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ABSTRACT

In this work, we examine the impact of our motion with respect to the Cosmic Microwave Background (CMB) rest frame
on statistics of CMB maps by examining the one-, two-, three-, and four- point statistics of simulated maps of the CMB and
Sunyaev—Zeldovich (SZ) effects. We validate boosting codes by comparing their outcomes for temperature and polarization
power spectra up to £ =~ 6000. We derive and validate a new analytical formula for the computation of the boosted power
spectrum of a signal with a generic frequency dependence. As an example we show how this increases the boosting correction
to the power spectrum of CMB intensity measurements by ~30 per cent at 150 GHz. We examine the effect of boosting on
thermal and kinetic SZ power spectra from semianalytical and hydrodynamical simulations; the boosting correction is generally
small for both simulations, except when considering frequencies near the tSZ null. For the non-Gaussian statistics, in general
we find that boosting has no impact with two exceptions. We find that, whilst the statistics of the CMB convergence field are
unaffected, quadratic estimators that are used to measure this field can become biased at the O(1) per cent level by boosting
effects. We present a simple modification to the standard estimators that removes this bias. Second, bispectrum estimators can
receive a systematic bias from the Doppler induced quadrupole when there is anisotropy in the sky — in practice this anisotropy
comes from masking and inhomogeneous noise. This effect is unobservable and already removed by existing analysis methods.

Key words: cosmic background radiation —cosmology: observations — large-scale structure of Universe.

1 INTRODUCTION

The study of the Cosmic Microwave Background (CMB) has pro-
vided a wealth of information about the composition and evolution
of our Universe. Power spectrum measurements of the CMB are the
main probe for determining cosmological parameters (Aylor et al.
2017; Prat et al. 2019; Bianchini et al. 2020; Choi et al. 2020;
Planck Collaboration VI 2020). The Sunyaev—Zeldovich (SZ) effects
(thermal and kinetic) are also considered in parameter estimation,
particularly for €2,, and og determination (Zubeldia & Challinor
2019). In the upcoming years, ground-based experiments like ad-
vanced ACT (Crowley et al. 2018), the Simons Observatory (Abitbol
etal. 2019), CMB-S4 (Abazajian et al. 2022), and CMB-HD (Sehgal
et al. 2019) will further these investigations by providing large-area
maps in both temperature and polarization with high sensitivity and
angular resolution (see Table 1). The goals of these experiments are
very diverse and ambitious, ranging from the detection of primordial
B modes at large scales to the characterization of the growth of the
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structures through gravitational lensing and galaxy clusters. Given
the exquisite precision of upcoming experiments, the data analysis
will present different challenges and opportunities. Extraction of
cosmological parameters is expected to happen from the statistical
analysis not only of the power spectrum but also of non-Gaussian
properties of the various signals. Given the low level of noise, the
main challenge in interpreting a given signal will be its separation
from the other components. In a regime of such high precision, it is
also important to assess the relevance of all possible physical effects
and processes that might slightly alter a given signal.

The motion of our local frame with respect to the CMB is
known to alter our observations because of Doppler and aberration
effects. Previous experiments like Planck (Planck Collaboration
LVI 2020) were able to measure part of the expected effects, like
the prominent temperature dipole (Planck Collaboratio LVI 2020;
Planck Collaboration XXVII 2014) and mode coupling in the power
spectrum (Planck Collaboration XXVII 2014; Ferreira & Quartin
2021). Some other potential implications, such as the alteration of
the power spectrum shape and impact on the non-Gaussian signal
of the maps, had been deemed irrelevant for the Planck experiment
(Catena & Notari 2013). The light coming from extragalactic objects
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Table 1. Approximate maximum/modes measured in temperature and po-
larization by future experiments, and sky fraction covered (Abazajian et al.
2016; Ade et al. 2019; Sehgal et al. 2019; Aiola et al. 2020).

Imax, T Imax, P Sky fraction
advACT >4500 4000 0.4
SO 5000 4000 0.4
CMB-54 10000 5000 0.5
CMB-HD 35000 - 0.5

Table 2. Measurements performed on patches of the sky that are asymmetric
with respect to the boost direction are more significantly impacted by Doppler
and aberration effects. We estimate the degree of asymmetry by computing the
sky area dependent factor, (cos ), for arange of upcoming CMB experiments.
Note that the observations for many experiments are actually divided into
multiple patches, in order to avoid the Galaxy. These separate patches can
have significant boost factors as can be seen in the last two rows where we
compute the boost factors for the two Simons Observatory (SO) patches.
The area coverage for the various experiments cited can be found at: https:
//github.com/syasini/cmb- x- galaxy-overlaps.

Experiment (cos 6)
AdvACT —0.18
SPTPol —0.44
SPTSZ —0.25
ACTPol —0.82
CMB-S4 (Est. whole footprint) 0.03
LSST 0.05
SO (Est. whole footprint) —0.03
CMB-HD (Est. whole footprint) —0.03
Planck-Gal-70 0.01
LOWZ-North 0.56
DECalS —0.02
DESI 0.06
BOSS-DR10 0.27
DES —0.41
BOSS-North 0.57
CMASS-North 0.57
eBOSS-North 0.48
SO (Est. south footprint) —0.54
SO (Est. north footprint) 0.78

such as SZ clusters is also going to be altered due to our peculiar
motion. While some studies have been carried out to address part of
the expected observational effects (Challinor & van Leeuwen 2002;
Chluba & Sunyaev 2004; Chluba, Hiitsi & Sunyaev 2005; Dai &
Chluba 2014; Balashev et al. 2015) a thorough analysis of the impact
of such motion on observed maps in the microwave and infrared
bands is lacking.

The need to take into account the effect of our peculiar motion cru-
cially depends on the experiment’s characteristics and overall goals.
For example, The ACT collaboration has in fact corrected its CMB
power spectrum for the effect of our motion (Louis et al. 2017). With
new experiments on the horizon, it remains to be addressed whether
these corrections are sufficient for a correct data interpretation. The
different area coverage, the noise level (impacting the possibility
to measure the CMB on small scales and in polarization), and the
expanded science goals in terms of astrophysics and cosmology
involving galaxy clusters and the use of non-Gaussian signatures
all justify revisiting the issue. Table 1 shows that in a relatively near
future we will be able to map anisotropies out to scales / 2~ 10 000.
Table 2, reporting a rough measure of the correction needed, suggests
that, even for experiments like the Simons Observatory, our peculiar
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motion cannot be ignored, if subportions of the sky are analysed
separately.

Upcoming experiments plan to exploit the rich cosmological
information available in CMB non-Gaussianity (NG; Abazajian et al.
2016; Ade et al. 2019). For example studies of NG induced by
gravitational lensing aim to provide precision constraints on the
amplitude of density perturbations and a detection of the sum of the
masses of the neutrino (Allison et al. 2015). Beyond the cosmological
information in lensing itself, lensing induced B modes are a key
contaminant for the detection of B modes and need to be accurately
removed via delensing (Smith et al. 2012). NG from other secondary
anisotropies, including the thermal and kinetic SZ effects, is a rich
source of cosmological information (Crawford et al. 2014; Coulton
et al. 2018).

CMB NG is also a potential probe of primordial physics on its
own (Abazajian et al. 2016; Planck Collaboration VIII 2020; Planck
Collaboration IX 2020). Current (inflationary) models of the universe
assume that the dynamics underlying our observations are Gaussian
to a very high degree; however, perfect Gaussianity is impossible
with any model (Maldacena 2003; Creminelli & Zaldarriaga 2004).
NG observed in the CMB had to have arisen during the earliest
moments of the Universe, so measuring NG in the CMB allows us
to probe energy scales in the early Universe that are unavailable
for experimentation otherwise (Chen 2010). In parallel with the
search for primordial gravitational waves, measurements of non-
Gaussianity constrain the space of theoretical early universe models
(Meerburg et al. 2019).

If boosting CMB signals in the direction of our motion distorts non-
Gaussian signals or generates additional noise, it will need to be taken
into account when investigating the parameter space of different
cosmological models. Conversely, if we show that kinetic effects do
not introduce a bias towards non-Gaussianity at these scales, we can
confidently attribute measured deviations from Gaussianity to some
intrinsic quality of the Universe and use this information to motivate
future searches, rule out models, and constrain the parameter space.

The goal of this paper is to prepare for the next generation experi-
ments by creating the appropriate tools for boosting/deboosting maps
and assessing the expected effects of our motion in the Universe on
extragalactic components like the CMB and SZ clusters, and properly
assessing non-Gaussian statistics of the millimeter sky.

We first analyse the power spectra of the CMB as well as of the
thermal and kinetic Sunyaev Zel’Dovich effects (tSZ and kSZ) in
the rest and boosted frames (Sunyaev & Zeldovich 1972, 1980). The
effect of our motion on the CMB has been investigated using three
different methods: real space boosting (Yoho et al. 2013), Fourier
space boosting (Dai & Chluba 2014), and a boosting approximation
applied directly to the power spectrum (Jeong et al. 2014). These
methods are explained in further detail in Section 3. However, these
analyses have only been performed up to, at most, ¢ = 3000 for the
CMB, and not at all for the frequency dependent observables, such
as the SZ. We are motivated by upcoming high resolution surveys,
such as those given in Table 1, and theoretical advances on the
frequency-dependent boosting (Yasini & Pierpaoli 2017) to extend
our investigation to £ = 6000 (including polarization) and to the SZ
effects, with the goal of assessing expected signatures of our motion
at high resolution and a broader range of observables.

In order to meet these objectives, we generalize the expression
of the power spectrum boosting formula, originally developed for
rest-frame blackbody emission, to any kind of emission law. By
doing so, we can apply the boost to maps of tSZ effect, which has
its own frequency dependence (Sunyaev & Zeldovich 1980). We
then assess the effects of the boosting using actual sky simulations
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of the CMB and the SZ effects. This allows us to verify the
accuracy of the three boosting methods (real-space, Fourier-space,
and power spectrum boost), specifically at high ells, and compare
their respective computational efficiencies for future use.

Secondly, we use non-Gaussian simulations to consider how
higher order statistics are impacted by the Doppler and aberration
effects. We analyse a range of one point statistics of the spherical
harmonic coefficients from CMB, tSZ, and kSZ maps to determine if
our motion induces or modifies non-Gaussianity in these data. Next
we consider how measurements of the primordial bispectrum and of
the tSZ and kSZ bispectra are impacted by boosting effects. Finally
we consider whether inferences of the CMB lensing potential, a
four-point function of the CMB maps, is impacted.

