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We propose the construction of a many-body phase of matter with fractal structure using arrays of
Rydberg atoms. The degenerate low energy excited states of this phase form a self-similar fractal structure.
This phase is analogous to the so-called “type-II fracton topological states.” The main challenge in realizing
fractonlike models in standard condensed matter platforms is the creation of multispin interactions, since
realistic systems are typically dominated by two-body interactions. In this work, we demonstrate that the
van der Waals interaction and experimental tunability of Rydberg-based platforms enable the simulation of
exotic phases of matter with fractal structures, and the study of a quantum phase transition involving a
fractal ordered phase.
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In recent years, tremendous progress has been made in
simulating quantum many-body systems with tunable
arrays of Rydberg atoms [1–3]. In many such experiments,
the ground state and a high-lying excited state of the atom
constitute a qubit, the fundamental element of numerous
exotic quantum many-body states [4,5]. Recently, the
construction of unconventional many-body states like Z2

quantum spin liquids has been explored [6–8], demonstrat-
ing the potential of the Rydberg-based platforms. The
possibility to extend these platforms to realize quantum
many-body systems beyond the currently well-understood
theoretical paradigm such as those exhibiting Z2 topologi-
cal order [9–11] would be extremely exciting.
“Fracton” phases of matter provide a natural playground

for exotic physics. These phases host excitations with
restricted dynamics, and a ground-state degeneracy that
scales with the system size [12–19]. Fracton related models
are loosely classified by their qualitative features: “type-I”
models have excitations whose dynamics are restricted to
standard submanifolds, e.g., lines and planes in space,
while excitations of the more exotic “type-II” models are
created at the end of a fractal subset of the lattice [17].
While fracton and related phases are of great theoretical
interest, much less progress has been made in realizing such
models experimentally.
In this work, we propose an experimental realization of

“fractal order,” a two-dimensional analogue of a type-II
fracton phase, as well as a quantum phase transition
between the phase with fractal order and a trivial phase.
The fractal order spontaneously breaks a fractal subsystem
symmetry, and its low energy excitations form a Sierpinski
triangle on the lattice, which is a fractal shape with
Hausdorff dimension dH ¼ ln 3= ln 2, and only costs
energy at the corners of the Sierpinski triangle. We stress
that the fractal order we consider is defined as spontaneous

breaking of a fractal subsystem symmetry; this phase does
not have topological order.
The Sierpinski triangle model [15,20] is the paradigmatic

model with fractal order. It is a classical statistical
mechanical model for an Ising system on a triangular
lattice whose Hamiltonian is a sum over all three-body
interactions on downward facing unit triangles ▽ (Fig. 1):

HST ¼
X
▽

− Kσz1σ
z
2σ

z
3; ð1Þ

where the σz ¼ �1 are Ising degrees of freedom at the
vertices of each downward triangle. The low energy excited
states of this model have a fractal structure: starting with the
obvious ground state with uniform σzj ¼ þ1, low-lying
excited states are created by flipping spins in the shape of a

FIG. 1. Left: three-body spin interaction on each downward
triangle in Eq. (1). Right: one of the low energy excitations of
Eq. (1); starting with the obvious ground state with σz ¼ þ1, the
spins are flipped to σz ¼ −1 on a l ¼ 3 Sierpinski triangle (blue),
this configuration only costs energy on the unit triangles at the
three corners (red).
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Sierpinski triangle, which does not cost energy anywhere
except at the three corners. The corners of the Sierpinski
triangle can be viewed as point particles, which cannot
move along the lattice without creating more excitations
that cost higher energy. Hence the mobility of these
particles is highly restricted; it is in this sense that they
are fractons.
A quantum version of the Sierpinski triangle model was

discussed in Ref. [21,22]. The quantum Sierpinski triangle
model has an extra transverse field

