
Pascal’s Triangle Fractal Symmetries

Nayan E. Myerson-Jain,1 Shang Liu ,2 Wenjie Ji,1 Cenke Xu ,1 and Sagar Vijay 1

1Department of Physics, University of California, Santa Barbara, California 93106, USA
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

(Received 13 October 2021; revised 23 January 2022; accepted 18 February 2022; published 14 March 2022)

We introduce a model of interacting bosons exhibiting an infinite collection of fractal symmetries—
termed “Pascal’s triangle symmetries”—which provides a natural U(1) generalization of a spin-(1=2)
system with Sierpinski triangle fractal symmetries introduced in Newman et al., [Phys. Rev. E 60, 5068
(1999).]. The Pascal’s triangle symmetry gives rise to exact degeneracies, as well as a manifold of low-
energy states which are absent in the Sierpinski triangle model. Breaking the U(1) symmetry of this model
to Zp, with prime integer p, yields a lattice model with a unique fractal symmetry which is generated
by an operator supported on a fractal subsystem with Hausdorff dimension dH ¼ lnðpðpþ 1Þ=2Þ= lnp.
The Hausdorff dimension of the fractal can be probed through correlation functions at finite temperature.
The phase diagram of these models at zero temperature in the presence of quantum fluctuations, as well
as the potential physical construction of the U(1) model, is discussed.
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Introduction.—In recent years, generalizations of the
notion of symmetry have significantly broadened our
understanding of states of matter. Highly entangled states
of quantum matter, such as Z2 topological order [1–4] and
the ð3þ 1ÞD algebraic spin liquid with photon excitations
[5–7], were previously thought to be beyond the notion of
spontaneous symmetry breaking (SSB) of ordinary global
symmetries. But it has been recently realized that these
phases admit a unified description in terms of the SSB of
generalized higher-form symmetries [8–16]. Subsystem
symmetries have further enriched our understanding along
this line. Long-range-entangled quantum phases with
fractionalized excitations that have inherently restricted
mobility—termed fracton orders—exhibit emergent sub-
system symmetries [17–22]. These symmetries can be
further categorized [18]: a type-I subsystem symmetry
has generators and conserved charges defined on regular
submanifolds such as lines and planes [17–19], while type-
II subsystem symmetries have conserved charges defined
on a fractal-shaped subsystem [20,23–26], often with
noninteger spatial dimensions.
The simplest model with a fractal subsystem symmetry is

the Sierpinski triangle model, which was first introduced
for the purpose of studying glassy dynamics [27]:

HST ¼
X
▽

− Kσz1σ
z
2σ

z
3: ð1Þ

Here, σzi is an Ising spin defined on each site of a
triangular lattice, and the sum is only over the down-
ward-facing triangular plaquettes of the lattice. This
model has the following features: (i) The model has an
exotic fractal symmetry, which becomes most explicit

when the system is defined on a L × L lattice with
L ¼ 2k − 1: the Hamiltonian is invariant under flipping
spins along pairs of extensively large fractal subsystems,
each of which forms a Sierpinski triangle, as reviewed in
the Supplemental Material [28]. (ii) At finite temperature,
the three-point correlation function hσz0;0σzr;0σz0;ri of spins
arranged on the corners of an equilateral triangle is nonzero
only when r¼2k, and it scales as ∼ expð−αrdHÞ with
dH ¼ ln 3= ln 2, which is the Hausdorff dimension of the
Sierpinski triangle [23,29,30]. (iii) With the addition of a
transverse field

