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A B S T R A C T 

In this work, we examine the impact of our motion with respect to the Cosmic Microwave Background (CMB) rest frame 
on statistics of CMB maps by examining the one-, two-, three-, and four- point statistics of simulated maps of the CMB and 

Sun yaev–Zeldo vich (SZ) effects. We validate boosting codes by comparing their outcomes for temperature and polarization 

power spectra up to � � 6000. We derive and validate a new analytical formula for the computation of the boosted power 
spectrum of a signal with a generic frequency dependence. As an example we show how this increases the boosting correction 

to the power spectrum of CMB intensity measurements by ∼30 per cent at 150 GHz. We examine the effect of boosting on 

thermal and kinetic SZ power spectra from semianalytical and hydrodynamical simulations; the boosting correction is generally 

small for both simulations, except when considering frequencies near the tSZ null. For the non-Gaussian statistics, in general 
we find that boosting has no impact with two exceptions. We find that, whilst the statistics of the CMB convergence field are 
unaffected, quadratic estimators that are used to measure this field can become biased at the O(1) per cent level by boosting 

effects. We present a simple modification to the standard estimators that remo v es this bias. Second, bispectrum estimators can 

receive a systematic bias from the Doppler induced quadrupole when there is anisotropy in the sky – in practice this anisotropy 

comes from masking and inhomogeneous noise. This effect is unobservable and already remo v ed by e xisting analysis methods. 

Key words: cosmic background radiation – cosmology: observations – large-scale structure of Universe. 
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 INTRODUCTION  

he study of the Cosmic Microwave Background (CMB) has pro-
ided a wealth of information about the composition and evolution
f our Uni verse. Po wer spectrum measurements of the CMB are the
ain probe for determining cosmological parameters (Aylor et al.

017 ; Prat et al. 2019 ; Bianchini et al. 2020 ; Choi et al. 2020 ;
lanck Collaboration VI 2020 ). The Sun yaev–Zeldo vich (SZ) effects
thermal and kinetic) are also considered in parameter estimation,
articularly for �m and σ 8 determination (Zubeldia & Challinor
019 ). In the upcoming years, ground-based experiments like ad-
 anced ACT (Cro wley et al. 2018 ), the Simons Observ atory (Abitbol
t al. 2019 ), CMB-S4 (Abazajian et al. 2022 ), and CMB-HD (Sehgal
t al. 2019 ) will further these investigations by providing large-area
aps in both temperature and polarization with high sensitivity and

ngular resolution (see Table 1 ). The goals of these experiments are
 ery div erse and ambitious, ranging from the detection of primordial
 modes at large scales to the characterization of the growth of the
 E-mail: wcoulton@flatironinstitute.org 
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tructures through gravitational lensing and galaxy clusters. Given
he exquisite precision of upcoming experiments, the data analysis
ill present different challenges and opportunities. Extraction of

osmological parameters is expected to happen from the statistical
nalysis not only of the power spectrum but also of non-Gaussian
roperties of the v arious signals. Gi ven the lo w le vel of noise, the
ain challenge in interpreting a given signal will be its separation

rom the other components. In a regime of such high precision, it is
lso important to assess the rele v ance of all possible physical effects
nd processes that might slightly alter a given signal. 

The motion of our local frame with respect to the CMB is
nown to alter our observations because of Doppler and aberration
f fects. Pre vious experiments like Planck (Planck Collaboration
VI 2020 ) were able to measure part of the expected effects, like
he prominent temperature dipole (Planck Collaboratio LVI 2020 ;
lanck Collaboration XXVII 2014 ) and mode coupling in the power
pectrum (Planck Collaboration XXVII 2014 ; Ferreira & Quartin
021 ). Some other potential implications, such as the alteration of
he power spectrum shape and impact on the non-Gaussian signal
f the maps, had been deemed irrele v ant for the Planck experiment
Catena & Notari 2013 ). The light coming from extragalactic objects
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Table 1. Approximate maximum l modes measured in temperature and po- 
larization by future experiments, and sky fraction covered (Abazajian et al. 
2016 ; Ade et al. 2019 ; Sehgal et al. 2019 ; Aiola et al. 2020 ). 

l max, T l max, P Sky fraction 

advACT ≥4500 4000 0.4 
SO 5000 4000 0.4 
CMB-S4 10 000 5000 0.5 
CMB-HD 35 000 – 0.5 

Table 2. Measurements performed on patches of the sky that are asymmetric 
with respect to the boost direction are more significantly impacted by Doppler 
and aberration effects. We estimate the degree of asymmetry by computing the 
sky area dependent factor, 〈 cos θ〉 , for a range of upcoming CMB experiments. 
Note that the observations for many experiments are actually divided into 
multiple patches, in order to a v oid the Galaxy. These separate patches can 
have significant boost factors as can be seen in the last two rows where we 
compute the boost factors for the two Simons Observatory (SO) patches. 
The area co v erage for the various e xperiments cited can be found at: https: 
//github.com/syasini/cmb- x- galaxy- overlaps . 

Experiment 〈 cos θ〉 
AdvACT − 0 .18 
SPTPol − 0 .44 
SPTSZ − 0 .25 
ACTPol − 0 .82 
CMB-S4 (Est. whole footprint) 0 .03 
LSST 0 .05 
SO (Est. whole footprint) − 0 .03 
CMB-HD (Est. whole footprint) − 0 .03 
Planck-Gal-70 0 .01 
LOWZ-North 0 .56 
DECalS − 0 .02 
DESI 0 .06 
BOSS-DR10 0 .27 
DES − 0 .41 
BOSS-North 0 .57 
CMASS-North 0 .57 
eBOSS-North 0 .48 
SO (Est. south footprint) − 0 .54 
SO (Est. north footprint) 0 .78 
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uch as SZ clusters is also going to be altered due to our peculiar
otion. While some studies have been carried out to address part of

he expected observational effects (Challinor & van Leeuwen 2002 ; 
hluba & Sunyaev 2004 ; Chluba, H ̈utsi & Sunyaev 2005 ; Dai &
hluba 2014 ; Balashev et al. 2015 ) a thorough analysis of the impact
f such motion on observed maps in the microwave and infrared 
ands is lacking. 
The need to take into account the effect of our peculiar motion cru-

ially depends on the experiment’s characteristics and overall goals. 
 or e xample, The ACT collaboration has in fact corrected its CMB
ower spectrum for the effect of our motion (Louis et al. 2017 ). With
ew experiments on the horizon, it remains to be addressed whether 
hese corrections are sufficient for a correct data interpretation. The 
ifferent area co v erage, the noise lev el (impacting the possibility
o measure the CMB on small scales and in polarization), and the
xpanded science goals in terms of astrophysics and cosmology 
nvolving galaxy clusters and the use of non-Gaussian signatures 
ll justify revisiting the issue. Table 1 shows that in a relatively near
uture we will be able to map anisotropies out to scales l � 10 000.
able 2 , reporting a rough measure of the correction needed, suggests

hat, even for experiments like the Simons Observatory, our peculiar 
otion cannot be ignored, if subportions of the sky are analysed
eparately. 

Upcoming experiments plan to exploit the rich cosmological 
nformation available in CMB non-Gaussianity (NG; Abazajian et al. 
016 ; Ade et al. 2019 ). For example studies of NG induced by
ravitational lensing aim to provide precision constraints on the 
mplitude of density perturbations and a detection of the sum of the
asses of the neutrino (Allison et al. 2015 ). Beyond the cosmological

nformation in lensing itself, lensing induced B modes are a key
ontaminant for the detection of B modes and need to be accurately
emo v ed via delensing (Smith et al. 2012 ). NG from other secondary
nisotropies, including the thermal and kinetic SZ effects, is a rich
ource of cosmological information (Crawford et al. 2014 ; Coulton 
t al. 2018 ). 

CMB NG is also a potential probe of primordial physics on its
wn (Abazajian et al. 2016 ; Planck Collaboration VIII 2020 ; Planck
ollaboration IX 2020 ). Current (inflationary) models of the universe 
ssume that the dynamics underlying our observations are Gaussian 
o a very high degree; ho we ver, perfect Gaussianity is impossible
ith any model (Maldacena 2003 ; Creminelli & Zaldarriaga 2004 ).
G observed in the CMB had to have arisen during the earliest
oments of the Universe, so measuring NG in the CMB allows us

o probe energy scales in the early Universe that are unavailable 
or experimentation otherwise (Chen 2010 ). In parallel with the 
earch for primordial gra vitational wa ves, measurements of non- 
aussianity constrain the space of theoretical early universe models 

Meerburg et al. 2019 ). 
If boosting CMB signals in the direction of our motion distorts non-

aussian signals or generates additional noise, it will need to be taken
nto account when investigating the parameter space of different 
osmological models. Conversely, if we show that kinetic effects do 
ot introduce a bias towards non-Gaussianity at these scales, we can
onfidently attribute measured deviations from Gaussianity to some 
ntrinsic quality of the Universe and use this information to moti v ate
uture searches, rule out models, and constrain the parameter space. 

The goal of this paper is to prepare for the next generation experi-
ents by creating the appropriate tools for boosting/deboosting maps 

nd assessing the expected effects of our motion in the Universe on
xtragalactic components like the CMB and SZ clusters, and properly 
ssessing non-Gaussian statistics of the millimeter sky. 

We first analyse the power spectra of the CMB as well as of the
hermal and kinetic Sunyaev Zel’Dovich effects (tSZ and kSZ) in 
he rest and boosted frames (Sunyaev & Zeldovich 1972 , 1980 ). The
ffect of our motion on the CMB has been investigated using three
ifferent methods: real space boosting (Yoho et al. 2013 ), Fourier
pace boosting (Dai & Chluba 2014 ), and a boosting approximation
pplied directly to the power spectrum (Jeong et al. 2014 ). These
ethods are explained in further detail in Section 3 . Ho we ver, these

nalyses have only been performed up to, at most, � = 3000 for the
MB, and not at all for the frequency dependent observables, such
s the SZ. We are moti v ated by upcoming high resolution surv e ys,
uch as those given in Table 1 , and theoretical advances on the
requency-dependent boosting (Yasini & Pierpaoli 2017 ) to extend 
ur investigation to � = 6000 (including polarization) and to the SZ
ffects, with the goal of assessing expected signatures of our motion
t high resolution and a broader range of observables. 

In order to meet these objectives, we generalize the expression 
f the power spectrum boosting formula, originally developed for 
est-frame blackbody emission, to any kind of emission law. By 
oing so, we can apply the boost to maps of tSZ effect, which has
ts own frequency dependence (Sunyaev & Zeldovich 1980 ). We 
hen assess the effects of the boosting using actual sky simulations
MNRAS 513, 2252–2270 (2022) 
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f the CMB and the SZ ef fects. This allo ws us to verify the
ccuracy of the three boosting methods (real-space, Fourier-space,
nd power spectrum boost), specifically at high ells, and compare
heir respective computational efficiencies for future use. 

Secondly, we use non-Gaussian simulations to consider how
igher order statistics are impacted by the Doppler and aberration
ffects. We analyse a range of one point statistics of the spherical
armonic coefficients from CMB, tSZ, and kSZ maps to determine if
ur motion induces or modifies non-Gaussianity in these data. Next
e consider how measurements of the primordial bispectrum and of

he tSZ and kSZ bispectra are impacted by boosting effects. Finally
e consider whether inferences of the CMB lensing potential, a

our-point function of the CMB maps, is impacted. 
The paper is structured as follows: In Section 2 we provide a
athematical o v ervie w of the rele v ant physical ef fects: the Doppler

nd aberration effects, as well as integrated Sachs Wolfe and
ravitational lensing. In Section 3 we describe the three boosting
ethods we compared, including the advantages and limitations of

ach method. In Section 4 we provide details of the CMB simulations
nd the two SZ simulations used in this work. We next validate these
ethods using high–resolution CMB maps, Section 5 . In Section 6 ,
e use a range of one-point statistics to study the impact of Doppler
oosting on the CMB and the SZ effects. In Section 7 and Section 8
e investigate how bispectrum measurements and lensing, four-point

unction analyses are impacted by the aberration effects. We conclude
n Section 9 . 