HqST ¼
X
▽

− Kσz1σ
z
2σ

z
3 −

X
j

hσxj ð2Þ

and has two highly desirable features: (1) It is “self-dual,”
meaning that under a duality transformation the K and h
terms will exchange. This self-duality is analogous to the
Kramers-Wannier duality of the 1D quantum Ising model
[23,24], and the self-duality of the quantum plaquette
model [25]. The self-duality implies that, if there were a
quantum phase transition reached by tuning h=K in Eq. (2),
it must happen at h ¼ K. (2) Numerical simulation of the
quantum Sierpinski triangle model suggests that the system
may have a second order quantum phase transition (QPT) at
the self-dual point h ¼ K [22] (though earlier numerics
suggested a first order transition [21]); at the QPT, the
energy density has a fractal dimension dH ¼ ln 3= ln 2
rather than scaling dimension 2 as in ordinary QPT in
2D [22]. This transition is associated with the spontaneous
breaking of a “fractal symmetry”; the phase with h < K is
identified as a fractal order, while the phase with h > K is a
disordered phase of the fractal symmetry [see the
Supplemental Material (SM) [26] for more discussion].
The nature of the QPT at h ¼ K in Eq. (2) is far from

being understood, and the ordinary Landau-Ginzburg
paradigm no longer applies. Numerics suggest that this
transition is likely continuous, but many questions remain
open. For example: Is the continuous QPT stable against
perturbations? For ordinary transitions, this question is
answered through the renormalization group (RG) method
[27–29], by evaluating the relevance or irrelevance of
certain perturbations. But for the QPT under discussion,
no reliable RG procedure has been established. Hence, key
aspects of the QPT must be explored experimentally. A
tunable experimental realization of the classical and quan-
tum Sierpinski triangle model would be extremely useful in
understanding transitions involving fractal geometry.
The goal of this work is to describe a construction of

both the classical and quantum Sierpinski triangle models
from arrays of Rydberg atoms. We begin with a single
atom whose ground state jgi is coupled to an excited
Rydberg state jri via a laser detuned from resonance. The
two states coupled by the laser are the atom-field product
states labeled jg; Nγ þ 1i and jr; Nγi, where Nγ is the
photon number of the laser so that jg; Nγ þ 1i has one extra

photon compared to jr; Nγi. In the effective two-state
problem, the Rabi frequency enters as a term coupling
these two states. The simplest manifestation of the Rabi
oscillations is as a term in the Hamiltonian Ωσx where
σx ¼ jg; Nγ þ 1ihr; Nγj þ jr; Nγihg; Nγ þ 1j.
If we blue-detune the laser from resonance, the energy

gained by the atom being in the excited state jr; Nγi relative
to being in jg; Nγ þ 1i is −δ, where δ is the detuning of the
laser. This detuning then contributes a diagonal term to the
effective Hamiltonian −δn̂where n̂ is 0 or 1 if the atom is in
the state jg; Nγ þ 1i or jr; Nγi, respectively. This allows us
to write down an effective two-state Hamiltonian in the
basis of atom-field product states for the single atom

H1 atom ¼ Ωσx − δn̂: ð3Þ

Two atoms in s-orbital Rydberg states interact through a
force that can be modeled by a van der Waals (vdW)
potential VðrÞ ¼ C=r6 when the separation r is large,
where C is a constant that scales strongly with the principal
quantum numbers. For two identical Rydberg atoms with
principal quantum number n (not to be confused with the
number operator n̂), the coefficient C of the vdW inter-
action roughly scales as ∼n11. In the remaining of the Letter
we will use the more detailed evaluation of the vdW
interaction given in Ref. [30]. As such, the total effective
many-body Hamiltonian that describes a lattice of these
atoms is

H ¼
X
i

Ωiσ
x
i þH0; H0 ¼ −

X
i

δin̂i þ
X
ij

Vijn̂in̂j;