The paper is structured as follows: In Section 2 we provide a
mathematical overview of the relevant physical effects: the Doppler
and aberration effects, as well as integrated Sachs Wolfe and
gravitational lensing. In Section 3 we describe the three boosting
methods we compared, including the advantages and limitations of
each method. In Section 4 we provide details of the CMB simulations
and the two SZ simulations used in this work. We next validate these
methods using high-resolution CMB maps, Section 5. In Section 6,
we use a range of one-point statistics to study the impact of Doppler
boosting on the CMB and the SZ effects. In Section 7 and Section 8
we investigate how bispectrum measurements and lensing, four-point
function analyses are impacted by the aberration effects. We conclude
in Section 9.

2 PHYSICAL EFFECTS: AN OVERVIEW

In this Section, we briefly review the main physical effects discussed
in this work: the Doppler and aberration effects, Section 2.1, the SZ
effects, Section 2.2, and the integrate Sachs—Wolfe and CMB lensing
effects, Section 2.3.

2.1 Doppler and aberration effects

The two ways in which observations are influenced by our particular
velocity are the Doppler and the aberration effects. In an inertial
frame moving at relativistic speeds, the Doppler eftect causes the
frequency of light to appear shifted in the following way:

v = yv(l + Bcosh), ey

where f is the velocity of the observer’s frame of reference in speed of
light units, y = 1/4/1 — B2 is the Lorentz factor, v is the frequency
in the rest frame of the source, v’ is the wavelength in the observer’s
frame, and 6 is the angle between the velocity of the observer and the
incident angle of the light in the rest frame of the source. Throughout
this work we noted quantities in the boosted frame with primes and
tildes e.g. 7(n’) for the CMB temperature in the boosted frame, and
quantities in the rest frame without.

The aberration effect changes the observed direction at which the
light is detected. The transformation between the direction of the
light in the rest frame of the source and the observed direction of
the light in the moving frame can be described by the following
equation:

fi— Bcoso
y(1 + Bcosh)’

where n is the unit vector pointing in the direction of the light in
the rest frame of the source and " is the unit vector pointing in the
direction of the observed light.

’

~ cosf + B -
n =
1+ Bcos6

(@)
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2.2 Sunyaev-Zeldovich effects

The SZ effects occur when CMB photons interact with hot electrons
in the late-time Universe, like the ones in galaxy clusters. There
are two mechanisms in which CMB photons are affected by these
interactions. The first mechanism is through inverse Compton scat-
tering, where photons absorb thermal energy from high temperature
electrons as they pass through the interstellar medium. This effect,
known as the tSZ (Sunyaev & Zeldovich 1972, 1980), produces a
spectral distortion of the CMB spectrum given by

ATS?(f, v)

—— =yg), 3)
Temp

where x = kB?é’MB, v is the observation frequency, h is Planck’s

constant, kp 1s the Boltzmann constant, Tcvp is the CMB temper-
ature, y is the (dimensionless) Compton y-parameter, and g is the
tSZ response function. The tSZ response function characterizes the
frequency dependence of spectral distortion as

g(x) = x coth (%) —4. 4)

The Compton y-parameter depends on the cluster’s characteristics
through

Pe(x1)
mec?

y = /dxa(x)aT (5)
where ot is the Thomson cross-section, a is the scale factor, c is the
speed of light, x is the comoving distance, and m. and P, are the
electron mass and electron pressure.

In the second mechanism, electrons transfer kinetic energy from
their bulk motion to incoming CMB photons (Sunyaev & Zeldovich
1972; Rephaeli & Lahav 1991). This effect, known as the kSZ, is
an order of magnitude smaller than the tSZ and produces spatial
anisotropies with the same frequency spectrum as the primary CMB
— this makes it more difficult to disentangle these anisotropies from
the primary CMB anisotropies. Relative to the CMB, temperature
fluctuations caused by the kSZ are given by

ATkSZ(ﬁ) _

o = [ dxaGoamm.GovGy e, ©
CMB

where v is the electron velocity and t is the optical depth.

Data from the tSZ and kSZ have been proposed as cosmological
parameter probes themselves, and are used to accurately detect
galaxies. In particular tSZ cluster counts particular have been
investigate the tension between the CMB and large-scale structures of
the Universe (Leauthaud et al. 2017; Zubeldia & Challinor 2019) and
measurements of the kSZ effect are powerful probes of astrophysics
and primordial non-Gaussianity (Schaan et al. 2021; Miinchmeyer
et al. 2019). The SZ effects have proven extremely significant to the
study of cosmology and will only become more relevant with higher
resolution surveys. Therefore, it is important to understand how our
motion in the Universe may impact our observations of these effects,
especially at small angular scales.

In this work we focus on the non-relativistic contributions to the SZ
effects, that is when computing the SZ effects we have only retained
terms linear in the electron temperature, 7., and electron velocity.
This approximation is accurate for the majority of the sources of SZ
effects, which have temperatures k37, ~ few keV, and velocities B
~ 1 x 1073, Thus we are neglecting corrections that are typically
at the ~few per cent level (Remazeilles et al. 2019). Whilst these
effects are interesting probes of cluster thermodynamics (e.g. Hill
et al. 2015) and potentially cosmology (Coulton, Ota & van Engelen
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2020b), they are typically best considered on a per object basis and
this has been studied in Chluba et al. (2012, 2013).

2.3 CMB effects — the integrated Sachs—Wolfe effect and
gravitational lensing

Gravitational lensing perturbs the trajectories of CMB photons as
they propagate from the last scattering surface (LSS) to the observer
(Blanchard & Schneider 1987; Bernardeau 1997). These deflections
mean that the CMB anisotropies at LSS, AT (n), are remapped so that
they are related to the observed temperature anisotropies, A7 (n), by

AT () = AT(n + V¢(n)). (7)
¢(n) is the lensing potential and is defined as
X
X+ — X
¢(m) = 2 / dx =—=®(m. x). ®)
0 XX

where @ is the gravitational potential and x . is the comoving distance
to LSS. This remapping introduces non-Gaussianity to the CMB
anisotropies; specifically a non-vanishing four-point function. This
effect does not distort the CMB spectrum. The size of the CMB
deflections depends upon the integral of the gravitational potential,
and hence the density fluctuations, from LSS to the observer,
weighted by a geometric factor. This geometric factor means that the
deflections are most sensitive to perturbations at redshifts between
z = 0.5 and z = 3. (Zaldarriaga & Seljak 1999; Lewis & Challinor
2006). We discuss how lensing can be measured, and how it is
impacted by Doppler and aberration effects in Section 8.1.

In additional to deflection, CMB photons can also be redshfited by
gravitational potentials as they propagate through the Universe. This
effect, known as the integrated Sachs—Wolfe (ISW) effect on linear
scales and the Rees—Sciama effect on non-linear scales, generates
temperature anisotropies whose amplitude is given by (Sachs &
Wolfe 1967; Rees & Sciama 1968; Martinez-Gonzalez, Sanz & Silk
1990)

AT (m) /X* P (xm, )
=-2 dy ——.
0 dx
The growth of potentials under gravitational collapse, and the decay
of potentials through dark energy driven expansion, thus leaves an
imprint on the CMB and is a significant contribution to the large-
scale CMB temperature power spectrum. The correlation between
the ISW effect and the lensing effect — as both depend on the line-
of-sight gravitational potential — introduces further non-Gaussianity
into the CMB, which is explored further in Section 7.3.

©)

Tems

3 BOOSTING METHODS

When dealing with our peculiar motion, we may be faced with the
task of estimating the boosted power spectrum on a given area of
the sky, or producing the boosted image, given the rest frame one,
and then computing all relevant statistics. The first problem has been
addressed, in the simplified case of a blackbody spectrum, in Chluba
(2011), Jeong et al. (2014); and it is revisited here in Section 3.1.

The second problem has also been discussed in the literature. In
this Section, we review the proposed boosting methods and then
we perform a thorough analysis of the methods’ performances in
Section 5.

We note that the boosting effects impact Galactic and extragalactic
effects differently and, in general, care needs to be taken to account
for this. In this work, we only consider extragalactic signals and thus
can neglect this subtly.

Boosting extragalactic components — 2255

3.1 Boosting at the power spectrum

The most computationally efficient way to obtain the boosted CMB
power spectrum (C}) from the rest frame one is to apply the following
analytical formula derived in Jeong et al. (2014):

AC
C,=C, (1 + 7‘) , (10)
Ce
where
AC@ dIn C@ 2
—_— == o)+ O , 11
c, dnt BlcosB) + O(B7) (1D

where the angle average is taken over the area covered by the survey.
This is an approximation of the modulation and aberration effects
to first order in 8, where S is our velocity relative to the CMB and
is equal to 0.001 23 (in speed of light units) (Planck Collaboration
XXVII 2014). This method has been shown to be accurate when
applied to CMB temperature maps up to £ = 3000 through extensive
simulations (Jeong et al. 2014). It also takes into account the masking
function of a particular map in a computationally efficient way. An
evaluation of the average cos (0) for current and future surveys is
provided in Table 2. While the effect of our motion is greatly reduced
when large areas of the sky, in symmetric directions with respect to
our motion are surveyed, the effect can be quite substantial if sub-
areas are considered independently.

This formula is only applicable to frequency independent signals
and those with Doppler-weight one, where an observable, F(v, n),
with Doppler-weight, d, transforms under a boost as
F'(v,n')  F(v,n)

v - pd "

(12)

We extended the power spectrum boosting formula to account for
frequency dependent observables and those with Doppler-weight d
# 1. This is important for two reasons: first, it is necessary to study
how our motion impacts the power spectrum of CMB secondary
anisotropies. Secondly, all current CMB experiments do not directly
measure the temperature anisotropies and instead they measure
intensity fluctuations of the sky, A/(v, n), a frequency dependent
quantity. The CMB has a black-body spectrum and, using the fact the
CMB anisotropies are small perturbations to the CMB temperature,
the measured intensity fluctuations can be linearly related to the
temperature anisotropies

hv
2h%v* eXp [kB Tems ]

3 2
c?kpTevp (exp [kBQMB] B 1)

Thus to compute the impact of our motion on the measured CMB
anisotropies we need to understand how the power spectrum of
frequency dependent obserables is impacted. Here, after CMB
measurements performed this way are referred to as ‘differential
thermodynamic measurements’ and we refer the reader to Planck
Collaboration XXVII (2014), Notari & Quartin (2016), and Planck
Collaboration LVI (2020) for more details.

