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Deconfined quantum critical point with nonlocality
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The deconfined quantum critical point (DQCP) between the Néel and valence bond solid order was originally
proposed in quantum spin systems with a local Hamiltonian. In the last few years analogs of DQCPs with
nonlocal interactions have been explored, which can lead to rich possibilities. The nonlocal interactions can
either arise from an instantaneous long-range interaction in the Hamiltonian, or from gapless modes that reside
in one higher spatial dimension. Here, we consider another mechanism of generating nonlocal interactions by
coupling the DQCP to the “hot spots” of a Fermi surface. We demonstrate that at least within a substantial energy
window, the physics of the DQCP is controlled by a new fixed point with a dynamical exponent z > 1.
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I. INTRODUCTION

A deconfined quantum critical point (DQCP) occurs be-
tween two phases that spontaneously break two different
symmetries that do not contain each other as a subgroup. The
original DQCP was proposed as a direct unfine-tuned con-
tinuous quantum phase transition between the collinear Néel
and the valence bond solid (VBS) orders on the square lat-
tice [1,2]. Various analogs of the original DQCP were studied,
for example, the transition between the superfluid and various
density waves of a quantum boson system can be described in
a similar framework as that of the DQCP with an easy-plane
anisotropy [3,4]; later the DQCP was also generalized to lat-
tices where the spin order and VBS order both have a different
structure from the original DQCP [5]. In all these examples
the two ordered phases separated by the DQCP break very
different O-form symmetries; but nowadays one can generalize
the notion of DQCP to situations that involve higher-form
symmetries. For example, a direct transition between a mag-
netic order and a topological order can be viewed as a DQCP
between a phase with spontaneous breaking of a O-form sym-
metry and another phase with spontaneous breaking of a(n)
(emergent) 1-form symmetry [6—15]. In the past two decades,
alot of progress has been made towards understanding various
aspects of the DQCP, including its connection to mixed ‘t
Hooft anomaly and higher-dimensional symmetry protected
topological phases [16], as well as a duality web that connects
different Lagrangian descriptions of the DQCP [17-24], etc.

Despite all the theoretical progress, the nature of the orig-
inal DQCP proposed on a square lattice has always remained
controversial. Very encouraging evidence of DQCP was found
in the numerics on a two-dimensional (2D) lattice quantum
spin model dubbed the “J-0” model [25,26], as well as loop
models in the 3D Euclidean space [27,28], but numerical sim-
ulations have also observed unusual scaling behaviors [29,30]
and other complexities [31]. Recently, the DQCP has also
been challenged by the “conformal bootstrap” method of ana-
lyzing conformal field theories (CFTs): The critical exponents
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obtained from numerical simulations seem incompatible with
the bounds given by a conformal bootstrap [32,33]. Though
these should not exclude the possibility that the DQCP still
exists in other lattice models with critical exponents that are
consistent with the conformal bootstrap bounds, a consensus
on the nature of the DQCP awaits further efforts.

In this paper, rather than trying to address the infrared
nature of the original DQCP, we explore a possible continuous
quantum phase transition close to the originally proposed
DQCP, starting with the transition between the easy-plane
Néel order and the VBS order. In particular, we will discuss
the effect of nonlocality on DQCP. Nonlocality of a system
can directly arise from a long-range instantaneous interaction
in the Hamiltonian [34,35], or from coupling to gapless modes
in one higher dimension, when the system is realized at the
boundary of a bulk [36—47]. It was shown that, by coupling
to the bulk quantum critical modes, the transition between
the Néel and VBS order could be driven to a new fixed
point [41,42]. Nonlocality arising from holography was also
explored in Ref. [48].