ð4Þ

where Vij ¼ Cij=ji − jj6 and i, j label the lattice sites.
We start with the small Rabi frequency (relative to the

detuning) limit of this model so that we may first ignore the
σx terms and focus on the classical part of the Hamiltonian
H0. To realize the classical Sierpinski triangle model of
Eq. (1), we must select the parameters in H0 which yield
low energy states that can be mapped to those of the
Sierpinski triangle model. We consider the honeycomb
lattice with two sublatticesA and B, trapping an “auxiliary”
atom at each site in A and a “target” atom at each site in B.
An equivalent picture is that we take the triangular lattice
and decorate each vertex with a target atom and the center
of each downward facing triangle with an auxiliary atom
(Fig. 2). We aim to reproduce the states of Eq. (1) only on
the B sublattice with target atoms. The auxiliary atoms
enlarge the Hilbert space and hence the states of model
Eq. (1) with multispin interactions can be reproduced
through two-body interactions only in the low energy
subspace of the atomic system.
We assign different principal quantum numbers nA and

nB for the Rydberg states of the auxiliary atoms on
sublattice A and target atoms on sublattice B. With a
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proper choice of nA, nB, and the detuning, the Hamiltonian
H0 can be organized as H0 ¼

P
a∈A H0;a:

H0;a ¼ Vð2n̂a þ n̂t;1 þ n̂t;2 þ n̂t;3 − 2Þ2 þ
X3
i¼1

vn̂an̂t;i

∼ V

�X3
i¼1

4n̂an̂t;i þ
X
i<j

2n̂t;in̂t;j − 4n̂a −
X3
i¼1

3n̂t;i

�

þ
X3
i¼1

vn̂an̂t;i � � � : ð5Þ

The sumH0 ¼
P

a∈A H0;a is over all sublattice sitesA, and
each term in the sum involves an auxiliary atom (n̂a ¼ 0, 1)
and its three neighboring target atoms (n̂t;i ¼ 0, 1) which
form a downward triangle on the honeycomb lattice. The
second line of Eq. (5) uses the fact that n̂2a ¼ n̂a, n̂2t ¼ n̂t for
n̂ ¼ 0, 1. H0 contains a two-body repulsive interaction
VAB ¼ 4V þ v between the auxiliary atom and neighbor-
ing target atoms, as well as a repulsive interaction VBB ¼
2V between two nearest neighbor target atoms (Fig. 2).

When v > 0, there are two classes of configurations of
ðn̂t;i; n̂aÞ on each downward triangle, both of which are the
ground states of H0:

ð1Þ n̂a ¼ 1; n̂t;i ¼ 0;

or ð2Þ n̂a ¼ 0; two of n̂t;i ¼ 1: ð6Þ

As a comparison, the ground states of the classical
Sierpinski triangle model HST also have two types of
ground states on each downwards triangle:

ð1Þ σz1 ¼ σz2 ¼ σz3 ¼ þ1;

or ð2Þ two of σzi ¼ −1: ð7Þ

Now the ground states of H0 can be one-to-one mapped to
the ground states of the classical Sierpinski triangle model,
as long as we identify σzi ¼ 1–2n̂t;i. In the SM we will show
that, all the states of Eq. (1) (ground and excited states) can
be mapped one to one to the low energy subspace of H0

when v > 0.
The relation between VAB and VBB can be tuned by

choosing the principal quantum numbers nA and nB
properly. For example, for potassium atoms, if we choose
nA ¼ 76 and nB ¼ 113, then using the techniques in
Ref. [30] and the fact that the interatomic distances are
related by rBB ¼ ffiffiffi

3
p

rAB, we found that both interactions
are repulsive and satisfy VAB=VBB ∼ 2.628 (v ∼ 1.26V).
Note that our results apply more broadly than just to this
specific choice of atom and principal quantum numbers.
In the real system, there are perturbations to Eq. (5).

These include other terms induced by the vdW interaction,
for example, the repulsion between Rydberg states on two
neighboring auxiliary atoms, whose strength VAA com-
pared with VBB is VAA=VBB ∼ 0.011 using the example
parameters we chose above. The repulsion V 0

BB between the
target atoms on two second neighbor B sites is also much
weaker than VBB due to the rapid decay of the vdW
interaction with distance. Another notable perturbation is
the interaction V 0

AB between an auxiliary atom and its next-
neighbor target atom. Compared with VBB, the two
perturbations V 0