 PHYSICAL  EFFECTS:  AN  OVERVIEW  

n this Section, we briefly re vie w the main physical effects discussed
n this work: the Doppler and aberration effects, Section 2.1 , the SZ
ffects, Section 2.2 , and the integrate Sachs–Wolfe and CMB lensing
ffects, Section 2.3 . 

.1 Doppler and aberration effects 

he two ways in which observations are influenced by our particular
elocity are the Doppler and the aberration effects. In an inertial
rame moving at relativistic speeds, the Doppler effect causes the
requency of light to appear shifted in the following way: 

′ = γ ν(1 + β cos θ ) , (1) 

here β is the velocity of the observer’s frame of reference in speed of
ight units, γ = 1 / 

√ 

1 − β2 is the Lorentz factor, ν is the frequency
n the rest frame of the source, ν

′ 
is the wavelength in the observer’s

rame, and θ is the angle between the velocity of the observer and the
ncident angle of the light in the rest frame of the source. Throughout
his work we noted quantities in the boosted frame with primes and
ildes e.g. ˜ T ( n ′ ) for the CMB temperature in the boosted frame, and
uantities in the rest frame without. 
The aberration effect changes the observed direction at which the

ight is detected. The transformation between the direction of the
ight in the rest frame of the source and the observed direction of
he light in the moving frame can be described by the following
quation: 

ˆ 
 
′ = 

cos θ + β

1 + β cos θ
ˆ β + 

ˆ n − ˆ β cos θ

γ (1 + β cos θ ) 
, (2) 

here n is the unit vector pointing in the direction of the light in
he rest frame of the source and n 

′ 
is the unit vector pointing in the

irection of the observed light. 
NRAS 513, 2252–2270 (2022) 
.2 Sunyaev–Zeldovich effects 

he SZ effects occur when CMB photons interact with hot electrons
n the late-time Universe, like the ones in galaxy clusters. There
re two mechanisms in which CMB photons are affected by these
nteractions. The first mechanism is through inverse Compton scat-
ering, where photons absorb thermal energy from high temperature
lectrons as they pass through the interstellar medium. This effect,
nown as the tSZ (Sunyaev & Zeldovich 1972 , 1980 ), produces a
pectral distortion of the CMB spectrum given by 


T tSZ ( ̂ n , ν) 

T CMB 
= y g ( x ) , (3) 

here x = 
hν

k B T CMB 
, ν is the observation frequency, h is Planck’s

onstant, k B is the Boltzmann constant, T CMB is the CMB temper-
ture, y is the (dimensionless) Compton y -parameter, and g is the
SZ response function. The tSZ response function characterizes the
requency dependence of spectral distortion as 

g ( x ) = x coth 
(x 

2 

)
− 4 . (4) 

he Compton y -parameter depends on the cluster’s characteristics
hrough 

 = 

∫ 
d χa( χ ) σT 

P e ( χ ˆ n ) 
m e c 2 

, (5) 

here σ T is the Thomson cross-section, a is the scale factor, c is the
peed of light, χ is the comoving distance, and m e and P e are the
lectron mass and electron pressure. 

In the second mechanism, electrons transfer kinetic energy from
heir bulk motion to incoming CMB photons (Sunyaev & Zeldovich
972 ; Rephaeli & Lahav 1991 ). This ef fect, kno wn as the kSZ, is
n order of magnitude smaller than the tSZ and produces spatial
nisotropies with the same frequency spectrum as the primary CMB
this makes it more difficult to disentangle these anisotropies from

he primary CMB anisotropies. Relative to the CMB, temperature
uctuations caused by the kSZ are given by 


T kSZ ( ̂ n ) 
T CMB 

= −
∫ 

d χa( χ ) σT n e ( χ ) v ( χ ˆ n ) · ˆ n e −τ ( χ) , (6) 

here v is the electron velocity and τ is the optical depth. 
Data from the tSZ and kSZ have been proposed as cosmological

arameter probes themselves, and are used to accurately detect
alaxies. In particular tSZ cluster counts particular have been
nvestigate the tension between the CMB and large-scale structures of
he Universe (Leauthaud et al. 2017 ; Zubeldia & Challinor 2019 ) and

easurements of the kSZ effect are powerful probes of astrophysics
nd primordial non-Gaussianity (Schaan et al. 2021 ; M ̈unchmeyer
t al. 2019 ). The SZ effects have proven extremely significant to the
tudy of cosmology and will only become more rele v ant with higher
esolution surv e ys. Therefore, it is important to understand how our
otion in the Universe may impact our observations of these effects,

specially at small angular scales. 
In this work we focus on the non-relativistic contributions to the SZ

ffects, that is when computing the SZ effects we have only retained
erms linear in the electron temperature, T e , and electron velocity.
his approximation is accurate for the majority of the sources of SZ
ffects, which have temperatures k B T e ∼ few keV, and velocities β

1 × 10 −3 . Thus we are neglecting corrections that are typically
t the ∼fe w per cent le vel (Remazeilles et al. 2019 ). Whilst these
ffects are interesting probes of cluster thermodynamics (e.g. Hill
t al. 2015 ) and potentially cosmology (Coulton, Ota & van Engelen
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020b ), they are typically best considered on a per object basis and
his has been studied in Chluba et al. ( 2012 , 2013 ). 

.3 CMB effects – the integrated Sachs–Wolfe effect and 
ravitational lensing 

ravitational lensing perturbs the trajectories of CMB photons as 
hey propagate from the last scattering surface (LSS) to the observer 
Blanchard & Schneider 1987 ; Bernardeau 1997 ). These deflections 
ean that the CMB anisotropies at LSS, 
 ̄T ( n ), are remapped so that

hey are related to the observed temperature anisotropies, 
T ( n ), by 

T ( n ) = 
 ̄T ( n + ∇φ( n )) . (7) 

( n ) is the lensing potential and is defined as 

( n ) = −2 
∫ χ∗

0 
d χ

χ∗ − χ

χ∗χ
� ( χn , χ ) , (8) 

here � is the gravitational potential and χ∗ is the comoving distance 
o LSS. This remapping introduces non-Gaussianity to the CMB 

nisotropies; specifically a non-vanishing four-point function. This 
ffect does not distort the CMB spectrum. The size of the CMB
eflections depends upon the integral of the gravitational potential, 
nd hence the density fluctuations, from LSS to the observer, 
eighted by a geometric factor. This geometric factor means that the 
eflections are most sensitive to perturbations at redshifts between 
 = 0.5 and z = 3. (Zaldarriaga & Seljak 1999 ; Lewis & Challinor
006 ). We discuss how lensing can be measured, and how it is
mpacted by Doppler and aberration effects in Section 8.1 . 

In additional to deflection, CMB photons can also be redshfited by 
ravitational potentials as they propagate through the Universe. This 
f fect, kno wn as the integrated Sachs–Wolfe (ISW) effect on linear
cales and the Rees–Sciama effect on non-linear scales, generates 
emperature anisotropies whose amplitude is given by (Sachs & 

olfe 1967 ; Rees & Sciama 1968 ; Martinez-Gonzalez, Sanz & Silk
990 ) 


T ( n ) 
T CMB 

= −2 
∫ χ∗

0 
d χ

∂� ( χn , χ ) 

∂χ
. (9) 

he growth of potentials under gravitational collapse, and the decay 
f potentials through dark energy driven expansion, thus leaves an 
mprint on the CMB and is a significant contribution to the large-
cale CMB temperature power spectrum. The correlation between 
he ISW effect and the lensing effect – as both depend on the line-
f-sight gravitational potential – introduces further non-Gaussianity 
nto the CMB, which is explored further in Section 7.3 . 

 BOOSTING  METHODS  

hen dealing with our peculiar motion, we may be faced with the
ask of estimating the boosted power spectrum on a given area of
he sky, or producing the boosted image, given the rest frame one,
nd then computing all rele v ant statistics. The first problem has been
ddressed, in the simplified case of a blackbody spectrum, in Chluba 
 2011 ), Jeong et al. ( 2014 ); and it is revisited here in Section 3.1 . 

The second problem has also been discussed in the literature. In
his Section, we re vie w the proposed boosting methods and then
e perform a thorough analysis of the methods’ performances in 
ection 5 . 
We note that the boosting effects impact Galactic and extragalactic 

f fects dif ferently and, in general, care needs to be taken to account
or this. In this work, we only consider extragalactic signals and thus
an neglect this subtly. 
.1 Boosting at the power spectrum 

he most computationally efficient way to obtain the boosted CMB
ower spectrum ( C 

′ 
� ) from the rest frame one is to apply the following

nalytical formula derived in Jeong et al. ( 2014 ): 

 
′ 
� = C � 

(
1 + 


C � 

C � 

)
, (10) 

here 


C � 

C � 

= −d ln C � 

d ln � 
β〈 cos θ〉 + O( β2 ) , (11) 

here the angle average is taken over the area covered by the survey.
his is an approximation of the modulation and aberration effects 

o first order in β, where β is our velocity relative to the CMB and
s equal to 0.001 23 (in speed of light units) (Planck Collaboration
XVII 2014 ). This method has been shown to be accurate when

pplied to CMB temperature maps up to � = 3000 through e xtensiv e
imulations (Jeong et al. 2014 ). It also takes into account the masking
unction of a particular map in a computationally efficient way. An
 v aluation of the average cos ( θ ) for current and future surveys is
rovided in Table 2 . While the effect of our motion is greatly reduced
hen large areas of the sky, in symmetric directions with respect to
ur motion are surv e yed, the effect can be quite substantial if sub-
reas are considered independently. 

This formula is only applicable to frequency independent signals 
nd those with Doppler-weight one, where an observable, F ( ν, n ),
ith Doppler-weight, d, transforms under a boost as 

F 
′ ( ν ′ , n ′ ) 
ν ′ d = 

F ( ν, n ) 
νd 

. (12) 

We extended the power spectrum boosting formula to account for 
requency dependent observables and those with Doppler-weight d 
 1. This is important for two reasons: first, it is necessary to study

ow our motion impacts the power spectrum of CMB secondary 
nisotropies. Secondly, all current CMB experiments do not directly 
easure the temperature anisotropies and instead they measure 

ntensity fluctuations of the sk y, 
I ( ν, n ), a frequenc y dependent
uantity. The CMB has a black-body spectrum and, using the fact the
MB anisotropies are small perturbations to the CMB temperature, 

he measured intensity fluctuations can be linearly related to the 
emperature anisotropies 

I ( ν, n ) = 

2 h 
2 ν4 

c 2 k B T 
2 

CMB 

exp 
[ 

hν
k B T CMB 

] 
(

exp 
[ 

hν
k B T CMB 

] 
− 1 

)2 
T ( n ) . (13) 

hus to compute the impact of our motion on the measured CMB
nisotropies we need to understand how the power spectrum of 
requency dependent obserables is impacted. Here, after CMB 

easurements performed this way are referred to as ‘differential 
hermodynamic measurements’ and we refer the reader to Planck 
ollaboration XXVII ( 2014 ), Notari & Quartin ( 2016 ), and Planck
ollaboration LVI ( 2020 ) for more details. 
To extend the formula, first consider the case of a frequency

ndependent, Doppler-weight 1 ( d = 1) field. The power spectrum in
he boosted frame is given as 

 
′ 
Lm 

= 

〈
a ′ ∗LM 

a ′ LM 

〉
= 

∑ 

�,� ′ 

〈
1 K 

m ∗
L� a 

∗
�m 

1 K 
m 

L� ′ a � ′ m 

〉
, (14) 

here for simplicity we aligned the boost with the ˆ z direction 
nd 1 K 

m ∗
L� 

1 are the boosting kernels introduced in Challinor & van
MNRAS 513, 2252–2270 (2022) 
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eeuwen ( 2002 ). These can be written as 

 K 
m 

L� = 〈 Lm | W e iη
ˆ Y z | �m 〉 (15) 

sing the operator notation introduced in Dai & Chluba ( 2014 ) where
is the rapidity, β = tanh η, W is the sky mask and ˆ Y z is the boosting
perator. Expanding to leading order we have 

