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Abstract—The electricity demand for water supply purposes is steadily

increasing due to urbanization. Therefore, water distribution networks

(WDNs) are becoming energy-intensive due to the wide-spread deploy-

ment of electricity-driven water pumps. Energy-efficient operation of

water pumps is a significant concern for WDN operators. To this end,

this paper formulates the optimal water flow (OWF) problem to optimally

schedule pumps and valves with the objective of minimizing the pump

power consumption while at the same time accounting for the flow-

dependent pump efficiency in WDNs. The resulting OWF problem is a

mixed-integer nonlinear program (MINLP). The problem includes a frac-

tional (nonconvex) objective and nonconvex constraints due to the WDN

hydraulics, and is hard to solve. A novel successive linear approximation-

based approach is used to overcome the nonconvex hydraulic constraints.

Furthermore, Dinkelbach’s algorithm is used to tackle the fractional

pump power objective. Finally, a solver called convex optimal water flow

(C-OWF) is developed, which relies on solving a sequence of mixed-

integer linear programs. A case study verified by simulation software

EPANET illustrates the C-OWF’s benefits in operating the pump near

maximum efficiency and reducing pump power compared to conventional

rule-based designs.

Index Terms—Water distribution networks, mixed-integer program,

optimal water flow, successive approximation, fractional programming

I. INTRODUCTION

In 2015, 54% of the world’s population lived in urban areas.
By 2030, the global population is expected to reach 8.5 billion,
with approximately 60% expected to live in cities with urbanization
trends continuing around the world [1]. Water demand in cities
will consequently continue to rise in coming years. To cater to the
rising water demand, the water distribution netwroks (WDNs) are
becoming energy-intensive due to the wide-spread deployment of
electric-driven water pumps. The energy costs for operating pumps
constitute the major operating costs of water utilities. Specifically,
approximately 4% of the total electricity consumption in the United
States is attributed to the activities of the WDNs [2] and responsible
for around 5% of national greenhouse gas emissions per annum [3].

The inefficient operation of electric-driven water pumps is largely
the driving factor of high operational cost in WDNs. The largest
pumping energy savings occur when pumps are correctly sized for
the WDN under consideration and operated around their maximum
efficiency. However, most of the pumps in existing WDNs are over-
sized (many of them over 20%), highlighting an excellent opportunity
to address large-scale energy inefficiency [4]. See also [5], [6] for a
detailed review of energy efficiency in WDNs. Furthermore, due to
the advancement of smart grids, the coordinated operation of water
and power distribution systems is considered the viable option to
enhance security and reliability of both systems [7], [8]. In this
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regard, the energy-efficient operation of WDNs is critical for the
joint management of water and power distribution networks as well.

The heart of any attempt to improve the energy efficiency in WDNs
can be passed through actions such as (1) optimal pump scheduling,
and (2) operating pumps close to their maximum efficiency. Optimal
pump scheduling can be achieved by solving the optimal water flow
(OWF) problem given water demand forecasts. The WDN constraints
such as pipe and pump hydraulic constraints render the OWF
problem a difficult mixed-integer nonlinear program (MINLP). To
overcome these challenges, many research efforts have been devoted
to modeling, planning, analysis, and operation of WDNs, e.g., [9]–
[14]. These include nonconvex, MINLP based branch and bound
methods [9], piecewise linear approximations combined with branch
and bound methods [10], [11], Lagrange decomposition coupled with
a simulation-based, limited discrepancy search [12], applying convex
relaxation techniques to convert the nonconvex OWF problem to
mixed-integer second-order cone formulation [13], [14].

The works mentioned above assume the pump efficiency to be
constant while solving the OWF problem. On the other hand, the
pumping energy in WDNs depends on the pump flow, pump head,
and the pump efficiency [15]. The pump efficiency is in general
not constant, but depends on the flow through the pump (flow-
dependent). Consequently, as the pump flow changes over the day,
the head and the efficiency of the pump will change, affecting the
amount of energy used [16]. Therefore, operating the pump at the best
efficiency point is crucial for the pump’s energy-efficient operation.
In this regard, some researchers have attempted to optimally schedule
the pumps by considering the flow-dependent pump efficiency [17]
as a large-scale MINLP problem. Moreover, considering the flow-
dependent pump efficiency in the pump power render the OWF
problem computationally cumbersome and, therefore, hard to solve.

