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Abstract

In a previous work, we have shown that a granular micromechanics approach can lead to load path depen-

dent continuum models. In the present work, we generalize such a micromechanical approach introducing an

intrinsic 2nd gradient energy storage mechanism (resembling pantographic micromechanism), in the grain-grain

interaction. Such a mechanism, represents long-range e�ects but could also be thought as deriving from the

utilization of an actual pantographic connection between two grains in a granular metamaterial. Taking advan-

tage of the homogenization approach developed in previous works, we determine the mechanical behavior of the

macro-scale continuum and carry out parametric analyses with respect to the averaged intergranular distance

and with respect to the sti�ness associated to the pantographic term. We show that with the inclusion of the

pantographic term mentioned above, the desired thickness of the localization zone can be modeled and �nely

tuned successfully. Also we show complex mechanics of the sample under di�erent load-path with and without

pantographic term.

1 Introduction

Damage and fracture can signi�cantly impair the safety and operational capacity of many engineering devices

and structures. Occurrence of damage often represents the extreme load scenario that drives the design. There-
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fore, resilience of modern engineering architectures with respect to damage, especially in critical applications like

aeronautics, civil engineering and mechanical engineering, is often one of the main cost-driving factors.

Since it is often di�cult and economically nonviable to validate [34, 43, 3, 47] by experimental means the real

damage tolerance of a new architecture apart from scaled-down trials, with the design load cases often remaining

untested, there is an increasing need for reliable modeling and related numerical protocols helping towards the

objective above. One of the main challenges in damage mechanics is that loss of sti�ness and failure of mechanical

systems are often accompanied by localization of deformation [36, 38]. It is well known that numerical simulation of

such problems utilizing methods such as classical fracture mechanics or classical damage mechanics presents serious

shortcomings. For example, classical linear elastic fracture mechanics is unable to predict weakening or nucleation

of defects at locations away from existing cracks, such as from boundaries that could appear, among others, due to

material damage or weakness and related localization of deformation [49, 41]. Similarly, classical damage mechanics

su�ers from instabilities associated with loss of ellipticity, which typically requires certain regularization, particularly

for simulating coalescence of microfractures into concentrated zones and for producing results that are independent

of mesh size and shape used in numerical simulations [23, 46, 17, 9, 7].

In recent years, phase-�eld models that include regularization have been proposed to address some of the

above-mentioned shortcomings [31, 25]. However, further developments are needed, as many of these existing

methods, including phase �eld methods, do not treat the e�ect of load paths and pre-loading upon the fracture

paths and their evolution [33, 35]. Moreover, localization zones (or shear bands) and boundary layers observed in

many experiments are of �nite spatial dimension and they exist irrespective of the size of the domain (size of the

structure). Regularization approaches proposed within the above mentioned classical and phase �eld approaches do

not address the question of size of the localization zone, particularly from a micro-mechano-morphological viewpoint.

In addition, in many past micro-macro identi�cation, the 2nd gradient energy derived from lattice or discrete models

depends upon the 1st gradient energy, and the 2nd gradient sti�nesses are proportional to 1st gradient ones and to

the square of the RVE or to the lattice size [2, 1, 10, 24, 50]. In these cases, and in the limit of such a size going to

zero, the 2nd gradient constants vanish. Such schemes, therefore, cannot explain in that limit (i) a �nite localization

zone, that is in fact independent on grain sizes, and (ii) the fact that similar grain sizes lead to di�erent shear band

thickness [21, 40], an observation that can be attributed to correct micro-macro identi�cation of kinematical features,

including the e�ect of grain-rotation and other long-range e�ects. It is also noteworthy that strain localization could

be accompanied by band broadening [22] due to the evolution of micro-mechano-morphological e�ects an aspect that

conventional fracture mechanics or shear band modeling largely overlooks [39]. To develop an approach in which we

can incorporate the dependence upon the load-path and be able to regulate the localization zone thickness we utilize

the micro-macro identi�cation formalism based upon granular micromechanics [29, 37], in which it is considered

that the elastic strain energy is stored and/or energy is dissipated in the deformation mechanisms representing

interaction of grain-pairs. Such a deformation is modeled by relative motions of grain bary-centers, regardless of
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the location of the actual deformation within the grains.

It should be noted that, owing to recent advances in versatile manufacturing techniques as additive manufacturing

allowing for their rapid production [44, 20, 45, 51], architected materials, also known as metamaterials [8, 13,

14], have become widespread in several �elds of engineering. Indeed, properly designed architected materials can

exhibit extremely favorable mechanical performances like low weight-to-sti�ness ratios [59, 18], high element-failure

tolerance [52, 56], and high energy-absorption capability [30]. This has further urged theoretical mechanicians to

take into account the signi�cance of micro-scale mechanisms in in�uencing macro-scale material behaviors. Indeed,

the main idea underlying the development of so-called metamaterials is the production of materials with arti�cially-

controlled architecture conferring desired properties to the material [58]. Recently, the homogenization of di�erent

pantographic motifs [15, 42, 11, 6, 16], i.e. a mechanism which is well known from everyday life (pantographic

mirrors, expanding fences, scissor lifts, etc.), which is characterized by a zero-energy accordion-like homogeneous

extension/compression deformation mode, has been addressed for this reason. The studies on the homogenization

of the above-mentioned pantographic motifs has concluded that, at macro-scale, they behave as second gradient

continua. More particularly, the deformation energy of pantographic beams [53, 54, 55], i.e. slender pantographic

structures, in contrast to the Elastica for which the deformation energy depends on the projection of the second

gradient to the normal vector of the placement function, i.e. the material curvature, does also depend on the

projection onto the tangent vector, introduced as the stretch gradient. Thus, the deformation energy takes into

account the complete second gradient of the placement function. In such a model, non-standard boundary conditions

and more generalized forces such as double forces do appear [5, 4]. In other words, pantographic beams exhibit

second gradient e�ects, i.e. non-locality or second-neighbor interactions, also in extension/compression and not

only in bending, as standard beam models.

In previous works, we have proved that a granular micromechanics approach can lead to load path dependent

outcomes [37, 48]. Here, we generalize the grain-pair interaction by introducing an additional pantographic en-

ergy storage mechanism that depends upon strain gradient, and therefore, represents long-range (beyond nearest

neighbor) e�ects that characterize all discrete systems and that need to be accounted for continuum models to be

representative. More speci�cally, a spring is introduced at the micro-scale accumulating energy upon the gradient

of its stretch, which can be regarded at a lower scale as a pantographic beam with �xed stretch at boundaries,

deforming mainly along the axial direction, e.g. with low slenderness. Such a pantographic term generalizing the

grain-pair interaction could be regarded not just as accounting generically for long-range interactions, but as a term

deriving from the modeling of an actual pantographic sub-structure embedded within grain-grain interactions, that

could be realized by 3D printing in the context of an actual granular metamaterial [19, 28, 12, 32].

In this paper, we show through numerical examples that with the inclusion of the pantographic term mentioned

above, a micro-mechanical e�ects on the macro damage model is that the desired thickness of the localization

zone can be modeled and �nely tuned successfully. It could be done as for one way loading as well for di�erent
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load-path cases. In particular, the paper is organized as follows. In Section 2, the discrete micro-mechanical

model for granular systems is introduced. The target continuum is introduced as well. Then, Piola's ansatz is

employed to relate the discrete with the continuum and the objective relative grain-grain displacement is de�ned.

Exploiting Piola's ansatz, continuum deformation measures are derived from the previously-introduced objective

relative grain-grain displacement. Subsequently, sti�nesses and e�ective damaged sti�nesses are de�ned following

the introduction of the kinematic damage descriptors for the state of degradation of each grain-grain interaction.

In Sect. 3 the elastic strain energy associated to each grain-grain interaction is de�ned. Successively, in Sect. 4, the

dissipation, external, and total energy functionals are introduced. After that, governing equations for the damage

descriptors associated to each grain-grain interaction are derived from a variational deduction procedure based on

a hemi-variational principle. Sect. 5 reports on the numerical results obtained by making use of the presented

model. Particularly, parametric analyses are carried out with respect to the averaged intergranular distance and

with respect to the sti�ness associated to the pantographic term by re-scaling in micromechanical parameters with

the averaged intergranular distance so to keep unchanged the continuum sti�ness and damage characteristics.