BB and V 0
AB are

V 0
BB

VBB
¼ 1

ð ffiffiffi
3

p Þ6 ∼ 0.037;
V 0
AB

VBB
¼ 1

26
VAB

VBB
∼ 0.041: ð8Þ

These perturbations shift the energy of the excited state
of the Sierpinski triangle shape. Let us consider an excited
state with flipped “spins” (n̂t ¼ 1) on a Sierpinski triangle
with side length L ¼ 2l. In the ideal model of Eq. (1), the
energy of this excited state does not depend on L or l: all
the energy cost arises from the corners of the Sierpinski
triangle and the excitation energy Eex ¼ E − Eg ¼ 6K ¼
3V ¼ 3=2 × VBB. However, in the real system the leading
order perturbations V 0

AB, VAA, and V 0
BB cause the energy of

a Sierpinski triangle to scale with its size. In particular, the
energy of the excitation relative to the ground state with
uniform n̂a ¼ 1 and n̂t ¼ 0 is estimated to be (see SM for
details)

ERy
ex ¼ ð3=2 − 0.1þ 0.47 × 3l−3ÞVBB ð9Þ

for Sierpinski triangles of l ≥ 2. Since the actual energy
cost of a Sierpinski triangle increases with its size, the
perturbations can no longer be ignored for large enough
Sierpinski triangles. Finite-size fractal excitations, how-
ever, are still observable.
Next, we outline a procedure to enable experimental

observation of a spontaneously generated fractal-shaped

FIG. 2. We propose trapping atoms on both the vertices and the
center of each downward triangle of the triangular lattice, which
together form a honeycomb lattice. Vertices (centers) contain
“target” (“auxiliary”) atoms. A Sierpinski triangle excited state is
shownwhere n̂t ¼ 1 (blue) and n̂a ¼ 0 (orange). The Hamiltonian
Eq. (5) reduces to VAB between auxiliary and neighboring target
atoms, and interaction VBB between neighboring target atoms.

PHYSICAL REVIEW LETTERS 128, 017601 (2022)

017601-3



excitation. This can be done by adiabatically evolving a
prepared ground state of Eq. (5) to the Sierpinski triangle
excitation, which is the ground state of a new Hamiltonian
achieved by slowly and carefully varying the detuning and
Rabi frequency. Note that this procedure requires a level of
local control beyond most current Rydberg experimental
platforms, where focus has largely been on leveraging the
Rydberg blockade mechanism to generate entanglement
between adjacent sites [1,31,32]. Nevertheless, promising
techniques which achieve elements of the desired single-
site Rydberg control have already been demonstrated
experimentally [33,34].
We start with the Hamiltonian of Eq. (5) with a small and

finite Rabi frequency. To ensure a unique ground state (to
enable an adiabatic evolution), we first deform Eq. (5) with
a small extra detuning δ̄n̂t on all target atoms outside of a
triangle with side L ¼ 2l. We then prepare an initial state
with all target atoms n̂t ¼ 0 and n̂a ¼ 1, which is equiv-
alent to σz ¼ 1 uniformly in Eq. (1) and represents the
unique ground state of the Hamiltonian prepared above. We
slowly deform the Hamiltonian with time-dependent
Rabi frequency ΩðtÞ and detuning δiðtÞ within the triangle,
reaching the final Hamiltonian with extra detuning −δ̄Cn̂t
localized to three target atoms at the corners of the triangle
(Fig. 3). Both Ω and δ are turned on inside the triangle
during the evolution, which explicitly breaks all the
symmetries of the finite system along the evolution path
to avoid small gaps and ensure adiabaticity. With suffi-
ciently large δ̄C, the unique ground state of the final
Hamiltonian contains a Sierpinski triangle configuration
of the atoms inside the triangle, as shown in Figs. 1 and 2,
despite the fact that in the final Hamiltonian the extra
detuning −δ̄Cn̂t is only applied locally at the corners rather
than throughout the interior. Based on our estimate of
energy in Eq. (9) which includes further neighbor repulsion

arising from the vdW interaction, this phenomenon can
hold up to Sierpinski triangles with l ¼ 4 (side length
L ¼ 16, containing 81 atoms), as a single Sierpinski
triangle configuration still has lower energy than frag-
mented configurations.
We have specified the initial and final Hamiltonian for