Although the pump scheduling problem in WDNs has been inves-
tigated in the previously mentioned literature, technical challenges
remain. Specifically, most of the previously mentioned works as-
sume linear head loss model for pumps (e.g., [13]), constant pump
efficiency (e.g., [9], [10], [12]–[14]), or a linear dependence of the
pump power on water flow, which is not physically correct [11].
The present work introduces techniques to account for more accurate
pump modeling, namely, the nonlinear head loss model and flow-
dependent efficiency.

Our previous work on WDN operations [18]–[20] has contributed
linearizations through novel monomial approximations of the WDN
hydraulics. Specifically, [18] deals with the water flow problem with-
out pump scheduling, while [20] develops state estimation methods
of WDNs. Pump scheduling is investigated in [19] using a heuristic
algorithm by considering flow-dependent pump efficiency without
introducing integer variables for pump and valve operations. In all
the previously mentioned works, constant pump efficiency has been
assumed.

Leveraging the recent advancements in fractional programming
[21]–[23] and novel monomial approximations of the WDN hy-
draulics from [18]–[20], the contributions of this paper are as978-1-6654-3597-0/21/$31.00 ©2021 IEEE
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follows: (1) We expand our previous works [18]–[20] featuring novel
monomial approximations for the WDN hydraulics to incorporate
pump and valve operations in WDNs using integer variables. (2)
The flow-dependent pump efficiency is explicitly accounted for in
the optimization to minimize pump power. The convex optimal
water flow (C-OWF) solver for solving the nonconvex OWF is
developed. The C-OWF problem can be solved as a mixed-integer
linear program (MILP) within reasonable computational time. It is
worth emphasizing that the required number of integer variables is
significantly reduced compared to approaches in the prior art. (3) The
C-OWF solver’s performance is accessed in terms of pump power
objective improvements and energy-efficient operation compared to
a rule-based design. (4) The C-OWF solver’s accuracy and feasibility
is demonstrated using nonlinear water flow solver EPANET [15].

The organization of the paper is given next. Section II discusses
the modeling of WDNs. Section III presents the pump efficiency
model. The OWF problem is formulated in Section IV as a nonlinear
and nonconvex program. Section V presents the proposed approach
and casts the nonconvex OWF problem into a convex OWF problem,
which can be solved as a sequence of mixed-integer linear programs
(MILPs). The simulation results are presented in Section VI, and the
conclusions are drawn in Section VII.

II. WATER DISTRIBUTION NETWORK MODEL

The WDN is modeled by a directed graph (M,L) where M =
{0, . . . ,M} is a set of M + 1 nodes with M = J

S
R

S
K,

and J , R, and K respectively denote sets of junctions, reservoirs,
and tanks. Let L ✓ M ⇥ M be the set of links connecting the
nodes partitioned as L = P

S
W

S
V , where P and W respectively

denote the sets of pumps, pipes and valves. Also, in this work, we
assume that the pumps are connected to fixed-speed motors, i.e.,
they are fixed-speed pumps (FSPs) and has flow-dependent wire-to-
water efficiency ⌘ww

ij,t = ⌘motor
ij ⌘pump

ij,t , ij 2 P . In particular, the
motor efficiency ⌘motor

ij is assumed constant [14] and pump efficiency
⌘pump
ij,t , ij 2 P is flow-dependent, i.e., the pump efficiency depends

on the pump flow. Furthermore, the WDN operation is optimized over
a horizon T = {1, . . . , T}, with � representing the time interval
between two consecutive time periods. It is worth noting that the
presented optimization problem yields the directions of water flow in
pipes. Next, we present the mathematical model of WDN operational
constraints for t 2 T :X

i:ij2L
qij,t �

X

k:jk2L
qjk,t = dj,t, j 2 J (1a)

hi,t � hj,t = Aij |qij,t|µ�1qij,t, ij 2 W (1b)

hk,t = hk,t�1 +
�t
Ak

0

@
X

i:ik2L
qik,t �

X

j:jk2L
qjk,t

1

A , k 2 K (1c)

hi,t � hj,t =
n �(h0,ij � �ijf

⌫
ij,t), if xij,t = 1

unconstrained, if xij,t = 0, , ij 2 P
o

(1d)

qij,min xij,t  qij,t  qij,max xij,t, ij 2 P (1e)

hi,t � hj,t =
n rij,t, rij,t � 0, if vij,t = 1

unconstrained, if vij,t = 0, ij 2 V
o

(1f)

qij,min vij,t  qij,t  qij,max vij,t, ij 2 V (1g)

ppump
ij,t =

⇢g
⌘ww
ij,t

|hi,t � hj,t|qij,t, ij 2 P (1h)