To extend the formula, first consider the case of a frequency
independent, Doppler-weight 1 (d = 1) field. The power spectrum in
the boosted frame is given as

Al(v,n) =

SAT(n). (13)

Crp = <a,2Ma,LM >

= Z <1’CTZ‘aZ‘m1/C’&/awm> , (14)

(x4

where for simplicity we aligned the boost with the Z direction
and 'K are the boosting kernels introduced in Challinor & van

MNRAS 513, 2252-2270 (2022)
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Leeuwen (2002). These can be written as
K, = (Lm|We'™:|em) (15)

using the operator notation introduced in Dai & Chluba (2014) where
1 is the rapidity, 8 = tanh n, Wis the sky mask and Y is the boosting
operator. Expanding to leading order we have

Cpop & Crw+ Y [(LM|W|em)(Lm|Win¥.|¢'m)*
14

+ (LM|W|£m)*(Lm|Win\A(Z|£m)] Com. (16)
Dai & Chluba (2014) found that this is accurately approximated by
CLu ~ Cun — Pleos8) ke an

For frequency-dependent, general Doppler-weight fields we have
CrLni, ) = (a1 (v1)a'Lu (v3))

= Z <"IIC’L"2k (v))a;, (vi)dlC'L"l, (vh)aem (v5)).  (18)

e

As was shown in Chluba et al. (in preparation) the new kernels are
given by

) = (Lm|We' ™ [em), (19)
where the new boost operator is given by
Y=Y, —ind—1-vd,). (20)

Replacing the boost operator in equation (16) with the more general
boost operator straightforwardly gives

Cl (V1)) & CrLw (V). v3) — Blcos0)Cpry (V). )

[dlnCLm (vi, 1) A1) — din F (v})
din¢ dIn vy

— lnF(U2)):| , (2])
dlnvj

having assumed that the frequency and spatial dependencies are
separable so the total (cross-) spectrum can be written as

Con = Fv)F(»)G(E, m), (22)

where F(v) and G(€, m) are arbitrary functions.

Second-order aberration boost terms are generally negligible, as
the ¢ derivatives of the power spectrum are generally much less than
1/B — this is explicitly seen in Section 5 where we see agreement
between the first-order boosting formulae and the numerical methods
for £ < 5000. However, higher order frequency derivatives can
become important, for example when the frequency response has
anull and deep in the Wien tail. Including only the dominant second-
order terms (those second order in frequency derivatives) we have

, dInCyp, dIn F(vy)
C, ~Cp,— NCrpy | ————+2(d—1)— —=
v ™ Cri — Bleos0)C, [dme 2= S
In F(v,) 2 ,dIn F(v) dln F(vy)
- Crm 0
dinv, } B Cnteos ) = T v,
L, 2 d®>InF(v)) d*InF(v)
—B°Crm 0 23
+2'B Lm {cOS >{ dlnv? dlnv? 23)

Note that the first-order expansion, equation (21), is sufficiently
accurate for most purposes and thus it will be our baseline power
spectrum boosting method. In Section 5, we examine how well these
updated formulae work on maps the of tSZ effect and differential
thermodynamic measurements of the CMB.

MNRAS 513, 2252-2270 (2022)

3.2 Boosting at the map level

We will now discuss boosting at the map level, which we perform
via two approaches: in real space and harmonic space.

3.2.1 Pixell — a real-space boosting code

The first boosting method involves applying the Lorentz transform
to CMB maps in real space. The boost is applied at the pixel level,
mapping each angular and frequency data point in the rest frame to
a new angle and frequency in the boosted frame.

Our real space method uses the publicly available Pixell library.!
The boosted temperature anisotropies are generated by directly
evaluating

T (n)
y(1 — Bcos@’)’
where again tildes and prime denote quantities evaluated in the
boosted frame.

Specifically, we first generate a Gaussian unboosted CMB, AT (n;)
where n; is the set of pixels. The code then uses this pixel locations
as the pixel locations of the output, boosted map. To evaluate the
aberration we first compute the location of these output pixels in the
unboosted frame; these locations are given by evaluating equation (2)
with -B. We then use bi-cubic interpolation to evaluate the simulated
unboosted CMB at these new positions. The Doppler term can then
be computed by multiplying the aberrated map by 1/(y (1 — Bcos '),
which is trivial to evaluate.

The Pixell library can also compute boosted CMB anisotropies
for differential intensity measurements. For differential intensity
measurement at frequency, v', the boosted maps are evaluated by

directly computing
1 2
{(V(l—ﬂcow’)_l) fa
+ 2 ! 1) AT(m)
v(1 = Bcos6) (y(l—ﬂcos@f)_ ) (n}
x (g(x)+3) + (

2
1) Tems
g(xH)+3

2

= peost P Tam - @
The four terms correspond to the standard modulation, the
quadrupole term, the dipole term, and the second-order anisotropy
term. The later term is a negligible term.

This method requires high resolution maps in order to have accu-
rate interpolations. With low resolution maps the effect of the pixel
window function, which suppresses power when the interpolated data
points do not map directly to the middle of a pixel in the boosted frame
— see (Yoho et al. 2013) for a more detailed discussion. Note that
the Pixell interpolation method has a significantly reduced transfer
function compared to the method implemented in Yoho et al. (2013).

T(m) = (24)

AT (n)

AT, V) =
y(1 — Bcosb’)

1
y(1 — BcosO’) B

3.2.2 Cosmoboost — a harmonic-space boosting code

Cosmoboost is a boosting method working in harmonic space
(Yasini & Pierpaoli 2017, 2020) which extends the ordinary differ-
ential equation method developed in Dai & Chluba (2014) to a signal
with arbitrary frequency dependence. The harmonic coefficients aj,

Uhttps://github.com/simonsobs/pixell
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of a given map are boosted through the computation of the boosting
kernel /X, as specified in Yasini & Pierpaoli (2017). This boosting
method allows to boost any type of frequency spectrum and Doppler
weight, and it is therefore more general than Pixell. It naturally
incorporates both Doppler and aberration effects, and it allows maps
with different Doppler weights to be boosted. The analysis of specific
intensity, partial sky maps, which are ultimately observed with future
experiments, has been presented in (Yasini & Pierpaoli 2017) for
multipoles up to £ = 3000. The effects of the boosting on the
temperature maps variance is addressed in Yasini & Pierpaoli (2020).
In this work, we present we updated and improved version of the code
which has been developed for a more agile handling of small-scales.
The updated code is public.?

3.2.3 Healpix-Boost — an alternative real-space boosting code

There is an alternative real space code to boost CMB maps: the
Healpix-Boost code (Notari, Quartin & Catena 2014; da Silveira
Ferreira & Quartin 2021).3 This code works by noting that the
boosting effects can be incorporated by modifying the spherical
harmonic transform from the usual relation

ATM) =y Yim(n) (26)
to
AT@) =1+ Bcos0) > amYen(n), 27)

i.e. evaluating the spherical harmonics at the unboosted locations
(using equation 2 to relate the coordinates) and then accounting for
the modulation. This code is able to compute boosted temperature
and polarization maps for AT/Tcyp measurements. This came to
our attention at the final stages of this work, so that a detailed
comparison with such code was not performed. A similar method
was implemented in Chluba (2011).

4 SIMULATIONS

In order to test the effects of boosting, we need to start from unboosted
simulations.

For analyses of the CMB we use the Pixell package to simulate
full sky Gaussian CMB maps using the lensed CMB power spectrum
from CAMB (Lewis, Challinor & Lasenby 2000). We use the best-
fitting Planck cosmological parameters (Planck Collaboration VI
2020) and generate maps in the plate carrée (CAR) pixelization
with a pixel resolution of 0.5 arcmin. We considering lensing and
bispectrum measurements we use lensed CMB realization that are
computed using Pixell from unlensed CAMB CMB power spectra.

As for the SZ effects, we analysed two sets of simulations: the
WebSky simulation by Stein et al. (2020) and the Hydrodynamic
simulation by Dolag, Komatsu & Sunyaev (2016) — hereafter Dolag
et al. These two sets of data were generated using very different
methods, and extend to different redshift values, as detailed in
Sections 4.1 and 4.2.

The two diverse methods lead to significant differences in the
properties of the simulations, as can be seen both in the maps (Fig. 1)
and in the power spectra (Fig. 2). The Dolag et al. simulations show
significantly less power in the kSZ effect at all scales. As for the

2For further information on Cosmoboost, visit https://github.com/maamari/C
osmoboost

3For the code and further information visit https://github.com/mquartin/heal
pix-boost
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tSZ, the simulations show similar overall power but different scale
dependence of the power. These effects primarily arise from the
different redshift ranges covered by the simulations as discussed
further below.

In order to perform statistical analysis of the SZ effects, we need
to analyse several independent data sets. To do this, we divide the
full sky maps into 12 partial sky maps, corresponding to the 12
megapixels defined by a healpix map with nside = 1 (Gérski et al.
2005). We rotate each map (in harmonic space using the healpy
Rotator.rotatealm function) such that the middle of each megapixel
is in the direction of the boost, which is in this case the z hat direction,
and then boost the map. We then create a mask which covers all points
except the megapixel of interest, centred in the z hat direction, and
add an apodization of 2 deg (in order to negate edge effects).

4.1 Hydrodynamical simulation

Cosmological, hydrodynamical simulations are starting to cover
volumes which allow the construction of detailed full sky maps for
various observables, like the tSZ and the kSZ signal. Here, following
Dolag et al. (2016) we use the so called Magneticum simulation
Box1/mr, which covers a co-moving volume of almost 2.1 Gpc3, as
well as BoxO/mr, which covers a co-moving volume of 55.6 Gpc?.
For a detailed description of the simulations see Dolag et al. (2016)
and Soergel et al. (2018). In short, these simulations cover all the
important galaxy formation processes and their related feedback
processes on to the interstellar and inter cluster medium including:
star formation and their associated energy release through supernovae
of type la and II, and the evolution of super massive black holes and
their associated AGN feedback. Also, plasma physical processes such
as cooling, including the contributions of various metal species and
the presence of the CMB and the ultraviolet (UV)/X-ray background
radiation from quasars and galaxies, as well as thermal conduction
are treated in a proper way. Thereby, the inter cluster medium in these
simulations produces a tSZ signal that compares very well with the
observed pressure profile in galaxy clusters (Planck Collaboration
Int. V 2013; McDonald et al. 2014; Gupta et al. 2017) as well as with
the mean thermal pressure in the Universe and its evolution Young,
Komatsu & Dolag (2021). Despite the relatively large volume of
these simulations, creating full sky maps, as shown in Fig. 1, without
duplication of the simulation volume — and thereby the structure
within it — has some limitations. Here Box/ can cover up to a redshift
of z = 0.17 using 5 slices corresponding to the appropriate output
times, while Box0 can be used to extend this up to a redshift of z =
0.5 using 3 slices corresponding to the according output times. By
replicating Box0 twice in each spacial direction, full sky maps can
be extended to z = 1.2 using three more slices, corresponding to the
matching output times.

