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We introduce a model of interacting bosons exhibiting an infinite collection of fractal symmetries—
termed “Pascal’s triangle symmetries”—which provides a natural U(1) generalization of a spin-(1/2)
system with Sierpinski triangle fractal symmetries introduced in Newman et al., [Phys. Rev. E 60, 5068
(1999).]. The Pascal’s triangle symmetry gives rise to exact degeneracies, as well as a manifold of low-
energy states which are absent in the Sierpinski triangle model. Breaking the U(1) symmetry of this model
to Z,, with prime integer p, yields a lattice model with a unique fractal symmetry which is generated
by an operator supported on a fractal subsystem with Hausdorff dimension dy = In(p(p +1)/2)/In p.
The Hausdorff dimension of the fractal can be probed through correlation functions at finite temperature.
The phase diagram of these models at zero temperature in the presence of quantum fluctuations, as well
as the potential physical construction of the U(1) model, is discussed.
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Introduction.—In recent years, generalizations of the
notion of symmetry have significantly broadened our
understanding of states of matter. Highly entangled states
of quantum matter, such as Z, topological order [1-4] and
the (3 4 1)D algebraic spin liquid with photon excitations
[5-7], were previously thought to be beyond the notion of
spontaneous symmetry breaking (SSB) of ordinary global
symmetries. But it has been recently realized that these
phases admit a unified description in terms of the SSB of
generalized higher-form symmetries [8—16]. Subsystem
symmetries have further enriched our understanding along
this line. Long-range-entangled quantum phases with
fractionalized excitations that have inherently restricted
mobility—termed fracton orders—exhibit emergent sub-
system symmetries [17-22]. These symmetries can be
further categorized [18]: a type-l subsystem symmetry
has generators and conserved charges defined on regular
submanifolds such as lines and planes [17-19], while type-
IT subsystem symmetries have conserved charges defined
on a fractal-shaped subsystem [20,23-26], often with
noninteger spatial dimensions.

The simplest model with a fractal subsystem symmetry is
the Sierpinski triangle model, which was first introduced
for the purpose of studying glassy dynamics [27]:

Hgr = Z—Kafaéag. (1)
v

Here, o7 is an Ising spin defined on each site of a
triangular lattice, and the sum is only over the down-
ward-facing triangular plaquettes of the lattice. This
model has the following features: (i) The model has an
exotic fractal symmetry, which becomes most explicit
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when the system is defined on a L x L lattice with
L = 2% — 1: the Hamiltonian is invariant under flipping
spins along pairs of extensively large fractal subsystems,
each of which forms a Sierpinski triangle, as reviewed in
the Supplemental Material [28]. (ii) At finite temperature,
the three-point correlation function (o 407 (05,,) of spins
arranged on the corners of an equilateral triangle is nonzero
only when r=2% and it scales as ~exp(—ar?) with
dy =1n3/1In2, which is the Hausdorff dimension of the
Sierpinski triangle [23,29,30]. (iii) With the addition of a
transverse field > ; —ho?, there is a quantum phase tran-
sition at zero temperature [31,32] when & = K, which
separates the “fractal-ordered” phase that spontaneously
breaks the fractal symmetry (K > h) and a disordered
phase (h > K).

In this Letter, we introduce generalizations of both the
classical and quantum Sierpinski triangle models, which
lead to the identification of a novel kind of fractal
symmetry. These models are obtained from a U(1) parent
model with “Pascal’s triangle” (also called Yang Hui
triangle in China) symmetries, a family of symmetry
transformations along a fractal region which are exact in
a system with periodic boundary conditions, and for
particular system sizes. Even when these symmetries are
not exact, the presence of an ‘“approximate” Pascal’s
triangle symmetry gives rise to low-energy states which
are absent in the Sierpinski triangle model [27]. We study
the phase diagram of this parent model in the presence of
quantum fluctuations, and at nonzero temperature.
Descendants of this model are obtained by reducing the
U(1) degree of freedom of the parent model to Z,, with
prime integer p. The Z, models have their own
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fractal symmetry that are deduced from the Pascal’s
triangle symmetry, and their degenerate excitations have
an emergent fractal structure with Hausdorff dimen-
sion dy =In(p(p+1)/2)/Inp.