hi,t = hR
i , i 2 R (1i)

hj,min  hj,t  hj,max, j 2 J ,K (1j)
Constraint (1a) enforces the the mass conservation at junction

j 2 J at time t, where dj,t is the estimated water demand at time

t. Constraint (1b) formulates the head loss in pipe ij 2 W which is
approximated by the empirical Hazen-Williams equation [15], where
Aij = 4.727C�1.852

ij d̂�4.871
ij l̂ij ; d̂ij and l̂ij are respectively the

diameter and length of a circular pipe; Cij is the Hazen-Williams
roughness coefficient (unitless); µ is the flow exponent; and qij,t is
the volumetric flow rate through pipe ij 2 W . Constraint (1c) models
the water tank head dynamics for tank k 2 K with cross-sectional
area Ak and initial head hk,0 (assumed to be known).
Constraint (1d) formulates the head loss across the FSP connected

between nodes i and j and is modeled according to [15, Ch. 3],
where h0,ij is the shutoff head for the pump, �ij , ⌫ij are the pump
curve coefficients evaluated at nominal speed, qij,t is the water flow
through the pump and xij,t is the binary variable to indicate whether
the pump ij 2 P is running at time t. Also note that the head
loss of FSP hij,t in (1d) is negative when the pump is on, which
means that head gain is provided across the pump. The pump flow
is constrained by (1e). The binary variable xij,t is set to 1 when
pump (ij) 2 P is on at time t and the constraint (1d) is active;
otherwise no constraint exists between hi,t and hj,t. Constraints (1f)
and (1g) capture the operation of pressure-reducing valves (PRVs).
The binary variable vij,t is set to 1 if the valve ij in V carries a
nonzero water flow and allows nonnnegative head loss rij,t from
node i to node j if it is needed, i.e., rij,t � 0 [14]. When the
valve carries a nonzero water flow, i.e., vij,t = 1, the constraints
(1f) and (1g) are active; otherwise hi, hj are unconstrained. The FSP
power consumption is captured in (1h), where ⇢, g, and ⌘ww

ij,t are
respectively the water density, standard gravity coefficient, and pump
wire-to-water efficiency. The fixed reservoir head is given by (1i)
which is operational constraint and the head of the remaining nodes is
constrained by (1j). Also, for simplicity let �ij = ⇢g

⌘motor
ij

, ij 2 P .
A more convenient mathematical formulation is needed to cap-

ture the FSP and PRV on/off status and operation logic given
by (1d), (1e), (1f) and (1g). This task is accomplished using the
big-M technique to rewrite the aforementioned constraints.

M(xij,t � 1)  hij,t + [h0,ij � �ij(qij,t)
⌫ ] (2a)

 M(1� xij,t) (2b)
hi,t � hj,t = hij,t (2c)

hij,t  0 (2d)
xij,t 2 {0, 1}, ij 2 P (2e)

Equation (2) corresponds to FSP operation, where hij,t is the
auxiliary variable that represents pump head loss (1d). Similarly, the
PRV valve operation is modeled using the big M technique as follows
[14]

�M(1� vij,t)  hij,t � rij,t  M(1� vij,t) (3a)
qij,minvij,t  qij,t  qij,maxvij,t (3b)

0  rij,t  Mvij,t (3c)
hi,t � hj,t = hij,t (3d)

vij,t 2 {0, 1}, ij 2 V (3e)
with auxiliary variable hij,t, ij 2 V . Next, we turn our attention to
the modeling of flow-dependent pump efficiency.

III. PUMP EFFICIENCY MODEL

The pump efficiency is defined as the ratio of the hydraulic power
produced by the pump (output) to the electric power used by the
pump (input) as follows:

⌘pump
ij,t =

⇢g|hij,t|qij,t
⌘motor
ij ppump

ij,t

(4)

where ⇢g|hij,t|qij,t is the pump’s hydraulic power. The constant
pump efficiency model postulates that the ratio computed from (4) for
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a given pump is identical for all values of the pump flow. However,
pump manufacturers in practice perform experiments to determine
the efficiency for different flow values by computing the pump’s
hydraulic power and measuring the motor’s input electrical power.
In general, the ratio in (4) is not constant but dependent on the pump
flow.

The relationship between the fixed-speed pump’s flow qij,t and the
pump efficiency ⌘pump

ij,t can in general be described by an N -degree
polynomial as follows:

⌘pump
ij (qij,t,aij) =

NX

n=0

an,ij(qij,t)
n (5)

where N is the degree of polynomial required to approximate the
efficiency curve. The polynomial coefficients in (5) are included in
vector aij . The most most typical polynomials used in practice are
of second and third degrees.