 
′ 
Lm 

≈ C Lm + 

∑ 

� 

[〈 LM| W | �m 〉〈 Lm | W iη ˆ Y z | � ′ m 〉 ∗

+ 〈 LM| W | �m 〉 ∗〈 Lm | W iη ˆ Y z | �m 〉 ]C �m . (16) 

ai & Chluba ( 2014 ) found that this is accurately approximated by 

 
′ 
Lm 

≈ C Lm − β〈 cos θ〉 d C Lm 

d ln � . (17) 

 or frequenc y-dependent, general Doppler -weight fields we ha ve 

 
′ 
Lm 

( ν1 , ν2 ) = 

〈
a ′ ∗LM 

(
ν ′ 

1 

)
a ′ LM 

(
ν ′ 

2 

)〉
= 

∑ 

�,� ′ 

〈
d K 

m ∗
L� 

(
ν ′ 

1 

)
a ∗�m 

(
ν ′ 

1 

)
d K 

m 

L� ′ 
(
ν ′ 

2 

)
a � ′ m 

(
ν ′ 

2 

)〉
. (18) 

s was shown in Chluba et al. (in preparation) the new kernels are
iven by 

 K 
m ∗
L� ( ν1 ) = 〈 Lm | W e iη

ˆ Y d z | �m 〉 , (19) 

here the new boost operator is given by 

ˆ 
 
d 
z = 

ˆ Y z − iμ( d − 1 − ν∂ μ) . (20) 

eplacing the boost operator in equation ( 16 ) with the more general
oost operator straightforwardly gives 

 
′ 
Lm 

(
ν ′ 

1 , ν
′ 
2 

) ≈ C Lm 

(
ν ′ 

1 , ν
′ 
2 

) − β〈 cos θ〉 C Lm 

(
ν ′ 

1 , ν
′ 
2 

)
×

[ 

d ln C Lm 

(
ν ′ 

1 , ν
′ 
2 

)
d ln � 

+ 2( d − 1) − d ln F 

(
ν ′ 

1 

)
d ln ν ′ 

1 

− ln F 

(
ν ′ 

2 

)
) 

d ln ν ′ 
2 

] 

, (21) 

aving assumed that the frequency and spatial dependencies are
eparable so the total (cross-) spectrum can be written as 

 �m = F ( ν1 ) F ( ν2 ) G ( �, m ) , (22) 

here F ( ν) and G ( � , m ) are arbitrary functions. 
Second-order aberration boost terms are generally negligible, as

he � deri v ati ves of the po wer spectrum are generally much less than
/ β – this is explicitly seen in Section 5 where we see agreement
etween the first-order boosting formulae and the numerical methods
or � < 5000. Ho we v er, higher order frequenc y deri v ati ves can
ecome important, for example when the frequency response has
 null and deep in the Wien tail. Including only the dominant second-
rder terms (those second order in frequency deri v ati ves) we have 

 
′ 
Lm 

≈ C Lm − β〈 cos θ〉 C Lm 

[
d ln C Lm 

d ln � 
+ 2( d − 1) − d ln F ( ν1 ) 

d ln ν1 

− ln F ( ν2 ) 

d ln ν2 

]
+ β2 C Lm 〈 cos θ〉 2 d ln F ( ν1 ) 

d ln ν1 

d ln F ( ν2 ) 

d ln ν2 

+ 

1 

2 
β2 C Lm 〈 cos 2 θ〉 

[
d 2 ln F ( ν1 ) 

d ln ν2 
1 

+ 

d 2 ln F ( ν2 ) 

d ln ν2 
2 

]
. (23) 

ote that the first-order expansion, equation ( 21 ), is sufficiently
ccurate for most purposes and thus it will be our baseline power
pectrum boosting method. In Section 5 , we examine how well these
pdated formulae work on maps the of tSZ effect and differential
hermodynamic measurements of the CMB. 
NRAS 513, 2252–2270 (2022) 
.2 Boosting at the map level 

e will now discuss boosting at the map level, which we perform
ia two approaches: in real space and harmonic space. 

.2.1 Pixell – a real-space boosting code 

he first boosting method involves applying the Lorentz transform
o CMB maps in real space. The boost is applied at the pixel level,
apping each angular and frequency data point in the rest frame to
 new angle and frequency in the boosted frame. 

Our real space method uses the publicly available Pixell library. 1 

he boosted temperature anisotropies are generated by directly
 v aluating 

˜ 
 ( n ′ ) = 

T ( n ) 
γ (1 − β cos θ ′ ) 

, (24) 

here again tildes and prime denote quantities e v aluated in the
oosted frame. 
Specifically, we first generate a Gaussian unboosted CMB, 
T ( n i )

here n i is the set of pixels. The code then uses this pixel locations
s the pixel locations of the output, boosted map. To e v aluate the
berration we first compute the location of these output pixels in the
nboosted frame; these locations are given by evaluating equation ( 2 )
ith - β. We then use bi-cubic interpolation to e v aluate the simulated
nboosted CMB at these new positions. The Doppler term can then
e computed by multiplying the aberrated map by 1/( γ (1 − βcos θ

′ 
)),

hich is trivial to evaluate. 
The Pixell library can also compute boosted CMB anisotropies

or differential intensity measurements. For differential intensity
easurement at frequency, ν

′ 
, the boosted maps are e v aluated by

irectly computing 

 ̃
 T ( n ′ , ν ′ ) = 


T ( n ) 
γ (1 − β cos θ ′ ) 

+ 

[ (
1 

γ (1 − β cos θ ′ ) 
− 1 

)2 

T CMB 

+ 

2 

γ (1 − β cos θ ′ ) 

(
1 

γ (1 − β cos θ ′ ) 
− 1 

)

T ( n ) 

]

× ( g( x ′ ) + 3) + 

(
1 

γ (1 − β cos θ ′ ) 
− 1 

)2 

T CMB 

+ 

g( x ′ ) + 3 

[ γ (1 − β cos θ ′ )] 2 T CMB 

T ( n ) 2 . (25) 

he four terms correspond to the standard modulation, the
uadrupole term, the dipole term, and the second-order anisotropy
erm. The later term is a negligible term. 

This method requires high resolution maps in order to have accu-
ate interpolations. With low resolution maps the effect of the pixel
indow function, which suppresses power when the interpolated data
oints do not map directly to the middle of a pixel in the boosted frame
see (Yoho et al. 2013 ) for a more detailed discussion. Note that

he Pixell interpolation method has a significantly reduced transfer
unction compared to the method implemented in Yoho et al. ( 2013 ).

.2.2 Cosmoboost – a harmonic-space boosting code 

osmoboost is a boosting method working in harmonic space
Yasini & Pierpaoli 2017 , 2020 ) which extends the ordinary differ-
ntial equation method developed in Dai & Chluba ( 2014 ) to a signal
ith arbitrary frequency dependence. The harmonic coefficients a lm 

https://github.com/simonsobs/pixell
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f a given map are boosted through the computation of the boosting
ernel d K 

m 

L� , as specified in Yasini & Pierpaoli ( 2017 ). This boosting
ethod allows to boost any type of frequency spectrum and Doppler 
eight, and it is therefore more general than Pixell . It naturally

ncorporates both Doppler and aberration effects, and it allows maps 
ith different Doppler weights to be boosted. The analysis of specific 

ntensity, partial sky maps, which are ultimately observed with future 
xperiments, has been presented in (Yasini & Pierpaoli 2017 ) for
ultipoles up to � = 3000. The effects of the boosting on the

emperature maps variance is addressed in Yasini & Pierpaoli ( 2020 ).
n this work, we present we updated and impro v ed v ersion of the code
hich has been developed for a more agile handling of small-scales.
he updated code is public. 2 

.2.3 Healpix-Boost – an alternative real-space boosting code 

here is an alternative real space code to boost CMB maps: the
ealpix-Boost code (Notari, Quartin & Catena 2014 ; da Silveira 
erreira & Quartin 2021 ). 3 This code works by noting that the
oosting effects can be incorporated by modifying the spherical 
armonic transform from the usual relation 

T ( n ) = 

∑ 

a �m Y �m ( n ) (26) 

o 

 ̃
 T ( n ′ ) = (1 + β cos θ ) 

∑ 

a �m Y �m ( n ) , (27) 

.e. e v aluating the spherical harmonics at the unboosted locations 
using equation 2 to relate the coordinates) and then accounting for
he modulation. This code is able to compute boosted temperature 
nd polarization maps for 
 T / T CMB measurements. This came to
ur attention at the final stages of this work, so that a detailed
omparison with such code was not performed. A similar method 
as implemented in Chluba ( 2011 ). 

 SIMULATIONS  

n order to test the effects of boosting, we need to start from unboosted
imulations. 

For analyses of the CMB we use the Pixell package to simulate
ull sky Gaussian CMB maps using the lensed CMB power spectrum 

rom CAMB (Lewis, Challinor & Lasenby 2000 ). We use the best-
tting Planck cosmological parameters (Planck Collaboration VI 
020 ) and generate maps in the plate carr ́ee (CAR) pixelization
ith a pixel resolution of 0.5 arcmin. We considering lensing and 
ispectrum measurements we use lensed CMB realization that are 
omputed using Pixell from unlensed CAMB CMB power spectra. 

As for the SZ effects, we analysed two sets of simulations: the
ebSky simulation by Stein et al. ( 2020 ) and the Hydrodynamic

imulation by Dolag, Komatsu & Sunyaev ( 2016 ) – hereafter Dolag 
t al. These two sets of data were generated using very different
ethods, and extend to different redshift values, as detailed in 
ections 4.1 and 4.2 . 
The two diverse methods lead to significant differences in the 

roperties of the simulations, as can be seen both in the maps (Fig. 1 )
nd in the power spectra (Fig. 2 ). The Dolag et al. simulations show
ignificantly less power in the kSZ effect at all scales. As for the
 For further information on Cosmoboost , visit https://github.com/maamari/C 

smoboost
 For the code and further information visit https:// github.com/mquartin/ heal 
ix-boost

g
s  

g  

e  

l  

w  
SZ, the simulations show similar o v erall power but different scale
ependence of the power. These effects primarily arise from the 
ifferent redshift ranges co v ered by the simulations as discussed
urther below. 

In order to perform statistical analysis of the SZ effects, we need
o analyse several independent data sets. To do this, we divide the
ull sky maps into 12 partial sky maps, corresponding to the 12
e gapix els defined by a healpix map with nside = 1 (G ́orski et al.

005 ). We rotate each map (in harmonic space using the healpy
otator.rotatealm function) such that the middle of each me gapix el

s in the direction of the boost, which is in this case the z hat direction,
nd then boost the map. We then create a mask which co v ers all points
 xcept the me gapix el of interest, centred in the z hat direction, and
dd an apodization of 2 deg (in order to negate edge effects). 