The U(1) parent model.—The Hamiltonian of the U(1)
generalization of the Sierpinski triangle model reads

Hyg) = Z—tcos (0, + 6, + 05). (2)
v

It is straightforward to see that Eq. (2) has two conventional
U(1) global symmetries:

U(1);:0jeq = Ojes +a, Oicg = Ojcp — a,

U(1),:0jes = Ojea + B, Oicc = Ojcc — P (3)

A, B, and C are the three sublattices of the triangular lattice.
The ground states of Eq. (2) spontaneously break the two
U(1) symmetries. Starting with one of the ground states,
say € = 0 uniformly on the entire lattice, a class of ground
states can be generated by rotating 6 globally according to
Eq. (3). Any ground state obtained this way still has a
uniform order of € on each of the three sublattices, hence
the ground states generated through Eq. (3) have a conven-

tional “\/§ X \/§ order, which is the order often observed
on the triangular lattice antiferromagnet.

Besides the two ordinary U(1) global symmetries, this
model [Eq. (2)] actually contains an infinite series of Z,
distinct fractal symmetries, one for each prime number p,
p = 2. The series of Z,, fractal symmetries exhibited by the
U(1) parent model are in the shape of a Pascal’s triangle
modulo p. For example, when p = 2, this Pascal’s triangle
symmetry reduces down to the familiar Z, fractal symmetry
of the Sierpinski triangle model; for p = 3, the Pascal’s
triangle modulo 3 reduces to another fractal shape (Fig. 1).

The exact series of fractal transformations of Eq. (2) can
be written down as a staggered rotation of the 6;’s in the
shape of a Pascal’s triangle modulo p, which has a side
length of p* — 1, where k is any integer greater than zero.
The precise form of the transformation is

2 A
0, >0, + = (=1)nto <lx + l") (4)
p ly

at the points (i,, i,) for which 0 <i, <i, and i, + i, €
[0, p* — 1]. As shown in the Supplemental Material [28],
transformations of this form can be used to generate exact
symmetries when the system is placed on an L x L lattice
with periodic boundary conditions and with L = p* — 1.
Any Z,, fractal transformation of the U(1) parent model
generates fully immobile defects which are analogous to
fractons. From the uniform 6; =0 ground state, trans-
forming the U(1) degrees of freedom according to Eq. (4) in
the shape of a local Pascal’s triangle of size p* — 1 creates

2

FIG. 1. The U(1) parent model [Eq. (2)] has a family of fractal
symmetries, generated by a staggered rotation of the boson phase
0, — 0, + (2z/ p)m; over a triangular region of side length which
is a power of any prime number p. For each p, the fractal
symmetry becomes exact for system size L> with L = p* — 1.
When acting on a classical ground state of the parent model, this
transformation generates excitations at the corners of the tri-
angular region. The action of this rotation can be visualized as
Pascal’s triangle modulo p, which is a fractal with Hausdorff
dimension dy(p) =In(p(p +1)/2)/In p.

three defects of energy (1 —cos(2z/p)), one at each
downward-facing triangular plaquette located at the corners
of the Pascal’s triangle, as shown in the Supplemental
Material [28], and as indicated schematically in Fig. 1. If
we treat these defects as pointlike excitations localized on
their downward-facing plaquettes, individual defects can-
not be moved by any rotation of 6;’s without creating more
excitations and are hence completely immobile.

At finite temperature, the U(1) parent model is com-
pletely disordered, similarly to the Sierpinski triangle
model [27]. This can be most easily seen from a duality
mapping of the U(1) degrees of freedom on the vertices to
new U(1) degrees of freedom on downward-facing pla-
quettes (6, + 0, + 03)y — ¢y, where ¢y is defined on the
dual site located at the center of each downward-facing
triangular plaquette (Fig. 2), and ¢ is still compact
(periodically defined). The dual of Eq. (2) is

HY ) = —tcos(dy). (5)

v

Since each ¢ is decoupled from the others, the partition
function factorizes into a product of local partition func-
tions for each individual ¢ which does not support any
phase transition.