Quadratic Pump Efficiency: It is shown in [11] and [24] that for
several types of pumps, the pump efficiency in (5) is approximated
by the quadratic polynomial, i.e., N = 2, and is given as

⌘pump,Q
ij,t = a0,ij + a1,ijqij,t + a2,ijq

2
ij,t (6)

where ⌘pump,Q
ij,t is the quadratic efficiency of the pump ij 2 P . The

coefficients a0,ij , a1,ij , and a2,ij in (6) are approximated by the
best (maximum) efficiency point of the pump (⌘⇤

ij), the pump’s flow
at the best efficiency point (q⇤ij), and the origin (0, 0). Based on
the two points (0, 0) and (q⇤ij , ⌘

⇤
ij , ), and the fact that the derivative

of (6) is zero at (⌘⇤
ij , q

⇤
ij), the coefficients are given as solution of

the following linear system of equations:
a0,ij = 0 (7a)

a1,ijq
⇤
ij + a2,ij(q

⇤)2ij = ⌘⇤
ij (7b)

a1,ij + 2 a2,ijq
⇤
ij = 0 (7c)

Equation (7a) corresponds to the point (0, 0); (7b) is derived
from the point (q⇤ij , ⌘

⇤
ij); (7c) represents the condition that

(⌘pump,Q
ij,t )0 |qij,t=q⇤ij

= 0. Solving (7) for a1,ij and a2,ij , the

coefficients are a1,ij =
2⌘⇤

ij

q⇤ij
and a2,ij = � ⌘⇤

ij

(q⇤ij)
2 .

Cubic Pump Efficiency: For better accuracy in estimating the pump
efficiency, a cubic polynomial is adopted in [25], i.e., N = 3. The
polynomial is as follows:

⌘pump,C
ij,t = a0,ij + a1,ijqij,t + a2,ijq

2
ij,t + a3,ijq

3
ij,t (8)

where ⌘pump,C
ij,t is the cubic efficiency of the pump ij 2 P . The

coefficients a0,ij , a1,ij , a2,ij , and a3,ij in (8) can be determined
by three points (0, 0), (q⇤ij , ⌘⇤

ij), and (q̃ij , 0), with the additional
requirement that (⌘pump,C

ij,t )0 |qij,t=q⇤ij
= 0. The cutoff point (q̃ij , 0)

corresponds to the maximum flow of the pump for which the head
loss across the pump is zero. Based on the knowledge of three points
stated earlier and using the procedure described in [25], the cubic
pump efficiency coefficients are given as follows

a0,ij = 0 (9a)

a1,ij =
⌘⇤
ijq

⇤
ij q̃ij(3q

⇤
ij � 2q̃ij)

�(q⇤ij)
2(q̃ij � q⇤ij)

2
(9b)

a2,ij =
⌘⇤
ij(3(q

⇤
ij)

2 � (q̃ij)
2)

�(q⇤ij)
2(q̃ij � q⇤ij)

2
(9c)

a3,ij =
⌘⇤
ij(2q

⇤
ij � q̃ij)

�(q⇤ij)
2(q̃ij � q⇤ij)

2
(9d)

The coefficients for quadratic and cubic pump efficiencies com-
puted from (7) and (9) are usually less accurate than the coefficients
computed from the regression usingK pairs of known flow-efficiency
data points (q1,ij , ⌘

pump
1,ij ), (q2,ij , ⌘

pump
2,ij ), . . . , (qK,ij , ⌘

pump
K,ij ) ob-

tained experimentally or by the pump manufacturer. When such data
points are available, the following linear least squares problem can

be readily solved to obtain accurate coefficients for (5), (6), or (8)
[26]

min
aij

1
K

KX

k=1

"
⌘pump
k,ij �

NX

n=0

an,ij(qk,ij)
n

#2

(10)

Note that although the present work focuses on the quadratic or
cubic pump efficiencies with coefficients given by (7) and (9), our
approach can still work to include (5). In addition, to prevent division
by zero in the denominator of (1h) when the pump is not running,
i.e., when (xij,t = 0 and qij,t = 0), we let a0,ij in (6) and (8) to be
a small strictly positive number [11].

Finally, it is worth noting that certain pump efficiency curves
reported in the literature do not go through the origin (0, 0), but
a nonzero efficiency is given when qij ! 0+; see e.g., [11, Fig. 3b]
and [26, Fig. 10.16]. In this case, the coefficient a0,ij can be set to
the corresponding value in (7a) or (9a).