P
i −hσxi , there is a quantum phase tran-

sition at zero temperature [31,32] when h ¼ K, which
separates the “fractal-ordered” phase that spontaneously
breaks the fractal symmetry (K > h) and a disordered
phase (h > K).
In this Letter, we introduce generalizations of both the

classical and quantum Sierpinski triangle models, which
lead to the identification of a novel kind of fractal
symmetry. These models are obtained from a U(1) parent
model with “Pascal’s triangle” (also called Yang Hui
triangle in China) symmetries, a family of symmetry
transformations along a fractal region which are exact in
a system with periodic boundary conditions, and for
particular system sizes. Even when these symmetries are
not exact, the presence of an “approximate” Pascal’s
triangle symmetry gives rise to low-energy states which
are absent in the Sierpinski triangle model [27]. We study
the phase diagram of this parent model in the presence of
quantum fluctuations, and at nonzero temperature.
Descendants of this model are obtained by reducing the
U(1) degree of freedom of the parent model to Zp, with
prime integer p. The Zp models have their own
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fractal symmetry that are deduced from the Pascal’s
triangle symmetry, and their degenerate excitations have
an emergent fractal structure with Hausdorff dimen-
sion dH ¼ lnðpðpþ 1Þ=2Þ= lnp.
The U(1) parent model.—The Hamiltonian of the U(1)

generalization of the Sierpinski triangle model reads

HUð1Þ ¼
X
▽

− t cos ðθ1 þ θ2 þ θ3Þ: ð2Þ

It is straightforward to see that Eq. (2) has two conventional
U(1) global symmetries:

Uð1Þ1∶θj∈A → θj∈A þ α; θj∈B → θj∈B − α;

Uð1Þ2∶θj∈A → θj∈A þ β; θj∈C → θj∈C − β: ð3Þ

A, B, and C are the three sublattices of the triangular lattice.
The ground states of Eq. (2) spontaneously break the two
U(1) symmetries. Starting with one of the ground states,
say θ ¼ 0 uniformly on the entire lattice, a class of ground
states can be generated by rotating θ globally according to
Eq. (3). Any ground state obtained this way still has a
uniform order of θ on each of the three sublattices, hence
the ground states generated through Eq. (3) have a conven-
tional “

ffiffiffi
3

p
×

ffiffiffi
3

p
” order, which is the order often observed

on the triangular lattice antiferromagnet.
Besides the two ordinary U(1) global symmetries, this

model [Eq. (2)] actually contains an infinite series of Zp
distinct fractal symmetries, one for each prime number p,
p ≥ 2. The series of Zp fractal symmetries exhibited by the
U(1) parent model are in the shape of a Pascal’s triangle
modulo p. For example, when p ¼ 2, this Pascal’s triangle
symmetry reduces down to the familiar Z2 fractal symmetry
of the Sierpinski triangle model; for p ¼ 3, the Pascal’s
triangle modulo 3 reduces to another fractal shape (Fig. 1).
The exact series of fractal transformations of Eq. (2) can

be written down as a staggered rotation of the θi’s in the
shape of a Pascal’s triangle modulo p, which has a side
length of pk − 1, where k is any integer greater than zero.
The precise form of the transformation is

θi → θi þ
2π

p
ð−1Þixþiy

�
ix þ iy
iy

�
ð4Þ

at the points ðix; iyÞ for which 0 ≤ iy ≤ ix and ix þ iy ∈
½0; pk − 1�. As shown in the Supplemental Material [28],
transformations of this form can be used to generate exact
symmetries when the system is placed on an L × L lattice
with periodic boundary conditions and with L ¼ pk − 1.

Any Zp fractal transformation of the U(1) parent model
generates fully immobile defects which are analogous to
fractons. From the uniform θi ¼ 0 ground state, trans-
forming the U(1) degrees of freedom according to Eq. (4) in
the shape of a local Pascal’s triangle of size pk − 1 creates

three defects of energy tð1 − cosð2π=pÞÞ, one at each
downward-facing triangular plaquette located at the corners
of the Pascal’s triangle, as shown in the Supplemental
Material [28], and as indicated schematically in Fig. 1. If
we treat these defects as pointlike excitations localized on
their downward-facing plaquettes, individual defects can-
not be moved by any rotation of θi ’s without creating more
excitations and are hence completely immobile.
At finite temperature, the U(1) parent model is com-

pletely disordered, similarly to the Sierpinski triangle
model [27]. This can be most easily seen from a duality
mapping of the U(1) degrees of freedom on the vertices to
new U(1) degrees of freedom on downward-facing pla-
quettes ðθ1 þ θ2 þ θ3Þ▽ → ϕ▽, where ϕ▽ is defined on the
dual site located at the center of each downward-facing
triangular plaquette (Fig. 2), and ϕ is still compact
(periodically defined). The dual of Eq. (2) is