.1 Hydrodynamical simulation 

osmological, hydrodynamical simulations are starting to co v er 
olumes which allow the construction of detailed full sky maps for
 arious observ ables, like the tSZ and the kSZ signal. Here, following
olag et al. ( 2016 ) we use the so called Magneticum simulation
ox1/mr , which co v ers a co-mo ving volume of almost 2.1 Gpc 3 , as
ell as Box0/mr , which co v ers a co-moving volume of 55.6 Gpc 3 .
or a detailed description of the simulations see Dolag et al. ( 2016 )
nd Soergel et al. ( 2018 ). In short, these simulations co v er all the
mportant galaxy formation processes and their related feedback 
rocesses on to the interstellar and inter cluster medium including: 
tar formation and their associated energy release through supernovae 
f type Ia and II, and the evolution of super massive black holes and
heir associated AGN feedback. Also, plasma physical processes such 
s cooling, including the contributions of various metal species and 
he presence of the CMB and the ultraviolet (UV)/X-ray background 
adiation from quasars and galaxies, as well as thermal conduction 
re treated in a proper way . Thereby , the inter cluster medium in these
imulations produces a tSZ signal that compares very well with the
bserved pressure profile in galaxy clusters (Planck Collaboration 
nt. V 2013 ; McDonald et al. 2014 ; Gupta et al. 2017 ) as well as with
he mean thermal pressure in the Universe and its evolution Young,
omatsu & Dolag ( 2021 ). Despite the relatively large volume of

hese simulations, creating full sky maps, as shown in Fig. 1 , without
uplication of the simulation volume – and thereby the structure 
ithin it – has some limitations. Here Box1 can co v er up to a redshift
f z = 0.17 using 5 slices corresponding to the appropriate output
imes, while Box0 can be used to extend this up to a redshift of z =
.5 using 3 slices corresponding to the according output times. By
eplicating Box 0 twice in each spacial direction, full sky maps can
e extended to z = 1.2 using three more slices, corresponding to the
atching output times. 
In addition, the local Universe contains some very prominent 

tructures in the form of massive galaxy clusters and super cluster
egions, which dominate the tSZ signal at small multipoles (see Dolag
t al. 2005 ). Therefore we combined the Magneticum full sky maps
ith the contribution obtained from a constrained, local universe 

imulation (see Dolag et al. 2005 , 2016 ) co v ering the redshift range
f 0 < z < 0.027. These simulations were performed using the same
alaxy formation physics as described before for the Magneticum 

imulation. Thus the y reco v er well the observ ed signal of local
alaxy clusters like Coma (Planck Collaboration Int. X 2013 ; Dolag
t al. 2016 ) or Virgo (Planck Collaboration Int. XL 2016 ). These
ocal universe structures are visible in Fig. 1 and partially explain
hy the Dolag et al. tSZ simulation has more power on the largest
MNRAS 513, 2252–2270 (2022) 
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M

Figure 1. Full sky maps in a Mollweide projection for the Compton y parameter (see equation 5 ) and the kSZ (see equation 6 ) are shown in the upper and lower 
panel, respectively. Left column is from the hydro simulation, right column is from websky. To emphasize the structures, additionally a zoom in to some region 
is shown and o v erall a colour scale based on histogram equalization is used. 

Figure 2. The pseudo-C � power spectrum for the tSZ and kSZ for the Websky 
simulations and Dolag et al. ( 2016 ) hydrosimulations. These are measured 
in the 12 HEALPIX me gapix els, with the error bars denoting the measured 
spread. The spectra are very different from each other in harmonic space; this 
is due to the different redshift ranges of the two simulations and is explained 
in further detail in Sections 4.1 and 4.2 . 
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cales (small � ) than the websky simulation. These features are less
mportant for the kSZ maps. 

All simulations assume a flat � CDM model with slightly different
osmological parameter. In the Magneticum simulations ( �m , �b ,
8 , h , n s ) = (0.272, 0.0456, 0.809, 0.704, 0.963) are assumed for the
osmological parameters, whereas the Local Universe simulation
s based on ( �m , H 0 , σ 8 , h ) = (0.3, 100 h , 0.9, 0.7). These small
NRAS 513, 2252–2270 (2022) 
ifferences in parameters are however not expected to impact the
onclusions presented here. 

.2 WebSky simulation 

nstead of the computationally intensive hydrodynamic method,
he WebSky realizations use the mass-Peak Patch approach (Stein,
lvarez & Bond 2019 ) and second-order Lagrangian perturbation

heory (2LPT) (Bouchet et al. 1995 ) to generate catalogs of dark
atter haloes and a matter field component, respectively. While these

re ‘approximate’ methods, they have been validated extensively
gainst more computationally e xpensiv e N -body simulations at high
esolution. Using this method, the Websky cosmological realizations
ere able to extend to a redshift of z = 4.6 o v er the full-sky with a
olume of about 600 (Gpc h −1 ) 3 and with haloes resolved down to
1 × 10 12 M � (Stein et al. 2020 ). 
From the large-scale structure realization, a map of the tSZ effect

s generated by ‘pasting’ spherically symmetric gas profiles on to
he haloes and using equation ( 5 ) to generate y-maps by projecting
long the line of sight. The pressure profiles are obtained from fits to
ydrodynamical simulations (Battaglia et al. 2012 ). 

The halo contribution to the kSZ is calculated in an analogous
anner: electron density profiles are ‘pasted’ on to haloes and these

re projected to kSZ maps using equation ( 6 ). The electron number
ensity profile is also obtained from fits to hydrodynamical sim-
lations (Battaglia 2016 ). This halo contribution is complemented
y a contribution from the unbound field component. The electron
ensity is assumed to be a biased tracer of the underlying dark-matter
eld (with b = 1) that is then projected along the line of sight via
quation ( 6 ), we refer the reader to Stein et al. ( 2020 ) for a more
etailed description. 
The WebSky simulation was generated according to a flat � CDM
odel with the following cosmological parameters: ( �m , �b , σ 8 , h ,
) = (0.31, 0.049, 0.81, 0.965, 0.68, 0.055). 

art/stac1017_f1.eps
art/stac1017_f2.eps
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Figure 3. The fractional change between the boosted and rest-frame CMB 

power spectra from the half of the sky in the direction of the boost. The 
same 100 rest-frame maps are boosted by our three procedures as described 
in Section 3 . The solid and dotted lines represent results for temperature 
and differential thermodynamic measurements at 150 GHz, respectively. The 
measured psuedo-Cl power spectra are binned in bins of width 
� = 50. 
The shaded region is the scatter on the rest-frame power spectra from the 
100 simulations. The power spectrum boosting is done via equation ( 11 ) 
for temperature measurements and equation ( 21 ) for differential intensity 
measurements. 
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 TWO-POINT  STATISTICAL  ANALYSIS  

efore discussing how higher order statistics are impacted by our 
otion we examine how the CMB, kSZ, and tSZ power spectra 

re impacted. Some work has been done in this direction when 
onsidering the CMB temperature power spectrum only (Challinor & 

an Leeuwen 2002 ; Jeong et al. 2014 ), and we will compare with
hese results whenever possible to validate the Cosmoboost and Pixell 
odes. Here, we aim at assessing tools to compute this effect at high
 in both temperature and polarization. For the tSZ and kSZ effects,
hat we present is both a new result and a validation of our frequency-
ependent power spectrum method. 
For the results of this section, we use the Namaster package 

Alonso, Sanchez & Slosar 2019 ) to compute mask-deconvovled 
ower spectra. When using the power spectrum boosting method 
equations 11 and 21 ) we compute the power spectrum on the full-
ky and use this in our boosting formulae. 

.1 Validation on CMB maps 

ere, we compare the outcomes of the three methods discussed 
n Section 3.2 . We also discuss the performances in terms of
omputational time and memory needed. We perform our analysis 
or temperature measurements and differential thermodynamic mea- 
urements and compare our results to the appropriate power spectrum 

oost formulae: either equation ( 11 ) (which has been tested already
p to l � 3000) or equation ( 21 ) (a new result of this work). 
Starting with 100 Gaussian realizations of the CMB we boost each 
ap in both real space (using Pixell ) and harmonic space (using
osmoboost ). We then mask the sky to select only the half in the
irection of the boost. The mask is apodized by smoothing with a 2 ◦

aussian to minimize the impact of masking induced mode coupling 
Peebles 1973 ; Hivon et al. 2002 ). To compare these methods, we
alculate the binned power spectrum of both boosted maps, using 
amaster with in bins of width 
� = 50 (Alonso et al. 2019 ),

nd determine the per cent difference between the rest-frame and 
oosted-frame power spectrum. Additionally, we apply the power 
pectrum formula in equation ( 11 ) (for 
 T / T CMB measurements) and
quation ( 21 ) (for the differential thermodynamic measurements) 
irectly to each map’s rest-frame power spectrum as a further 
omparison. 

The results of this comparison are plotted in Fig. 3 , where we
how the average spectra and the variance of the 100 realizations. 
e see that all methods produce highly consistent results up to 

 max = 5000 in temperature and polarization. This is the case for
oth 
 T / T CMB measurements (compared with equation 11 ) and for
ifferential thermodynamic measurements at 150 GHz [compared 
ith the ne wly deri ved formula ( 21 )]. Note the spikes in the TE power

pectra arise as the denominator crosses zero. The impact of the 
oost on differential thermodynamic measurements is ∼30 per cent 
arger than for temperature measurements, as the modulation term is 
ncreased. These result provide the first validation of our frequency 
ependent power spectrum boosting formula, equation ( 21 ): the good 
greement between this method and the two other methods provides 
alidation for the accuracy of this method. The difference seen 
etween the 
 T / T CMB measurements and the differential thermo- 
ynamic measurements highlights the need for this formula; current 
MB observation measure the later quantity while theory codes 
ompute the former and our formula provides a fast and accurate 
ethod to map between the two. 
At smaller scales we see small discrepancies. In principle, the 
osmoboost formula is exact and we have checked that the range 
xtent of the kernel is not impacting the result. As described in
ection 3.2 the Pixell method uses an interpolation step to e v aluate

he aberration. This interpolation step introduces a transfer function, 
kin to the pixel window function, that damps the small-scale power
see Yoho et al. ( 2013 ) for further discussion]. This could partially
xplain the different behaviour seen at high � , ho we ver it is unlikely
hat this completely explains the difference as the estimated transfer 
unction is smaller then the observed difference. Whilst the power 
pectrum boosting formula is only correct to first order in β, which
ould lead to an inaccurate prediction on the smallest scales, it shows
ood agreement with Cosmoboost on all scales. A practical note, 
hen using Cosmoboost we found that it was necessary to boost
MNRAS 513, 2252–2270 (2022) 
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Table 3. Resource consumption for the Cosmoboost and Pixell codes to boost a single temperature map as a function of � max . Both codes can 
run in two stages: a one-off computation, for Cosmoboost this is the computation a kernel and for Pixell the e v aluation of the interpolation 
locations, and then the use of these components to a boost specific realization. As can be seen for boosting a single map the Pixell code is 
faster, at the cost of a larger memory footprint. Ho we ver Cosmoboost is significantly faster when boosting multiple maps. 

� max CPU usage (core-mins) Memory Usage (GB) 
Cosmoboost (kernel) Cosmoboost (boost) Pixell (precomputation) Pixell (boost) Cosmoboost Pixell 

1000 0 .2 0 .01 1 1 .6 0 .03 2 .7 
2000 0 .8 0 .02 2 .5 0 .1 6 .8 15 
4000 8 .9 0 .1 10 0 .5 39 65 
6000 83 0 .5 24 2 .5 120 160 

m  

a
 

m  

w  

p  

b  

c  

W  

o  

m  

o  

p  

i  

o  

t  

m  

m  

b  

C  

i  

b  

i  

e  

a  

f  

t

5

T  

C  

T  

d  

t  

m  

b  

f  

b  

a  

t  

s  

t  

s  

c  

c  

f  

t  

h

Figure 4. The ratio of the boosted and rest-frame kSZ power spectra for 
the Websky and Dolag et al. simulations for differential thermodynamic 
measurements at 143 GHz. The results are the average for boosts on the 12 
healpix me gapix el patches, as described in the text, and the shaded region is 
the sample variance from the 12 rest-frame patches of the Websky simulations. 
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aps with a higher � max than is needed for the analysis to a v oid
liasing effects. 

We then assessed the computational resources needed to boost the
ap. Table 3 shows the resources needed to create boosted maps
ith Cosmoboost and Pixell . Both codes have the option to reuse
arts of the computation. This means boosting of multiple maps can
e significantly faster than a single map: in Cosmoboost the kernels
an be reused and in Pixell the interpolation locations can be reused.
hen using Cosmoboost to boost the spherical harmonic coefficients

f a temperature map up to � = 6000, roughly 120 gigabytes of
emory and 82 min of runtime are required to generate a kernel

f width 
� = 20, which is adequate for boosting temperature and
olarization spectra up to � = 6000, and the half a minute of runtime
s required to boost a map with these kernels. For further information
n 
� selection, please visit the Cosmoboost repository. For Pixell ,
he precomputation resources are 24 core minutes and 160 GB of

emory and the boosting time is about 2.5 min for a temperature
ap. For repeated boosting the resource requirement is just the

oosting operation, which is significantly faster for both codes, with
osmoboost being several times faster. However note that for boosts

n directions away from the poles, Cosmoboost requires the map to
e rotated, which can add a significant computational o v erhead. It
s possible, though out of the scopes of this work, to optimize the
fficiency of Cosmoboost by altering the dimensions of the kernel and
dapting it to the � value under examination. The boosting runtime
or temperature and polarization maps are approximately triple the
emperature alone requirements. 