IV. OPTIMAL WATER FLOW PROBLEM

In this work, the objective is to minimize the pump power
consumption in WDNs:

�pump
ij,t (qij,t, ⌘

ww
ij,t) = ppump

ij,t , ij 2 P (11)
and the objective �pump

ij,t (.) is written as

�pump
ij,t (.) =

�ij |hij,t|qij,t
⌘pump
ij,t

(12)

where ⌘pump
ij,t is given by (6) or (8) and hij,t by (2c).

Other pertinent objectives can also be considered, such as water
consumption costs, pump maintenance costs, and water delivery costs
incurred by water utility operator [9], [10]. However, the pump power
is typically the main contributing factor in WDN costs. Therefore,
this work focuses on minimizing pump power.

The optimal water flow problem (OWF) (P1) is formulated as

(P1) min
TX

t=1

h
�t

X

ij2P
�pump
ij,t

i
(13a)

over {ppump
ij,t , qij,t, rij,t, ⌘

pump
ij,t }Tt=1,

{hij,t, hj,t, xij,t, vij,t}Tt=1, ij 2 L, j 2 M
subj. to (1a)� (1c), (1h)� (1j), (2), (3), (6)/(8) (13b)

Where �t denotes the time-varying price.
The OWF (P1) is an MINLP. The nonconvexities stem from the

head loss models of pipes and pumps (1b), (1d). Also, the objective
corresponding to pump power consumption (1h) is nonconvex and
computationally very expensive due to its fractional nature, i.e., the
numerator and the denominator of (12) are variables. To address
the above issues, we utilize novel successive linear approximations
for head loss models of pipes and pumps [20], which solve a
sequence of convex problems without prior knowledge of water flow
directions. We tackle the fractional part of pump power in (12) using
Dinkelbach’s algorithm [23] and finally cast (P1) as a MILP which
can be readily solved without significant computational burden. This
is the theme of the following section.

V. LINEAR APPROXIMATIONS OF HYDRAULICS AND C-OWF
First, using a monomial approximation in [19], the nonlinear head

loss model for pipes and pumps (1b) and (1d) are approximated
by a linear form around a given point (flow value). Second, we
construct an upper bound for both the numerator and the denominator
of the nonconvex (fractional) FSP power consumption (1h) around
a given point resulting in a linear fractional form, which enables
the application of Dinkelbach’s transform. The aim is to solve (P1)
through a series of tractable approximating problems. We denote the
value of qij,t resulting from the previous approximating problem as
hqij,ti. The approximations are introduced next.
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A. Linear Approximation of Pipe and Pump Head Loss

Using [19] and [20], we replace the nonlinear pipe and pump head
loss constraint [c.f (1b) and (1d)] with their corresponding linear form
as given below

ĥij,t = ij,t + qij,t, ij 2 W , t 2 T (14a)

ĥij,t = (⌧ij,t + 'ij,tqij,t), ij 2 P , t 2 T (14b)
Constraint (14a) represents the linear head loss approximation
for the nonlinear pipe head loss constraint (1b), where ij,t =
hqij,ti(Aij |hqij,ti|µ�1�1). Similarly, constraint (14b) describes the
linear head loss approximation for (1d), with constants ⌧ij,t = �h0,ij

and 'ij,t = �ijhqij,ti⌫ij�1. It should be noted that ij,t and 'ij,t are
approximated using the flow value hqij,ti through pipes and pumps of
the previous iteration. Also, constraint (14b) is valid when the pump
is in the on state. Therefore we replace the nonlinear pump head
loss constraint in (2a) with its corresponding linear form (14b) while
implementing big-M for the pump head loss, which is not shown here
due to space limitations.

B. Dinkelbach’s Transform for FSP Power

Attention is now turned to the nonlinear fractional FSP power
consumption in (12). Substituting (1d) and (6) (when xij,t = 1)
in (12), the FSP power is given as

ppump
ij,t (qij,t, ⌘

pump
ij,t ) = �ij

⇣
h0,ijqij,t � �ijq

⌫ij+1
ij,t

⌘

a0,ij + a1,ijqij,t + a2,ijq2ij,t
, ij 2 P

(15)
Denote the numerator of (15) as fij,t(qij,t) and note that
(fij,t(qij,t))

00  0. Furthermore, from (7), we have that a2,ij < 0. It
follows that both the numerator and denominator of (15) are concave
in the pump flows. Hence we devise linear upper bounds to both the
numerator and the denominator of (15) as follows

f̂ij,t(qij,t, xij,t) =
⇣
↵ij,tqij,t + �ij,txij,t

⌘
(16a)

⌘̂pump,Q
ij,t (qij,t) =

⇣
↵1
ij,tqij,t + �1

ij,t

⌘
(16b)

where ↵ij,t, �ij,t, ↵1
ij,t and �1

ij,t are constants which are computed
from the pump flows hqij,ti at the previous iteration so that the slopes
and function values of (16) match their concave function counterparts
at hqij,ti.