In addition, the local Universe contains some very prominent
structures in the form of massive galaxy clusters and super cluster
regions, which dominate the tSZ signal at small multipoles (see Dolag
et al. 2005). Therefore we combined the Magneticum full sky maps
with the contribution obtained from a constrained, local universe
simulation (see Dolag et al. 2005, 2016) covering the redshift range
of 0 < z < 0.027. These simulations were performed using the same
galaxy formation physics as described before for the Magneticum
simulation. Thus they recover well the observed signal of local
galaxy clusters like Coma (Planck Collaboration Int. X 2013; Dolag
et al. 2016) or Virgo (Planck Collaboration Int. XL 2016). These
local universe structures are visible in Fig. 1 and partially explain
why the Dolag et al. tSZ simulation has more power on the largest
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Figure 1. Full sky maps in a Mollweide projection for the Compton y parameter (see equation 5) and the kSZ (see equation 6) are shown in the upper and lower
panel, respectively. Left column is from the hydro simulation, right column is from websky. To emphasize the structures, additionally a zoom in to some region

is shown and overall a colour scale based on histogram equalization is used.
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Figure 2. The pseudo-C; power spectrum for the tSZ and kSZ for the Websky
simulations and Dolag et al. (2016) hydrosimulations. These are measured
in the 12 HEALPIX megapixels, with the error bars denoting the measured
spread. The spectra are very different from each other in harmonic space; this
is due to the different redshift ranges of the two simulations and is explained
in further detail in Sections 4.1 and 4.2.

scales (small ¢) than the websky simulation. These features are less
important for the kSZ maps.

All simulations assume a flat ACDM model with slightly different
cosmological parameter. In the Magneticum simulations (2, Qp,
os, h, ng) =(0.272, 0.0456, 0.809, 0.704, 0.963) are assumed for the
cosmological parameters, whereas the Local Universe simulation
is based on (2,,, Hy, og, h) = (0.3, 100A, 0.9, 0.7). These small

MNRAS 513, 2252-2270 (2022)

differences in parameters are however not expected to impact the
conclusions presented here.

4.2 WebSKy simulation

Instead of the computationally intensive hydrodynamic method,
the WebSky realizations use the mass-Peak Patch approach (Stein,
Alvarez & Bond 2019) and second-order Lagrangian perturbation
theory (2LPT) (Bouchet et al. 1995) to generate catalogs of dark
matter haloes and a matter field component, respectively. While these
are ‘approximate’ methods, they have been validated extensively
against more computationally expensive N-body simulations at high
resolution. Using this method, the Websky cosmological realizations
were able to extend to a redshift of z = 4.6 over the full-sky with a
volume of about 600 (Gpch™")3 and with haloes resolved down to
~1 x 10" My, (Stein et al. 2020).

From the large-scale structure realization, a map of the tSZ effect
is generated by ‘pasting’ spherically symmetric gas profiles on to
the haloes and using equation (5) to generate y-maps by projecting
along the line of sight. The pressure profiles are obtained from fits to
hydrodynamical simulations (Battaglia et al. 2012).

The halo contribution to the kSZ is calculated in an analogous
manner: electron density profiles are ‘pasted’ on to haloes and these
are projected to kSZ maps using equation (6). The electron number
density profile is also obtained from fits to hydrodynamical sim-
ulations (Battaglia 2016). This halo contribution is complemented
by a contribution from the unbound field component. The electron
density is assumed to be a biased tracer of the underlying dark-matter
field (with b = 1) that is then projected along the line of sight via
equation (6), we refer the reader to Stein et al. (2020) for a more
detailed description.

The WebSky simulation was generated according to a flat ACDM
model with the following cosmological parameters: (2, Q, 03, /4,
7) = (0.31, 0.049, 0.81, 0.965, 0.68, 0.055).
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5 TWO-POINT STATISTICAL ANALYSIS

Before discussing how higher order statistics are impacted by our
motion we examine how the CMB, kSZ, and tSZ power spectra
are impacted. Some work has been done in this direction when
considering the CMB temperature power spectrum only (Challinor &
van Leeuwen 2002; Jeong et al. 2014), and we will compare with
these results whenever possible to validate the Cosmoboost and Pixell
codes. Here, we aim at assessing tools to compute this effect at high
£ in both temperature and polarization. For the tSZ and kSZ effects,
what we present is both a new result and a validation of our frequency-
dependent power spectrum method.

For the results of this section, we use the Namaster package
(Alonso, Sanchez & Slosar 2019) to compute mask-deconvovled
power spectra. When using the power spectrum boosting method
(equations 11 and 21) we compute the power spectrum on the full-
sky and use this in our boosting formulae.

5.1 Validation on CMB maps

Here, we compare the outcomes of the three methods discussed
in Section 3.2. We also discuss the performances in terms of
computational time and memory needed. We perform our analysis
for temperature measurements and differential thermodynamic mea-
surements and compare our results to the appropriate power spectrum
boost formulae: either equation (11) (which has been tested already
up to [ ~ 3000) or equation (21) (a new result of this work).

Starting with 100 Gaussian realizations of the CMB we boost each
map in both real space (using Pixell) and harmonic space (using
Cosmoboost). We then mask the sky to select only the half in the
direction of the boost. The mask is apodized by smoothing with a 2°
Gaussian to minimize the impact of masking induced mode coupling
(Peebles 1973; Hivon et al. 2002). To compare these methods, we
calculate the binned power spectrum of both boosted maps, using
Namaster with in bins of width A¢ = 50 (Alonso et al. 2019),
and determine the percent difference between the rest-frame and
boosted-frame power spectrum. Additionally, we apply the power
spectrum formula in equation (11) (for AT/Tcvp measurements) and
equation (21) (for the differential thermodynamic measurements)
directly to each map’s rest-frame power spectrum as a further
comparison.

The results of this comparison are plotted in Fig. 3, where we
show the average spectra and the variance of the 100 realizations.
We see that all methods produce highly consistent results up to
Lax = 5000 in temperature and polarization. This is the case for
both AT/Tcymp measurements (compared with equation 11) and for
differential thermodynamic measurements at 150 GHz [compared
with the newly derived formula (21)]. Note the spikes in the TE power
spectra arise as the denominator crosses zero. The impact of the
boost on differential thermodynamic measurements is ~30 per cent
larger than for temperature measurements, as the modulation term is
increased. These result provide the first validation of our frequency
dependent power spectrum boosting formula, equation (21): the good
agreement between this method and the two other methods provides
validation for the accuracy of this method. The difference seen
between the AT/Tcyp measurements and the differential thermo-
dynamic measurements highlights the need for this formula; current
CMB observation measure the later quantity while theory codes
compute the former and our formula provides a fast and accurate
method to map between the two.

At smaller scales we see small discrepancies. In principle, the
Cosmoboost formula is exact and we have checked that the range
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Figure 3. The fractional change between the boosted and rest-frame CMB
power spectra from the half of the sky in the direction of the boost. The
same 100 rest-frame maps are boosted by our three procedures as described
in Section 3. The solid and dotted lines represent results for temperature
and differential thermodynamic measurements at 150 GHz, respectively. The
measured psuedo-Cl power spectra are binned in bins of width A¢ = 50.
The shaded region is the scatter on the rest-frame power spectra from the
100 simulations. The power spectrum boosting is done via equation (11)
for temperature measurements and equation (21) for differential intensity
measurements.

extent of the kernel is not impacting the result. As described in
Section 3.2 the Pixell method uses an interpolation step to evaluate
the aberration. This interpolation step introduces a transfer function,
akin to the pixel window function, that damps the small-scale power
[see Yoho et al. (2013) for further discussion]. This could partially
explain the different behaviour seen at high ¢, however it is unlikely
that this completely explains the difference as the estimated transfer
function is smaller then the observed difference. Whilst the power
spectrum boosting formula is only correct to first order in B, which
could lead to an inaccurate prediction on the smallest scales, it shows
good agreement with Cosmoboost on all scales. A practical note,
when using Cosmoboost we found that it was necessary to boost
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Table 3. Resource consumption for the Cosmoboost and Pixell codes to boost a single temperature map as a function of £;,x. Both codes can
run in two stages: a one-off computation, for Cosmoboost this is the computation a kernel and for Pixell the evaluation of the interpolation
locations, and then the use of these components to a boost specific realization. As can be seen for boosting a single map the Pixell code is
faster, at the cost of a larger memory footprint. However Cosmoboost is significantly faster when boosting multiple maps.

Lmax CPU usage (core-mins) Memory Usage (GB)
Cosmoboost (kernel) Cosmoboost (boost) Pixell (precomputation) Pixell (boost) Cosmoboost Pixell
1000 0.2 0.01 1 1.6 0.03 2.7
2000 0.8 0.02 2.5 0.1 6.8 15
4000 8.9 0.1 10 0.5 39 65
6000 83 0.5 24 2.5 120 160

maps with a higher £,,,x than is needed for the analysis to avoid
aliasing effects.

We then assessed the computational resources needed to boost the
map. Table 3 shows the resources needed to create boosted maps
with Cosmoboost and Pixell. Both codes have the option to reuse
parts of the computation. This means boosting of multiple maps can
be significantly faster than a single map: in Cosmoboost the kernels
can be reused and in Pixell the interpolation locations can be reused.
When using Cosmoboost to boost the spherical harmonic coefficients
of a temperature map up to £ = 6000, roughly 120 gigabytes of
memory and 82 min of runtime are required to generate a kernel
of width A¢ = 20, which is adequate for boosting temperature and
polarization spectra up to £ = 6000, and the half a minute of runtime
is required to boost a map with these kernels. For further information
on A{ selection, please visit the Cosmoboost repository. For Pixell,
the precomputation resources are 24 core minutes and 160 GB of
memory and the boosting time is about 2.5 min for a temperature
map. For repeated boosting the resource requirement is just the
boosting operation, which is significantly faster for both codes, with
Cosmoboost being several times faster. However note that for boosts
in directions away from the poles, Cosmoboost requires the map to
be rotated, which can add a significant computational overhead. It
is possible, though out of the scopes of this work, to optimize the
efficiency of Cosmoboost by altering the dimensions of the kernel and
adapting it to the £ value under examination. The boosting runtime
for temperature and polarization maps are approximately triple the
temperature alone requirements.