.2 Analysis of kinetic Sunyaev–Zeldovich maps 

he kSZ effect has the same frequency response as the primary
MB signal, ho we ver, it has a significantly different � dependence.
his means that the expected impact of boosting effects will be
ifferent from the effects on the primary CMB. In Fig. 4 , we show
he results of boosting the kSZ maps using the Cosmoboost on the 12

e gapix el patches for both simulations (given the good agreement
etween Cosmoboost and Pixell for primary CMB anisotropies we
ocus on just Cosmoboost here for clarity). We see that the effect of
oosting is primarily at 0.5 per cent increase in the kSZ power on
ll scales and the impact of the boosting effects is similar in both
he websky and Dolag et al. simulations. Additionally, the blue band
hows the sample variance computed with the rest-frame patches;
his significantly exceeds the size of the Doppler effects on almost all
cales, and can reach a few per cent. Note that the sample variance
omputed in the boosted frame and the rest frame are statistically
onsistent and that the scatter between the rest-frame and boosted-
rame measurements is smaller than the sample variance by more
han a factor of 5 on all scales. These results suggest that boosting
as an insignificant effect on kSZ power spectrum measurements. 
NRAS 513, 2252–2270 (2022) 
We also show the results from the power spectrum boosting
ormula. It shows very good agreement with Cosmoboost providing
urther validation of our formula (equation 21 ). Note that we observe
ignificant scatter between the Cosmoboost and power spectrum
oosting results. This arises as the Cosmoboost results are computed
n the 12 me gapix el patches whereas the power spectrum formula
s e v aluated using the full-sky po wer spectrum. We cannot use the
ower spectrum measured in the patch as this will be convolved with
he mask (Hivon et al. 2002 ), which does not commute with the
oosting operation. 

.3 Analysis of thermal Sunyaev–Zeldovich maps 

e then perform a similar analysis of the tSZ maps. Note that
urrently the Pixell code can only boost maps of signals with CMB
ike frequency dependence, so all maps were boosted using the
osmoboost code. 
In Fig. 5 , we plot the fractional change on the tSZ power

pectrum using the 12 healpix me gapix el patches for the two types
f simulations at 143 GHz. First, we see that our power spectrum
ormula shows very good agreement with Cosmoboost . Secondly,
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Figure 5. The ratio of the boosted and rest-frame tSZ power spectra for 
the Websky and Dolag et al. simulations for differential thermodynamic 
measurements at 143 GHz. The setup is otherwise identical to that used for 
the kSZ effect shown in Fig. 4 . The blue region denotes the sample variance 
of the rest-frame power spectrum across the 12 patches. 
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Figure 6. The ratio of the boosted-frame and rest-frame tSZ power spectra 
at 217 GHz using the Dolag et al. and Websky simulations. The experimental 
setup is otherwise identical to Fig. 5 . At this frequency, we find that higher 
order Doppler terms are necessary to accurately describe the boosting effects. 
We provide an analytical formula for these terms in equation ( 23 ). Note that 
whilst the fractional effect is large, at 217 GHz the tSZ signal is close to its 
null and so the absolute correction is still small. 

Figure 7. The one-point pdf of rest-frame and boosted-frame CMB a � m 
coefficients at � = 5000 for 100 simulations. We measure the a � m coefficients 
after applying a mask that retains the 50 per cent of the sky in the direction 
of the boost. We plot the distribution of both the real and imaginary parts as 
well as all the m modes together. 
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e see that the size of the boosted correction is very similar for the
wo simulations. In both cases, the average of the effect is at most
 per cent on all scales. As in the case of the kSZ power spectra, the
ample variance exceeds the size of the boosting effect on all scales
nd the scatter between the rest-frame and boosted-frame power 
pectra is significantly smaller than the sample variance. 

The tSZ spectral response, relative the CMB anisotropies, has a 
ull near 217 GHz (note the signal is not exactly null at 217 GHz).
round these frequencies higher order Doppler terms become im- 
ortant. This is seen in Fig. 6 where the first-order power spectrum
oosting formula, equation ( 21 ), is still highly inaccurate, despite 
roviding an O(1) correction to the signal. We find that second-order 
eri v ati ves of the frequency response, captured by our second order
ormula, equation ( 23 ), are very significant and provide a much
ore accurate description of the modulation effect. We note that 

hese large relative corrections are primarily due to the fact that the
SZ signal is small near the null, rather than these corrections being
arge in absolute terms – at 217 GHz the tSZ power spectrum is
uppressed by a factor of 5 × 10 −5 compared to the tSZ power
pectrum at 143 GHz. The importance of this effect for experimental 
easurements depends on the details of the instrument bandpass. For 

xample when integrated against the ACT bandpass (Marsden et al. 
014 ), the boosting induced correction to the tSZ power spectrum in
he 217 GHz is reduced to ∼4 per cent . Measurements at 217GHz 
re useful for isolating or removing the tSZ signal from CMB maps
s the signal is close to null. To ensure there is no bias from this
ffect it may be important to account for motion induced shifts. 

 ONE-POINT  STATISTICAL  ANALYSIS  

he most complete one-point statistic is the one-point probability 
ensity function (pdf), which is our case is the distribution of each
f the a � m coefficients. We examined these distributions for all the 
imulations and an example of this is shown in Fig. 7 . Instead of
ummarizing the information in the plethora of pdfs we instead 
ocus on a set of compressed one point statistics: the third and
ourth standardized moments. The third moment, also known as the 
MNRAS 513, 2252–2270 (2022) 
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M

Figure 8. The change in the CMB a � m skewness and kurtosis, as a fraction 
of the rest-frame statistic standard deviation, induced by our motion for 
measurements of 
 T / T CMB . We compute this using 100 CMB simulations 
boosted with the Cosmoboost code. We apply a mask that retains the 
50 per cent of the sky in the direction of the boost. The shaded regions are 
the measured spread of the difference. Note that the variance of the boosted- 
frame and rest-frame maps are statistically the same and thus the large spread 
of the difference indicates decorrelation and not a source of extra noise. 

s

μ

w  

T  

s

μ

T  

b  

t  

p  

o  

k  

e

6

W  

p  


  

k  

t  

d  

s  

s  

t  

m  

Figure 9. The boosting induced change in the skewness and kurtosis of the 
a � m coefficients from the tSZ and kSZ maps. The statistics are computed by 
using 12 me gapix el re gions, each boosted with the boost direction aligned 
with the patch centre. The measurements are in differential thermodynamic 
units at 143 GHz. The shaded regions are the measured standard deviation in 
the difference. 

H  

a  

v  

a  

d  

c  

m  

m  

a  

h  

s  

t  

a  

t  

c

6

T  

w  

a  

b  

t  

w  

w  

o  

s  

c  

A  

f  

p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/513/2/2252/6570913 by U
niv of Southern C

alifornia user on 30 N
ovem

ber 2022
kewness – ˆ μ3 , is defined as 

ˆ 3 = E 

[ (
( X − μ) 

σ

)3 
] 

, (28) 

here μ and σ are the distribution’s mean and standard deviation.
he skewness is zero for a perfectly Gaussian distribution. The fourth
tandardized moment, the kurtosis – ˆ μ4 ,is similarly defined as 

ˆ 4 = E 

[ (
( X − μ) 

σ

)4 
] 

. (29) 

he kurtosis is equal to three for a perfectly Gaussian distribution,
ut from here on kurtosis will refer to Pearson’s kurtosis, for which
hree has been subtracted (so a kurtosis of zero corresponds to a
erfectly Gaussian distribution). To quantify the non-Gaussianity
f an a lm distribution, we calculate the deviation of skewness and
urtosis from zero, in both the rest frame and the boosted frame, at
ach � value. 

.1 CMB 

e boost 100 CMB realizations using Cosmoboost and consider tem-
erature measurements, i.e. frequency-independent measurements of
 T / T CMB . In Fig. 8 , we show the change in the skewness and the

urtosis induced by the boost, as measured on the 50 per cent of
he sky in the direction of our motion, compared with the standard
eviation of the statistic as measured in the rest frame. First we
ee that, on average, the Doppler boost does not introduce any
tatistically detectable skewness or kurtosis. Secondly, we see that
he variance of the difference between the boosted and rest-frame

easurements is comparable to the sample variance of the statistic.
NRAS 513, 2252–2270 (2022) 
o we ver, the sample variance of the boosted statistic is still the same
s the sample variance in the rest frame – there is no additional
ariance from the boosting. The scatter in the difference is thus not
 sign of increased statistic variance but rather indicates an effective
ecorrelation between the maps. As an analogy consider a simpler
ase: compare the statistics of a simulated CMB map with the same
ap after performing a rotation. Under a rotation the a � m coefficients
ix together and thus one would observe a large scatter in skewness

nd kurtosis measurements between the rotated and unrotated maps;
o we ver, the ensemble averages of the two statistics would be the
ame. (This is not true for rotationally invariant statistics such as
he power spectrum or bispectrum). A similar effect occurs here, the
berration mixes the a � m coefficients resulting in a scatter between
he rest and boost frame measurements without producing significant
hanges in the ensemble average statistics. 

.2 Sunyaev–Zeldovich effects 

o investigate the impact of Doppler boosting on the SZ effects
e make use of the 12 healpix patches of the Dolag et al. ( 2016 )

nd websky simulations. For both the tSZ and kSZ effects we
oost the maps with Cosmoboost and consider linearized differential
hermodynamic measurements at 143 GHz. Each patch is boosted
ith a boost direction aligned with the centre of the patch. In Fig. 9 ,
e see that the Doppler effects do not induce significant skewness
r kurtosis for the kSZ ef fect. Ho we ver we do see a small, and
tatistically not detectable, change in the tSZ kurtosis. We see broadly
onsistent results between the Dolag et al. and websky simulations.
s in the case of the CMB we see significant scatter between the rest-

rame and boosted-frame measurements, though as we only have 12
atches of the same sky the errors are rough estimates. 
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 3 -POINT  STATISTICS  

hree-point statistics probe the correlations between three spatial 
oints or three different harmonic modes. The bispectrum, the 
armonic space equi v alent of the three-point function, has been 
 xtensiv ely used in cosmology to probe deviations from Gaussianity 
nd to extract information beyond the power spectrum (Smith, 
enatore & Zaldarriaga 2009 ; Gil-Mar ́ın et al. 2015 ; Planck Col-

aboration IX 2020 ). In this section, we consider how the Doppler
nd aberration effects impact bispectrum measurements. This work 
uilds on the results of Catena et al. ( 2013 ), who explored the impact
f these effects on constraints on primordial non-Gaussianity using 
he bispectrum. Catena et al. ( 2013 ) find two results: first Doppler and
berration effects do not introduce a primordial bispectrum signal in 
aussian sk y maps. Secondly, the y observ e a scatter, at the level
f ∼30 per cent of the primordial bispectrum amplitude, between 
he rest-frame and boosted-frame measurements. Their results raise 
wo questions: is the scatter between the unboosted and boosted 
ispectrum measurements an additional source of noise that needs to 
e accounted for in future studies, and what is the effect of boosting
n non-zero bispectra? Our work answers these two questions. First, 
e reexamine how primordial bispectrum estimators are affected 
y the Doppler and aberration terms. We include polarization data 
nd smaller scales to investigate the scatter seen in Catena et al.
 2013 ). We also perform our analysis for differential thermodynamic 
easurements (whereas Catena et al. ( 2013 ) considered temperature 
easurements), finding that this distinction leads to a systematic, 

ut unobserv able, dif ference. Secondly, we consider ho w non-zero 
ispectra, specifically the ISW lensing bispectrum and the tSZ and 
SZ bispectra, are impacted. 
We begin this section with a re vie w of bispectrum and primordial

on-Gaussianity estimators. Then we consider how boosting effects 
rimordial non-Gaussianity estimators applied to CMB simulations. 
inally, we study how the bispectrum of the ISW-lensing, tSZ and 
SZ effects are impacted by the Doppler and aberration effects. 

