneling terms invariant. Hence, the Hamilto-
nian Eq. (22) is still valid even when the effect of the intralayer
terms ¥, ©/(3;u)3;¥, and v,/ (d;u})d;y, are considered.
Now using the identity K -u = Q -x with Q = 6(K x 2),
MTu] can be further written as M (x). Moreover, we turn to
the dimensionless parametrization § = ¢q/|Q|, ¥ = |Q|x and
w; = w;/|Q]. Combining all these and omitting the tildes from
now on, we arrive at

H= / dzx{ Y v @ (=itd)n )

I=t,b
+ (2iy; (x)(—Mo sin x> + M sinx; )y (x) + He.) ¢,

(23)

Here we have also rescaled the energy by an overall of mul-
tiplicative factor. Notice from Eq. (19) that the two valleys
(corresponding to u* = 1) are decoupled. In the following,
we will only focus on the u® = +1 valley as the spectrum
of the u® = —1 valley follows straightforwardly by replac-
ing w, — —w,. Focusing on the w3 = +1 valley, we can
effectively write My = (w; + wy)t! = wsr! and M, =
(w; — wy)T? = w,t>. We will present the analytical study
of the Hamiltonian Eq. (23) in the next section. Before that,
we comment on two special limits: (1) When w; = £w;,
we are in the chiral limit where either M, or M; vanishes
and the interlayer interaction becomes uniform in either the
x; or x; direction. In this case, the moiré superlattice is
quasi-one-dimensional. (2) When w;, = 0, the Hamiltonian is
independent of the valley Pauli matrix g and recovers the
SU(4) symmetry (acting on the valley and spin spaces) of the
decoupled-layer case.

We can numerically compute the spectrum of the Hamil-
tonian Eq. (23). We start by discussing the chiral limit. In
the chiral limit, the system has continuous translation sym-

2
0

—0.25

0.06 ¢

0.03
E(a) o

~0.03
—0.06 | F

FIG. 5. Top panel: Band structures in the chiral limit w; = 10,
w, = 0. The momentum ¢, is conserved while ¢, takes value in the
moiré Brillouin zone ¢, € (—1/2, 1/2). Bottom panel: Zoomed-in
view of the flattened bands (with the coupling constants w, and wy)
near half filling.

metry along either the x; or the x, direction. For example,
when w; = w», i.e., w, = 0, the momentum ¢; along the x;
direction is conserved, while the momentum g¢,, still being
the crystal momentum along the x; direction, is conserved
only modulo integer and, hence, has a Brillouin zone of
[—1/2,1/2). In Fig. 5, we show an example of the band
structure in the chiral limit w, = 0 and w; = 10. Both the top
and bottom panels correspond to the same parameters. In this
band structure for which the valley index u® = +1 is already
fixed, every band shown in Fig. 5 has a twofold degeneracy (in
addition to the twofold spin degeneracy). From the top panel
of Fig. 5, we notice that the two bands near the half filling
are extremely flat and close to zero energy in a large area in
the momentum space. The bottom panel of Fig. 5 shows the
zoomed-in view of the two bands near half filling showing
they are still dispersive bands whose energies are not exactly
zero. The deviation from zero energy grows as the momentum
q1 increases. Here, we emphasize that there is in fact no gap
separating the two bands near half filling from other bands.
These two bands near half filling will overlap with other bands
in energy for larger values of g; that are beyond the range
plotted in Fig. 5. We will discuss the analytical understand-
ing of the twofold degeneracy and the emergence of a large
momentum-space region where the bands flatten in the next
section. Also, we will show that the the entire spectrum must
be free of gaps at any energy.