Here, we explore nonlocality arising from a more realis-
tic mechanism. Nonlocality in space-time usually translates
to nonanalyticity in the momentum-frequency space. It is
well known that, based on the Hertz-Millis theory [49,50],
by coupling an order parameter ¢ to a Fermi surface, the
dynamics of the order parameter acquires a singular con-
tribution in the momentum-frequency space. In particular,
when the order parameter carries a finite momentum that
connects two “hot spots” of the Fermi surface, after formally
integrating out the fermions, the order parameter acquires a
singular term ~ )" g 0ll9wq |2. Within the framework of the
Hertz-Millis theory, this singular term renders the original
Zw’ q a)2|q§w,q,|2 term in the Lagrangian irrelevant, and leads
to a z = 2 Landau-Ginzburg theory of the order parameter ¢.
But the effect of the coupling to the hot spots will be more
complex in the case of DQCP, as the physical order parameter
¢ is now a composite operator of the deconfined degrees of
freedom at the DQCP. We note that novel physics arising from
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coupling to a background Fermi surface in a one-dimensional
setup was explored recently [51].

II. EASY-PLANE DQCP COUPLED WITH HOT SPOTS

Let us first inspect the easy-plane DQCP between the
in-plane Néel order and a VBS order on a square lattice.
The order parameters involved in this transition include a
two-component in-plane Néel order (N,, Ny) at momentum
(,m), and a two-component VBS order parameter (Vy, V,)
at momentum (77, 0) and (0, ), respectively. Since all these
order parameters carry a finite momentum, in principle they
would acquire a singular term in the form sketched above
when the easy-plane DQCP occurs with a background Fermi
surface, assuming their momenta connect hot spots of the
Fermi surface. The Lagrangian that describes the easy-plane
DQCP is an easy-plane CPP' model, and it is known that this
theory enjoys a self-duality [17], i.e., the in-plane Néel order
parameter (Ny, N,) is a bilinear of the CP! field (N, Ny) ~
(z'o*z, 77077), and the VBS order parameter along the x and
y direction is a bilinear of the dual CP' field (the vortex of z,
and zp, respectively): (V, Vy) ~ (vfo*v, vie¥v). Then after
we integrate out the background Fermi surface according to
the Hertz-Millis theory, the action that describes the transition
becomes

S= fdzxdr D10 = iA)zal® + rlzal® + ulzal*

a=1,2
+3 3 glollE 0 )0l 8))
w.q i=x,y

and the dual action reads

S, = /dzxdr Z 18 — iA)vg|* + Flvg|? + it|ve|*

a=1,2
+D ) Eoll(0 o vl )
w,q i=x,y
where 7= —r. The actions above will be the starting

point of our study; higher-order singular terms beyond the
Hertz-Millis theory that also arise from integrating out the
background fermions will be briefly discussed later. In this
paper we will show that, although the bare values of g and g
can differ, they may actually flow to a fixed point where g, =
8. Hence this fixed point not only corresponds to a direct
in-plane Néel-to-VBS transition, but our calculation suggests
that this new fixed point may still have the self-duality as
the originally proposed easy-plane DQCP [17], but we do not
make a statement about the presence of the enlarged emergent
0O(4) symmetry that can be perceived through the low-energy
effective nonlinear sigma model of the easy-plane DQCP [52],
as well as the duality web [18-24].

In order to study the theory Eq. (1) in a controllable
fashion, we follow the standard procedure (see, for example,
Refs. [53,54]) by introducing the Hubbard-Stratonovich auxil-
iary fields A, and ®' to decompose the two quartic terms of z,

FIG. 1. One-loop Feymann diagrams that contribute to S(g).
Here, the solid, dashed, dotted, and wavy lines represent the correla-
tors of z, 4, Aa» ', and gauge field A,,, respectively.

and consider the following large-N generalization of Eq. (1)
at the critical point r = 0:

N
S = [dzxdt DO 1@ = ifA)zael® + iralzaal

a=1 a=1,2
+i Z D' (zl0'z,). (3
i=x,y

With large N, the correlators of the Hubbard-Stratonovich
fields, and the gauge field read