2 Discrete and continuous descriptions of systems with grain-grain in-

teractions

2.1 Identi�cation à la Piola

Within the discrete description, the reference con�guration of the considered set of N grains is given by positions

of their centroids

Xi ∈ E2, with i = 1, . . . , N,

where E2 is the Euclidean two-dimensional space. The position in the present (or current) con�guration xi ∈ E2,

at time t, is obtained through the placement function χi (t) as follows

xi = χi (t) = Xi + ui (t) , i = 1, . . . , N (1)

where ui (t) is the displacement function of the i-th grain.

Within the continuum description, a continuous body B ⊂ E2, constituted by in�nitely many particles, is

considered in the reference con�guration. A generic particle occupies the position X in the reference con�guration,

i.e. X ∈ B. Such a particle is placed, in the present con�guration at time t, into the position x through the
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placement function

x = χ (X, t) = X + u (X, t) , (2)

where u (X, t) is the displacement function of the continuous body B.

In the continuum-discrete identi�cation, the following relationship (Piola's Ansatz) will be assumed

χ (Xi, t) = χi (t) , i = 1, . . . , N, (3)

which means that the placements χi (t) of the N grains correspond to the placement χ (X, t) of the continuous

body B evaluated at those positions X = Xi, with i = 1, ..., N , where the grains are located in the reference

con�guration.

𝑵

Figure 1: Graphical representation of Piola's Ansatz in Eq. (3). Discrete kinematic descriptors introduced in Eq.
(1), on the left, and continuous kinematic descriptor introduced in Eq. (2), on the right.

2.2 Objective relative grain-grain displacement and continuum deformation mea-

sures

Let us now consider just a pair of grains denoted as n and p with their centroids positioned at Xn and Xp,

respectively. Let us also assume that the distance between them is equal to L, that is assumed to be the averaged

intergranular distance. Furthermore, the unit vectorĉ can be de�ned as follows

Xn −Xp = ĉL. (4)
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Therefore, the vector quantity ĉL in Eq. (4) is nothing but the arrow in the reference con�guration that, once

applied to the position Xn, touches and points toward the position Xp. In the current con�guration, at time

t, the positions occupied by the two grain centroids at positions Xn and Xp in the reference con�guration are,

respectively, xn = χ (Xn, t) and xp = χ (Xp, t). Analogously, the vector in Eq. (4) is transformed in the present

con�guration, at time t, into

xn − xp = χ (Xn, t)− χ (Xp, t) . (5)

Following [48], an objective relative displacement is de�ned as

unp = F T (xn − xp)− (Xn −Xp) , (6)

where F = ∇χ is the deformation gradient. Here and after ∇ means the gradient operator with respect to the

position X in the reference con�guration.

Let us now assume that the two grains n and p are neighboring ones. Thus, the Taylor's series expansion of the

function χ (Xn, t) centered at X = Xp yields

xn = χ (Xn, t) ∼= xp + LF pĉ+
L2

2
[∇pF ĉ] · ĉ, (7)

where the following second and third order tensors evaluated at X = Xp have been de�ned

F p = (∇χ)X=Xp
, ∇pF = [∇ (∇χ)]X=Xp

.

Let us also introduce the Green-Saint-Venant tensor G and its gradient, which are, respectively, a second and third

order tensor

G =
1

2

(
F TF − I

)
, ∇G = F T∇F . (8)

Equations (7) and (8), in index notation, where superscripts denote the position at which the corresponding quantity

is evaluated, read as

xni = xpi + F pij ĉjL+
L2

2
F pij,hĉj ĉh, Gpij =

1

2

(
F paiF

p
aj − δij

)
, Gpij,h = F paiF

p
aj,h. (9)

Thus, making use of the index notation and taking into account Eqs. (4) and (9), the objective relative displacement

in Eq. (6) can be re-written as

unpi = 2Gpij ĉjL+
L2

2
Gpij,hĉj ĉh. (10)

We remark that, owing to Eq. (10), the objective relative displacement unp for a given grain-grain orientation ĉ

is not additive inverse of that computed for the opposite grain-grain orientation, i.e. −ĉ, when the strain gradient
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is non-vanishing, i.e. ∇G 6= 0, because it is not an odd function of ĉ. This means that the strain gradient breaks

the symmetry with respect to the inversion of the grain-grain orientation. Such a feature enables strain-gradient-

triggered chiral e�ects.

The half-projection of the objective relative displacement on the unit vector ĉ is the so-called normal displacement

uη (a scalar quantity), while its projection on the unit vector orthogonal to ĉ is the so-called tangent displacement

vector

uη =
1

2
unp · ĉ, uτ = unp − (unp · ĉ) ĉ. (11)

Such a de�nition for uηhave been chosen in order to have non-confusing interpretation of sti�ness parameters de�ned

in the next subsection. For the detailed justi�cation one can see [37]. Insertion of (10) into (11) yields the normal

displacement, its square and the squared tangent displacements, in terms of the strain G, the strain gradient ∇G,

the grain-grain distance L and its orientation ĉ

uη = LGij ĉiĉj +
L2

4
Gij,hĉiĉj ĉh, (12)

u2η = L2ĉiĉj ĉaĉbGijGab +
1

2
L3ĉiĉj ĉaĉbĉcGijGab,c +

1

16
L4ĉiĉj ĉhĉaĉbĉcGij,hGab,c, (13)

u2τ = 4L2GijGab (δiaĉj ĉb − ĉiĉj ĉaĉb) + 2L3GijGab,c (δiaĉj ĉbĉc − ĉiĉj ĉaĉbĉc) (14)

+
L4

4
Gij,hGam,n (δiaĉj ĉhĉmĉn − ĉiĉj ĉhĉaĉbĉc) ,

where the superscript p has been omitted to simplify the notation.

2.3 Damage descriptors and e�ective sti�nesses

Following the same notation employed in [48], the damaged tangent sti�ness is denoted with kτ,D and the damaged

normal sti�ness is denoted with kη,D

kη,D = ktη,DΘ (uη) + kcη,DΘ (−uη) , (15)

where ktη,D is the sti�ness in tension and kcη,D � ktη,D is the sti�ness in compression. Remark that, usually, for

cementitious granular materials the sti�ness in compression is much higher than the sti�ness in tension. Here,

tension and compression are discriminated through the sign of the objective normal displacement uη and, for this

reason, we make use of the Heaviside function Θ. Damage is modeled with two variables, i.e. the normal damage

Dη, and the tangent damage Dτ . The damage variables Dη and Dτ reduce linearly, respectively, the tension and
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compression normal damaged sti�ness kη,D (15) and the tangent damaged sti�ness kτ,D. In formulas, we have

ktη,D = ktη (1−Dη) , kcη,D = kcη (1−Dη) , kτ,D = kτ (1−Dτ ) , (16)

which means that the tangent damaged sti�ness kτ,D and the normal damaged sti�ness kη,D are de�ned, respectively,

through the non-damaged tangent sti�ness kτ and the non-damaged normal sti�ness kη. For the latter case, in

formulas, we have kη,D = kη (1−Dη), where the non-damaged normal sti�ness kη has been de�ned in terms of the

non-damaged tension normal sti�ness ktη and the non-damaged compression normal sti�ness kcη as

kη = ktηΘ (uη) + kcηΘ (−uη) . (17)

We hence obtain the following synthetic expression for the damaged normal sti�ness

kη,D = kη (1−Dη) = ktη (1−Dη) Θ (uη) + kcη (1−Dη) Θ (−uη) . (18)

In order to smooth the constitutive assumption in Eq. (17), the Heaviside function Θ (x) is replaced in the numerical

scheme by the following smooth function [57]

1

2
+

1

π
arctan

(x
α

)
(19)

so that the non-damaged normal sti�ness is de�ned as a smooth function of the normal relative displacement

kη =
1

2

(
ktη + kcη

)
+

1

π

(
ktη − kcη

)
arctan

(uη
α

)
, (20)

that in turns gives the damaged normal sti�ness as a smooth function of the normal relative displacement

kη,D =
1

2

(
ktη + kcη

)
(1−Dη) +

1

π

(
ktη − kcη

)
arctan

(uη
α

)
(1−Dη) . (21)

The quantity α can be tuned to modulate the regularization. Large values of α enhance the convergence of the

algorithm. A value for α is considered, see Tab. 1, as to give a su�ciently smooth and non-sti� problem while not

being detrimental to the congruence of Eqs. (17, 20) and Eqs. (18, 21), so that the physical meaning of α can be

overlooked.
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Figure 2: Plot for Eq. (19). In the limit of α going to zero the smooth function in (19) goes to the Heaviside
function.