When we move away from the chiral limit, both mo-
menta g; » become crystal momenta defined within the moiré
Brillouin zone, i.e., g, € [—m, ). Figure 6 shows the
single-valley band structures (with u3 = +1) for various
wy=1,14,1.8,3 and a fixed w, = 0.5. The plotted band
structures are the band structure along a momentum-space
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ws = 1.4

0.006
0.003

—05 —0.003

—0.006
r X M r T X M T

FIG. 6. Band structures along the moiré Brillouin zone trajectory
I' > X - M — T for various w,’s with a fixed w, = 0.5 is plotted.
For fixed spin and valley indices, the spectrum is twofold degenerate
[corresponding the quantum number s = +£1 in Eq. (24)]. All bands
are connected by Dirac cones at the I' and the M points in the
moiré Brillouin zone. The ten bands (with each doubly degenerate)
which are nearest to the zero energy are colored. As w; increases, the
spectrum is compressed toward the zero energy and the bands near
zero-energy are flattened. Note that the energy range of the plot with
w, = 3 in the right bottom panel is about 200 times smaller than the
other plots.

contour that connects the I' point (g, g2) = (0, 0), the X
point (g1, g¢2) = (;r,0), and the M point (g, q2) = (7, ).
Similar to the chiral limit, each band is twofold degenerate in
addition to the twofold spin degeneracy. In Fig. 6, the colored
bands are the ten bands that are closest to zero energy. We see
that, as w; increases, the spectrum gets compressed toward
zero energy and the bands near zero energy flattened, which
yields a large number of low-energy states. We also notice
that each band is connected with its neighboring bands via
Dirac cones at the I" point or at the M point. Hence, the entire
band structure is infinitely connected and free of band gaps
at all energies. We will discuss the twofold degeneracy of
each band, the flattening of the bands near zero energy, and
the infinite connectivity of the bands in the next section. We
will also discuss the analytical understanding of the infinite
connectivity of the bands shown in Fig. 6.

IV. ANALYTICAL STUDY OF THE MAGIC CONTINUUM

In this section, we discuss the magic continuum of the
twisted bilayer staggered-flux square lattice where the two
layers are deformed by rigid rotations of angles 6 /2, respec-
tively. As discussed in Sec. III C, upon the field redefinition
and the rescaling of momentum and energy, the Hamiltonian
of this twisted bilayer is given by Eq. (23). As explained
above, it suffices to focus only on the u® = +1 valley. We
notice that the problem can be further simplified using the
following basis of the single-particle wave function:

-5

The Hamiltonian Eq. (23) of the twisted bilayer system is
diagonal in the s = =1 basis. We would like to comment that,
as shown in Appendix, s is always a good quantum number
in the twisted bilayer system, even when we consider the
most general form of spin-independent interlayer tunneling
M {u] (including the Fourier components beyond the minimal
set) allowed by the constraints discussed in Sec. IIT A. In the
following discussions, we will still focus on the Hamiltonian
Eq. (23) where the interlayer tunneling involves the minimal
and most dominant set of Fourier components. Physically,
the quantum number s can be understood as inherited from
the spatial regions where u is locally close to u = =% and
u = £y and where the interlayer tunneling acquires most of
its contribution from. In these spatial regions, each combi-
nation of the quantum number s = %1 and the valley index
w3 = =£1 is locally associated with one of the four Dirac
cones shown in Fig. 4 (obtained with the uniform deforma-
tion). For a given quantum number s (and the fixed valley
index u® = 1), the single-particle Hamiltonian that acts on yr
reads

h = rl(—ial — 25wy sinxy) + rz(—iaz + 25w, sinxy). (25)

This Hamiltonian equivalently describes a Dirac fermion
in a periodically modulated effective background magnetic
field B(x) = 2s(w, cos x| + wy cos x;) written in a Coulomb
gauge. The problem of Dirac fermion in an effective periodic
magnetic field has been shown to emerge and has been inves-
tigated in the contexts of strained graphene [59,60], graphene
in a field [61,62], and strained topological crystalline insula-
tors [63]. As a brief remark, our analysis has been focusing
on the limit 7/A = 1 where the continuum description of the
single-layer theory Eq. (6) has an isotropic Dirac velocity.
When we take /A # 1in Eq. (1), namely, when the Dirac ve-
locity of the single-layer theory develops a valley-dependent
anisotropy, the above Eq. (25) would only get modified by a
valley-dependent velocity anisotropy. The terms induced by
the interlayer tunneling remain intact and all the analyses be-
low can still carry over. Hence, we will continue the analysis
in the isotropic limit in the following.