5.2 Analysis of Kkinetic Sunyaev-Zeldovich maps

The kSZ effect has the same frequency response as the primary
CMB signal, however, it has a significantly different ¢ dependence.
This means that the expected impact of boosting effects will be
different from the effects on the primary CMB. In Fig. 4, we show
the results of boosting the kSZ maps using the Cosmoboost on the 12
megapixel patches for both simulations (given the good agreement
between Cosmoboost and Pixell for primary CMB anisotropies we
focus on just Cosmoboost here for clarity). We see that the effect of
boosting is primarily at 0.5 per cent increase in the kSZ power on
all scales and the impact of the boosting effects is similar in both
the websky and Dolag et al. simulations. Additionally, the blue band
shows the sample variance computed with the rest-frame patches;
this significantly exceeds the size of the Doppler effects on almost all
scales, and can reach a few per cent. Note that the sample variance
computed in the boosted frame and the rest frame are statistically
consistent and that the scatter between the rest-frame and boosted-
frame measurements is smaller than the sample variance by more
than a factor of 5 on all scales. These results suggest that boosting
has an insignificant effect on kSZ power spectrum measurements.
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Figure 4. The ratio of the boosted and rest-frame kSZ power spectra for
the Websky and Dolag et al. simulations for differential thermodynamic
measurements at 143 GHz. The results are the average for boosts on the 12
healpix megapixel patches, as described in the text, and the shaded region is
the sample variance from the 12 rest-frame patches of the Websky simulations.

We also show the results from the power spectrum boosting
formula. It shows very good agreement with Cosmoboost providing
further validation of our formula (equation 21). Note that we observe
significant scatter between the Cosmoboost and power spectrum
boosting results. This arises as the Cosmoboost results are computed
on the 12 megapixel patches whereas the power spectrum formula
is evaluated using the full-sky power spectrum. We cannot use the
power spectrum measured in the patch as this will be convolved with
the mask (Hivon et al. 2002), which does not commute with the
boosting operation.

5.3 Analysis of thermal Sunyaev-Zeldovich maps

We then perform a similar analysis of the tSZ maps. Note that
currently the Pixell code can only boost maps of signals with CMB
like frequency dependence, so all maps were boosted using the
Cosmoboost code.

In Fig. 5, we plot the fractional change on the tSZ power
spectrum using the 12 healpix megapixel patches for the two types
of simulations at 143 GHz. First, we see that our power spectrum
formula shows very good agreement with Cosmoboost. Secondly,
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Figure 5. The ratio of the boosted and rest-frame tSZ power spectra for
the Websky and Dolag et al. simulations for differential thermodynamic
measurements at 143 GHz. The setup is otherwise identical to that used for
the kSZ effect shown in Fig. 4. The blue region denotes the sample variance
of the rest-frame power spectrum across the 12 patches.

we see that the size of the boosted correction is very similar for the
two simulations. In both cases, the average of the effect is at most
1 per cent on all scales. As in the case of the kSZ power spectra, the
sample variance exceeds the size of the boosting effect on all scales
and the scatter between the rest-frame and boosted-frame power
spectra is significantly smaller than the sample variance.

The tSZ spectral response, relative the CMB anisotropies, has a
null near 217 GHz (note the signal is not exactly null at 217 GHz).
Around these frequencies higher order Doppler terms become im-
portant. This is seen in Fig. 6 where the first-order power spectrum
boosting formula, equation (21), is still highly inaccurate, despite
providing an O(1) correction to the signal. We find that second-order
derivatives of the frequency response, captured by our second order
formula, equation (23), are very significant and provide a much
more accurate description of the modulation effect. We note that
these large relative corrections are primarily due to the fact that the
tSZ signal is small near the null, rather than these corrections being
large in absolute terms — at 217 GHz the tSZ power spectrum is
suppressed by a factor of 5 x 107> compared to the tSZ power
spectrum at 143 GHz. The importance of this effect for experimental
measurements depends on the details of the instrument bandpass. For
example when integrated against the ACT bandpass (Marsden et al.
2014), the boosting induced correction to the tSZ power spectrum in
the 217 GHz is reduced to ~4 per cent. Measurements at 217GHz
are useful for isolating or removing the tSZ signal from CMB maps
as the signal is close to null. To ensure there is no bias from this
effect it may be important to account for motion induced shifts.

6 ONE-POINT STATISTICAL ANALYSIS

The most complete one-point statistic is the one-point probability
density function (pdf), which is our case is the distribution of each
of the ay, coefficients. We examined these distributions for all the
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Figure 6. The ratio of the boosted-frame and rest-frame tSZ power spectra
at 217 GHz using the Dolag et al. and Websky simulations. The experimental
setup is otherwise identical to Fig. 5. At this frequency, we find that higher
order Doppler terms are necessary to accurately describe the boosting effects.
We provide an analytical formula for these terms in equation (23). Note that
whilst the fractional effect is large, at 217 GHz the tSZ signal is close to its
null and so the absolute correction is still small.
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Figure 7. The one-point pdf of rest-frame and boosted-frame CMB ay,,
coefficients at £ = 5000 for 100 simulations. We measure the ay,, coefficients
after applying a mask that retains the 50 per cent of the sky in the direction
of the boost. We plot the distribution of both the real and imaginary parts as
well as all the m modes together.

simulations and an example of this is shown in Fig. 7. Instead of
summarizing the information in the plethora of pdfs we instead
focus on a set of compressed one point statistics: the third and
fourth standardized moments. The third moment, also known as the
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Figure 8. The change in the CMB ay,, skewness and kurtosis, as a fraction
of the rest-frame statistic standard deviation, induced by our motion for
measurements of AT/Tcyp. We compute this using 100 CMB simulations
boosted with the Cosmoboost code. We apply a mask that retains the
50 per cent of the sky in the direction of the boost. The shaded regions are
the measured spread of the difference. Note that the variance of the boosted-
frame and rest-frame maps are statistically the same and thus the large spread
of the difference indicates decorrelation and not a source of extra noise.

skewness — (13, is defined as

3
fs=E [(M) ] , (28)
o

where 1 and o are the distribution’s mean and standard deviation.
The skewness is zero for a perfectly Gaussian distribution. The fourth
standardized moment, the kurtosis — fi4,is similarly defined as

4
h_E [(w—w) ] 29)
o

The kurtosis is equal to three for a perfectly Gaussian distribution,
but from here on kurtosis will refer to Pearson’s kurtosis, for which
three has been subtracted (so a kurtosis of zero corresponds to a
perfectly Gaussian distribution). To quantify the non-Gaussianity
of an ay, distribution, we calculate the deviation of skewness and
kurtosis from zero, in both the rest frame and the boosted frame, at
each ¢ value.

6.1 CMB

We boost 100 CMB realizations using Cosmoboost and consider tem-
perature measurements, i.e. frequency-independent measurements of
AT/Tcmp. In Fig. 8, we show the change in the skewness and the
kurtosis induced by the boost, as measured on the 50 percent of
the sky in the direction of our motion, compared with the standard
deviation of the statistic as measured in the rest frame. First we
see that, on average, the Doppler boost does not introduce any
statistically detectable skewness or kurtosis. Secondly, we see that
the variance of the difference between the boosted and rest-frame
measurements is comparable to the sample variance of the statistic.
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Figure 9. The boosting induced change in the skewness and kurtosis of the
agy, coefficients from the tSZ and kSZ maps. The statistics are computed by
using 12 megapixel regions, each boosted with the boost direction aligned
with the patch centre. The measurements are in differential thermodynamic
units at 143 GHz. The shaded regions are the measured standard deviation in
the difference.

However, the sample variance of the boosted statistic is still the same
as the sample variance in the rest frame — there is no additional
variance from the boosting. The scatter in the difference is thus not
a sign of increased statistic variance but rather indicates an effective
decorrelation between the maps. As an analogy consider a simpler
case: compare the statistics of a simulated CMB map with the same
map after performing a rotation. Under a rotation the a,,, coefficients
mix together and thus one would observe a large scatter in skewness
and kurtosis measurements between the rotated and unrotated maps;
however, the ensemble averages of the two statistics would be the
same. (This is not true for rotationally invariant statistics such as
the power spectrum or bispectrum). A similar effect occurs here, the
aberration mixes the ay,, coefficients resulting in a scatter between
the rest and boost frame measurements without producing significant
changes in the ensemble average statistics.

6.2 Sunyaev-Zeldovich effects

To investigate the impact of Doppler boosting on the SZ effects
we make use of the 12 healpix patches of the Dolag et al. (2016)
and websky simulations. For both the tSZ and kSZ effects we
boost the maps with Cosmoboost and consider linearized differential
thermodynamic measurements at 143 GHz. Each patch is boosted
with a boost direction aligned with the centre of the patch. In Fig. 9,
we see that the Doppler effects do not induce significant skewness
or kurtosis for the kSZ effect. However we do see a small, and
statistically not detectable, change in the tSZ kurtosis. We see broadly
consistent results between the Dolag et al. and websky simulations.
As in the case of the CMB we see significant scatter between the rest-
frame and boosted-frame measurements, though as we only have 12
patches of the same sky the errors are rough estimates.
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7 3-POINT STATISTICS

Three-point statistics probe the correlations between three spatial
points or three different harmonic modes. The bispectrum, the
harmonic space equivalent of the three-point function, has been
extensively used in cosmology to probe deviations from Gaussianity
and to extract information beyond the power spectrum (Smith,
Senatore & Zaldarriaga 2009; Gil-Marin et al. 2015; Planck Col-
laboration IX 2020). In this section, we consider how the Doppler
and aberration effects impact bispectrum measurements. This work
builds on the results of Catena et al. (2013), who explored the impact
of these effects on constraints on primordial non-Gaussianity using
the bispectrum. Catena et al. (2013) find two results: first Doppler and
aberration effects do not introduce a primordial bispectrum signal in
Gaussian sky maps. Secondly, they observe a scatter, at the level
of ~30 per cent of the primordial bispectrum amplitude, between
the rest-frame and boosted-frame measurements. Their results raise
two questions: is the scatter between the unboosted and boosted
bispectrum measurements an additional source of noise that needs to
be accounted for in future studies, and what is the effect of boosting
on non-zero bispectra? Our work answers these two questions. First,
we reexamine how primordial bispectrum estimators are affected
by the Doppler and aberration terms. We include polarization data
and smaller scales to investigate the scatter seen in Catena et al.
(2013). We also perform our analysis for differential thermodynamic
measurements (whereas Catena et al. (2013) considered temperature
measurements), finding that this distinction leads to a systematic,
but unobservable, difference. Secondly, we consider how non-zero
bispectra, specifically the ISW lensing bispectrum and the tSZ and
kSZ bispectra, are impacted.