3 Elastic strain energy

The elastic energy density per unit area is derived starting from the elastic energy associated to a single grain-grain

interaction, say the couple n − p considered in Section 2.2, within the discrete description. It is chosen to be

additively decomposed in two parts

U tot = Uu + UP ,

where the �rst contribution Uu follows the modeling assumption of [48]

Uu =
1

2
kη,Du

2
η +

1

2
kτ,Du

2
τ , (22)

having intergranular interaction described by means of normal and tangential springs. It is worth to be noted that

the damaged elastic sti�nesses in Eqs. (16)3 and (18), which are related to those springs, can be de�ned as the

coe�cients of a quadratic form of the objective normal and tangential displacements in Eq. (22).

The second term UP reads as

UP =
1

2
KP [(∇uη) · ĉ]2 (23)

and it is introduced as an additional energy storage mechanism that represents long-range (beyond nearest neigh-

bor) e�ects, and therefore, upon gradients of relative displacement. The normal gradient of the objective normal

displacement is, neglecting second gradient of strain terms,

(∇uη) · ĉ = LGpij,hĉiĉj ĉh
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Figure 3: Representation of the pantographic mechanism

and it leads us to the UP formulation in terms of strain gradient components

UP =
1

2
KP [(∇uη) · ĉ]2 =

1

2
KpL

2Gpij,hG
p
ab,cĉiĉj ĉhĉaĉbĉc. (24)

The grain-grain interaction is, therefore, no longer represented by two (normal and tangential) springs. The

introduction of the term UP allows us to account, for instance, for a non-null strain energy when the objective

relative displacement unp is zero for both normal uη and tangential uτ components. It can be seen from Fig. 3

that such a behavior resembles that of a pantograph. Thus, the introduction of UP implies a kind of pantographic

interaction mechanism and the coe�cientKP will be further referred to as the coe�cient of pantographic interaction

(or the pantographic coe�cient).

In the discrete description, the total energy U tot associated to the interaction of a given grain, whose centroid

occupies the position Xp in the reference con�guration, with neighboring grains is given by the summation of the

energy in Eq. (22) for all the N − 1 possible interactions

U tot =
N−1∑
i=1

Ui =
N−1∑
i=1

(Uu,i + UP,i) =
N−1∑
i=1

(
1

2
kη,D,iu

2
η,i +

1

2
kτ,D,iu

2
τ,i +

1

2
KP,i [(∇uη,i) · ĉi]2

)
, (25)

where the subscript i refers to a generic couple n− p of grains. In Eq. (25) it is therefore intended that kη,D,i and

kτ,D,i are the damaged sti�nesses, respectively normal and tangent, associated to the interaction of the i-th couple

of grains, while u2η,i and u
2
τ,i are the squared elastic relative displacements, respectively normal and tangent, of the
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Figure 4: Graphic representation of the homogenization rule

i-th couple of grains. By [(∇uη,i) · ĉi]2 we denoted the squared normal gradient of objective normal displacement

of the i-th couple of grains.

It is worth to mention here that the pantographic coe�cientsKP,i are not a�ected by damage growth, in contrast

to other sti�nesses in Eq. (25), so the term UP remains �nite during the evolution of the system.

Continualization of Eq. (25) is performed by using the following homogenization rule. Let a be a generic quantity

de�ned within the discrete description, such that ai refers to the grain-grain interaction, identi�ed with the index

i, between a generic grain n and a generic grain p. Let a (θ) be the continuous distribution of the quantity a over

the orientation θ of the grain-pair formed by grain n and its neighboring grains. We have that, when the number

N of grains within the discrete system tends to in�nite, the following limit holds

N∑
i=1

[ai] −→
�
S1

a (θ) , (26)

where S1 = [0, 2π] is the unit circle, namely the domain of the function a (θ), i.e. the set of all orientations. Remark

that ai = a (θi), where θi is the orientation of the grain-pair formed by grain n and grain p, namely the orientation

of the unit vector ĉ. The application of the homogenization rule in Eq. (26) to the total energy U tot in Eq. (25)

gives

U tot −→ U =

�
S1

1

2
kη (1−Dη)u2η +

1

2
kτ (1−Dτ )u2τ ,+

1

2
KP [(∇uη) · ĉ]2 , (27)

where kη = k̃η (θ), kτ = k̃τ (θ), KP = K̃P (θ), Dη = D̃η (θ), and Dτ = D̃τ (θ) replace, respectively, kη,i, kτ,i, KP,i,

Dη,i, and Dτ,i. Remark that these quantities are all functions of the orientation θ ∈ [0, 2π] of the generic grain-pair

formed by grain n and its neighboring grains, namely

kη,i → k̃η (θ) , kτ,i → k̃τ (θ) , Kp,i → K̃p (θ) Dη,i → D̃η (θ) , Dτ,i → D̃τ (θ) .

From Eqs. (13) and (14) the continuum elastic strain energy density per unit area in Eq. (27) reads as
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U =

�
S1

1

2
kη (1−Dη)

(
L2ĉiĉj ĉaĉbGijGab +

1

2
L3ĉiĉj ĉaĉbĉcGijGab,c

)
+

�
S1

1

2
kη (1−Dη)

(
1

16
L4ĉiĉj ĉhĉaĉbĉcGij,hGab,c

)
+

�
S1

1

2
kτ (1−Dτ )

(
4L2GijGab (δiaĉj ĉb − ĉiĉj ĉaĉb) + 2L3GijGab,c (δiaĉj ĉbĉc − ĉiĉj ĉaĉbĉc)

)
+

�
S1

1

2
kτ (1−Dτ )

(
1

4
L4Gij,hGam,n (δiaĉj ĉhĉmĉn − ĉiĉj ĉhĉaĉbĉc)

)
+ (28)

+

�
S1

1

2
KPL

2Gij,hGab,cĉiĉj ĉhĉaĉbĉc.

The previous expression can be re-written in a more compact form as

U =
1

2
CijabGijGab + MijabcGijGab,c +

1

2
DijhabcGij,hGab,c, (29)

where, accounting for the symmetrization induced by the symmetry of the strain tensor G, the elastic sti�nesses

C, M, D are identi�ed as follows

Cijab = L2

�
S1

kη (1−Dη) ĉiĉj ĉaĉb (30)

+L2

�
S1

kτ (1−Dτ ) ((δiaĉj ĉb + δibĉj ĉa + δjaĉiĉb + δjbĉiĉa)− 4ĉiĉj ĉaĉb)

Mijabc =
1

4
L3

�
S1

kη (1−Dη) ĉiĉj ĉaĉbĉc (31)

1

4
L3

�
S1

kτ (1−Dτ ) ((δiaĉj ĉb + δibĉj ĉa + δjaĉiĉb + δjbĉiĉa) ĉc − 4ĉiĉj ĉaĉbĉc)

Dijhabc =
1

16
L4

�
S1

kη (1−Dη) ĉiĉj ĉhĉaĉbĉc (32)

+
1

16
L4

�
S1

kτ (1−Dτ ) ((δiaĉj ĉb + δibĉj ĉa + δjaĉiĉb + δjbĉiĉa) ĉhĉc − 4ĉiĉj ĉhĉaĉbĉc)

+L2KP

�
S1

ĉiĉj ĉhĉaĉbĉc

From Eqs. (30)-(32) one can see the presence of the pantographic coe�cient KP only in the expression for the

six-rank elastic sti�ness tensor D. Therefore, since neither Dη nor Dτ a�ects KP , we can notice that all of the

components of the elastic tensors C and M tend to zero because of damage growth, but for the elastic tensor D it

is not true. Hence, there is always some portion of elastic energy stored at every material point of the continuum

even if we assume the damage variables reaching their maximum values.