the desired evolution; an adiabatic path of the detuning and
Rabi frequency for observing Ising-like crystallization of
Rydberg atoms has been demonstrated [31,32,35]. We can
also arrive at the Sierpinski triangle ground state without
adiabaticity. Leveraging either one of the aforementioned
current or future techniques for single-site Rydberg control,
we could realize the Sierpinski triangle configuration via
local excitation to Rydberg states. Spectroscopic measure-
ment of the energy of the Sierpinski configuration com-
pared with that of fragmented configurations could then
confirm that it represents a low-lying excited state.
This experimental platform also gives us the potential to

probe QPTs by controlling the Rabi frequency. When the
Rabi frequency Ω is increased uniformly on all target
atoms, around Ω ∼ V there is expected to be a QPT similar
to the one recently studied numerically [21,22]. In the large
Ω phase, one is not supposed to observe the fractal
configuration in the proposed experiment above, i.e., the
configuration of Fig. 3 will not evolve to the one in Figs. 1
and 2. As we pointed out before, the nature of this QPT is
far from being understood. Hence the realization of the
QPT in highly tunable experimental systems is crucial to
understand these exotic transitions, as well as related
theoretical paradigms developed in the future.
The fractal structure also manifests at the level of

correlation functions. In both the classical and quantum
Sierpinski triangle models, the three-point correlation
function C3 ¼ hσzjσzjþLx̂σ

z
jþLðx̂−ŷÞi is a characteristic quan-

tity which plays the role of the correlation function of
ordinary quantum many-body systems. The three-point
correlation decays hyperexponentially with the Hausdorff
dimension at finite temperature [15,20] and its scaling at
the QPT h ¼ K was computed in Ref. [22]. In the
experimental realization of Eq. (5), the three-point corre-
lation C3 can be reconstructed by averaging over multiple
single-site resolution snapshots of the configuration of the
target atoms taken in separate experimental realizations.
Similar techniques have been used previously in cold-atom
experiments to reconstruct quantities such as the spin
correlation functions in Fermi-Hubbard systems [36,37].
Experimental measurement of C3, whose scaling with
distance diagnoses the fractal physics of the model, will
be crucial in understanding the nature of this QPT.
Previous proposals for realizing fracton related states

mostly focused on type-I fractons [38–41]; for example,
efforts based on localized Majorana zero modes for both
type-I and type-II states [42,43]. Compared with previous
proposals, the platform of Rydberg atoms discussed in
the current work is highly tunable with precision at the
level of a single atom. Previously fractal structures were

FIG. 3. With Hamiltonian Eq. (5), if three target atoms at the
corners of a triangle with side length L ¼ 8 are excited from the
ground state to the Rydberg state, it costs energy 3V þ 3v at each
corner. If we apply an extra detuning −δ̄Cn̂t on the three corners
of the triangle, for sufficiently large δ̄C the ground state of the
system is given by the fractal configuration in Fig. 1.
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constructed as a rigid background for electron states
[44–46], while in our approach the fractal itself is the
consequence of a quantum Hamiltonian, and the fractal
structure can melt through a QPT with controllable
parameters.
Another advantage of the platform of Rydberg atoms is

fast manipulation of parameters in the Hamiltonian, which
can either periodically drive the system, or cause a quantum
quench [47–54]. Out of equilibrium dynamics of a cold
atom system was also shown to probe topological features
[55]. Many exotic features are expected in the quantum
dynamics of fracton related models due to the restricted
motion of fracton excitations [56–59]. By quickly tuning
parameters such as the Rabi frequency in Eq. (4), one can
compare the quantum dynamics of the fractal order
simulated with Rydberg atoms with future analytical and
numerical analysis. Even when Ω is tuned slowly, the
fractal symmetry of the system may lead to unique critical
dynamics near the QPT which are distinct from those in
ordinary systems. Furthermore, our construction of Eq. (5)
used to reproduce multispin interactions with only two-
body interactions, can be extended to other fracton related
models. One example of such extension (the Sierpinski
tetrahedron model [60,61]) is given in the SM.
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