Hd
Uð1Þ ¼

X
▽

− t cosðϕ▽Þ: ð5Þ

Since each ϕ is decoupled from the others, the partition
function factorizes into a product of local partition func-
tions for each individual ϕ which does not support any
phase transition.
The three-body interactions of the Sierpinski triangle

model, as well as those of the U(1) parent model, look
artificial. Reference [33] proposed to realize the Sierpinski
triangle model with the Rydberg atoms with only two-body
van derWaals interactions. In theSupplementalMaterial [28],
we present a more natural construction of the U(1) parent
model through a setup with only two-body interactions.
The Zp models.—From the U(1) parent model in Eq. (2),

models with a single fractal symmetry that are natural

FIG. 1. The U(1) parent model [Eq. (2)] has a family of fractal
symmetries, generated by a staggered rotation of the boson phase
θi → θi þ ð2π=pÞmi over a triangular region of side length which
is a power of any prime number p. For each p, the fractal
symmetry becomes exact for system size L2 with L ¼ pk − 1.
When acting on a classical ground state of the parent model, this
transformation generates excitations at the corners of the tri-
angular region. The action of this rotation can be visualized as
Pascal’s triangle modulo p, which is a fractal with Hausdorff
dimension dHðpÞ ¼ lnðpðpþ 1Þ=2Þ= lnp.
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extensions of the Sierpinski triangle model can be
constructed. This is done by breaking the U(1) degrees
of freedom down to Zp clock degrees of freedom,
σi ¼ eiθi ; θi ∈ ð2π=pÞZp:

HZp
¼

X
▽

−
t
2
σ1σ2σ3 þ H:c: ð6Þ

The model in Eq. (6) extends many properties of the
Sierpinski triangle model to a series of Zp “Pascal’s triangle
models,” which reduces to Eq. (1) when p ¼ 2. We note
that these Zp models for prime integer p were mentioned in
Ref. [23], though the symmetries which distinguish them
from the Sierpinski case were not explored. Generally,
since the Zp fractal symmetry of the Pascal’s triangle
models are descended from the U(1) parent model, the
fractal symmetry transformation in these models is realized
by Eq. (4) with the appropriate choice of p. These models
also display the fracton-like defects associated with fractal
excitations in the shape of a Pascal’s triangle modulo p, as
well as spontaneously breaking the Zp fractal symmetry,
yielding a ground-state degeneracy of pL−1 when L ¼
pk − 1 (see the Supplemental Material [28] for derivation).
Spontaneous breaking of the Zp fractal symmetries in the

Pascal’s triangle models can be diagnosed by a three-point
correlation function. Making use of the duality of these
models, we can define plaquette degrees of freedom τ▽ ¼
ðσ1σ2σ3Þ▽ for which the dual Hamiltonian is Hd

Zp
¼P

▽ −ðt=2Þτ▽ þ H:c: In the thermodynamic limit, each σ
variable can be represented as an infinite staggered product
of dual τ variables in the shape of a Pascal’s triangle
modulo p. The three-point function C3ðrÞ ¼ hσ0;0σr;0σ0;ri,
after being rewritten in terms of the dual variables, only has
compact support when r ¼ pk, and hence must otherwise
vanish. The three-point function factors into a product of
single-site expectation values hτi;…; hτp−1i. From the

form of the Hamiltonian, a general expression for the
three-point function for arbitrary p, primes can be derived
(see the Supplemental Material [28] for details)