Let us �nally remark that, from the nontrivial expression in Eq. (31) for the sti�ness M, it is not odd with

respect to grain-pair's orientation. Thus, it is deduced that the occurrence of damage, induce the emergence of

12



chiral e�ects. Note that, indeed, in the integral (31), the unit vector ĉ appears an odd number of times, while the

domain is symmetric with respect to zero. Thus, while initially we have M = 0 the evolution of damage variables

Dη and Dτ , induces the emergence of chiral e�ects characterized by the conditions M 6= 0.

4 Evolution of damage descriptors

4.1 De�nition of the fundamental kinematical quantities

We evaluate the evolution of damage variables via an hemi-variational derivation of the grain interaction, that is

considered for a given orientation. To do this, we start by the de�nition of the following 4 (3 scalar and one vector)

fundamental kinematical quantities

uη,uτ , Dη, Dτ , (33)

where uη, uτ , Dη and Dτ have been already de�ned in Eqs. (11) and (16).

4.2 De�nition of the dissipation, external and total energy functionals

The dissipation energyWD is the energy dissipated because of irreversible phenomena, which is damage in our case.

It can be additively decomposed into normal, i.e. W η
D, and tangent, i.e. W τ

D, parts

WD = W η
D +W τ

D. (34)

The normal contribution W η
D to the damage dissipation energy is de�ned as follows

W η
D =

1

2
kcη
(
Bcη
)2

Θ (−uη)

[
−Dη +

2

π
tan

(π
2
Dη

)]
+ (35)

1

2
ktη
(
Btη
)2

Θ (uη)
[
2 + (Dη − 1)

(
2− 2 log (1−Dη) + (log (1−Dη))

2
)]
,

where Bcη and Btη are two characteristic lengths associated to normal damage dissipation in compression and in

tension, respectively. We observe that usually, for cementitious materials, we have Btη � Bcη. Indeed, a much

smaller amount of elastic relative displacement is needed in tension to activate damage mechanisms. The tangent

contribution W τ
D to the damage dissipation energy is de�ned as follows

W τ
D =

1

2
kτ

[
B̃τ (uη)

]2 [
2 + (Dτ − 1)

(
2− 2 log (1−Dτ ) + (log (1−Dτ ))

2
)]
, (36)
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where Bτ = B̃τ (uη) is the characteristic length associated to tangent damage dissipation. Such a characteristic

length is assumed to depend the normal relative grain-grain displacement, as in [26, 27]. Additionally, di�erently

from [26, 27] and for the sake of simplicity, the e�ect of the mean stress has been neglected. Following said references,

the functional dependence B̃τ (uη) has been chosen as follows

Bτ = B̃τ (uη) =


Bτ0 if uη ≥ 0

Bτ0 − α2uη if 1−α1

α2
Bτ0 ≤ uη < 0

α1Bτ0 if uη < Bτ0
1−α1

α2
,

(37)

where Bτ0 (Bw0 in [26, 27]), α1 and α2 are further constitutive parameters needed to express the functional

dependence B̃τ
(
uelη
)
. Such a functional dependence couples the two addends W η

D and W τ
D of the decomposition

(34).

In conclusion, because of Eqs. (34), (35), (36), the dissipation energy functional (34) reads as

W = W η
D +W τ

D = (38)

=
1

2
kcηΘ

(
−uelη

)
B2
c [−Dη + tan (Dη)] +

+
1

2
ktηΘ

(
uelη
)
B2
t

[
2 + (Dη − 1)

(
2− 2 log (1−Dη) + (log (1−Dη))

2
)]

+
1

2
kτB

2
τ

[
2 + (Dτ − 1)

(
2− 2 log (1−Dτ ) + (log (1−Dτ ))

2
)]

Within the considered approach, the external world can exert forces expending power both on the scalar normal

objective relative displacement uη and on the vector tangent objective relative displacement uτ , so that the external

energy functional is

Uext = F extη uη + F extτ · uτ , (39)

where F extη and F extτ are, respectively, the external normal and tangent forces. Since we are neglecting kinetic

energy and considering quasi-static evolution, the energy functional E reads as

E = U +W − Uext. (40)

Remark that it is a functional of the fundamental kinematical quantities (33), namely

E = E (uη,uτ , Dη, Dτ ) . (41)
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4.3 Formulation of the hemi-variational principle

The variational inequality principle can be here applied similarly to what has been done in [48]. We introduce a

monotonously increasing time sequence Ti ∈ {Ti}i=0,...,M with Ti ∈ R and M ∈ N. An initial datum on each of

the fundamental kinematic quantities must be given for i = 0, i.e. for time T0. A motion is de�ned as a family

of displacements ζ = (uη,uτ ) de�ned for each time t = T0, T1, . . . , TM . The set AMt is de�ned as the set of

kinematically admissible displacements for a given time t � we require (uη,uτ ) ∈ AMt � and the set AVt is

de�ned as the corresponding space of kinematically admissible variations � i.e. υ = (δuη, δuτ ) ∈ AVt. Admissible

variations β of the irreversible kinematic quantities (Dη, Dτ ) must be positive, namely

β = δDη, δDτ ∈ R+ × R+. (42)

The �rst variation δE of the energy functional (41) is de�ned as

δE = E (uη + δuη,uτ + δuτ , Dη + δDη, Dτ + δDτ )− E (uη,uτ , Dη, Dτ ) . (43)

The increment of the fundamental kinematic quantities (33) at t = Ti is given by the di�erence between these

quantities as evaluated at times t = Ti and t = Ti−1, namely

(∆uη,∆uτ ,∆Dη,∆Dτ )Ti = (uη,uτ , Dη, Dτ )Ti − (uη,uτ , Dη, Dτ )Ti−1
.

The same de�nition is utilised for the increment ∆E of the energy functional

∆E = E (uη + ∆uη,uτ + ∆uτ , Dη + ∆Dη, Dτ + ∆Dτ )− E (uη,uτ , Dη, Dτ ) . (44)

Finally, the hemi-variational principle is formulated as follows

∆E ≤ δE ∀υ = (δuη, δuτ ) ∈ AVt, ∀β = (δDη, δDτ ) ∈ R+ × R+. (45)
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4.4 Derivation of the Euler-Lagrange equations

The variational inequality (45) must be exploited following the same procedure described in [48], which will thus

be omitted here. The results of such a procedure are the following two Euler-Lagrange equations,

−kη (1−Dη)uη − kτBτ
∂B̃τ
∂uη

Dτ�

0

[log (1− x)]
2
dx+ F extη +Kp {[∇ (∇uη)] ĉ · ĉ}

 (δuη) = 0

{
−kτ (1−Dτ )uτ + F extτ

}
(δuτ ) = 0

where x is an internal integration variable that is used only to avoid to write the analytical form of the integral,

together with the two Karush-Kuhn-Tucker (KKT) conditions for damage variables (already derived in [48])

[(uη)
2 −Θ (uη)B2

t (log (1−Dη))
2 −Θ (−uη)B2

c [tan (Dη)]
2
]∆Dη = 0, (46)[

(uτ )
2 − [Bτ ]

2
(log (1−Dτ ))

2
]

∆Dτ = 0, (47)

The two KKT conditions (46), (47) for irreversible descriptors can be arranged in a more compact form a

{
Dη − D̃η(uη)

}
∆Dη = 0 (48){

Dτ − D̃τ (uτ )
}

∆Dτ = 0 (49)

where the auxiliary threshold functions D̃η(uη) and D̃τ (uτ ) have been de�ned as follows

D̃η(uη) =


1− exp

(
− uη
Btη

)
, uη > 0,

2
π arctan

(
− uη
Bcη

)
, uη < 0,

(50)

D̃τ (uτ ) = 1− exp

(
−|uτ |
Bτ

)
, (51)

5 Numerical results

5.1 Description of the numerical experiments

In the current section, we present numerical simulations to show the capabilities of the derived model to describe

initiation and growth of damage localization zones. Following [48] we consider 2D square specimen with a circular

�aw (hole). Here S = 10 cm is the size of the sample and Rh = 0.12 ·S is the hole's radius. In this work, two kinds
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of experiments are employed:

1. The sample is subjected to tensile loading, see Fig. 5 (left), where on the right-hand side of the specimen we

have imposed displacement ū which is increasing monotonically during the tests within the range [0, ūmax]. We

consider two cases of simulations to describe the pantographic e�ects upon the evolution and size of damage

localization zone. One in which the averaged intergranular distance L is kept unchanged while the pantographic

coe�cient KP is changed resulting in a change in the overall sti�ness/strength of the specimen. And the

second, in which the inter-granular sti�ness are re-scaled for di�erent averaged intergranular distance L, such

that the overall sti�ness/strength of the specimen remains unchanged while both the averaged intergranular

distance L and the pantographic coe�cient KP are varied.