In this section, we will discuss the exponential reduction of
the Dirac velocity in the Hamiltonian Eq. (25), the emergence
of flattened bands and the associated large number of low-
energy states in the magic continuum. We will also discuss
the analytical understanding of the infinite connectivity of all
the bands shown in Fig. 6.

A. Exact zero-energy states at the Dirac point
and the renormalized Dirac velocity

Similar to the twisted bilayer graphene system, the band
structure of the twisted bilayer staggered-flux square lattice
contains Dirac cones near half filling inherited from each of
the staggered-flux square-lattice layers. The location of the
inherited Dirac points in the twisted bilayer system should be
at (g1, g2) = (0, 0) for the Hamiltonian Eq. (25).

The zero-energy eigenstates exactly at the Dirac point can
be solved analytically. Notice that the zero-energy eigenstates
of h in Eq. (25) should also be the eigenstates of 73. The
analytical expression of the exact zero-energy eigenstates are
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given as

B 0
Yy = C+< 0 > Yo =c- (eB(x))’ (26)

where ¢ are the normalization constants which can be fixed
by integrating over the moiré unit cell:

cq = c_ = [An’ly(Aw)ly(dw,)] /2. (27)

Here I is the modified Bessel function of the first kind. Notice
that the exact zero-energy eigenstates ;. satisfy the periodic
condition that

Y (xr, x2) = Y (X1 + 27, x0) = Y (X1, X0 + 27),  (28)

which is in agreement with the expectation that the Dirac point
of the bilayer system is located at (g, g) = (0, 0) within the
moiré Brillouin zone. One can also prove that these solutions
are unique.

We now compute the Dirac velocity. In momentum space,
Y4 are the eigenstates solutions at the Dirac point (g1, g¢2) =0.
The effective single-particle Hamiltonian for small g near
g = (0,0) can be obtained by treating the term ¢;7° as a
perturbation to the subspace formed by the solutions 4
at ¢ = 0. The matrix elements of the perturbation ¢;’ are
given by

hg.ce = / dx YL )T g) e (), (29)

where &, &’ = £ and fm. d’x denotes the integration over a
moiré unit cell (in the real space). Here v and wg, represents
the wave function ¥4 (x) and their conjugate, which should
not be confused with fermion operators. Plugging in the ex-
pressions Eqgs. (26) and (27), we arrive at

hq = TiQi/10(4wa)10(4w.v)v (30)

which captures the dispersion of the bands near zero energy
in the vicinity of ¢ = (0, 0). Equation (30) describes a gapless
Dirac cone with a renormalized Dirac velocity. A similar
analysis of the renormalization of the Dirac velocity was also
given in Ref. [61] which studied a monolayer graphene under
general periodic magnetic and electric fields.

From Eq. (30), the renormalized Dirac velocity is given by

v* = 1/I(dw, )l (dwy). (€29

We are interested in how v* changes as the coupling constants
w, and wy vary. The function Iy(z) satisfies Ip(0) = 1 and
increases monotonically and exponentially with |z|. When
wy = w, = 0, v* =1 recovers the results for the decoupled
bilayer. As |w;| and/or |w,| increase, the Dirac velocity v* be-
comes exponentially suppressed. At the same time, the bands
near half filling are flattened, leading to a large number of
near-zero-energy states. This exponential suppression of the
Dirac velocity and the emergence of flattened bands occur in
a very large range of w, and wy, which is in contrast to the
twisted bilayer graphene system where the drastic reduction
of the Dirac velocity and bandwidth only occurs around a
discrete set of coupling constants and twist angles. Hence,
there is a magic continuum in the twisted bilayer staggered-
flux square lattice system.