C3ðr ¼ pkÞ ¼
Yp−12
m¼1

hτmiNm;p−mðkÞ; ð7Þ

Nm;p−mðkÞ is the number of times m and p −m appear in a
Pascal’s triangle modulo p with length pk − 1. Such an
expression is complex, but a complete set of recurrence
relations is constructed in the Supplemental Material [28]
for Nm;p−mðkÞ, lending Eq. (7) to efficient numerical
evaluation. For small p, this can be done analytically—
e.g., for p ¼ 3, the three-point function is

C3ðr ¼ 3kÞ ¼ hτirdH

¼
�

eβt − e−βt=2

eβt þ 2e−βt=2

�
rdH

¼ e−αr
dH ; ð8Þ

where dH ¼ ðln 6= ln 3Þ is the Hausdorff dimension of a
Pascal’s triangle modulo 3.
As demonstrated by Eq. (7), the decay of the three-point

function can be complicated for general p prime. However,
a modified version of the Zp Pascal’s triangle models in
Eq. (6) can be proposed, for which the three-point function
at finite temperature always decays as a simple fractal area
law. If we consider an equal-weight summation of plaquette
terms,

Hp ¼
X
▽

Xp−12
m¼0

−
t
2
ðσ1σ2σ3Þm þ H:c: ð9Þ

This model retains the Zp fractal symmetry of Eq. (6) as it
only includes products of the original plaquette terms. As
such, the duality ðσ1σ2σ3Þ▽ → τ▽ still exists, and the dual
of Hp is

Hd
p ¼

X
▽

Xp−12
m¼0

−
t
2
τm
▽
þ H:c: ð10Þ

The manner in which the three-point correlation for Hp is
calculated remains the same as for what it was in Eq. (6),
with the exception that hτmi no longer depends on powerm.
As a result, C3ðr ¼ pkÞ decays as a fractal area law no
matter what value p takes:

C3ðr ¼ pkÞ ¼ hτirdH ¼ e−αr
dH : ð11Þ

The Zp Pascal’s triangle model with prime integer p can
be further extended to ZN models with composite integerN.
These new composite ZN models have more than one
fractal symmetry. In fact, there is a distinct Zp fractal

FIG. 2. The models we consider in this Letter involve the sum
of all the downward-facing triangles (shaded in green). The dual
of the U(1) model [Eqs. (5) and (15)] is defined on the dual
triangular lattice, whose sites are the center of each downward-
facing triangle of the original lattice.
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symmetry for each unique prime divisor of N—e.g., the
ZN¼6 model has a Z2 Sierpinski triangle fractal symmetry
and a Z3 Pascal’s triangle modulo 3 fractal symmetry. The
behavior of the three-point correlations of the ZN models is
further discussed in the Supplemental Material [28].
The quantum phase diagram.—So far, we have only

discussed the classical version of the models. To turn
quantum fluctuations on in Eq. (2), one can modify the
model as

HQ−Uð1Þ ¼
X
▽

− t cos ðθ1 þ θ2 þ θ3Þ þ
X
j

U
2
n2j ; ð12Þ

where nj is the boson number operator defined on each site
of the triangular lattice, which is conjugate to the boson
phase ½ni; θj� ¼ iδij.
As shown previously, a class of ground states of

the classical U(1) model in Eq. (2) have the conventionalffiffiffi
3

p
×

ffiffiffi
3

p
order, which spontaneously breaks the Pascal’s

triangle symmetry, and the two U(1) symmetries in Eq. (3).
We now investigate whether this classical order is stable
against quantum fluctuation—i.e., whether it is stable
against theU term in Eq. (12). We argue that all symmetries
of the Hamiltonian in Eq. (12) are restored by quantum
fluctuations.
In an ordered phase that spontaneously breaks the U(1)

global symmetry, one can ignore the fact that the phase
angle θ is a compact boson (i.e., θ ∼ θ þ 2π) and hence
expand the cosine function of Eq. (12) to the lowest
nontrivial order. This procedure leads to an approximate
Gaussian Hamiltonian:

Hg
Q−Uð1Þ ¼

X
i;j

tθiθj þ
X
j

3tθ2j þ
U
2
n2j : ð13Þ

The band structure of θ based on this Gaussian Hamiltonian
has minima at �K ¼ �ð4π=3; 0Þ, which is consistent with
the

ffiffiffi
3

p
×

ffiffiffi
3

p
order of the classical Hamiltonian. The

spectrum of the Gaussian Hamiltonian is gapless.
The Gaussian expansion of the Hamiltonian ignores the

compactness of θ. In a quantum model constructed with θ,
θ being a compact boson is equivalent to the constraint that
its quantum conjugate variable n take discrete values.
To check the stability of a semiclassical state of θ under
quantum fluctuation, one needs to investigate whether
the compactness of θ, or equivalently the discrete nature
of n, would destabilize the semiclassical state described
by the Gaussian Hamiltonian [Eq. (13)]. For example, the
ð2þ 1ÞD quantum dimer model on the square lattice can be
mapped to a compact U(1) gauge theory [34,35]; a
Gaussian expansion would lead to gapless photons. But
the compactness of the gauge field is always relevant in a
semiclassical photon state unless the system is at a fine-
tuned multicritical point (the so-called RK point [34]);

hence, the Gaussian state is generally unstable against
quantum fluctuations. This effect is also referred to as the
confinement of a lattice gauge theory. The standard method
of the analysis relies on the dual formalism of Eqs. (12) and
(13). The dual model is defined on the dual triangular
lattice (Fig. 2) by introducing the following variables:

X
j∈▽

θj ¼ ϕj̄; nj ¼
X

j̄∈Δ around j

− Ψj̄; ð14Þ

where j̄ labels the sites of the dual triangular lattice, ϕj̄ and
Ψj̄ are canonically conjugate variables, Ψj̄ takes discrete
values, and ϕj̄ is compact. The dual Hamiltonian reads

Hd
Q−Uð1Þ ¼

X
j̄

− tcosðϕj̄Þþ
X
Δ̄

U
2
ðΨ1̄þΨ2̄þΨ3̄Þ2: ð15Þ

Instead of directly dealing with the discrete variable Ψ,
we may view Ψj̄ as taking continuous values, and ϕj̄ as its
noncompact conjugate variable. The discrete nature of Ψ
can be enforced through an external potential in the dual
Hamiltonian. The dual Hamiltonian becomes

Hd
Q−Uð1Þ ∼

X
Δ̄

U
2
ðΨ1̄ þ Ψ2̄ þ Ψ3̄Þ2 −

X
j̄

t cosðϕj̄Þ

− α cosð2πΨj̄Þ: ð16Þ

The next step is to temporarily ignore the α terms, and
expand −t cosðϕjÞ to the lowest nontrivial order. After this
procedure, the dual Hamiltonian takes a Gaussian form,
and it is the dual of the Gaussian Hamiltonian in Eq. (13).
The goal of this analysis is to check the role of the α terms
at this Gaussian state. This dual Gaussian Hamiltonian
can be solved, leading to a band structure ofΨ. The minima
of the band structure of Ψ are located at the two corners of
the Brillouin zone, �K ¼ ð�4π=3; 0Þ. We then expand Ψr
at �K:

ΨðrÞ ∼ eiK·rψðrÞ þ e−iK·rψ�ðrÞ: ð17Þ

The Lagrangian of the dual theory expanded at �K
becomes

Ld
Q−Uð1Þ ¼ ð∂τ  ψÞ2 þ ρ2ð∇  ψÞ2 −

X
a

α cosð  ea ·  ψÞ; ð18Þ

where  ψ ¼ðReðψÞ; ImðψÞÞ; a ¼ A, B, and C label the three
sublattices of the dual triangular lattice; and eA ¼ 2πð1; 0Þ,
eB ¼ 2πð−1=2; ffiffiffi

3
p

=2Þ, and eC ¼ 2πð−1=2;− ffiffiffi
3

p
=2Þ [36].