2. The sample is subjected to both tensile and shear loading one after the another, as it is sketched in Fig. 5

(right). For all of the four sides of the specimen we apply two conditions, i.e.


u1 = ũ1(x, y) = ū1 · (x/S)

u2 = ũ2(x, y) = ū2 · (x/S)

∀(x, y) ∈ [0, S]× [0, S] (52)

where u1 and u2 are horizontal and vertical components of the displacement �eld u. Eq. (52) implies that

the left-hand side of the sample is blocked both for horizontal u1 and for vertical u2 displacements

u1 = ũ1(0, y) = 0

u2 = ũ2(0, y) = 0

, since x = 0 in this case, whereas on the right-hand side we have imposed displacements

u1 = ũ1(S, y) = ū1

u2 = ũ2(S, y) = ū2.

At the top as well as at the bottom imposed displacement for each point of the boundary increases with

horizontal coordinate x ∈ [0, S]. Both horizontal and vertical imposed displacements are monotonically

increasing within the ranges [0, ūmax1 ] and [0, ūmax2 ] respectively. We consider two cases of simulations to

describe path-dependency of the system evolution for the derived model. One in which the simulation starts

with tensile loading, increasing ū1 keeping ū2 is kept null, and then switch to shear loading, increasing ū2

keeping ū1 unchanged. At the second, we start with shear and then switch to tension. For both of these

cases, we keep the averaged intergranular distance L is kept unchanged while the pantographic coe�cient
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KP is changed resulting in a change in the overall sti�ness/strength of the specimen. The paths represented

graphically for the cases where are KP = 0, KP = K1
P and KP = K4

P on the Fig.6, on the axis there are

numbers which refer to the number of iterations highlighted later in the Tab.4.

Figure 5: Schematics of analyzed domains and considered boundary conditions.

5.2 Re-scaling with the averaged intergranular distance

In this Sub-section we consider a class of materials with the same sti�ness and damage characteristics but

di�erent averaged intergranular distance L. To do this, we introduce a re-scaling parameter γ ∈ R+ for changing

the averaged intergranular distance from L to L∗ as follows:

L∗ =
L

γ
. (53)

Such re-scaling should therefore correspond to materials with similar elastic and damage behavior.Thus, in particular

the consequence is (i) an identical 4th rank elasticity tensor C∗, i.e.,

C∗ = C
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Figure 6: Graphic representation of the path with respect to number of steps.

and from Eq. (30) we deduce the following re-scaling rule for inter-granular sti�ness,



(
ktη
)∗

(L∗)
2

= ktηL
2

(
kcη
)∗

(L∗)
2

= kcηL
2

(kτ )
∗

(L∗)
2

= kτL
2

,→



(
ktη
)∗

= γ2ktη(
kcη
)∗

= γ2kcη

k∗τ = γ2kτ

, (54)

and (ii) similar damage characteristic lengths. To do this we recall the expressions of the auxiliary threshold

functions in Eqs. (50), (51) and consider



u∗
η

(Bcη)
∗ =

uη
Bcη

u∗
η

(Btη)
∗ =

uη
Btη

|u∗
τ |

B∗
τ

= |uτ |
Bτ

,→



(
Btη
)∗

=
Btη
γ(

Bcη
)∗

=
Bcη
γ

B∗τ0 = Bτ0
γ

, (55)

where the de�nitions (12) and (14) of normal and tangent displacement have been used to deduce the following

approximations for their order of magnitudes,

u∗A
∼=
L∗

L
uA =

uA
γ
, A = η, τ. (56)

For the same reason and taking into account Eq. (20), the regularizing parameter α, the one used to smooth the

constitutive assumption on tension-compression asymmetry in Eq. (21), for the sake of numerical accuracy has
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been re-scaled as follows,
u∗η
α∗

=
uη
α
, → α∗ =

α

γ
. (57)

It is worth to be noted that, as a consequence of the re-scalings assumed in (53), (54), (55) and (57) on the one

hand the 5th rank elasticity tensor M will be re-scaled as follows

M∗ =
(L∗)

3

L3

(
ktη
)∗

ktη
M =

1

γ3
γ2M =

M
γ
, (58)

and, on the other hand, in order to derive the re-scaling rule for the 6th rank elasticity tensor D, we need to prescribe

a re-scaling rule also for the pantographic coe�cient KP . To do this we consider �rst the case of no pantographic

coe�cient and derive,

KP = 0, → D∗ =
(L∗)

4

L4

(
ktη
)∗

ktη
D =

1

γ4
γ2D =

D
γ2
. (59)

In this case we remark that in the limit of zero averaged intergranular distance L → 0 (i.e. from (53) in the limit

γ →∞) we derive, from (58) and (59), that M∗ → 0 and D∗ → 0, i.e. a situation with no strain gradient e�ects and

therefore vanishingly thin boundary layers in the numerical simulations. However, the presence of the pantographic

term changes this undesired e�ect by ensuring that in this limit the 6th rank elasticity tensor may be the same, i.e.,

lim
γ→∞

D∗ = D → (L∗)
2
K∗P = L2KP → K∗P = γ2KP ,

that is, by employing the same re-scaling rules as that for the other sti�ness coe�cients given in (54).

5.3 Constitutive coe�cients setting

For illustration, we will consider three sets of material parameters, namely the sets P1, P2 and P3 that are

de�ned respectively by assuming γ = 1, γ = 2 and γ = 5 according to Tabs. 1-2, such as to consider a wide range

of intergranular distance.

Moreover, the values of the pantographic coe�cients have been selected by comparing the �rst and the third

row of (32) with the following rule,

Ki
P = ktηL

22i−8 (60)

so that with i = 4 the �rst and the third row of (32) have the same order of magnitude, so that the pantographic

coe�cient and the tension sti�ness have the same role and order of magnitude in the 6th rank elasticity tensor but

with i = 3 the pantographic coe�cient is the half, with i = 2 it is one fourth and with i = 1 is one eighth, such

that the characteristic length of the boundary layers can also be independently varied (controlled).
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γ L[m] kcη[J/m4] ktη[J/m4] kτ [J/m4] Bcη[m] Btη[m] Bτ [m] α1[1] α2[1] α[1]

P1 1 0.01 1.4 · 1015 1.4 · 1014 3 · 1013 1.5 · 10−7 3.5 · 10−8 5 · 10−8

10 14
3 · 10−10

P2 2 0.005 5.6 · 1015 5.6 · 1014 1.2 · 1014 7.5 · 10−8 1.75 · 10−8 2.5 · 10−8 1.5 · 10−10

P3 5 0.002 35 · 1015 35 · 1014 7.5 · 1014 3 · 10−8 7 · 10−9 1 · 10−8 75 · 10−11

Table 1: Values of constitutive parameters used in numerical tests.