Ws

FIG. 7. The renormalized Dirac velocity v* as a function of wy
in the chiral limit w, = 0. There is a magic continuum for w, 2 1.
The dots are the numerically computed Dirac velocity. The smooth
line is the modified Bessel function Iy(4w,)~!, which is the analytical
expression of the reduced Dirac velocity v* we obtained in Eq. (31).

In Fig. 7, we plot the Dirac velocity v* as a function
of w; obtained from numerically computing the spectrum,
which shows a perfect match with the analytical expression
above. For simplicity, we’ve only focused on the chiral limit
w, = 0 where g, is conserved in Fig. 7. The expression of the
renormalized Dirac velocity Eq. (31) is generally applicable
for any parameters w, and w;.

B. Intuitive understanding of the emergence of a large
number of low-energy bands

In this subsection, we provide an intuitive understanding
of the emergence of a large number of low-energy bands as
w, and w; increase. Here, by low-energy bands, we refer to
the bands with energies close to zero, namely, close to half
filling. Recall that in a uniform magnetic field of strength B,
the massless Dirac fermions form a set of Landau levels. Each
quantum state occupies an area of ané with I3 = 1/+/B the
magnetic length, and the degeneracy of each Landau level is
the ratio of the full area of the system divided by 27 /3. For a
spatial region with a finite size, the Landau-level degeneracy
can be well-approximated by the number of magnetic flux
quanta contained in this region (regardless of the sign of the
magnetic field). For a review, see, for example, Ref. [64].

When the magnetic field is slowly varying over [z, the
Landau levels remain a good approximation. But the Landau
levels will have position-dependent energies

E,(x) = £/2n|B(x)|, (32)

where n € Z labels the different Landau levels. Because of
the dependence on x, Landau levels at different positions are
no longer degenerate and collectively form dispersive bands.
The n = 0 Landau level is rather special as its energy does
not depend on B(x). However, the chirality [labeled by the +
signs in Eq. (32)] of the Landau level depends on the sign of
B(x). For the twisted bilayer staggered-flux square lattice, the
effective magnetic field B(x) = 2s(w, cos x; + w, cos x;) has
a spatially dependent sign. Therefore, different spatial regions
will host the » =0 Landau level of opposite chiralities,
which yields dispersive modes on the interfaces between
these regions and also perturbs the states in the local n = 0
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Landau level away from exactly zero energy. Even though
the state in the local n» =0 Landau level will no longer
have exactly zero energy, their energies will still remain
close to zero when the local magnetic length is much
smaller than the length scale of variation of B(x). To make
an estimate of the number of states with energy close to
zero, we first divide a spatial moiré unit cell, which can
be chosen as (x;,x)€[—n/2,3n/2)x [—7/2,37/2),
into four subregions A; =[—-nw/2,7w/2) x [-7m/2,7/2),
Ay =[n/2,3n/2) x [-m/2,m/2), Az=[-m/2,7/2)X
[7/2,37/2) and Ay = [ /2,37 /2) X [7 /2,37 /2), whose
centers are the four local extrema of B(x). For every
subregion, we replace the effective magnetic field B(x) by its
average value in the same subregion. With this replacement,
the numbers of magnetic flux quanta through subregions A
and A4 are both 2w, + w,| = 4|w;|, while the numbers of
flux quanta through A, and A3 are both 2w, — w,| = 4|w;|.
Their sum is proportional, |w;| + |w;|, and gives an estimate
for the number of close-to-zero-energy state in a moiré unit
cell. Therefore, the number of close-to-zero-energy moiré
bands in the band structure of the Hamiltonian Eq. (25)
should be o (Jwq| + |wa]).

Note that the estimation above relies on the slow variation
of the B(x) field on the scale of the local magnetic length,
which amounts to the requirement that both |w|, [wy| > 1.
If we only have |w;| > 1 but |w;| is small, then the earlier
estimations in the A, and Az subregions won’t be controlled
while the arguments for A; and A4 still work. Therefore, the
degeneracy in this case is at least proportional to |w|. Similar
arguments follow for the case with |w;| >> 1 and |w| small.