We begin this section with a review of bispectrum and primordial
non-Gaussianity estimators. Then we consider how boosting effects
primordial non-Gaussianity estimators applied to CMB simulations.
Finally, we study how the bispectrum of the ISW-lensing, tSZ and
kSZ effects are impacted by the Doppler and aberration effects.

7.1 Overview of bispectrum and primordial non-Gaussianity
estimators

The bispectrum is defined as (Spergel & Goldberg 1999)
X1.X2.X X X, X
Bl ym = <alllJ"1aizz,m2a53Tm3>’ 30)

C1,€2,€3,my,mp,m3

where X; denotes the type of field (e.g. temperature, polarization etc).
Estimation of the full-bispectrum is computational prohibitive and,
for the majority of cosmological fields, any individual configuration
of the bispectrum will be noise dominated. To overcome these issues a
series of methods have been developed (Komatsu, Spergel & Wandelt
2005; Bucher, Van Tent & Carvalho 2010; Fergusson, Liguori &
Shellard 2012). These approaches utilize two techniques: first, if we
assume that the fields under study are parity even and are generated by
homogeneous and isotropic processes the bispectrum can be written
as

X1 X2 X3 _ pmymam3 3 X1 X2 X3
<a€1,m1a€z,m2a43.m3> - glllez blﬂzh ’ G
where Gy}?"™ is the Gaunt integral and is a geometric factor and

bz‘[flz;( * is the reduced bispectrum and contains all the physical

information. Secondly, we note that the following form of the Gaunt
integral allows for the geometrical factor to be enforced by applying
spherical harmonic transforms

g — / QY (W)Y 1y ()Y, (). (32)
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In this work, we use a binned bispectrum estimator as developed
in Bucher et al. (2010) and Bucher, Racine & van Tent (2016).
The binned estimator provides estimates of the reduced bispectrum
averaged over a range of £ and can be efficiently computed as

hX1X2X3 1 2 i J k
b = § d*QWy agy my Wi, ae,m W, ey ms

Allgm 1k
i J k
- <Wél all Sy sz akz,mz > WgS a€3.1n3
+ two permutations, (33)

where Ny is the number of configurations summed over and W;
defines the boundaries of the bins. Our implementation is described in
more detail in Coulton & Spergel (2019). By averaging over several
nearby configurations the binned estimator increases the signal to
noise and reduces the computational complexity of the estimator.
Babich (2005) and Creminelli et al. (2006) showed that bispectrum
estimators require the terms in the second line of equation (33) in
order to be optimal, unbiased estimators —i.e. estimators that saturate
the Cramer—Rao bound. These terms are known as the linear terms
and we perform an analysis both with and without including them.

If the structure of the non-Gaussianity is known a priori, small de-
viations from Gaussianity are most effectively probed with template-
based estimators (Komatsu et al. 2005; Fergusson et al. 2012). We
fit templates to the binned bispectrum measurements and report
constraints on the amplitudes of these templates, known as fy.
Specifically the amplitudes are computed as

A 1 theory, X « Xy — Iy

fne = a Zb[jk Eijk bijk’ (34)
ik

where b is the binned theoretical bispectrum, TX is the

binned bispectrum covariance where X, Y represents the bispectrum
configuration of fields, and N is a normalization constant such that
the estimator has unit response to the theoretical bispectrum. We
use estimates of fyi, parameters when discussing primordial non-
Gaussianity and lensing-ISW bispectra as experimental bounds have
shown that these types of non-Gaussianity are small (Smith et al.
2009; Lewis, Challinor & Hanson 2011; Bennett et al. 2013; Planck
Collaboration IX 2020).

7.2 Primordial bispectra

Primordial non-Gaussianity searches aim to measure or constrain de-
viations from Gaussianity in the early universe. Such measurements
are highly informative as, in many classes of early universe models,
details of the primordial mechanisms are encoded into the deviations
from Gaussianity. This subject has been extensively studied and we
refer the reader to Chen (2010) for a detailed review of inflationary
mechanisms and Meerburg et al. (2019) for a recent overview of
the field. In this work, we discuss the primordial bispectrum, which
probes correlations between three Fourier modes of the primordial
curvature perturbation, ¢ (k). Assuming homogeneity and isotropy
the primordial bispectrum, B* (ki, ks, k3) is defined as

3
(€ (k)¢ ()¢ (k3)) = (27)°89 (k) + Ky + kS)EBC(kl’ ky, k3). (35)

Due to the linearity of the early universe, measurements of the
CMB bispectrum directly probe the primordial bispectrum. Thus
the primordial bispectrum is related to the reduced bispectrum by
(Komatsu & Spergel 2001)

2 )
P / 2ar || / g ) o () B Ko ), G36)
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where g;(" (k;) are the transfer functions and j,(x) are the spherical
Bessel functions.

In this work, we focus our discussion on the measurement of three
primordial bispectra. Specifically, we consider the local bispectrum

1

+
4—ng 7 4—ng 4—ng 7 4—ng
kl k2 k2 k3

Blocal(kl, st k3) — 2f]l]?falA§k12772nS |:

1
il B9 (37)
ky kg }
where A; is the amplitude of primordial fluctuations at the pivot scale
ky, ny is the spectral tilt. The local bispectrum is of particular interest
as it is an informative probe of the field content of the early Universe
— Maldacena (2003) and Creminelli & Zaldarriaga (2004) has shown
that the amplitude of the local bispectrum for all single field, slow
roll inflationary models is slow roll suppressed. Thus measurement
of a large amplitude of this type of non-Gaussianity would be highly
informative.

The other two models we consider are the equilateral bispectrum,

T A—ng g d—ng
Ky k"
1 1 2

T kTR (hakak 2o

. ; 1
Bequnl(kl’ k2, k3) — 6A?ki—2ns stlq‘ull <

1
— — — + Sperm. | |,
k54 ":)/3]{;4 ns)/3k§(4 ns)/3 :| )

(38)

+

and orthogonal bispectrum,

3
T d—ny g d—ny
kl kz
3 3 8
kg_"x k;t—n.v kéll—nskgl—ns (kl k2k3)2(4’”x)/3

3
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(39)
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These types of non-Gaussianity are common in early universe models
with strong non-linear dynamics (Creminelli et al. 2006; Senatore,
Smith & Zaldarriaga 2010). These types of non-Gaussianity have
been extensively searched for in CMB data sets with the current
best constraints coming from the Planck satellite (Smith et al. 2009;
Bennett et al. 2013; Planck Collaboration IX 2020).

In this section, we use a set of 160 temperature and E-mode CMB
maps generated using the Pixell library. These maps are lensed
CMB maps, which included the appropriate correlation between
the lensing field and the integrate Sachs—Wolfe effect (Rees &
Sciama 1968; Sachs & Wolfe 1967). The maps are for differential
thermodynamic measurements at 150 GHz and are computed as
described in Section 3. We use £« = 3000 and consider the
cosmic variance limited case (zero noise and instrumental effects).
Considering the cosmic variance limited case allows us to assess the
worse-case scenario for the impact of these effects. Note that we
perform this analysis with an £,,,, = 3000 rather than higher as this
is the range relevant for upcoming CMB experiments and it is highly
computationally intensive.

We split the simulations into two sets: 80 simulations are used to
estimate the linear term via an ensemble average, and 80 simulations
are used as mock observations. We consider a mask that only includes
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Figure 10. The difference between fy; estimates obtained from a set of
boosted and rest-frame, noiseless CMB maps. We apply a mask that retains
the region of sky within 60° of the boost direction. We do not include the
linear term in our fy;, estimator. We normalize, the estimate by the estimator
Fisher variance. We see a systematic difference between the boosted and rest-
frame fy;, values for shapes with a strong squeezed component. However as
these estimates exclude the linear term the estimator variance is significantly
larger than the Fisher variance and these biases are unobservable.

the region of sky within 60° of the boost direction. Finally, we
also remove the induced dipole from our maps, as this is removed
from CMB data analyses (Planck Collaboration III 2020). Firstly,
we consider applying bispectrum estimators without the linear
term. Whilst this exercise is purely academic, as in the analysis
of experimental data a linear term is almost always subtracted, we
find that there is an interesting effect present in the analysis without
a linear term. The results are shown in Fig. 10. We see that the
orthogonal and local bispectra, all bispectra with a large squeezed
contribution, exhibit a systematic bias. We have normalized these
templates by the Fisher variance to set a similar scale for the different
measurements. However, the measured variance is significantly
larger, due to the exclusion of the linear term, such that these biases
are unobservable. Catena et al. (2013) found no bias between their
simulated boosted and rest-frame maps. We identify the source of this
discrepancy as arising from the difference in measurement types —
differential thermodynamic measurements compared to temperature
measurements. When repeating our computation for temperature
measurements we find that this bias disappears. We return to the
origin of this bias after considering estimators that include the linear
term.

In Fig. 11, we repeat our analysis including the linear term, which
we compute using 80 held-out simulations. We see that the biases
are all significantly reduced and are now at the level of 0.20. This
large reduction in bias elucidates the origin of the bias seen in the
measurements without the linear term. When computing the boost for
differential thermodynamic measurements, in addition to the dipole
contribution there is a Doppler induced quadrupole. This quadrupole
combines with the off-diagonal power spectrum contributions arising
from the masking (and in experimental data inhomogeneous noise)
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Figure 11. The same as Fig. 10 with the inclusion of the linear term in our fyz,
estimator. We normalize the estimate by the estimator Fisher variance. We see
the bias between the boosted and rest-frame fy;, measurements is significantly
reduced and is now below the expected estimator variance (given in this case
by the Fisher error).

to produce a bispectrum contribution as

(aelmlalznlzal3m3> = <al1ml)(afzmzal3m3> = (ahml)clzmzlyn}' (40)

When we include the linear term in our analysis we remove most of
the off-diagonal power spectrum contributions and thereby remove
the bias. Note that we still see a small residual bias, this arises as
our linear term does not provide a complete cancellation of the off-
diagonal power spectrum, likely due to that fact we could only use
80 simulations to compute this term — due to the high computational
cost.