Using (16), we express the nonlinear fractional pump power in (15)
as linear fractional as follows

p̂pump
ij,t (qij,t, ⌘̂

pump,Q
ij,t ) = �ij

f̂ij,t

⌘̂pump,Q
ij,t

, ij 2 P (17)

The FSP pump power approximation in (17) is still a fraction and
hence nonconvex. Therefore, minimizing (17) is still computationally
expensive. Note that f̂ij,t > 0 when pump is on (xij,t = 1); and
⌘̂pump,Q
ij,t > 0 when pump is on or off due to a0,ij > 0. Therefore,

Dinkelbach’s transform [21] can be used to to reformulate (17) so
that its numerator and denominator are decoupled. The main idea is
to replace the fraction (17) with the difference between the numerator
and denominator:

�̃pump
ij,t (qij,t, ⌘̂

pump,Q
ij,t ) = �ij

⇣
f̂ij,t � ⇣ij,t⌘̂

pump,Q
ij,t

⌘
(18)

where �̃pump
ij,t denote the WDN objective in linear form, and ⇣ij

is new auxiliary variable that is updated in a iterative fashion with
iteration index l and given as follows

h⇣ij,til+1 =
hf̂ij,til

h⌘̂pump,Q
ij,t il

, ij 2 P (19)

where hf̂ij,til and h⌘̂pump,Q
ij,t il are computed using pump flows qij,t

at the l-th iteration.

TABLE I: Vector variables to solve C-OWF problem

Notation Description

ht (hj,t), j 2 M

(ĥt , qt) (hij,t, qij,t), ij 2 L

(xt ,f̂t) (xij,t ,f̂ij,t), ij 2 P

(vt , rt) (vij,t, rij,t), ij 2 V

dt (dj,t), j 2 J

⌘̂
pump,Q
t ⌘̂

pump,Q
t , ij 2 P

t (ij,t), ij 2 W

(⌧t ,  t , ↵ij,t , �ij,t) (⌧t ,  t,↵ij,t , �ij,t), ij 2 P

(↵1
ij,t ,�

1
ij,t ,#ij,t , ✏ij,t ,⇣t) (↵1

ij,t ,�
1
ij,t ,#ij,t , ✏ij,t ,⇣ij,t), ij 2 P

h0 (hk,0), k 2 K

o Operational limits of WDN (1e), (1i), (1j).

yt A vector collecting ht , ĥt , xt , qt , and vt .

ŷt A vector collecting t , ⌧t ,  t , ↵t , �t , ↵
1
ij,t ,

�1
ij,t , #ij,t , ✏ij,t , and ⇣t .

Since (8) can also be shown to be concave in the flow, the cubic
efficiency curve (8) is also upper-bounded by a linear function

⌘̂pump,C
ij,t (qij,t) =

⇣
#ij,tqij,t + ✏ij,t

⌘
(20)

To represent (15) with cubic efficiency, we replace ⌘̂pump,Q
ij,t in (17),

(18), and (19) with (20).

C. Convex-Optimal Water Flow Problem (C-OWF)
The previous transformations approximate all nonlinear constraints

of WDNs (1b), (1d), and (1h) by linear ones. The parameters ij,t,
⌧ij,t and  ij,t, ij 2 L are all constants which are evaluated from
the flow values of the previous iteration. The pipe and pump head
loss approximations ĥij,t, ij 2 L are all linear, but they are not
equivalent to the first-order Taylor approximations.

The C-OWF problem (P2) can be stated as follows

(P2) min
TX

t=1

h
�t

X

ij2P
�̃pump
ij,t

i
(21a)

over {qij,t, rij,t, f̂ij,t, ⌘̂pump,Q
ij,t }Tt=1,

{ĥij,t, hj,t, xij,t, vij,t}Tt=1, ij 2 L, j 2 M
subj. to (1a), (1c), (1i), (1j), (2), (3), (14), (16) (21b)

The C-OWF problem (P2) is a MILP problem. We use the term
convex in C-OWF to emphasize that the continuous part of (21) is
convex (in fact, linear). Modern mixed integer linear programming
software can reliably solve instances of (21).