We can compare the analysis above with numerical cal-
culations. This band structure is free of a band gap. To
numerically estimate the number of low-energy bands in the
system, we have to choose a specific small energy window
around zero energy and only count the number of (numer-
ically obtained) bands fully contained inside this energy
window. In Fig. 8, we plot the the numerically calculated
number of moiré bands fully contained within the small en-
ergy window E € (—0.05, 0.05) as a function of |w;| + |w|.
Figure 8 exhibits a linear behavior in the parameter regime
|wy|, lwa| 2 1, consistent with the previous analysis. If we
change the size of the energy window, the number of bands
within the energy window remains linearly dependent on
|wi| 4 |w,| but with a different slope.

C. Infinite band connectivity

The band structure shown in Fig. 6 is free of band gaps.
All the bands are connected to each other. In this subsection,
we show that this infinite connectivity of the band structure
is demanded by the symmetry of the Hamiltonian Eq. (25).
The first relevant symmetry is the original twofold spatial
rotation symmetry Rz% (X2 = —X12, V(X)) = —TY(R2X).
For a fixed quantum number s (as well as a fixed vazlley
index p® = +1 and a fixed spin species), the Hamiltonian
Eq. (25) is invariant under a new symmetry action R, 7T
that combines a twofold spatial rotation R, : X12 —> —X12+
7, ¥(x) = ¥(R,x) and a time-reversal transformation T
V(x) — 'y (x), 1 > —i. Note that the symmetries R, and
T are different from the twofold spatial rotation symmetry

26
24
22
20
18+
16 -
14+

# of moiré bands
within the energy window

12

2.9 3.2 3.5 3.8 4.1 44 47

[wi] + |wal

FIG. 8. Number of moiré bands with nearly zero energies scales
linearly with |w;| + |w;| in the regime with |w,], lw,| 2 1. We fix
|wy] — |wy| =1 in the plot and count all the bands (obtained from
numerical calculations) that completely lie within the energy window
E € (—0.05, 0.05). Note that bands only partially lying inside the
energy window are not included in the counting. The steplike feature
is due to the fact that the number of moiré bands counted has to be
an integer. The distance between steps is always two due to the fact
that the spectrum is symmetric in energy about the E = 0 axis. The
black straight line is obtained from connecting the middle points of
each step.

R2 and the time-reversal symmetry 7 originating from the

single-layer model of the staggered-flux square lattice. Each
of R; and T individually is not a symmetry of the Hamiltonian
Eq. (25), but their combination R, T is. The symmetry R, T
squares to 1, namely, (1?;,’7')2 =1.

For every band, this symmetry R, 7 ensures that the Berry
curvature vanishes at every momentum point where the band
structure (with the valley index w3, the spin index and the
quantum number s all fixed) is nondegenerate. At a generic
degenerate point g, we expect the band structure to be locally
described by a gapless Dirac cone which leads to a §-function
contribution to the Berry curvature with a total flux 7 fully
concentrated at the momentum q. In general, the R, 7 symme-
try allows § functions in the Berry curvature with fluxes nr,
n € Z at a degenerate point. When |n| > 1, such a degenerate
point can be generically split into |n| gapless Dirac cones
without breaking the R, 7 symmetry. For an isolated gapless
Dirac cone, the symmetry R, 7 forbids a nonzero Dirac mass
and, hence, ensures the stability of the gapless Dirac cone. The
constraint on the Berry curvature imposed by R, 7T leads to
the consequence that each band must contain an even number
of gapless Dirac points to ensure that total Berry flux within
a band is an integer multiple of 2. Since the Hamiltonian
Eq. (25) also respects the twofold spatial rotation symmetry
Ré, gapless Dirac points must come in pairs in the moiré

Brillouin zone except at the I" point and M point. In other
words, the symmetries R, 7T and R% together require that the
2

total number of gapless Dirac cones located at the I" point and
M point for each band has to be even.