8
)\a _.)‘0/ —q :_-)8010/7
(A (Ao (=) 110,

A (—ay = 1O %—ququ/qz)
(AU DAL(=]) = 2N( al ,
(PP (—§) = g8z, 4

where § = (v, ¢). We assume that g is at the order of 1/N.
We proceed by calculating the renormalization group (RG)
flow of g using the momentum-shell RG by integrating out
the modes with momentum within A/b < |k| < A (the cal-
culations are repeated with the dimensional regularization
as well); the most relevant Feynman diagrams are listed in
Fig. 1. Figures 1(a)-1(d) are the standard contributions to
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the leading-order 1/N expansion of the CPY~! model [54].
The key of the calculation is as follows: In the large-N limit,
the parameter g is exactly marginal, as zlaiza has a scaling
dimension [z]oz,] = 1 for i = x, y, while ®' has a scaling
dimension [®] = 2. With finite N, the scaling dimension of
zlo'z, receives a negative correction at the order of 1/N:
[zlaiza] =1-28/ (37%N), which makes g weakly relevant
with large but finite N. Hence the beta function of g should
take the form

dg
oy 5
dnb 372N S g ©)

When C is positive and order unity, g will flow to a fixed point
at the order of g, ~ 1/N.

Figures 1(e) and 1(f) potentially contribute to the coeffi-
cient C in the beta function above. Figure 1(e) has a vanishing
contribution at the easy-plane DQCP under consideration
right now, due to the matrix identity >, o/0’c/ =0 for
i = x, y. Figure 1(f) can be interpreted as the self-energy cor-
rection to z, 4,

(N dPq v
Y(w, k) = go/oJ/ _—
j=Zx,:y ap Q) (q + k)?

w?

=B =

=gﬁlnbxao+~-~. 6)
Here, g = (v, q), k= (w, k). The ellipses in the equation rep-
resent terms which do not contribute at order Inb. This
self-energy correction will modify the Gaussian part of the
action of z, 4 to

L=z (10— 92z 4 (7)

This result implies that after coupling to the background Fermi
surface, the space-time scaling of the original easy-plane
DQCP is modified, which should now be

T—> b1, x— b 'x, ®)

where z =1+ % + O(g?) is the dynamical exponent. Here,

we remind the readers that, in the original Hertz-Millis theory,
when an order parameter is coupled to hot spots of a Fermi
surface, the Gaussian part of the Landau-Ginzburg theory of
the order parameter has a dynamical exponent z = 2. Here,
although the order parameter is a composite operator of z, 4,
the dynamical scaling exponent z is still modified due to its
coupling to the Fermi surface.

The wave-function renormalization in Fig. 1(f) is in fact
equivalent to the modification of the space-time scaling,
plus a correction to the scaling dimension of z, 4: Alzza] =
g/(87?). Eventually the beta function of g reads

dg 56 g ©)
dinb _ \3722N 2722 )%

B(g) =

where the first term arises from Figs. 1(a)-1(d), while the
second term is the additional wave-function renormalization
from Fig. 1(f) as described above. Indeed, for g > 0, the
theory flows to a new fixed point g, = 13% + 0(%). Several
two-loop diagrams such as the Aslamazov-Larkin diagrams
appear to be also at the 1/N order, but careful evaluation

shows that these diagrams either do not contribute to the beta

function as they do not lead to a logarithmic divergence, or
their contributions cancel out with each other [54].

The same calculation applies to g in Eq. (2). Hence al-
though the bare values of g and g in Egs. (1) and (2) can
be different, the RG equations above suggest that they would
flow to a fixed point where g, = g.. Hence our calculation
suggests that at this fixed point the self-duality of the orig-
inal easy-plane DQCP still holds. Another more technical
note is that the VBS order parameter V, ~ vfo*v is also the
monopole operator of gauge field A, in Eq. (1), hence the g
term in Eq. (2) also corresponds to a correction to the action
of the gauge field A,,. But since we expect g to flow to a fixed
point at order 1/N, at the self-consistent level we can ignore
this singular correction and use the gauge field propagator in
the large-N limit for our calculation.

At this new RG fixed point, we obtain scaling dimensions
for the following operators:

80  3g. 164 1
1=2 5oy e =2 5w o)
=24 +g*=2+ﬁi+o<i)

372N 472 7N N2
[Zio™z] = 1. (10)

Here, we have defined the operators A* = (A1 & 1,)/2. Some
two-loop diagrams such as the ones considered in Ref. [55]
contribute to the evaluation of [A™]. The critical exponent v is
inferred from the scaling dimension of A ™

vii=24z-TI=1+ L +0(i). (11)
72N N?