The three-body interactions of the Sierpinski triangle
model, as well as those of the U(1) parent model, look
artificial. Reference [33] proposed to realize the Sierpinski
triangle model with the Rydberg atoms with only two-body
van der Waals interactions. In the Supplemental Material [28],
we present a more natural construction of the U(1) parent
model through a setup with only two-body interactions.

The Z,, models.—From the U(1) parent model in Eq. (2),
models with a single fractal symmetry that are natural
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FIG. 2. The models we consider in this Letter involve the sum
of all the downward-facing triangles (shaded in green). The dual
of the U(1) model [Egs. (5) and (15)] is defined on the dual
triangular lattice, whose sites are the center of each downward-
facing triangle of the original lattice.

extensions of the Sierpinski triangle model can be
constructed. This is done by breaking the U(1) degrees
of freedom down to Zp clock degrees of freedom,
o;=¢€",0,€ (2n/p)Z,:

t
HZP = Z —5610'263 + H.C. (6)
v

The model in Eq. (6) extends many properties of the
Sierpinski triangle model to a series of Z,, “Pascal’s triangle
models,” which reduces to Eq. (1) when p = 2. We note
that these Z,, models for prime integer p were mentioned in
Ref. [23], though the symmetries which distinguish them
from the Sierpinski case were not explored. Generally,
since the Z, fractal symmetry of the Pascal’s triangle
models are descended from the U(1) parent model, the
fractal symmetry transformation in these models is realized
by Eq. (4) with the appropriate choice of p. These models
also display the fracton-like defects associated with fractal
excitations in the shape of a Pascal’s triangle modulo p, as
well as spontaneously breaking the Z, fractal symmetry,
yielding a ground-state degeneracy of p’~! when L =
pk =1 (see the Supplemental Material [28] for derivation).

Spontaneous breaking of the Z,, fractal symmetries in the
Pascal’s triangle models can be diagnosed by a three-point
correlation function. Making use of the duality of these
models, we can define plaquette degrees of freedom 7y =
(610503)y for which the dual Hamiltonian is H%p =

> v —(t/2)ry + H.c. In the thermodynamic limit, each o
variable can be represented as an infinite staggered product
of dual 7z variables in the shape of a Pascal’s triangle
modulo p. The three-point function C5(r) = (60 06,.000.,)
after being rewritten in terms of the dual variables, only has
compact support when r = p*, and hence must otherwise
vanish. The three-point function factors into a product of
single-site expectation values (z),...,{z?~!). From the

form of the Hamiltonian, a general expression for the
three-point function for arbitrary p, primes can be derived
(see the Supplemental Material [28] for details)

s

(2" Nmp-m(K) (7)

1

Cy(r= Pk) =

Il
—

m

N, p—m (k) is the number of times m and p — m appear in a
Pascal’s triangle modulo p with length p* — 1. Such an
expression is complex, but a complete set of recurrence
relations is constructed in the Supplemental Material [28]
for N, ,_,(k), lending Eq. (7) to efficient numerical
evaluation. For small p, this can be done analytically—
e.g., for p = 3, the three-point function is

Cs(r=3%) = (o)™
Pt ,—pt/2 \ riH
_ <7e ¢ ) — e (8)

et + 2e7P12

where dy = (In6/1n3) is the Hausdorff dimension of a
Pascal’s triangle modulo 3.

As demonstrated by Eq. (7), the decay of the three-point
function can be complicated for general p prime. However,
a modified version of the Z, Pascal’s triangle models in
Eq. (6) can be proposed, for which the three-point function
at finite temperature always decays as a simple fractal area
law. If we consider an equal-weight summation of plaquette
terms,

n—1
2

NgEE

N~

——(010,03)™ + H.c. (9)

My = Z

v
This model retains the Z,, fractal symmetry of Eq. (6) as it
only includes products of the original plaquette terms. As

such, the duality (6,6,03)y — 7y still exists, and the dual
of H, is

Il
=}

m

il
2

Hg:ZZ—érg+H.c. (10)

VvV m=0

The manner in which the three-point correlation for H,, is
calculated remains the same as for what it was in Eq. (6),
with the exception that (z") no longer depends on power m.
As a result, C3(r = p*) decays as a fractal area law no
matter what value p takes:

d

Cy(r=ph) = ()" = e (11)

The Z,, Pascal’s triangle model with prime integer p can
be further extended to Z, models with composite integer N.
These new composite Zy models have more than one
fractal symmetry. In fact, there is a distinct Z, fractal
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symmetry for each unique prime divisor of N—e.g., the
Zy—e model has a Z, Sierpinski triangle fractal symmetry
and a Z; Pascal’s triangle modulo 3 fractal symmetry. The
behavior of the three-point correlations of the Zy models is
further discussed in the Supplemental Material [28].