.1 Ov er view of bispectrum and primordial non-Gaussianity 
stimators 

he bispectrum is defined as (Spergel & Goldberg 1999 ) 

 

X 1 ,X 2 ,X 3 
� 1 ,� 2 ,� 3 ,m 1 ,m 2 ,m 3 

= 

〈
a 

X 1 
� 1 ,m 1 

a 
X 2 
� 2 ,m 2 

a 
X 3 
� 3 ,m 3 

〉
, (30) 

here X i denotes the type of field (e.g. temperature, polarization etc). 
stimation of the full-bispectrum is computational prohibitive and, 

or the majority of cosmological fields, any individual configuration 
f the bispectrum will be noise dominated. To o v ercome these issues a
eries of methods have been developed (Komatsu, Spergel & Wandelt 
005 ; Bucher, Van Tent & Carvalho 2010 ; Fergusson, Liguori &
hellard 2012 ). These approaches utilize two techniques: first, if we 
ssume that the fields under study are parity even and are generated by 
omogeneous and isotropic processes the bispectrum can be written 
s 〈 

a 
X 1 
� 1 ,m 1 

a 
X 2 
� 2 ,m 2 

a 
X 3 
� 3 ,m 3 

〉 

= G 

m 1 m 2 m 3 
� 1 � 2 � 3 

b 
X 1 X 2 X 3 
� 1 � 2 � 3 

, (31) 

here G 

m 1 m 2 m 3 
� 1 � 2 � 3 

is the Gaunt integral and is a geometric factor and

 

X 1 X 2 X 3 
� 1 � 2 � 3 

is the reduced bispectrum and contains all the physical 
nformation. Secondly, we note that the following form of the Gaunt 
ntegral allows for the geometrical factor to be enforced by applying 
pherical harmonic transforms 

 

m 1 m 2 m 3 
� 1 � 2 � 3 

= 

∫ 
d 2 �Y � 1 m 1 ( n ) Y � , m 2 ( n ) Y � 3 m 3 ( n ) . (32) 
n this work, we use a binned bispectrum estimator as developed 
n Bucher et al. ( 2010 ) and Bucher, Racine & van Tent ( 2016 ).
he binned estimator provides estimates of the reduced bispectrum 

v eraged o v er a range of � and can be efficiently computed as 

ˆ 
 

X 1 X 2 X 3 
i,j ,k = 

∑ 

All �m 

1 

N ijk 

∫ 
d 2 �W 

i 
� 1 

a � 1 ,m 1 W 

j 

� 2 
a � 2 ,m 2 W 

k 
� 3 

a � 3 ,m 3 

−
〈 

W 
i 
� 1 

a � 1 ,m 1 W 

j 

� 2 
a � 2 ,m 2 

〉 

W 
k 
� 3 

a � 3 ,m 3 

+ two permutations , (33) 

here N ijk is the number of configurations summed o v er and W 
i 
� 

efines the boundaries of the bins. Our implementation is described in 
ore detail in Coulton & Spergel ( 2019 ). By averaging over several

earby configurations the binned estimator increases the signal to 
oise and reduces the computational complexity of the estimator. 
abich ( 2005 ) and Creminelli et al. ( 2006 ) showed that bispectrum
stimators require the terms in the second line of equation ( 33 ) in
rder to be optimal, unbiased estimators – i.e. estimators that saturate 
he Cramer–Rao bound. These terms are known as the linear terms
nd we perform an analysis both with and without including them. 

If the structure of the non-Gaussianity is known a priori , small de-
iations from Gaussianity are most ef fecti vely probed with template-
ased estimators (Komatsu et al. 2005 ; Fergusson et al. 2012 ). We
t templates to the binned bispectrum measurements and report 
onstraints on the amplitudes of these templates, known as f NL .
pecifically the amplitudes are computed as 

 
 NL = 

1 

6 N 

∑ 

i,j ,k 

b 
theory ,X 
ijk � 

XY 
ijk 

−1 ˆ b Y ijk , (34) 

here b theory ,X 
ijk is the binned theoretical bispectrum, � 

XY 
ijk is the 

inned bispectrum covariance where X , Y represents the bispectrum 

onfiguration of fields, and N is a normalization constant such that
he estimator has unit response to the theoretical bispectrum. We 
se estimates of f NL parameters when discussing primordial non- 
aussianity and lensing-ISW bispectra as experimental bounds have 

hown that these types of non-Gaussianity are small (Smith et al.
009 ; Lewis, Challinor & Hanson 2011 ; Bennett et al. 2013 ; Planck
ollaboration IX 2020 ). 

.2 Primordial bispectra 

rimordial non-Gaussianity searches aim to measure or constrain de- 
iations from Gaussianity in the early universe. Such measurements 
re highly informative as, in many classes of early universe models,
etails of the primordial mechanisms are encoded into the deviations 
rom Gaussianity. This subject has been e xtensiv ely studied and we
efer the reader to Chen ( 2010 ) for a detailed re vie w of inflationary
echanisms and Meerburg et al. ( 2019 ) for a recent o v erview of

he field. In this work, we discuss the primordial bispectrum, which
robes correlations between three Fourier modes of the primordial 
urvature perturbation, ζ ( k ). Assuming homogeneity and isotropy 
he primordial bispectrum, B 

ζ ( k 1 , k 2 , k 3 ) is defined as 

 ζ ( k 1 ) ζ ( k 2 ) ζ ( k 3 ) 〉 = (2 π ) 3 δ(3) ( k 1 + k 2 + k 3 ) 
3 

5 
B 

ζ ( k 1 , k 2 , k 3 ) . (35) 

ue to the linearity of the early universe, measurements of the
MB bispectrum directly probe the primordial bispectrum. Thus 

he primordial bispectrum is related to the reduced bispectrum by 
Komatsu & Spergel 2001 ) 

 

X 1 ,X 2 ,X 3 
� 1 ,� 2 ,� 3 

= 

∫ 
r 2 d r 

∏ 

i 

∫ 
2 

π
d k i g 

X i 
T ( k i ) j � i ( k i r) B 

ζ ( k 1 , k 2 , k 3 ) , (36) 
MNRAS 513, 2252–2270 (2022) 
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Figure 10. The difference between f NL estimates obtained from a set of 
boosted and rest-frame, noiseless CMB maps. We apply a mask that retains 
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linear term in our f NL estimator. We normalize, the estimate by the estimator 
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frame f NL values for shapes with a strong squeezed component. Ho we ver as 
these estimates exclude the linear term the estimator variance is significantly 
larger than the Fisher variance and these biases are unobservable. 
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here g X i T ( k i ) are the transfer functions and j � ( x ) are the spherical
essel functions. 
In this work, we focus our discussion on the measurement of three

rimordial bispectra. Specifically, we consider the local bispectrum 

 
local ( k 1 , k 2 , k 3 ) = 2 f local 

NL A 
2 
s k 

2 −2 n s 
p 

[ 

1 

k 
4 −n s 
1 k 

4 −n s 
2 

+ 

1 

k 
4 −n s 
2 k 

4 −n s 
3 

+ 

1 

k 
4 −n s 
1 k 

4 −n s 
3 

] 

, (37) 

here A s is the amplitude of primordial fluctuations at the pivot scale
 p , n s is the spectral tilt. The local bispectrum is of particular interest
s it is an informative probe of the field content of the early Universe
Maldacena ( 2003 ) and Creminelli & Zaldarriaga ( 2004 ) has shown

hat the amplitude of the local bispectrum for all single field, slow
oll inflationary models is slow roll suppressed. Thus measurement
f a large amplitude of this type of non-Gaussianity would be highly
nformative. 

The other two models we consider are the equilateral bispectrum, 

 
equil ( k 1 , k 2 , k 3 ) = 6 A 

2 
s k 

2 −2 n s 
p f 

equil 
NL 

( 

− 1 

k 
4 −n s 
1 k 

4 −n s 
2 

− 1 

k 
4 −n s 
2 k 

4 −n s 
3 

− 1 

k 
4 −n s 
1 k 

4 −n s 
3 

− 2 

( k 1 k 2 k 3 ) 2(4 −n s ) / 3 

+ 

[ 

1 

k 
(4 −n s ) / 3 
1 k 

(4 −n s ) / 3 
2 k 

2(4 −n s ) / 3 
3 

+ 5perm . 

] ) 

, 

(38) 

nd orthogonal bispectrum, 

 
orth ( k 1 , k 2 , k 3 ) = 6 A 

2 
s k 

2 −2 n s 
p f orth 

NL 

( 

− 3 

k 
4 −n s 
1 k 

4 −n s 
2 

− 3 

k 
4 −n s 
2 k 

4 −n s 
3 

− 3 

k 
4 −n s 
1 k 

4 −n s 
3 

− 8 

( k 1 k 2 k 3 ) 2(4 −n s ) / 3 

+ 

[ 

3 

k 
(4 −n s ) / 3 
1 k 

(4 −n s ) / 3 
2 k 

2(4 −n s ) / 3 
3 

+ 5perm . 

] ) 

. 

(39) 

hese types of non-Gaussianity are common in early universe models
ith strong non-linear dynamics (Creminelli et al. 2006 ; Senatore,
mith & Zaldarriaga 2010 ). These types of non-Gaussianity have
een e xtensiv ely searched for in CMB data sets with the current
est constraints coming from the Planck satellite (Smith et al. 2009 ;
ennett et al. 2013 ; Planck Collaboration IX 2020 ). 
In this section, we use a set of 160 temperature and E-mode CMB
aps generated using the Pixell library. These maps are lensed
MB maps, which included the appropriate correlation between

he lensing field and the integrate Sachs–Wolfe effect (Rees &
ciama 1968 ; Sachs & Wolfe 1967 ). The maps are for differential

hermodynamic measurements at 150 GHz and are computed as
escribed in Section 3 . We use � max = 3000 and consider the
osmic variance limited case (zero noise and instrumental effects).
onsidering the cosmic variance limited case allows us to assess the
orse-case scenario for the impact of these effects. Note that we
erform this analysis with an � max = 3000 rather than higher as this
s the range rele v ant for upcoming CMB experiments and it is highly
omputationally intensive. 

We split the simulations into two sets: 80 simulations are used to
stimate the linear term via an ensemble average, and 80 simulations
re used as mock observations. We consider a mask that only includes
NRAS 513, 2252–2270 (2022) 
he region of sky within 60 ◦ of the boost direction. Finally, we
lso remo v e the induced dipole from our maps, as this is remo v ed
rom CMB data analyses (Planck Collaboration III 2020 ). Firstly,
e consider applying bispectrum estimators without the linear

erm. Whilst this e x ercise is purely academic, as in the analysis
f experimental data a linear term is almost al w ays subtracted, we
nd that there is an interesting effect present in the analysis without
 linear term. The results are shown in Fig. 10 . We see that the
rthogonal and local bispectra, all bispectra with a large squeezed
ontribution, exhibit a systematic bias. We have normalized these
emplates by the Fisher variance to set a similar scale for the different

easurements. Ho we ver, the measured v ariance is significantly
arger, due to the exclusion of the linear term, such that these biases
re unobservable. Catena et al. ( 2013 ) found no bias between their
imulated boosted and rest-frame maps. We identify the source of this
iscrepancy as arising from the difference in measurement types –
ifferential thermodynamic measurements compared to temperature
easurements. When repeating our computation for temperature
easurements we find that this bias disappears. We return to the

rigin of this bias after considering estimators that include the linear
erm. 