Next, we consider whether the boost introduces extra variance
into the bispectrum estimator, similar to how lensing introduces
extra variance (Babich & Zaldarriaga 2004; Coulton et al. 2020a).
We are motivate to explore this question from the results seen in
Catena & Notari (2013) who find a scatter between the boosted
and rest-frame fy;, measurements at the level of 30 per cent of their
estimator variance. In Fig. 11, we see a similar level of scatter.
However our analysis includes polarization data, whilst Catena &
Notari (2013) used only temperature, smaller scales and we include
the linear term in our analysis, hence have a more optimal estimator.
These three factors mean that whilst we also see 30 per cent scatter
our error bars are a factor of two smaller. That means that as the
constraining power of estimator improves, the scatter between the
boosted and rest-frame maps decreases. This implies that boosting
does not cause additional noise in the bispectrum estimator, rather
the scatter likely arises as the boost results in a decorrelation between
the boosted-frame and rest-frame maps, as is seen by computing the
cross-correlation between the boosted-frame and rest-frame power
spectra. This is similar to the effect seen in the one-point function
analyses.

Boosting extragalactic components 2265

—— ISW-lensing

—— Rest frame

—}— Boosted frame - No Linear
—— Boosted frame

200000 1

150000 -

100000

£3B7T7(1,4,2)

50000 -

T T T T T T
500 1000 1500 2000 2500 3000

o

Figure 12. A slice of the squeezed ISW-lensing bispectrum for the boosted
and rest-frame CMB maps. We plot results both included and excluding the
linear term. Without the linear term we see the leakage of the quadrupole.
With the linear term, we see that we recover the theoretical ISW-lensing
bispectrum. We note that the ISW-lensing bispectrum is a small signal hence
the large scatter even after averaging over 80 simulations.

7.3 Integrated Sachs—Wolfe — lensing bispectrum

The correlation between the ISW and lensing effects results in a
non-zero bispectrum in the CMB that is known as the ISW-lensing
bispectrum (Goldberg & Spergel 1999). This bispectrum has been
measured by the Planck satellite at ~30 (Planck Collaboration
XXI 2016). This bispectrum is an interesting probe of dark energy,
spatial curvature, and modified gravity (Crittenden & Turok 1996;
Kamionkowski 1996; Hu 2001). Further, it is interesting to examine
here as its has a shape that is similar to the local primordial bispectrum
(Lewis et al. 2011) and is computationally cheap to simulate. These
two facts mean that it is interesting to study how boosting impacts
measurements of the ISW-lensing bispectrum as the primordial
bispectra will likely be effected in a similar manner. We included
this source of non-Gaussianity in the simulations used in the previous
section.

As for the primordial bispectra we measure the amplitude of ISW-
lensing bispectrum both with and without the linear term. The results
seen in Figs 10 and 11 show the same pattern as the primordial local-
type non-Gaussianity. This is expected as the bispectra templates
are similar. In absolute terms, when including the linear term, we
find amplitudes of the ISW-lensing bispectra as f'NL =0.98 £0.03,
from the average of the rest-frame maps and f’NL =1.00£0.03
for the boosted maps. In Fig. 12, we plot a squeezed slice of the
boosted and rest-frame bispectra as well as the theory expectation.
For the estimates without the linear term, we see a systematic offset
between the boosted and rest-frame bispectra. This is the result
of the quadurpole effect discussed in the previous section. This
offset is removed when we include the linear term. For all other
configurations we see no statistically significant difference, in line
with our explanation. We can be further assured that there is no
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Figure 13. A plot showing the significance of the difference between the
boosted-frame and rest-frame tSZ and kSZ bispectra for the equilateral
configuration. We compute the mean difference between our 12 boosted
patches and compare this with the variance of the rest-frame bispectrum.

systematic offset as the fy, results, including the linear term, are
consistent and this is a more stringent test than a by-eye comparison.

The results of this section indicate that there is no observable
impact of the boost on bispectrum measurements up to £;,,x = 3000,
the relevant range for proposed experiments. Given our results, and
the physics of the boost, we expect there to be no impact on higher
resolution measurements as well.

7.4 Sunyaev-Zeldovich effects

In this section, we explore the impact of Doppler boosting and
aberration effects on the thermal and kinetic SZ bispectra. Our
experimental setup is the same as in Section 6: we divide the sky
into 12 healpix pixels, boost each one in the direction of it centre
and consider observations at 143 GHz. This allows us to estimate the
worse case impact of the boosting effects.

In Fig. 13, we plot the significance of the difference between the
rest-frame and boosted-frame maps for the tSZ-tSZ-tSZ and kSZ—
kSZ—tSZ bispectra. These are the only non-zero bispectra between
these two fields (all configurations involving an odd number of kSZ
maps will be zero when averaged over realizations). We see that the
amplitude of these bispectra is altered by the boost; however, the
effect is significantly below cosmic variance on all scales. This is
not unexpected: detecting the Doppler effects at the power spectrum
level is already challenging and so one would expect the significance
of these effects on the bispectrum to be even lower, given that
bispectrum measurements are typically much noisier than power
spectrum measurements.

We did not add the primary CMB dipole to the kSZ map and
the kSZ and tSZ induced quadrupoles and are very small (Fixsen
et al. 1996; Hill et al. 2015); combined this means we do not see the
same quadrupole leakage effects that are seen in the CMB bispectrum
plots. Finally, note that our simulations also do not include the motion
induced y dipole (Balashev et al. 2015), however this is expected to
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be a small effect as the size of y monopole, which sources the dipole,
relative to the anisotropies is much smaller than for the primary CMB
anisotropies.

We concluded that the impact of doppler boosting on bispectrum
measurements of the tSZ and kSZ effects can be safely neglected.

8 4-POINT STATISTICS

Whilst computing the full four-point function, or its harmonic
equivalent, is computational prohibitive, statistics that target specific
subsets have been extensively studied. The two most explored
statistics are those to probe primordial trisipectra, for example
gne and 7np (Komatsu 2002; Kogo & Komatsu 2006; Fergusson,
Regan & Shellard 2010; Smith, Senatore & Zaldarriaga 2015), and
statistics used to probe the lensing induced trispectrum (Seljak 1996;
Lewis & Challinor 2006). In this work, we focus on the later set of
statistics.

8.1 Gravitational lensing trispectrum

We start by transforming the deflection equation, equation (2), to
harmonic space and Taylor expanding it. We see that, in addition to
modifying the power spectrum of the observed anisotropies, lensing
couples different spherical harmonic coefficients as

a2y d*e,
Qm)? 27)?
x (L =4 — ). (41

a(®) ~ al) — £ - £a(8)p(8r)(2)*8?

Note that we work in the flat-sky regime as this will be helpful for
building intuition later and we remind the reader that the bar denote
unlensed quantities. It is clear that this means the anisotropies have
a non-trivial four-point function and are hence non-Gaussian. The
lensing induced non-Gaussianity is a rich source of cosmological
information as its properties are determined by the lensing potential,
which depends on the line-of-sight integrated matter in the Universe.

Using the off-diagonal coupling, equation (41), we can derive a
quadratic estimator, for the lensing potential,$, as (Hu & Okamoto
2002; Okamoto & Hu 2003)

¢ a@a(L —€) [Cil - L+ Cj_gL - (L —0)]
(2n)? 2ACPNCE )
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(42)
where C™ is the total observed power spectrum, including in-
strument noise, and R; is a normalization constant that can be
analytically approximated by
-1
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We follow Hanson et al. (2011) and use lensed power spectra in the
numerator of the estimator as this suppresses higher order biases. We
can then extract cosmological information from this reconstructed
field by studying its moments, primarily the power spectrum (which
is therefore an implicit four-point function).

Existing experiments have already made detections of the lensing
power spectrum (Sherwin et al. 2017; Bianchini et al. 2020; Fatindez
et al. 2020; Planck Collaboration VIII 2020) and upcoming and on-
going experiments plan to use precise measurements of the lensing
potential to constrain cosmological parameters, such as the neutrino
mass (Abazajian et al. 2016; Mishra-Sharma, Alonso & Dunkley
2018; Ade et al. 2019). Given the high level of expected precision,
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it is important to examine whether Doppler effects will impact and
bias lensing measurements.

It is immediately evident from a comparison of equations (2)
and (7) that lensing and aberration effects produce identical effects,
remapping of the observed anisotropies. A fundamental difference
between the two is that the aberration field is a dipolar field whereas
the lensing field has power on all scales. This similarity means that
quadratic estimators, like equation (42), can be used to measure the
aberration effect as was done in Planck Collaboration XXVII (2014).
Further it means that a measurement of the lensing dipole will be
biased. In this work, we wish to explore whether any additional biases
are produced.

We use a lensing pipeline similar to one used in analysis of ACT
data (Sherwin et al. 2017). Our pipeline has three stages. Firstly,
we apply our quadratic estimator to the simulated map. Note that
the total power spectrum used in the denominator of our estimator
is different for the boosted-frame and rest-frame reconstructions, as
the Doppler and aberration effects alter the total level of power in the
maps. Next we subtract a component, known as the mean field, for
our quadratic estimator. Thus we have

B(L) = (L) — (G(L)). (44)

where ($(L)) is the mean field term and is simply computed by
computing the average value of the estimator. The mean field
accounts for the fact that masking, along with inhomogeneous noise
in data set, introduces a non-zero expectation value of the quadratic
lensing estimator. This will bias cosmological inferences if not
accounted for. As this term depends on the power in the map it
could differ between the boosted and rest-frame maps. Whilst we
use separate mean-fields for the boosted and rest-frame analyses we
tested and found no differences in our results if we used the same
mean-field, the rest-frame mean-field, in both analyses.