γ KP = 0 K1
P [J/m2] K2

P [J/m2] K3
P [J/m2] K4

P [J/m2]

P1 1 0 1.1 · 108 2.2 · 108 4.4 · 108 8.8 · 108

P2 2 0 4.4 · 108 8.8 · 108 17.6 · 108 35.2 · 108

P3 5 0 27.5 · 108 55 · 108 11 · 109 22 · 109

Table 2: Values of the pantographic coe�cient Kp used in numerical tests.

Finally, for the simulation setups one can see Tab. 3.

5.4 Implementation of the numerical algorithm

For the solution of the problem formulated above, numerical e�ort is needed. To this end, an algorithm was

developed for the numerical implementation of the model. The continuum model is solved by means of the com-

mercial software Matlab and COMSOL Multiphysics. An iterative procedure is implemented in a staggered fashion

in Matlab as described in the �owchart in Fig. 7, making use of COMSOL Multiphysics as a subroutine solving the

elastic equilibrium problem.

BOUNDARY CONDITIONS 
PARAMETERISED ON ഥ𝒖

cv
SOLVE by the FINITE 
ELEMENT METHOD 

DISPLACEMENT FIELD

STRAIN FIELD

SOLVE KKT CONDITIONS 
FOR EACH 𝑿 ∈ 𝑩, ෝ𝒏 ∈ 𝑺𝟏

DAMAGE FIELDS 
FOR EACH ෝ𝒏 ∈ 𝑺𝟏

CONVERGENCE ? 

INITIAL ELASTICITY TENSORS

DAMAGE FIELDS 
FOR EACH ෝ𝒏 ∈ 𝑺𝟏

(PREVIOUS STEP)

ELASTICITY TENSORS

MATERIALS
PARAMETERS

INITIAL CONDITIONS
- DISPLACEMENT FIELD FOR EACH 𝑿 ∈ 𝑩
- DAMAGE FIELDS FOR EACH 𝑿 ∈ 𝑩, ෝ𝒏 ∈ 𝑺𝟏

REDUCE 
INCREMENT OF ഥ𝒖

NO

INCREASE ഥ𝒖

NO

YES

cvEND

YES

STORE

CONTINUE ? 

Figure 7: Flowchart of the numerical iterative procedure used to solve the mathematical formulation.

The steps of the iterative procedure can be resumed as follows:
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Nθ ∆ū[m]
KP = 0 KP = Ki

P > 0
Nit ūmax[m] Nit ūmax[m]

120 3.125 · 10−9 150 468.75 · 10−9 250 781.25 · 10−9

Table 3: Numerical values used in numerical simulations.

1. null initial conditions on the displacement �eld u and damage �elds Dη and Dτ are given together with the

material parameters L, kcη, k
t
η, kτ , B

c
η, B

t
η, Bτ0,KP , according to Tabs. 1-2. The sti�nesses kcη, k

t
η, kτ given

as input material parameters may be initially isotropic, i.e. they do not need to depend on the orientation

angle θ. It is worth to mention that the e�ective (i.e. damaged-) sti�nesses kcη,D, k
t
η,D, kτ,D may change

during the evolution of the system due to the damage induced by the state of deformation, thus leading to

non-isotropically distributed e�ective (damaged-) sti�nesses. Indeed, owing to Eq. (28), this is the reason

why � for a given basis � the components of the elasticity tensors may change during the evolution of the

system, possibly implying anisotropy shifts. The pantographic coe�cient, on the contrary, does not experience

damage;

2. the fourth-rank (Cijab), the �fth-rank (Mijabc) and the sixth-rank (Dijhabc) elasticity tensors are computed

according to Eqs. (30), (31) and (32). Such elastic tensors, as well as boundary conditions, are given as

input to a �nite element subroutine based on COMSOL Multiphysics. Particularly, the weak form of the

equilibrium problem in Eq. (45) is solved by means of the weak form package. Quintic Argyris polynomials

are used as shape functions ensuring C2 continuity across elements along the normal to element boundaries.

A Delaunay-tessellated triangular mesh was employed. Di�erent mesh sizes were considered to investigate

mesh independence. The output of this subroutine is the displacement �eld. It is worth to mention here that

the pantographic coe�cient Kp does not experience any change due to damage evolution;

3. the increment of the displacement �eld with respect to the previous step is node-wise compared with a

tolerance. When such a tolerance is not respected, then the displacement parameters ū or ū1, ū2 are reduced

to re-initialize the �nite element subroutine;

4. when the increment of the displacement �eld with respect to the previous step compares positively with the

above-mentioned chosen tolerance, then the components of the strain �eld G and of its gradient are computed

making use of the displacement �eld. The strain �elds are then used by means of Eq. (11) to compute the

relative displacements uη and uτ , which depend on the space coordinates and on the orientation θ. Such

displacements are then given as input to the KKT conditions in Eqs. (50) and (51) and, as an output, the

damage �elds Dη and Dτ are recovered. In formulas, we have

Dt
η = max

{
D̃t
η, D

t−1
η

}
, Dt

τ = max
{
D̃t
τ , D

t−1
τ

}
, (61)

where t is an index used to label the loading steps. Eqns. (61) have been conceived to take into account that,
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according to Eqs. (50) and (51), damage �elds cannot decrease and they do not reach the unit value;

5. the load parameter ū is increased.

The instructions above (from point 2) are repeated until a termination criterion is not veri�ed. As mentioned at

the beginning of the section, the termination criterion is given by ū reaching a maximum desired value ūmax or by

reaching ū1, ū2 maximum values ūmax1 , ūmax2 respectively.

5.5 Parametric analysis with respect to the pantographic coe�cient for constant

intergranular distance

In this subsection we consider results, according to Tabs. 1-2, of the P1 series of extension tests corresponding

to the intergranular distance L = 0.01. The aim of performing these tests was to investigate mechanical properties

of the model taking into account the pantographic interaction, which is imposed by choosing values of KP di�erent

from zero, according to (60).

For the numerical loading process, we �rst perform a convergence analysis for the incremental loading size. Fig.

8 presents a convergence analysis with respect to the size of the load step ∆ū. It is observed that convergence is

taking place. For the subsequent simulations, ∆ū = 3.125 · 10−9 is chosen, since the di�erence between the force

displacement curve corresponding to this value of ∆ū and and that related to the smallest ∆ū indicated in the

Fig. 8 is reasonably small, considering that for the the smallest ∆ū it takes much more computational time to get

results.

Fig. 9 shows that convergence with respect to the maximum mesh element size is taking place as well. For the

subsequent simulations maximum element size equal to 0.001 is chosen.
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Figure 8: Convergence analysis with respect to the size of the load step ∆ū. Global elastic response, i.e. total
reaction force vs prescribed displacement for the pantographic coe�cient KP = K3

P .

Figure 9: Mesh-convergence analysis. Global elastic response, i.e. total reaction force vs prescribed displacement
for the pantographic coe�cient KP = K3

P .

In Fig. 10 one can see the computed force-displacement diagrams. It is clear from the plot that, by introducing
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KP di�erent from zero, we obtain a stronger response of the sample with respect to the case of KP = 0, as

shown by the increase in peak reaction. Furthermore, increasing pantographic coe�cient leads to an increase of

the reaction force in the softening part of the response and a slowed rate of softening. The observed nature of the

force-displacement curves can be explained by considering Eqs. (30)-(32), where expressions of elasticity tensors

are presented. Speci�cally, the additional term KP increases the values of the components of D, and since KP is

not a�ected by damage, the components of D never vanish. Therefore, there will be always some elastic energy that

is stored at each material point of the considered sample even as the damage within materials points tend to 1.

Figure 10: Force versus displacement diagram for the P1 set of parameters de�ned in Tabs. 1-2 and for di�erent
values of KP . Circle markers indicate approximately the time step, when the crack reaches the boundary of the
sample.