In Fig. 11 , we repeat our analysis including the linear term, which
e compute using 80 held-out simulations. We see that the biases

re all significantly reduced and are now at the level of 0.2 σ . This
arge reduction in bias elucidates the origin of the bias seen in the

easurements without the linear term. When computing the boost for
ifferential thermodynamic measurements, in addition to the dipole
ontribution there is a Doppler induced quadrupole. This quadrupole
ombines with the off-diagonal power spectrum contributions arising
rom the masking (and in experimental data inhomogeneous noise)
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Figure 11. The same as Fig. 10 with the inclusion of the linear term in our f NL 
estimator. We normalize the estimate by the estimator Fisher variance. We see 
the bias between the boosted and rest-frame f NL measurements is significantly 
reduced and is no w belo w the expected estimator variance (given in this case 
by the Fisher error). 
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Figure 12. A slice of the squeezed ISW-lensing bispectrum for the boosted 
and rest-frame CMB maps. We plot results both included and excluding the 
linear term. Without the linear term we see the leakage of the quadrupole. 
With the linear term, we see that we reco v er the theoretical ISW-lensing 
bispectrum. We note that the ISW-lensing bispectrum is a small signal hence 
the large scatter even after averaging over 80 simulations. 
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o produce a bispectrum contribution as 

 a � 1 m 1 a � 2 m 2 a � 3 m 3 〉 = 〈 a � 1 m 1 〉〈 a � 2 m 2 a � 3 m 3 〉 = 〈 a � 1 m 1 〉 C � 2 m 2 ,� 3 m 3 . (40) 

hen we include the linear term in our analysis we remo v e most of
he of f-diagonal po wer spectrum contributions and thereby remo v e
he bias. Note that we still see a small residual bias, this arises as
ur linear term does not provide a complete cancellation of the off-
iagonal power spectrum, likely due to that fact we could only use
0 simulations to compute this term – due to the high computational 
ost. 

Next, we consider whether the boost introduces extra variance 
nto the bispectrum estimator, similar to how lensing introduces 
xtra variance (Babich & Zaldarriaga 2004 ; Coulton et al. 2020a ).
e are moti v ate to explore this question from the results seen in
atena & Notari ( 2013 ) who find a scatter between the boosted
nd rest-frame f NL measurements at the level of 30 per cent of their 
stimator variance. In Fig. 11 , we see a similar level of scatter.
o we ver our analysis includes polarization data, whilst Catena & 

otari ( 2013 ) used only temperature, smaller scales and we include
he linear term in our analysis, hence have a more optimal estimator.
hese three factors mean that whilst we also see 30 per cent scatter 
ur error bars are a factor of two smaller. That means that as the
onstraining power of estimator impro v es, the scatter between the 
oosted and rest-frame maps decreases. This implies that boosting 
oes not cause additional noise in the bispectrum estimator, rather 
he scatter likely arises as the boost results in a decorrelation between
he boosted-frame and rest-frame maps, as is seen by computing the 
ross-correlation between the boosted-frame and rest-frame power 
pectra. This is similar to the effect seen in the one-point function
nalyses. 
.3 Integrated Sachs–Wolfe – lensing bispectrum 

he correlation between the ISW and lensing effects results in a
on-zero bispectrum in the CMB that is known as the ISW-lensing
ispectrum (Goldberg & Spergel 1999 ). This bispectrum has been 
easured by the Planck satellite at ∼3 σ (Planck Collaboration 
XI 2016 ). This bispectrum is an interesting probe of dark energy,

patial curvature, and modified gravity (Crittenden & Turok 1996 ; 
amionkowski 1996 ; Hu 2001 ). Further, it is interesting to examine
ere as its has a shape that is similar to the local primordial bispectrum
Lewis et al. 2011 ) and is computationally cheap to simulate. These
w o f acts mean that it is interesting to study how boosting impacts
easurements of the ISW-lensing bispectrum as the primordial 

ispectra will likely be effected in a similar manner. We included
his source of non-Gaussianity in the simulations used in the previous
ection. 

As for the primordial bispectra we measure the amplitude of ISW-
ensing bispectrum both with and without the linear term. The results
een in Figs 10 and 11 show the same pattern as the primordial local-
ype non-Gaussianity. This is expected as the bispectra templates 
re similar. In absolute terms, when including the linear term, we
nd amplitudes of the ISW-lensing bispectra as ˆ f NL = 0 . 98 ± 0 . 03,
rom the average of the rest-frame maps and ˆ f NL = 1 . 00 ± 0 . 03
or the boosted maps. In Fig. 12 , we plot a squeezed slice of the
oosted and rest-frame bispectra as well as the theory expectation. 
or the estimates without the linear term, we see a systematic offset
etween the boosted and rest-frame bispectra. This is the result 
f the quadurpole effect discussed in the previous section. This 
ffset is remo v ed when we include the linear term. For all other
onfigurations we see no statistically significant difference, in line 
ith our explanation. We can be further assured that there is no
MNRAS 513, 2252–2270 (2022) 

art/stac1017_f11.eps
art/stac1017_f12.eps


2266 W. Coulton et al. 

M

Figure 13. A plot showing the significance of the difference between the 
boosted-frame and rest-frame tSZ and kSZ bispectra for the equilateral 
configuration. We compute the mean difference between our 12 boosted 
patches and compare this with the variance of the rest-frame bispectrum. 
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ystematic offset as the f NL results, including the linear term, are
onsistent and this is a more stringent test than a by-eye comparison.

The results of this section indicate that there is no observable
mpact of the boost on bispectrum measurements up to � max = 3000,
he rele v ant range for proposed experiments. Gi ven our results, and
he physics of the boost, we expect there to be no impact on higher
esolution measurements as well. 

.4 Sunyaev–Zeldovich effects 

n this section, we explore the impact of Doppler boosting and
berration effects on the thermal and kinetic SZ bispectra. Our
xperimental setup is the same as in Section 6 : we divide the sky
nto 12 healpix pixels, boost each one in the direction of it centre
nd consider observations at 143 GHz. This allows us to estimate the
orse case impact of the boosting effects. 
In Fig. 13 , we plot the significance of the difference between the

est-frame and boosted-frame maps for the tSZ–tSZ–tSZ and kSZ–
SZ–tSZ bispectra. These are the only non-zero bispectra between
hese two fields (all configurations involving an odd number of kSZ
aps will be zero when averaged over realizations). We see that the

mplitude of these bispectra is altered by the boost; ho we ver, the
ffect is significantly below cosmic variance on all scales. This is
ot unexpected: detecting the Doppler effects at the power spectrum
evel is already challenging and so one would expect the significance
f these effects on the bispectrum to be even lower, given that
ispectrum measurements are typically much noisier than power
pectrum measurements. 

We did not add the primary CMB dipole to the kSZ map and
he kSZ and tSZ induced quadrupoles and are very small (Fixsen
t al. 1996 ; Hill et al. 2015 ); combined this means we do not see the
ame quadrupole leakage effects that are seen in the CMB bispectrum
lots. Finally, note that our simulations also do not include the motion
nduced y dipole (Balashev et al. 2015 ), ho we v er this is e xpected to
NRAS 513, 2252–2270 (2022) 
e a small effect as the size of y monopole, which sources the dipole,
elative to the anisotropies is much smaller than for the primary CMB
nisotropies. 

We concluded that the impact of doppler boosting on bispectrum
easurements of the tSZ and kSZ effects can be safely neglected. 

 4 -POINT  STATISTICS  

hilst computing the full four-point function, or its harmonic
qui v alent, is computational prohibitive, statistics that target specific
ubsets have been extensively studied. The two most explored
tatistics are those to probe primordial trisipectra, for example
 NL and τNL (Komatsu 2002 ; Kogo & Komatsu 2006 ; Fergusson,
egan & Shellard 2010 ; Smith, Senatore & Zaldarriaga 2015 ), and

tatistics used to probe the lensing induced trispectrum (Seljak 1996 ;
ewis & Challinor 2006 ). In this work, we focus on the later set of
tatistics. 

.1 Gravitational lensing trispectrum 

e start by transforming the deflection equation, equation ( 2 ), to
armonic space and Taylor expanding it. We see that, in addition to
odifying the power spectrum of the observed anisotropies, lensing

ouples different spherical harmonic coefficients as 

( � ) ≈ ā ( � ) −
∫ 

d 2 � 1 
(2 π ) 2 

d 2 � 2 
(2 π ) 2 

� 1 · � 2 ̄a ( � 1 ) φ( � 2 )(2 π ) 2 δ(2) 

× ( L − � 1 − � 2 ) . (41) 

ote that we work in the flat-sky regime as this will be helpful for
uilding intuition later and we remind the reader that the bar denote
nlensed quantities. It is clear that this means the anisotropies have
 non-trivial four-point function and are hence non-Gaussian. The
ensing induced non-Gaussianity is a rich source of cosmological
nformation as its properties are determined by the lensing potential,
hich depends on the line-of-sight integrated matter in the Universe.
Using the off-diagonal coupling, equation ( 41 ), we can derive a

uadratic estimator, for the lensing potential, ̂  φ, as (Hu & Okamoto
002 ; Okamoto & Hu 2003 ) 

ˆ ( L ) = R L 

∫ 
d 2 � 

(2 π ) 2 
a ( � ) a ( L − � ) 

[
C � � · L + C | L −� | L · ( L − � ) 

]
2( C 

Tot 
� )( C 

Tot 
| L −� | ) 

, 

(42)

here C 
Tot is the total observed power spectrum, including in-

trument noise, and R L is a normalization constant that can be
nalytically approximated by 

 L = L 
2 

[ ∫ 
d 2 � 

(2 π ) 2 

[
C � � · L + C | L −� | L · ( L − � ) 

]2 

2( C 
Tot 
� )( C 

Tot 
| L −� | ) 

] −1 

(43) 

We follow Hanson et al. ( 2011 ) and use lensed power spectra in the
umerator of the estimator as this suppresses higher order biases. We
an then extract cosmological information from this reconstructed
eld by studying its moments, primarily the power spectrum (which

s therefore an implicit four-point function). 
Existing experiments have already made detections of the lensing

ower spectrum (Sherwin et al. 2017 ; Bianchini et al. 2020 ; Fa ́undez
t al. 2020 ; Planck Collaboration VIII 2020 ) and upcoming and on-
oing experiments plan to use precise measurements of the lensing
otential to constrain cosmological parameters, such as the neutrino
ass (Abazajian et al. 2016 ; Mishra-Sharma, Alonso & Dunkley

018 ; Ade et al. 2019 ). Given the high level of expected precision,
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Figure 14. The fractional difference between the lensing power spectrum 

measured a set of boosted and frame simulations. We use a mask that retains 
only the portion of the sky within 60 ◦ of the boost direction. We average our 
measurements o v er 140 noise-free CMB simulations. In orange, we see that 
using the standard lensing estimator to estimate the lensing potential results in 
a biased measurement of the lensing power spectrum. We propose a modified 
estimator, see the discussion surrounding equation ( 50 ), and plot the results 
of that estimator in blue. We see this provides an unbiased measurement of 
the lensing potential power spectrum. 
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t is important to examine whether Doppler effects will impact and 
ias lensing measurements. 
It is immediately evident from a comparison of equations ( 2 )

nd ( 7 ) that lensing and aberration effects produce identical effects,
emapping of the observed anisotropies. A fundamental difference 
etween the two is that the aberration field is a dipolar field whereas
he lensing field has power on all scales. This similarity means that
uadratic estimators, like equation ( 42 ), can be used to measure the
berration effect as was done in Planck Collaboration XXVII ( 2014 ).
urther it means that a measurement of the lensing dipole will be
iased. In this work, we wish to explore whether any additional biases 
re produced. 