The quantum phase diagram.—So far, we have only
discussed the classical version of the models. To turn
quantum fluctuations on in Eq. (2), one can modify the
model as

U
HQ—U(I) :Z—ICOS (91 +92+93) +ZEI’13, (12)
\ J

where 7 is the boson number operator defined on each site
of the triangular lattice, which is conjugate to the boson
phase [n;,0;] =i5;;.

As shown previously, a class of ground states of
the classical U(1) model in Eq. (2) have the conventional
v/3 x /3 order, which spontaneously breaks the Pascal’s
triangle symmetry, and the two U(1) symmetries in Eq. (3).
We now investigate whether this classical order is stable
against quantum fluctuation—i.e., whether it is stable
against the U term in Eq. (12). We argue that all symmetries
of the Hamiltonian in Eq. (12) are restored by quantum
fluctuations.

In an ordered phase that spontaneously breaks the U(1)
global symmetry, one can ignore the fact that the phase
angle € is a compact boson (i.e., @ ~ 60 + 2x) and hence
expand the cosine function of Eq. (12) to the lowest
nontrivial order. This procedure leads to an approximate
Gaussian Hamiltonian:

U
Hy_yy = D _100;+ Y 3165+ —nj. (13)
L.J J

The band structure of @ based on this Gaussian Hamiltonian
has minima at +K = +(4x/3,0), which is consistent with

the v/3 x /3 order of the classical Hamiltonian. The
spectrum of the Gaussian Hamiltonian is gapless.

The Gaussian expansion of the Hamiltonian ignores the
compactness of 6. In a quantum model constructed with 6,
6 being a compact boson is equivalent to the constraint that
its quantum conjugate variable n take discrete values.
To check the stability of a semiclassical state of # under
quantum fluctuation, one needs to investigate whether
the compactness of 6, or equivalently the discrete nature
of n, would destabilize the semiclassical state described
by the Gaussian Hamiltonian [Eq. (13)]. For example, the
(2 4 1)D quantum dimer model on the square lattice can be
mapped to a compact U(l) gauge theory [34,35]; a
Gaussian expansion would lead to gapless photons. But
the compactness of the gauge field is always relevant in a
semiclassical photon state unless the system is at a fine-
tuned multicritical point (the so-called RK point [34]);

hence, the Gaussian state is generally unstable against
quantum fluctuations. This effect is also referred to as the
confinement of a lattice gauge theory. The standard method
of the analysis relies on the dual formalism of Egs. (12) and
(13). The dual model is defined on the dual triangular
lattice (Fig. 2) by introducing the following variables:

DO=¢.  m= > =¥ (14

JEV JjEA around j

where j labels the sites of the dual triangular lattice, ¢; and
¥> are canonically conjugate variables, W; takes discrete
values, and ¢; is compact. The dual Hamiltonian reads

U
HY )= —tcos(;) + ZE(TT +¥;+%5)2 (15)
A

j
Instead of directly dealing with the discrete variable P,
we may view '¥; as taking continuous values, and ¢ as its
noncompact conjugate variable. The discrete nature of ¥
can be enforced through an external potential in the dual
Hamiltonian. The dual Hamiltonian becomes

U
H‘é_U(l) ~ ZE (P + W5 +P;)> — Ztcos(q’);)
A J

— acos(27¥5). (16)

The next step is to temporarily ignore the a terms, and
expand —7cos(¢;) to the lowest nontrivial order. After this
procedure, the dual Hamiltonian takes a Gaussian form,
and it is the dual of the Gaussian Hamiltonian in Eq. (13).
The goal of this analysis is to check the role of the a terms
at this Gaussian state. This dual Gaussian Hamiltonian
can be solved, leading to a band structure of ¥. The minima
of the band structure of W are located at the two corners of
the Brillouin zone, K = (4+47/3,0). We then expand ¥,
at £K:

Y(r) ~ e®Ty(r) + e KTy (r). (17)

The Lagrangian of the dual theory expanded at +K
becomes

LE 0y = (00 + pa(V)? =Y acos(é,-w),  (18)

where 7 = (Re(y),Im(y)); a = A, B, and C label the three
sublattices of the dual triangular lattice; and e, = 27(1,0),
ep = 27(—1/2,4/3/2), and ec = 27(—1/2,—/3/2) [36].

The last three terms in Eq. (18) arise from rewriting
the last term of Eq. (16) by expanding ¥ at £K. After
this expansion, the last term of Eq. (16) becomes
—acos(é, -y(r)) for r belonging to sublattice a (a = A,
B, and C) of the dual triangular lattice. Hence, at long
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scales, a nonvanishing term would survive. The « term in
Eq. (18) will be relevant for the Gaussian theory with
nonzero p,, which implies that the compactness of 9, or the
discrete nature of n in Eq. (12) destabilizes the semi-
classical Gaussian state, and the spectrum of Eq. (12)
should be gapped even with small U.

The dual description of the U(1) model studied here
captures the spectrum of the gapless modes arising from
spontaneously breaking the global U(l) symmetries,
though it does not reproduce the spectrum at U = 0 that
arise due to the Pascal triangle symmetries. Nevertheless,
the nature of the ground state of the system when the
pinning potential flows to strong coupling can still be
inferred. A strong a would pin ¥ to integer values, which
implies that a relevant a would drive the system into an
eigenstate of n in Eq. (12), and the U term will lead to a
unique and gapped ground state without any spontaneous
symmetry breaking. Hence, we postulate that quantum
fluctuations of Eq. (12) restore all the symmetries of the
model in Eq. (2), and continuously connect to the large-U
limit of Eq. (12). The analysis here would be more involved
if n took half-integer values in Eq. (12).

One possible quantum generalization of Eq. (6) is

Hyo; = —tojoso;—» hoi+Hc., (19)
v J

for which the clock operators o° and ¢* obey (¢°)” =
(6*)? =1 and 6°c* = €**/P5*6* [one can also take 6% =
exp(if) and 6 = exp(i2zn/p), and restrict 6 to take values
in (27/p)Z,]. Unlike the quantum U(1) model, Eq. (19) is
exactly self-dual with the introduction of the dual plaquette
variables
z"; = 0670505, T = o7, (20)
for which the dual Hamiltonian takes the same form as
Eq. (19) with ¢ and & switched. Since the spectrum of the
Z, models at & = 0 is gapped, and it takes an infinite order
of perturbations of 4 to mix two different ground states
in the thermodynamics limit, the classical fractal order of
the Z, Pascal’s triangle models is not destroyed upon the
introduction of quantum fluctuations. Furthermore, the
exact self-duality implies that there should be one or more
quantum phase transitions that separate the fractal ordered
phase (# > h) and the disordered phase (h > 1).
Discussion.—Although we demonstrated that the semi-
classical order of Eq. (12) is unstable against quantum
fluctuation, some deformation of Eq. (12) can support a
stable semiclassical order. In the Supplemental Material
[28], we will show that if we sum over three-boson
interactions for both upward-facing and downward-facing
triangles, the semiclassical \/§ X \/§ order becomes stable
against quantum fluctuations. Also, the system may be
tuned to a multicritical point where p, in Eq. (18) vanishes,

and the low-energy dynamics is controlled by p, (V)%
The system can remain gapless for a finite range of p,,
though it takes tuning multiple parameters to reach this
state [37-39].

The nature of the quantum phase transition(s) in the
quantum Z, model is a challenging subject. So far, there is
no well-established paradigm for understanding quantum
phase transitions involving spontaneous breaking of a
fractal symmetry. Any approach to studying the quantum
phase transition of the Z, models (such as the quantum Z,
Sierpinski triangle model) through the U(1) generalization
would need to address the enlarged Pascal’s triangle
symmetry pointed out in the current work.
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