Figs. 11-15 show contour plots for elastic (1st row of contour plots) and dissipation (2nd row of contour plots)

energy densities evolution throughout the simulation, where increasing Niter indicates the increase in the imposed

displacement. These contour plots show the development of concentration zones which emanate from the hole

and grow towards the outer edges of the square specimen. The evolution of dissipation (due to damage in this

case) is of particular interest in these simulations from the viewpoint of describing its localization as well as the

characteristic length of the damage localization zone. These plots makes evident micro-mechanical e�ect of the

pantographic interaction on the damage behavior on macro-scale. We can observe that by choosing di�erent

pantographic coe�cient, KP , the width of the localization zone can be controlled. Indeed, a higher value of the

pantographic coe�cient, KP , results in a thicker damage zone. We further note here that in the next section,

the micromechanical e�ects are further illustrated by showing that model can predict localization zones that are
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independent of the intergranular distance, an e�ect which is a direct consequence of the pantographic interaction.

The localization thickness could be described as proportional to the material characteristic length roughly estimated

from the ratio of the 2nd and 1st gradient moduli in Eqs. (30)-(32), with the caveat that these moduli, and therefore,

the characteristic lengths evolve during the loading process. For the case of pantographic coe�cient, KP = 0, the

damage zone is thin as in this case it has the order of the averaged intergranular distance L. By selecting appropriate

pantographic coe�cient, KP , the size of the localization zone can be increased in a pre-speci�ed manner even to

the order of the �aw size (in this case size of the circular hole), while keeping the averaged intergranular distance L

unchanged. It is noteworthy, that the included pantographic e�ect can arise at the micro- or grain-scale through a

variety of long-range mechanisms, including grain rotation, that introduce �oppy modes resulting from the micro-

mechano-morphology of the material. Finally, it is worthwhile to note the concentration features in the elastic

energy contours on the two edges of the damaged zone, which indicate the large elastic deformations that occur in

the locations immediately contiguous to the damage localization.

Fig. 16 shows contour plots for dissipation energy (1st row of contour plots) with KP = K2
P = 2.2 · 108 for a

given time step Nit = 180 and di�erent meshes (2nd row of contour plots). It is observed, that thickness of the

damaged area does not change with mesh re�nement.
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Figure 11: Contour plots of elastic U (1st row) and dissipation WD (2nd row) energy densities for KP = 0 and for
the P1 set of parameters de�ned in Tabs. 1-2.
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Figure 12: Contour plots of elastic U (1st row) and dissipationWD (2nd row) energy densities forKp = K1
P = 1.1·108

and for the P1 set of parameters de�ned in Tabs. 1-2.

𝑁𝑖𝑡𝑒𝑟 = 28 𝑁𝑖𝑡𝑒𝑟 = 56 𝑁𝑖𝑡𝑒𝑟 = 84 𝑁𝑖𝑡𝑒𝑟 = 112 𝑁𝑖𝑡𝑒𝑟 = 140

𝑁𝑖𝑡𝑒𝑟 = 28 𝑁𝑖𝑡𝑒𝑟 = 56 𝑁𝑖𝑡𝑒𝑟 = 84 𝑁𝑖𝑡𝑒𝑟 = 112 𝑁𝑖𝑡𝑒𝑟 = 140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 13: Contour plots of elastic U (1st row) and dissipationWD (2nd row) energy densities forKp = K2
P = 2.2·108

and for the P1 set of parameters de�ned in Tabs. 1-2.
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𝑁𝑖𝑡𝑒𝑟 = 36 𝑁𝑖𝑡𝑒𝑟 = 72 𝑁𝑖𝑡𝑒𝑟 = 108 𝑁𝑖𝑡𝑒𝑟 = 144 𝑁𝑖𝑡𝑒𝑟 = 180
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Figure 14: Contour plots of elastic U (1st row) and dissipationWD (2nd row) energy densities forKp = K3
P = 4.4·108

and for the P1 set of parameters de�ned in Tabs. 1-2.
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Figure 15: Contour plots of elastic U (1st row) and dissipationWD (2nd row) energy densities forKp = K4
P = 8.8·108

and for the P1 set of parameters de�ned in Tabs. 1-2.
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max element size = 0.01 max element size = 0.005 max element size = 0.0025 max element size = 0.001

Figure 16: Contour plots of dissipation energy density WD (1st row) for Kp = K3
P = 4.4 · 108 and for the P1 set of

parameters de�ned in Tabs. 1-2 obtained for a given loading step Nit = 180 for di�erent meshes (2nd row).

5.6 Parametric analysis for varying averaged intergranular distance

Fig. 17 shows 5 force-displacement diagrams, where each diagram is obtained for a given value of the panto-

graphic coe�cient KP = 0 and KP = Ki
P , i = 1, ..., 4 and for di�erent set of parameters P1 (γ = 1), P2 (γ = 2)

or P3 (γ = 5). The plots indicate that the re-scaling adopted in Subsection 5.2 is valid because no signi�cant

di�erence is recognized for di�erent values of γ and the higher is the pantographic coe�cient KP , the lower is such

a di�erence.

Figs. 18-22 show contour plots for elastic (1st row of contour plots) and dissipation (2nd row of contour plots)

energy densities at the �nal time step and for di�erent sets of parameters P1 (γ = 1), P2 (γ = 2) or P3 (γ = 5)

corresponding to di�erent values of the intergranular distance L. It can be seen from the plots, that when KP = 0

decreasing L implies also the reduction of the thickness of the damaged area, such that as the intergranular distance

L, tends to vanish, the thickness of the localization zone will also vanish. Indeed, in most past micro-macro

identi�cation in which 2nd gradient sti�nesses are proportional to the square of the RVE or to the lattice size, or

the intergranular distance L as it is here for KP = 0, the 2nd gradient constants vanish in the limit of such a size

going to zero. In these cases, the localization zone is restricted to be the size of the intergranular distance L.

However, for the cases KP = Ki
P > 0, i = 1, ..., 4 the situation is di�erent. We can see that enhancing

the pantographic interaction KP means to attenuate such a reduction of the thickness of the damaged area. In

other words, as the pantographic coe�cient KP increases, the thickness of the damage localization zone becomes

independent of the intergranular distance L. In fact, through the proposed re-scaling, we de�ne a family of discrete
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systems whose structural response remains invariant to change of grain size, but whose damage localization zone

can be independently varied by accounting for the long-range e�ects modeled using the pantographic coe�cient

KP . Hence, we may conjecture that physical systems obeying the discrete description could be designed such that

second gradient e�ect remains non-negligible even for very dense physical systems. In this sense, embedding micro-

structural interactions giving a non-zero gradient e�ect into an existing micro-structure could signi�cantly improve

the mechanical properties of the material.
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Figure 17: Force versus displacement diagrams for di�erent values of L and Kp.
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𝐾𝑝 = 0 𝐾𝑝 = 0 𝐾𝑝 = 0

𝐾𝑝 = 0𝐾𝑝 = 0𝐾𝑝 = 0

Figure 18: Contour plots, at the �nal step, of elastic U (1st row) and dissipation WD (2nd row) energy densities
for Kp = K0

p and di�erent L. All material parameters are rescaled in order to obtain the same Young modulus and
Poissons ration for the calculations.
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Figure 19: Contour plots, at the �nal step, of elastic U (1st row) and dissipation WD (2nd row) energy densities
for Kp = K1

p and di�erent L. All material parameters are re-scaled in order to obtain the same Young modulus
and Poissons ratio for the calculations.
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Figure 20: Contour plots, at the �nal step, of elasticU (1st row) and dissipation WD (2nd row) energy densities for
Kp = K2

p and di�erent L. All material parameters (including Kp) are re-scaled in order to obtain the same Young
modulus and Poissons ratio for the calculations.
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Figure 21: Contour plots, at �nal step, of elastic U (1st row) and dissipation WD (2nd row) energy densities for
Kp = K3

p and di�erent L. All material parameters (including Kp) are re-scaled in order to obtain the same Young
modulus and Poissons ratio for the calculations.
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Figure 22: Contour plots, at the �nal step, of elastic U (1st row) and dissipation WD (2nd row) energy densities for
Kp = K4

p and di�erent L. All material parameters (including Kp) are re-scaled in order to obtain the same Young
modulus and Poissons ratio for the calculations.

5.7 Path-dependency of the system evolution

Simulation setups for tension-shear and shear-tension simulations are reported in Tab.4. It is worth to be noted

here, that number of time-steps increase along with increasing KP .