These standard 1/N expansions may not be extremely reliable
at the physically relevant case with small N, but the scaling
dimensions of zJo*>z, should be exactly 1 at g = g,. This is
due to the fact that the system remains scaling invariant at
the fixed point with nonzero g,, and the singular frequency
dependence |w| in Eq. (1) cannot be renormalized, then to
keep the system scaling invariant the in-plane Néel order
parameter (N, N,) must have a scaling dimension 1 in the
Euclidean space-time.

We note that based on the Hertz-Millis theory there is
another singular interaction |a>||(z*c7zz)w.q|2 that would also
be generated by coupling the z component of the Néel order
to the background Fermi surface, but this term is irrelevant
with the large-N generalization of the easy-plane DQCP, as
the scaling dimension of z'o%z is 2 with large N.

We would also like to comment on the validity of the Hertz-
Millis theory. It was noted in Ref. [56] that, when we couple
an order parameter ¢ to a Fermi surface, besides generating
singular terms at the quadratic order of ¢, similar higher-order
terms ~¢@" with space-time singularity are also generated after
integrating out the fermions. It was shown in Ref. [56] that
direct power counting suggests these higher-order terms are
marginal at the z = 2 Gaussian fixed point of the Hertz-Millis
theory, hence it is no longer justified to ignore these terms. In
fact, in our case, once we identify ¢ as 7o'z, the higher-order
terms pointed out in Ref. [56] are still marginal at the new
fixed point, since the scaling dimension [z7oz] is precisely 1.
But this does not mean that the physics at the new fixed point
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we derived is not observable. Let us return to the original
theory with a bosonic field ¢ coupled with Ng copies of Fermi
surfaces,

Nr
Lo =Y [ @ —ivi - V)fur + [0 —iva- V)i
=1

+ ug [Z[f; Tfr+(1 < 2)]], (12)

l

where 1,2 label two points of the Fermi surface connected by
the momentum of ¢, and 7 is a flavor matrix. The parameter
gin Eq. (1) is about g ~ Nru?, and since g ~ 1/N, we need
u ~ /T/(NNp). If we fix N, the higher-order singular terms
considered in Ref. [56] will be at the order of 1 /N;f/ 2~ Hence
with large N, although the ultimate fate of these higher-order
singular terms in the infrared limit is unclear, there could be
a large energy window where the physics is controlled by the
fixed point g, derived above.

We can also compute the self-energy of the fermions at the
hot spot to the leading nontrivial order of u:

dvd’q 1

Sr(w, k) ~ 2uo?

@B~ e o=y —vs k—q)
1

RTETa -

We have taken the correlator of the bosonic field Ny ,(§) ~
Zfo*¥z to be 1/(v2 4 ¢*)' ™2, where 7 is the anomalous
dimension of the in-plane Néel order parameter N, , at the
purely bosonic easy-plane DQCP. Carrying out the integral,

we obtain
Tr(w, 0) ~ —iu® sgn(w)|w|"e’. (14)

Generally we expect the fermions at the hot spots to have
non-Fermi-liquid-like self-energy for a considerable energy
window.

II1. SU(2)-INVARIANT DQCP COUPLED WITH HOT SPOTS

Here, we briefly discuss the SU(2)-invariant DQCP cou-
pled to a background Fermi surface, which can be studied
in the same way as the easy-plane case. Here, we only need
one Hubbard-Stratonovich field A* to decompose the quartic
term, and we obtain the following large-N theory at the critical
point:

N
S = /dzxdfz D10 = iA)zaal + ir T |zal
a=1 a=1,2
+i Y Doz, (15)
i=x,y,2
Now the Fermi surfaces are coupled to all three components
of the Néel order parameter N = z'Gz. The new dynamic

exponent is now z = 1 + 831—5; + O(g%), and the beta function
of gis

g 16 &
dlnb ~ 72N 472’

B(g) = (16)

If g > 0, the theory flows to a new RG fixed point at g, =
?\,—4. At the new RG fixed point, we have the following scaling
dimensions,

24 9g, 96 1
Al=2—- —— — =2—-——+0(—=).
o 72N  8x? 72N + <N2>
[zio™z,] = 1, (17)

and the critical exponent

v_l=2+z—[k+]=l+g+0<i> (18)
2N N2 )