The objective is linear owning to the application of Dinkelbach’s
transform. Moreover, the decoupling of numerator and denominator
of (17) can also be done using the classical Charnes-Cooper Trans-
form while simultaneously introducing additional constraint; see, e.g.,
[27] for a detailed discussion. Also, it has been shown in [23] that
for a fractional program with a single ratio as objective, Dinkelbach’s
transform has a fast convergence rate.

The C-OWF problem (21) is solved in an iterative fashion as
summarized in Algorithm 1. The algorithm may result in oscillations
in the error due to updates in the binary variables, i.e., the schedules
of pumps and valves. Our numerical tests indicate that the binary
variables remain the same after a number of iterations, after which the
continuous variables may keep being updated but without oscillations.

The water utility operator implements the solution to the C-OWF
problem. For notational convenience, we define the relevant vectors
for WDNs in Table I.

Dinkelbach’s algorithm is guaranteed to converge for fractional
programs with a convex feasible set [21]. In the present case,
the feasible set is nonconvex. The intuition is that after a few
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Algorithm 1: C-OWF Iterative Algorithm
Input : Water utility operator acquires WDN topology,

operational limits o, tanks inital condition h0 and
forecasted demands {dt}Tt=1

Output: h{yt}Tt=1ifinal
1 Initialize l = 0 and h{yt}Tt=1i0 ;
2 Set h{yt}Tt=1isave = h{yt}Tt=1i0, l = 1, maxIter ;
3 while error � tolerance OR l  maxIter do
4 Obtain h{ŷt}Tt=1il from h{yt}Tt=1isave ;
5 Solve C-OWF problem (P2) over

{qt, rt, f̂t, ⌘̂
pump,Q
t ,ht, ĥt,xt,vt}Tt=1; and set h{yt}Tt=1il

as its solution ;
6 Calculate error := norm(h{yt}Tt=1il � h{yt}Tt=1isave) ;
7 Update h{yt}Tt=1isave = h{yt}Tt=1il, and l = l + 1
8 end

9 Set h{yt}Tt=1il= h{yt}Tt=1ifinal ;
10 Water utility operator communicate setpoints {xt,vt, rt}Tt=1 to

pumps and PRVs.

iterations of Algorithm 1, the binary variables do not change, and
the coefficients of the linear approximations in (14) approximately
converge, rendering the feasible set approximately linear. Indeed,
we observe the expected behavior, that is, the left hand-side of (18)
converges to zero and ⇣ij,t converges to the pump power (17).

VI. NUMERICAL RESULTS

This section examines the C-OWF solver’s performance in terms
of operating pumps near their maximum efficiency and by reducing
pump power consumption in comparison to rule-based designs.

Network Setup: The present work considers the 10-node WDN
depicted in Fig. 1. The system is operated over a time horizon of T =
12 hours, beginning at 8 AM with � as one hour. The optimizations
are solved using the MATLAB-based toolbox CVX along with the
mixed-integer solver Gurobi [28]. All simulations are run on a 3.60-
GHz, intel core i7 computer with 32 GB of RAM. For WDNs, the
head unit is feet [ft]; and the flow unit is gallons per minute [GPM].
Fig. 2 illustrates the network-wide water demand, which is chosen to
reflect reasonable conditions.

The pipe lengths, diameters, node elevations, tank diameter, and
junction base demands are obtained from the 8-node WDN [15]
wherein two additional nodes with one PRV are added. The bounds
on pump flows are [fmin, fmax] = [0, 2400] GPM. The tank minimum
height, maximum height, and initial level are respectively set to
hmin = 830 ft, hmax = 850 ft, and h0 = 840 ft. Furthermore, we
consider an FSP with parameters h0 = 266.67 ft, � = 4.629⇥10�5,
and ⌫ = 2 computed from EPANET [15]. The pump best operating
point, i.e., (q⇤ij , ⌘⇤

ij) is chosen as [1200, 0.9], and the cutoff flow of
the pump q̃ij is 2400 GPM computed by the EPANET. The previously
mentioned values are used to compute the coefficients of the pump
efficiency curve in (6) and (8) as described in Section II. Moreover,
the coefficient a0,ij in (6) and (8) is assumed to be 0.00001. Three test
cases, I through III, are considered. The parameters in the Algorithm 1
are selected as tolerance = 0.001 and maxIter = 400 for Test Cases
II and III. The value of �t in (P2) is chosen to be 1 for all test cases.
Test Case I: EPANET’s rule-based controls are used to modify

the controllable elements’ status based on the safe water level in
tanks. The pump efficiency curve (quadratic/cubic) in EPANET only
allows for computing pump power and does not guarantee operation
of the pump at the best efficiency point [15, Ch. 3]. This is a base
case against which C-OWF is compared, as EPANET’s rule-based

controls is one of the most prevalent methods for pump scheduling
accounting for efficiency curves.