We use a lensing pipeline similar to one used in analysis of ACT
ata (Sherwin et al. 2017 ). Our pipeline has three stages. Firstly,
e apply our quadratic estimator to the simulated map. Note that 

he total power spectrum used in the denominator of our estimator 
s different for the boosted-frame and rest-frame reconstructions, as 
he Doppler and aberration effects alter the total level of power in the

aps. Next we subtract a component, known as the mean field, for
ur quadratic estimator. Thus we have 

¯̂
 ( L ) = 

ˆ φ( L ) − 〈 ̂  φ( L ) 〉 . (44) 

here 〈 ̂  φ( L ) 〉 is the mean field term and is simply computed by
omputing the average value of the estimator. The mean field 
ccounts for the fact that masking, along with inhomogeneous noise 
n data set, introduces a non-zero expectation value of the quadratic 
ensing estimator. This will bias cosmological inferences if not 
ccounted for. As this term depends on the power in the map it
ould differ between the boosted and rest-frame maps. Whilst we 
se separate mean-fields for the boosted and rest-frame analyses we 
ested and found no differences in our results if we used the same

ean-field, the rest-frame mean-field, in both analyses. 
Next we compute the power spectrum of the mean-field subtracted 

eld. This gives a biased estimate of the lensing potential. The largest
ias, known as the N 

(0) bias, arises as the power spectrum is actually
 four-point function that has Gaussian contributions even in the 
bsence of gravitational lensing. We compute this bias and remo v e
t using the method developed in Namikawa, Hanson & Takahashi 
 2013 ). The leads to 

 
φφ( L ) = C 

φ̄φ̄( L ) − N 
(0) ( L ) . (45) 

his estimate is still a biased estimate of the true lensing potential
ower spectrum. The next most significant bias, known as the 
 
(1) bias (Hanson et al. 2011 ; Story et al. 2015 ), depends linearly
n the power spectrum of the lensing potential. In data analyses 
his bias is also subtracted, ho we ver, unlike the previous biases,
esiduals from this subtraction must also be accounted for in the 
ikelihood. This occurs as the N 

(1) bias depends on the lensing 
ower spectrum and so differences between the cosmology used 
o subtract the bias and the true cosmology will lead to biases in
nferred cosmological parameters. Given this complication, and the 
ignificant computational o v erhead required to compute this bias, we 
o not remo v e it but will comment on the expect impact of Doppler
nd aberration effects below. 

We first apply the lensing pipeline to the rest-frame map and then
epeat the procedure on the boosted map. To study these biases we use
he same experimental setup as in Section 7 : noise-free, differential 
hermodynamic measurements at 150 GHz with a mask that retains 
ll the sky within 60 ◦ of the boost direction. We again use an � max =
000 as is the range of interest for upcoming CMB experiments. We
nly use temperature maps in this analyses and defer an analysis 
ncluding polarization to future work. 
In Fig. 14 , we plot the fractional difference between the boosted
nd rest-frame lensing power spectrum. We see that the boosted 
ower spectrum is biased and is ∼1 . 5 per cent larger than the true
ensing power spectrum at all scales. Note that this bias is weaker
or the temperature measurements (compared to the differential 
hermodynamic measurements shown here) as the modulation effect 
s stronger in the differential thermodynamic measurements. 

There is a simple heuristic for this bias: at small scales the effect of
he Doppler and aberration effects is primarily to increase the small
cale power in the direction of the boost. The quadratic estimator,
quation ( 42 ), weighs modes by the rest-frame CMB power spectrum.
his is incorrect as boosting has altered the power. If unaccounted for, 

his difference will induce a multiplicative bias in the measurements, 
roportional to the fraction of increased power. 
More formally this effect can be thought of as bias akin to the

ias that occurs if unlensed power spectra are used in the quadratic
stimator, equation ( 42 ), (see Hanson et al. 2011 , for more details).
o understand this effect, first we examine the structure of the
uadratic estimator. The general structure of the quadratic estimator 
s (Darwish et al. 2021 ) 

ˆ ( L ) = R L 

∫ 
d 2 � 1 
(2 π ) 2 

d 2 � 2 
(2 π ) 2 

a ( � 1 ) a ( � 2 )(2 π ) 2 δ(2) ( L + � 1 + � 2 ) 

2 C 
Tot 
� C 

Tot 
| L −� | 

×B 
φT T ( L, � 1 , � 2 ) , (46) 

here B 
φTT ( L , � 1 , � 2 ) is the bispectrum between the temperature

elds. For the rest-frame sky, this bispectrum is, in the flat-sky
MNRAS 513, 2252–2270 (2022) 
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egime, 

 φ( � 1 ) a( � 2 ) a( � 3 ) 〉 = (2 π ) 2 δ(2) ( � 1 + � 2 + � 3 ) B 
φT T ( � 1 , � 2 , � 3 ) . 

= −(2 π ) 2 δ(2) ( � 1 + � 2 + � 3 ) C 

φφ
� 1 

C 
T T 
� 2 

� 1 · � 2 

+ � 2 ↔ � 3 . (47) 

n the presence of the Doppler, aberration and lensing effects the
bserved anisotropies are 

˜ 
 ( n ) = M( n ) ̄T ( n + s + ∇φ( n )) , (48) 

here s is the remapping caused by the aberration effects and M( n )
s the modulation. We see immediately that the effects of lensing and
berrations commute, whilst the modulation is more complicated.
ransforming to harmonic space we can recompute the bispectrum

o obtain 

 φ( � 1 ) ̃ a ( � 2 ) ̃ a ( � 3 ) 〉 = −C 

φφ
� 1 

∫ 
d 2 � A 
(2 π ) 2 

d 2 � B 
(2 π ) 2 

˜ M ( � 2 + � A ) 

× ˜ M ( � 3 + � 1 − � A ) ̄C 
T T 
� A 

� 1 · � A + � 2 ↔ � 3 , 

(49) 

here ˜ M ( � ) is the harmonic transform of the modulation effect and
¯
 is the temperature power spectrum including the aberration effect.
ow, by noting that the modulation kernel only couples nearby

cales and hence we can approximate ˜ M ( � ) ∼ 0 for � � 4. With
his approximation the bispectrum has the following approximate
orm: 

 φ( � 1 ) ̃ a ( � 2 ) ̃ a ( � 3 ) 〉 = −C 

φφ
� 1 

� 1 · � 2 ˜ C 
T T 
� 2 

+ � 2 ↔ � 3 , (50) 

here ˜ C 
T T is the CMB power spectrum including the Doppler and

berration ef fects. Gi ven the structure of the bispectrum we can
mmediately see that the quadratic estimator used abo v e is biased as
t uses the incorrect bispectrum. Note that the bias actually arises
n the estimator normalization, equation ( 43 ). We normalize the
stimator by the estimator weights squared – one factor remo v es the
eights used in the estimator and the second to remo v e the C � � 1 · � 2 

actor from the signal bispectrum. The bias thus arises as the true
ispectrum is different from the assumed one and so produces an
ncorrect normalization – this explains why the bias is approximately
ndependent of scale. This analysis allows more insight to the bias,
ensing estimators really measure the product of φ� and C � and the
ensing potential is obtained by dividing by C � . Thus if the CMB
ower spectrum on the patch of observation is misestimated, the
nferred lensing potential will be biased. 

We can simply correct this by using the boosted and lensed power
pectrum in the numerator of the quadratic estimator. In Fig. 14 ,
e plot the lensing power spectrum estimated with this modified

stimator. We see that the new estimator is unbiased and gives the
ame estimator as the estimator applied to rest-frame simulations. We
nd that this is the case for both the temperature and thermodynamic
imulations. We note that this result implies that the Doppler and
berration effects impact the N 

(1) bias in an identical manner and so
hese should be computed using boosted power spectra. 

 CONCLUSIONS  

iven the high precision of existing and upcoming CMB experi-
ents, it is necessary to ensure all physical processes and systematic

ffects are understood to a similar level. In this work, we have exam-
ned the impact of our motion on statistical probes of the CMB and
Z galaxy clusters’ maps. In order to reach this goal, we utilized tSZ
nd kSZ maps from two different types of simulations: semianalytical
NRAS 513, 2252–2270 (2022) 
nd fully hydrodynamical. First, we scrutinized current strategies for
oosting simulated maps, and then we computed the impact of our
otion on a variety of statistical probes. 
For the first part our results can summarized as follows: 

(i) We computed to what extent boosting corrections may be
mportant in interpreting a variety of upcoming experiments. Table 2
ho ws that, e ven for large area co v erage e xperiments, these can be
ignificant when considering patches. For example, Simons Obser-
atory and CMB-S4 will have similar boosting factors o v er each of
he two patches of sky observable from the Southern hemisphere (the
vailable sky is divided into two by the Galaxy) and thus accounting
or these effects is important for internal consistency tests. 

(ii) We validated boosting codes by comparing the temperature
nd polarization power spectra of boosted maps obtained with
wo different boosting codes ( Cosmoboost and Pixell ). We showed
ood agreement between outcomes up to � � 5000. In terms of
omputational time, the resources for boosting a single map are
pproximately similar between the two codes, with Pixell being
aster at a larger memory footprint. For boosting multiple maps
osmoboost was found to be a factor of a few faster. Note ho we ver,

or boosts not aligned with the poles Cosmoboost requires the map
o be rotated, which can add significantly to the computational
equirements. 

(iii) We derived an analytical formula to compute the boosted
pectrum for the map of a signal with a generic frequency depen-
ence (see equation 21 ). This is a generalization of the formula
ntroduced by Jeong et al. ( 2014 ) relative to CMB temperature.
his generalization is important not only for modelling the tSZ
ower spectrum, but also for the primary CMB observations, which
end to be measured by differential intensity measurements that are
requency dependent. This new formula shows a good agreement
ith the results of Cosmoboost for SZ maps and both codes for CMB
aps. Including the frequency dependence is crucial for modelling

he power spectra of these observables: for the CMB power spectrum,
he frequency dependence can significantly increase the size of the

odulation term, increasing the correction form the boost by a factor
f ∼30 per cent . Thus including these effects is necessary to a v oid
iased inferences. 
(iv) In some occasions, such as when examining the tSZ signal

ear its null frequency, higher order deri v ati ves of the frequency
esponse can be important. We provided and validated an extended
ower spectrum boosting formula, equation ( 23 ). This formula
ncludes the second order frequency deri v ati ve and was found
o provide a reasonably accurate match to Cosmoboost o v er all
requencies considered. 

The second part of our work focused on studying how the Doppler
nd aberration effects impact the statistics of both CMB and SZ
ffects. The case of the CMB power spectrum has e xtensiv ely been
iscussed in the literature, so we specifically focused on the SZ
ower spectrum and the non-Gaussian statistics of both CMB and
Z effects. 
We found the following results: 

(i) For both tSZ and kSZ power spectra, the average expected
ffect of the boost is small (0.5–1 per cent in the direction of the
bserv er’s v elocity, considering 1/12 of the sk y at 143 GHz), and
ubdominant to the variance amongst the patches in the unboosted
rame. Ho we ver, it can be an O(1) correction to the signal when near
he tSZ null. The precise importance of these effects near the null will
epend upon the experimental bandpass, as well as the specific area
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onsidered in the data analysis. Results from different simulations 
re consistent in showing the effect. 

(ii) The boosting does not produce an appreciable change in the 
MB skewness and kurtosis or its variance. Further there is no 
 vident ske wness or kurtosis signature induced by the boosting on
he tSZ and kSZ a � m distributions, other than possibly a small change
n the tSZ kurtosis for Dolag’s simulations. 

(iii) We considered the impact on the CMB, kSZ, and tSZ 

ispectra and found that it is unimportant. There is a no v el, but
nobservable impact on bispectrum estimators; we found that the 
odulation induced quadurople can leak into measurements of the 
MB bispectrum, producing a systematic bias. Whilst this effect is 
nobservably small, we found that the bias is automatically remo v ed
y in inclusion of the bispectrum ‘linear’ term, which is already 
ncluded in most bispectra analyses as a method to reduce the 
stimator’s variance. 

(iv) Estimators of the lensing power spectrum are found to be 
mpacted by a multiplicative bias from the boosting effect. This 
rises as lensing estimators measure the product of φ� and C � and 
he Doppler and aberration effects modify the power spectrum of the 
MB anisotropies. Thus estimators that use the rest frame C � , rather

han the boosted spectra on the observed patch, will infer a biased
alue φ� . We present a simple formula to correct this bias that can
e implemented at minimal extra computational cost and reduces the 
ias to a negligible level. 

We note that the results of the lensing and bispectrum analyses used
 mask that contained only the quarter of the sky in the direction of
he boost. If a patch of the sky that is less well align with the boost is
bserved the effects discussed will be suppressed. However, as is seen 
n Table 2 , experiments such as the Simons Observatory and CMB-
4 will have similar boosting factors over each of the two patches of
ky observable from the Southern hemisphere (the available sky is 
ivided into two by the Galaxy) and thus accounting for these effects
s important for internal consistency tests. 
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