Now, let’s label the bands of the Hamiltonian Eq. (25) by
m = %1,%2,.... The band with label m > 0 (m < 0) is the
|m|th band above (below) zero energy. Consider starting with
vanishing w, ; and gradually turning them on. In the limit
where w,; are zero, the band m = 1 and the band m = —1
are connected via a single gapless Dirac cone centered at the
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I' point. As we gradually turn on w,, this gapless Dirac

cone between the bands m = 1 and m = —1 is stable and is
pinned at zero energy by the time-reversal symmetry 7. At
the M point, the bands m = 1 and m = —1 are well separated

in energy. To ensure that the m = 1 band contains an even
number of gapless Dirac points in total, it has to be connected
to the m = 2 band via a gapless Dirac cone located at the M
point. Now, the requirement that the m = 2 band contains an
even number of gapless Dirac points further enforces a Dirac
point at the I point connecting the m =2 and the m =3
bands. By iterating similar arguments, we can conclude that
all the bands of the Hamiltonian Eq. (25) are connected via
gapless Dirac cones at the I" point and the M point.

The arguments above for the infinite connectivity of the
bands in Eq. (25) rely on the symmetry R,7. The Hamil-
tonian Eq. (25) is obtained from choosing the minimal set
of Fourier components in the interlayer tunneling M[u]. In
Appendix A, we show that the symmetry R, 7 is present even
when we consider the most general form of spin-independent
interlayer tunneling M[u] allowed by the constraints discussed
in Sec. III A. Hence, the infinite connectivity of the bands is
present under the general allowed spin-independent interlayer
tunneling M[u].

V. DISCUSSION

To test the robustness of the our analysis, one can explicitly
break certain microscopic symmetries. For example, when the
reflection symmetry M, is broken, the terms w3 24+ w4,u3r2
can be added to M, in Eq. (19), while —w3t! + wap’c! can
be added to M, in Eq. (19), with w3, w4 both real. The Hamil-
tonian for the twisted bilayer staggered-flux square lattice
system can again be understood as describing a massless Dirac
Hamiltonian in the same periodic effective magnetic field, but
in a different gauge for the corresponding vector potential.
Similar properties are found if the rotation symmetry Rz

is broken while R% is still preserved. We’ve also checked

that breaking onlyzthe time-reversal symmetry 7 does not
change the Hamiltonian for the twisted bilayer system when
interlayer tunneling M[u] only involves its minimal set of
Fourier components. However, lifting the constraints enforced
by time-reversal symmetry 7 and the layer-exchange symme-
try S will enable additional i(wst® 4+ weu’t?) terms in My,
as well as the other corresponding terms in the My ’s that are
related to My by spatial symmetries. With these additional
terms, the original zero-energy Dirac cones will be gapped
out. Note that the discussion here in this paragraph is restricted
to the twisted bilayer system where the interlayer tunneling
M {u] only includes its minimal set of the Fourier components.
It would also be interesting to explore the effect of higher-
momentum Fourier components (beyond the minimal set) in
the interlayer tunneling.

In this paper, we have studied the case of the twisted-
bilayer staggered-flux square lattice. The staggered-flux
square lattice was initially introduced to characterize the
mean-field band structure of spinons in an algebraic spin
liquid. It would be interesting to consider bilayer systems with
each layer describing the spinon band structure of other spin
liquid candidates. In different spin liquids, the spinon bands
has different symmetry properties. When it comes to a bi-
layer system with arbitrary elastic deformations in each layer,

one can generalize the symmetry-based analysis to bootstrap
the general form of interlayer tunneling for different spinon
bands.