Next we compute the power spectrum of the mean-field subtracted
field. This gives a biased estimate of the lensing potential. The largest
bias, known as the N bias, arises as the power spectrum is actually
a four-point function that has Gaussian contributions even in the
absence of gravitational lensing. We compute this bias and remove
it using the method developed in Namikawa, Hanson & Takahashi
(2013). The leads to

C* (L) = C* (L) — NO(L). (45)

This estimate is still a biased estimate of the true lensing potential
power spectrum. The next most significant bias, known as the
N bias (Hanson et al. 2011; Story et al. 2015), depends linearly
on the power spectrum of the lensing potential. In data analyses
this bias is also subtracted, however, unlike the previous biases,
residuals from this subtraction must also be accounted for in the
likelihood. This occurs as the NV bias depends on the lensing
power spectrum and so differences between the cosmology used
to subtract the bias and the true cosmology will lead to biases in
inferred cosmological parameters. Given this complication, and the
significant computational overhead required to compute this bias, we
do not remove it but will comment on the expect impact of Doppler
and aberration effects below.

We first apply the lensing pipeline to the rest-frame map and then
repeat the procedure on the boosted map. To study these biases we use
the same experimental setup as in Section 7: noise-free, differential
thermodynamic measurements at 150 GHz with a mask that retains
all the sky within 60° of the boost direction. We again use an £,,x =
3000 as is the range of interest for upcoming CMB experiments. We
only use temperature maps in this analyses and defer an analysis
including polarization to future work.
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Figure 14. The fractional difference between the lensing power spectrum
measured a set of boosted and frame simulations. We use a mask that retains
only the portion of the sky within 60° of the boost direction. We average our
measurements over 140 noise-free CMB simulations. In orange, we see that
using the standard lensing estimator to estimate the lensing potential results in
a biased measurement of the lensing power spectrum. We propose a modified
estimator, see the discussion surrounding equation (50), and plot the results
of that estimator in blue. We see this provides an unbiased measurement of
the lensing potential power spectrum.

In Fig. 14, we plot the fractional difference between the boosted
and rest-frame lensing power spectrum. We see that the boosted
power spectrum is biased and is ~1.5 per cent larger than the true
lensing power spectrum at all scales. Note that this bias is weaker
for the temperature measurements (compared to the differential
thermodynamic measurements shown here) as the modulation effect
is stronger in the differential thermodynamic measurements.

There is a simple heuristic for this bias: at small scales the effect of
the Doppler and aberration effects is primarily to increase the small
scale power in the direction of the boost. The quadratic estimator,
equation (42), weighs modes by the rest-frame CMB power spectrum.
This is incorrect as boosting has altered the power. If unaccounted for,
this difference will induce a multiplicative bias in the measurements,
proportional to the fraction of increased power.

More formally this effect can be thought of as bias akin to the
bias that occurs if unlensed power spectra are used in the quadratic
estimator, equation (42), (see Hanson et al. 2011, for more details).
To understand this effect, first we examine the structure of the
quadratic estimator. The general structure of the quadratic estimator
is (Darwish et al. 2021)

&6 P a)a)2r)’ 8P (L + 4 + &)
L] @ en)? 2P CRt,
xB?TT(L, £, ), (46)

dL) =R

where B*TT(L, ¢, ¢,) is the bispectrum between the temperature
fields. For the rest-frame sky, this bispectrum is, in the flat-sky
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regime,

(ptDa(r)a(ls)) = 2m)* 8Py + & + £3)B?TT (01, €2, £3).
=~y 8P + L+ )CCT -

In the presence of the Doppler, aberration and lensing effects the
observed anisotropies are

T(m) = Mm)T + s+ Vo(n)), (48)

where s is the remapping caused by the aberration effects and M (n)
is the modulation. We see immediately that the effects of lensing and
aberrations commute, whilst the modulation is more complicated.
Transforming to harmonic space we can recompute the bispectrum
to obtain
d?e, d*p
(2n)* 2n)?
<M+ 4 — fA)CZATfl Ay F Ly > L,
(49)

M€ + £4)

(p)aE)ats)) = —Cf?

where M () is the harmonic transform of the modulation effect and
C is the temperature power spectrum including the aberration effect.
Now, by noting that the modulation kernel only couples nearby
scales and hence we can approximate M(£) ~ 0 for £ > 4. With
this approximation the bispectrum has the following approximate
form:

(p()AA)AWL3)) = —CP4; - HL,CIT + 0, < £, (50)

where CT7 is the CMB power spectrum including the Doppler and
aberration effects. Given the structure of the bispectrum we can
immediately see that the quadratic estimator used above is biased as
it uses the incorrect bispectrum. Note that the bias actually arises
in the estimator normalization, equation (43). We normalize the
estimator by the estimator weights squared — one factor removes the
weights used in the estimator and the second to remove the C,€; - £,
factor from the signal bispectrum. The bias thus arises as the true
bispectrum is different from the assumed one and so produces an
incorrect normalization — this explains why the bias is approximately
independent of scale. This analysis allows more insight to the bias,
lensing estimators really measure the product of ¢, and C; and the
lensing potential is obtained by dividing by C,. Thus if the CMB
power spectrum on the patch of observation is misestimated, the
inferred lensing potential will be biased.

We can simply correct this by using the boosted and lensed power
spectrum in the numerator of the quadratic estimator. In Fig. 14,
we plot the lensing power spectrum estimated with this modified
estimator. We see that the new estimator is unbiased and gives the
same estimator as the estimator applied to rest-frame simulations. We
find that this is the case for both the temperature and thermodynamic
simulations. We note that this result implies that the Doppler and
aberration effects impact the N bias in an identical manner and so
these should be computed using boosted power spectra.

9 CONCLUSIONS

Given the high precision of existing and upcoming CMB experi-
ments, it is necessary to ensure all physical processes and systematic
effects are understood to a similar level. In this work, we have exam-
ined the impact of our motion on statistical probes of the CMB and
SZ galaxy clusters’ maps. In order to reach this goal, we utilized tSZ
and kSZ maps from two different types of simulations: semianalytical
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and fully hydrodynamical. First, we scrutinized current strategies for
boosting simulated maps, and then we computed the impact of our
motion on a variety of statistical probes.

For the first part our results can summarized as follows:

(i) We computed to what extent boosting corrections may be
important in interpreting a variety of upcoming experiments. Table 2
shows that, even for large area coverage experiments, these can be
significant when considering patches. For example, Simons Obser-
vatory and CMB-S4 will have similar boosting factors over each of
the two patches of sky observable from the Southern hemisphere (the
available sky is divided into two by the Galaxy) and thus accounting
for these effects is important for internal consistency tests.

(i) We validated boosting codes by comparing the temperature
and polarization power spectra of boosted maps obtained with
two different boosting codes (Cosmoboost and Pixell). We showed
good agreement between outcomes up to £ =~ 5000. In terms of
computational time, the resources for boosting a single map are
approximately similar between the two codes, with Pixell being
faster at a larger memory footprint. For boosting multiple maps
Cosmoboost was found to be a factor of a few faster. Note however,
for boosts not aligned with the poles Cosmoboost requires the map
to be rotated, which can add significantly to the computational
requirements.

(iii) We derived an analytical formula to compute the boosted
spectrum for the map of a signal with a generic frequency depen-
dence (see equation 21). This is a generalization of the formula
introduced by Jeong et al. (2014) relative to CMB temperature.
This generalization is important not only for modelling the tSZ
power spectrum, but also for the primary CMB observations, which
tend to be measured by differential intensity measurements that are
frequency dependent. This new formula shows a good agreement
with the results of Cosmoboost for SZ maps and both codes for CMB
maps. Including the frequency dependence is crucial for modelling
the power spectra of these observables: for the CMB power spectrum,
the frequency dependence can significantly increase the size of the
modulation term, increasing the correction form the boost by a factor
of ~30 per cent. Thus including these effects is necessary to avoid
biased inferences.

(iv) In some occasions, such as when examining the tSZ signal
near its null frequency, higher order derivatives of the frequency
response can be important. We provided and validated an extended
power spectrum boosting formula, equation (23). This formula
includes the second order frequency derivative and was found
to provide a reasonably accurate match to Cosmoboost over all
frequencies considered.

The second part of our work focused on studying how the Doppler
and aberration effects impact the statistics of both CMB and SZ
effects. The case of the CMB power spectrum has extensively been
discussed in the literature, so we specifically focused on the SZ
power spectrum and the non-Gaussian statistics of both CMB and
SZ effects.

We found the following results:

(1) For both tSZ and kSZ power spectra, the average expected
effect of the boost is small (0.5-1 percent in the direction of the
observer’s velocity, considering 1/12 of the sky at 143 GHz), and
subdominant to the variance amongst the patches in the unboosted
frame. However, it can be an O(1) correction to the signal when near
the tSZ null. The precise importance of these effects near the null will
depend upon the experimental bandpass, as well as the specific area
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considered in the data analysis. Results from different simulations
are consistent in showing the effect.

(ii) The boosting does not produce an appreciable change in the
CMB skewness and kurtosis or its variance. Further there is no
evident skewness or kurtosis signature induced by the boosting on
the tSZ and kSZ ay,, distributions, other than possibly a small change
in the tSZ kurtosis for Dolag’s simulations.

(iii)) We considered the impact on the CMB, kSZ, and tSZ
bispectra and found that it is unimportant. There is a novel, but
unobservable impact on bispectrum estimators; we found that the
modulation induced quadurople can leak into measurements of the
CMB bispectrum, producing a systematic bias. Whilst this effect is
unobservably small, we found that the bias is automatically removed
by in inclusion of the bispectrum ‘linear’ term, which is already
included in most bispectra analyses as a method to reduce the
estimator’s variance.

(iv) Estimators of the lensing power spectrum are found to be
impacted by a multiplicative bias from the boosting effect. This
arises as lensing estimators measure the product of ¢, and C, and
the Doppler and aberration effects modify the power spectrum of the
CMB anisotropies. Thus estimators that use the rest frame Cy, rather
than the boosted spectra on the observed patch, will infer a biased
value ¢,. We present a simple formula to correct this bias that can
be implemented at minimal extra computational cost and reduces the
bias to a negligible level.

We note that the results of the lensing and bispectrum analyses used
a mask that contained only the quarter of the sky in the direction of
the boost. If a patch of the sky that is less well align with the boost is
observed the effects discussed will be suppressed. However, as is seen
in Table 2, experiments such as the Simons Observatory and CMB-
S4 will have similar boosting factors over each of the two patches of
sky observable from the Southern hemisphere (the available sky is
divided into two by the Galaxy) and thus accounting for these effects
is important for internal consistency tests.
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