The last three terms in Eq. (18) arise from rewriting
the last term of Eq. (16) by expanding Ψ at �K. After
this expansion, the last term of Eq. (16) becomes
−α cosð  ea ·  ψðrÞÞ for r belonging to sublattice a (a ¼ A,
B, and C) of the dual triangular lattice. Hence, at long
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scales, a nonvanishing term would survive. The α term in
Eq. (18) will be relevant for the Gaussian theory with
nonzero ρ2, which implies that the compactness of θ, or the
discrete nature of n in Eq. (12) destabilizes the semi-
classical Gaussian state, and the spectrum of Eq. (12)
should be gapped even with small U.
The dual description of the U(1) model studied here

captures the spectrum of the gapless modes arising from
spontaneously breaking the global U(1) symmetries,
though it does not reproduce the spectrum at U ¼ 0 that
arise due to the Pascal triangle symmetries. Nevertheless,
the nature of the ground state of the system when the
pinning potential flows to strong coupling can still be
inferred. A strong α would pin Ψ to integer values, which
implies that a relevant α would drive the system into an
eigenstate of n in Eq. (12), and the U term will lead to a
unique and gapped ground state without any spontaneous
symmetry breaking. Hence, we postulate that quantum
fluctuations of Eq. (12) restore all the symmetries of the
model in Eq. (2), and continuously connect to the large-U
limit of Eq. (12). The analysis here would be more involved
if n took half-integer values in Eq. (12).
One possible quantum generalization of Eq. (6) is

HQ−Zp
¼

X
▽

− tσz1σ
z
2σ

z
3 −

X
j

hσxj þ H:c:; ð19Þ

for which the clock operators σz and σx obey ðσzÞp ¼
ðσxÞp ¼ 1 and σzσx ¼ e2πi=pσxσz [one can also take σz ¼
expðiθÞ and σx ¼ expði2πn=pÞ, and restrict θ to take values
in ð2π=pÞZp]. Unlike the quantum U(1) model, Eq. (19) is
exactly self-dual with the introduction of the dual plaquette
variables

τxj̄ ¼ σz1σ
z
2σ

z
3; τz

1̄
τz
2̄
τz
3̄
¼ σxj ; ð20Þ

for which the dual Hamiltonian takes the same form as
Eq. (19) with t and h switched. Since the spectrum of the
Zp models at h ¼ 0 is gapped, and it takes an infinite order
of perturbations of h to mix two different ground states
in the thermodynamics limit, the classical fractal order of
the Zp Pascal’s triangle models is not destroyed upon the
introduction of quantum fluctuations. Furthermore, the
exact self-duality implies that there should be one or more
quantum phase transitions that separate the fractal ordered
phase (t ≫ h) and the disordered phase (h ≫ t).
Discussion.—Although we demonstrated that the semi-

classical order of Eq. (12) is unstable against quantum
fluctuation, some deformation of Eq. (12) can support a
stable semiclassical order. In the Supplemental Material
[28], we will show that if we sum over three-boson
interactions for both upward-facing and downward-facing
triangles, the semiclassical

ffiffiffi
3

p
×

ffiffiffi
3

p
order becomes stable

against quantum fluctuations. Also, the system may be
tuned to a multicritical point where ρ2 in Eq. (18) vanishes,

and the low-energy dynamics is controlled by ρ4ð∇2  ψÞ2.
The system can remain gapless for a finite range of ρ4,
though it takes tuning multiple parameters to reach this
state [37–39].
The nature of the quantum phase transition(s) in the

quantum Zp model is a challenging subject. So far, there is
no well-established paradigm for understanding quantum
phase transitions involving spontaneous breaking of a
fractal symmetry. Any approach to studying the quantum
phase transition of the Zp models (such as the quantum Z2

Sierpinski triangle model) through the U(1) generalization
would need to address the enlarged Pascal’s triangle
symmetry pointed out in the current work.
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