Again, the Néel order parameter has a scaling dimension
[N]=1 exactly at the new fixed point. Though it is not so
convenient to directly compute the RG flow of the singular
term of the VBS order parameter due to the lack of a dual La-
grangian for the SU(2)-invariant DQCP, we expect the scaling
dimension of the VBS order parameter should also be 1 at
the new fixed point. To elaborate, the VBS order parameter
Vi, V, should still acquire a singular term V, |0 |V, + (x — )
from coupling to the Fermi surface. This term is singular
(nonanalytic) in the frequency space, and also long range in
the temporal direction. The form of the singular term |9, |
cannot be renormalized under RG. And if this term flows to
a fixed point, this term V,|d;|V; + (x — y) remains scaling
invariant at the fixed point, hence the VBS order parameter
V* should have precisely scaling dimension 1.

Reference [2] pointed out that at the DQCP there are
two length scales, one for the correlation length & of the
order parameter N,, and the other is the thickness of the
VBS domain wall (&yps). In our system these two length
scales still exist, and the relation between these two length
scales should be similar to what was pointed out in Ref. [2]:
Evps ~ & f(AEIT72), where A is the strength of the fourfold
monopole operator of the gauge field that is the minimal topo-
logical defect allowed by symmetry on a square lattice, and
A is the scaling dimension of the fourfold monopole, which
we assume is greater than d + z (which means that the four-
fold monopole is irrelevant at the DQCP). z is the dynamical
exponent computed in this work. Following the discussions in
Ref. [2], one can further infer that &ygg ~ £2~9/2 close to
the DQCP. Since we expect A to be greater than 2 + z, &vgs
diverges faster than & near the DQCP.

The quantum critical modes at the new fixed point with
z > | will make a contribution C ~ T2/ to the specific heat,
which is different from ordinary (2 + 1)d QCP with z = 1.
But the background Fermi surface would contribute a specific
heat linear with temperature 7', hence we expect that the
contribution from the quantum critical modes will be over-
shadowed by the background Fermi surface.

IV. DISCUSSION

In this paper we discussed the fate of the DQCP when it
occurs with a background Fermi surface. We demonstrated
that with a large number of copies of Fermi surfaces, there
is a substantial energy window where the easy-plane DQCP
is controlled by a self-dual fixed point with a dynamical ex-
ponent z > 1. We did not pursue a full renormalization group
analysis of the boson-fermion coupled theory, but an analysis
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such as the ones discussed in Refs. [57,58] when the order
parameter ¢ is a composite operator of deconfined degrees of
freedom is very much worth studying in the future.

Many insights of the DQCP, including the emergent sym-
metry, ‘t Hooft anomaly, as well as a possible phase diagram
and RG flow, can be gained from the nonlinear sigma model
(NLSM) approach that unifies all the order parameters in one
action [52,59-64]. The very key term in the NLSM is a topo-
logical term. The Néel and VBS order parameters can also be
treated on an equal footing in the U(1) and SU(2) spin-liquid
language [22]. In the future it is also worth exploring the
consequence of coupling the DQCP to a Fermi surface using
these different formalisms.

Besides the DQCP, our study is also meaningful to the
interaction-driven metal-insulator transition (MIT) where the
insulator phase has a certain density wave order. The ba-
sic formalism of the theory describing this MIT involves
introducing bosonic partons that carry the electric charge,

and fermionic partons that carry the spin. This MIT is in-
terpreted as a superfluid-to-density wave transition of the
charged bosonic parton sector [65,66] (the “superfluid” phase
of the bosonic sector of the phase diagram corresponds to the
metallic phase [67]), which is also described by a cpMN!
model in which the bosonic matter fields are vortices of the
charged bosonic parton. There are multiple components of the
vortex fields whose condensate corresponds to the degenerate
density wave patterns of the insulator phase. When the density
wave order parameter couples to the hot spots of the Fermi
surface of the fermionic spinon sector, the same singular terms
such as the one considered in our current paper will arise. Our
study indicates that the physics at this MIT could be controlled
by a new fixed point with dynamical exponent z > 1.
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