Test Case II: In this test case we solve problem (P2) assuming
constant pump efficiency, ⌘pump

ij = 0.9. Upon solving (P2), we first
use pump flows to compute pump efficiencies from (6) (quadratic)
and (8) (cubic). The pump power is then computed using pump flows,
pump heads, and the pump efficiency from (15). This test case shows
that assuming constant pump efficiency in the optimization (as is
typical in much of the literature) does not guarantee pump operation
close to the best efficiency point.

Test Case III: We first solve problem (P2) using Algorithm 1
considering flow-dependent pump efficiency given by (16b) (for
quadratic curve) and (20) (for cubic curve). Second, following similar
approach as in Test Case II, we evaluate the pump efficiency and
pump power using (6), (8), and, (15).

Although we use linear approximations to solve Test Cases II and
III, we utilize the exact nonlinear solver EPANET to evaluate the
feasibility and modeling accuracy of the C-OWF solver.

Table II compares the pump power and pump efficiency values
for all test cases. It is evident from Table II that Test Case III
achieves lower pump power consumption under both quadratic and
cubic efficiencies when compared to Test Case II and I. This is
because the pumps are operated close to their best efficiency point
in Test Case III. Moreover, the pump efficiency attains its maximum
value using cubic efficiency in Test Case III, i.e., 90%. Therefore,
Test Case III achieved an actual reduction in pump power compared
to Test Cases I and II. For example, the pump power in Test Case
III with cubic efficiency is respectively reduced by 2.25% and 1.2%
compared to Test Cases I and II. Since the reduction values are based
on a 12-hour operation, the savings should eventually be assessed
over a sufficiently long period (e.g., annually).

Furthermore, it can be seen from Table II that Test Case III
maintains pump efficiency close to maximum. For example, with
cubic efficiency, the pump’s minimum efficiency is 86.87% in Test
Case I and 88.97% in Test Case II. In contrast, the minimum
efficiency of the pump is 89.41% in Test Case III. Also, the pump’s
average efficiency in Test Case III is higher compared to Test Case I
and II. These results indicate that including the flow-dependent pump
efficiency in the optimization allows the pump to operate close to its
best efficiency point and at the same time leads to a significant %
reduction in pump power.

Table III lists the pump on/off status for different test cases. The
results for Test Case III in Table III are presented for quadratic and
cubic efficiency. Although the on/off schedules of Test Case III with
quadratic and cubic efficiencies are similar, we observed that the
total pump flows for cubic efficiency are less than with quadratic
efficiency. Similarly, the total pump flows for Test Case III are less
when compared to Test Case I and II. Considering the flow-dependent
efficiency in the objective implicitly results in the pump to operating
close to its best efficiency point and contributes to water conservation.

The computational time for Test Cases II and III is less than 2 min-
utes. Finally, the modeling accuracy of the developed linearizations,
that is, the flows, heads, and pump power consumption computed
using C-OWF solver, is compared with the benchmark software
EPANET, which uses the nonlinear hydraulics. For the present case
study, the nodal heads and flows found by the two models differ
at most by 0.001 ft and 0.02 GPM, respectively. The pump power
computed by the two models differs by 0.05 kW.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on November 30,2022 at 18:02:21 UTC from IEEE Xplore.  Restrictions apply. 



6

Pump

2

3

7

8

4 5

1

9

10

PRV

Fig. 1: 10-node WDN with one pump, one PRV, and one tank for
the test cases considered.
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Fig. 2: Network-wide water demand profile.

VII. CONCLUSIONS

This work develops a solver (C-OWF) to solve nonconvex OWF
problems considering flow-dependent pump efficiency. The merits of
the proposed approach are demonstrated in terms of pump power
reduction and energy-efficient operation of WDNs for the pilot study
of this work. Future work will look at incorporating the variable-
speed pumps (VSPs) along with flow and speed-dependent VSP
efficiency using convex optimization approaches. Future work will
also experiment with larger WDNs and more formally investigate
the algorithm convergence. Future work will also examine methods
for incorporating water demand uncertainty into the developed solver.
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