Fig. 23 shows force versus displacement diagram for the tension-shear and shear-tension sets of simulations. It

KP = K0
p N tens

it = 100 Nshear
it = 200 N total

it = 300

KP = K1
p N tens

it = 120 (+20) Nshear
it = 220 (+20) N total

it = 340

KP = K2
p N tens

it = 130 (+30) Nshear
it = 230 (+30) N total

it = 360

KP = K3
p N tens

it = 170 (+70) Nshear
it = 270 (+70) N total

it = 440

KP = K4
p N tens

it = 190 (+90) Nshear
it = 290 (+90) N total

it = 480

Table 4: Number of time-steps

can be seen from these plots, that the overall response of the sample for the tension-shear simulations is su�ciently

di�erent from the one for shear-tension experiments. It is also worth to be noted, that for the same the curves are

tend to reach the same reaction force but they do not due to accumulation of damage. Moreover, it is observed that

increasing KP from K0
P to K4

P we increase the gap in reaction force for the last time-step. The same conclusion

cane be made from Fig. 24 where total dissipation energy versus displacement diagram is presented. Curves of

total dissipation energies shows behavior of the sample for tension-shear experiment to be di�erent from the shear-
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tension one.Analyzing the force-displacement diagram, we can see that as the pantographic coe�cient KP increases,

the di�erence in the maximum values of the reaction forces with the same magnitude of imposed displacements

increases, depending on the path. Analyzing the total dissipation energy diagram, we can see that with an increase

in the pantographic coe�cient KP there is a greater amount of dissipated energy. In other words, the greater the

pantographic coe�cient KP , the more noticeable is its e�ect on the material.

Figs. 25-30 show contour plots for dissipation energy densities evolution tension-shear (1st row of contour plots)

and shear-tension (2nd row of contour plots) tests throughout the simulation, where increasing Niter indicates the

increase in the imposed displacement. These contour plots show the development of concentration zones depending

from the path. In the tension-shear test we can see the evolution of dissipation from the hole to the up and bottom

domains during the tension part and turning during the shear part. However in the shear-tension test we observe

the evolution of dissipation from the hole in diagonal directions during shear parts and appearing zones in opposite

direction. It can be observed as well that there is an e�ect of KP in increasing size of damage localization zones,

as it is explained with more details in Section 5.5.

Force vs. Displacement

Figure 23: Force versus displacement diagram for the P1 set of parameters de�ned in Tabs. 1-2 and for di�erent
values of KP .
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Total Dissipation Energy

Figure 24: Total dissipation energy versus displacement diagram for the P1 set of parameters de�ned in Tabs. 1-2
and for di�erent values of KP .

𝑁𝑖𝑡𝑒𝑟 = 60 𝑁𝑖𝑡𝑒𝑟 = 120 𝑁𝑖𝑡𝑒𝑟 = 180 𝑁𝑖𝑡𝑒𝑟 = 240 𝑁𝑖𝑡𝑒𝑟 = 300

𝑁𝑖𝑡𝑒𝑟 = 60 𝑁𝑖𝑡𝑒𝑟 = 120 𝑁𝑖𝑡𝑒𝑟 = 180 𝑁𝑖𝑡𝑒𝑟 = 240 𝑁𝑖𝑡𝑒𝑟 = 300

Dissipation energy densities for Tension-Shear (first line) and Shear-Tension (second line), 𝐾𝑃 = 𝐾𝑃
0

0 1.40.2 0.4 0.6 1.20.8 1.0

Figure 25: Contour plots of dissipation WD energy densities tension-shear (1st row) and shear-tension (2nd row)
for KP = 0 and for the P1 set of parameters de�ned in Tabs. 1-2
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𝑁𝑖𝑡𝑒𝑟 = 68 𝑁𝑖𝑡𝑒𝑟 = 136 𝑁𝑖𝑡𝑒𝑟 = 204 𝑁𝑖𝑡𝑒𝑟 = 272 𝑁𝑖𝑡𝑒𝑟 = 340
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Dissipation energy densities for Tension-Shear (first line) and Shear-Tension (second line), 𝐾𝑃 = 𝐾𝑃
1
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Figure 26: Contour plots of dissipation WD energy densities tension-shear (1st row) and shear-tension (2nd row)
for KP = K1

p and for the P1 set of parameters de�ned in Tabs. 1-2

𝑁𝑖𝑡𝑒𝑟 = 72 𝑁𝑖𝑡𝑒𝑟 = 144 𝑁𝑖𝑡𝑒𝑟 = 216 𝑁𝑖𝑡𝑒𝑟 = 288 𝑁𝑖𝑡𝑒𝑟 = 360

𝑁𝑖𝑡𝑒𝑟 = 72 𝑁𝑖𝑡𝑒𝑟 = 144 𝑁𝑖𝑡𝑒𝑟 = 216 𝑁𝑖𝑡𝑒𝑟 = 288 𝑁𝑖𝑡𝑒𝑟 = 360

Dissipation energy densities for Tension-Shear (first line) and Shear-Tension (second line), 𝐾𝑃 = 𝐾𝑃
2

0 1.40.2 0.4 0.6 1.20.8 1.0

Figure 27: Contour plots of dissipation WD energy densities tension-shear (1st row) and shear-tension (2nd row)
for KP = K2

p and for the P1 set of parameters de�ned in Tabs. 1-2
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Dissipation energy densities for Tension-Shear (first line) and Shear-Tension (second line), 𝐾𝑃 = 𝐾𝑃
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Figure 28: Contour plots of dissipation WD energy densities tension-shear (1st row) and shear-tension (2nd row)
for KP = K3

p and for the P1 set of parameters de�ned in Tabs. 1-2

𝑁𝑖𝑡𝑒𝑟 = 96 𝑁𝑖𝑡𝑒𝑟 = 192 𝑁𝑖𝑡𝑒𝑟 = 288 𝑁𝑖𝑡𝑒𝑟 = 384 𝑁𝑖𝑡𝑒𝑟 = 480

𝑁𝑖𝑡𝑒𝑟 = 96 𝑁𝑖𝑡𝑒𝑟 = 192 𝑁𝑖𝑡𝑒𝑟 = 288 𝑁𝑖𝑡𝑒𝑟 = 384 𝑁𝑖𝑡𝑒𝑟 = 480

Dissipation energy densities for Tension-Shear (first line) and Shear-Tension (second line), 𝐾𝑃 = 𝐾𝑃
4

0 1.40.2 0.4 0.6 1.20.8 1.0

Figure 29: Contour plots of dissipation WD energy densities tension-shear (1st row) and shear-tension (2nd row)
for KP = K4

p and for the P1 set of parameters de�ned in Tabs. 1-2

37



Dissipation energy densities for Tension-Shear (first line) and Shear-Tension (second line),The Last Time-Step
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Figure 30: Contour plots of dissipation WD energy densities tension-shear (1st row) and shear-tension (2nd row) for
KP = K2

p and for the P1 set of parameters de�ned in Tabs. 1-2 to compare the last time-steps of the simulations.

6 Conclusion

The key �ndings of the work reported here is that long-range (beyond nearest neighbor) mechanism must be

included in continuum models based upon micro-macro identi�cation derived from discrete models. Here, we have

shown that by including at micro-scale additional pantographic grain-pair interactions that store elastic energy in

response to strain gradients, we can control at macro-scale the thickness of the localization zones that form as failure

(fracture) nucleates from certain prescribed weakness. This outcome is demonstrated via numerical simulation of

localization nucleation and propagation in a plate with prescribed hole. The in�uence of the pantographic term is

observed both in the case of single loading and in more complex experiments, depending on the path. The results

illustrate the capabilities of the micro-macro identi�cation based upon the granular micromechanics paradigm, which

we have demonstrated models load path dependency that gives rise to evolving anisotropy and material chirality

as well as growth of localization zones from location other than the prescribed weakness. Future outlooks of the

present work include the applications of the present framework to the study of more complex loading conditions

and materials, as well as the development of actual granular metamaterials with pantographic connections. For

those parameters related to damage dissipation energy there is a work in progress to �nd a proper way for their

experimental validation.
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