Our study paves the path toward understanding the twisted
bilayer spin liquid with dynamical U(1) gauge field. For a
spin liquid, it is a common wisdom that when there is only
a small number of flavors of Dirac fermions in the spinon
band structure, the monopoles of the dynamical gauge field
have a tendency to drive the system into a confined phase. But
with the extremely flat bands of the spinons derived in this
work, the large density of states of the spinons at low energy
might render the monopoles much less influential. Hence,
deconfinement of spinon might happen over a large length
scale if the physics discussed in this paper is ever realized in
real twisted magnetic materials.
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APPENDIX: GENERAL FORM OF SPIN-INDEPENDENT
INTERLAYER TUNNELING

As discussed in Sec. IIT A, the conditions in Egs. (17)
and (18) relate the Fourier component Mj of the interlayer
tunneling M[u] with other Fourier components within the
set {My |k’ = M?R’%(k—i—K) —K,m=0,1,n=0,1,2,3}
which contains either four or eight elements depending on the
momentum k. There is no constraint that relates the Fourier
components of M[u] in different sets. Remember that the
momentum k of the Fourier component My, is restricted to k €
(mZ, 7 Z) in the unrotated coordinate as shown in Eq. (15).

When all momenta M?R’% (k+K)—K for m=0,1
and n=0,1,2,3 are different, the set {My |k’ = M"R"
k+K)—K,m=0,1,n=0,1,2,3} contains eight differz-
ent Fourier components of M[u]. The most general spin-
independent solution to the constraints in Eqgs. (17) and (18)
is given by

My = w1t +wg 3T Fwea v P Fweat’ i),
MRy (erK)-k = —wi 3T Hwg T W T P —wg 2 T,
MRZ%(HK)—K = —wk,l‘L'l—wk,3r2—wk,2r1/¢3—wk’4-,;2u3,
Mg, ek = Wi st —wi T2 wpeat! W we i,
M, te+k)-k = wk,3t1+wk,112—wk,4r1,u3—wk72z2,u3,

1 2 1,3 2.3
MMXR%(HK)% = Wi, 1T — Wi 3T +Wr2T W —WkaT U,

1 2 1,3 2.3
Mt R, terky-k = —WE3T —Wi1 T FWieaT W Wi 2T 17,
2
M — _ Iy 2 _ LN 2.3
MRS, (k+K)—-K = Wk, 1T TWk 3T W 2T T W4T U,
2
(AT)
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where wy 1, W2, Wk 3, and wy 4 are real parameters that are
not subject to further constraints.

The situation in which the set {My |k’ = M;”R’% (k +
K)—-K,m=0,1,n=0,1,2,3} contains only four
different Fourier components of M[u] occurs only when
M,(k +K) =Rz (k+ K)or M.(k + K) = R%(k + K). When
M,(k + K) = Rz (k + K), the solution to the constraints in
Egs. (17) and (18) is still given by Eq. (A1) but with an extra
condition that

w3 = wi4 = 0. (A2)
The minimal set of Fourier components of M[u] discussed
in Sec. IIT A, which is the case with k = 0, exactly fits into
this situation. When M, (k + K) = R3 (k + K), the solution is
given by Eq. (A1) but with an extra ci)ndition that

Wg,1 = Wg2 = 0. (A3)

Notice that the general form of the spin-independent
interlayer tunneling that satisfies the conditions Eqs. (17)
and (18) allows us to rewrite the Fourier expansion of

Mlu] as
Mlu] = Z e* UMy
ke(nZ.72)
=e 3" isin((k+K)-u)M.  (Ad)
ke(nZ,n7)

This form of M[u] ensures that when # = 0, namely, when
the two layers of square lattices are not displaced relative
to each other, the spin-independent interlayer tunneling van-
ishes. Also, we notice that the valley index p* = %1 is a good
quantum number under the most general spin-independent
interlayer tunneling allowed by the conditions Eqgs. (17)
and (18). In the case where the two layers are rigidly twisted
by a relative angle 6, by knowing that M}’s are all Hermitian
in Eq. (A4), we can show straightforwardly that the quantum
number s introduced in Eq. (24) is also always a good quan-
tum under the general form of M[u]. When both 3 and s are
good quantum numbers, we can study the Hamiltonian of the
twisted bilayer with both of them fixed like we did in Eq. (25).
The general form of M[u] still preserves the R, 7 symmetry.
Hence, the band structure for a fixed valley index u* and a
fixed quantum number s still has infinite connectivity.
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