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METHODS FOR THE MONGE--AMP\`ERE EQUATION\ast 

SHIJIN HOU\dagger , YANLAI CHEN\ddagger , AND YINHUA XIA\dagger 

Abstract. Repeatedly solving the parameterized optimal mass transport (pOMT) problem
is a frequent task in applications such as image registration and adaptive grid generation. It is
thus critical to develop a highly efficient reduced solver that is equally accurate as the full order
model. In this paper, we propose such a machine learning--like method for pOMT by adapting a
new reduced basis (RB) technique specifically designed for nonlinear equations, the reduced residual
reduced over-collocation (R2-ROC) approach, to the parameterized Monge--Amp\`ere equation. It
builds on top of a narrow-stencil finite difference method (FDM), a so-called truth solver, which we
propose in this paper for the Monge--Amp\`ere equation with the transport boundary. Together with
the R2-ROC approach, it allows us to handle the strong and unique nonlinearity pertaining to the
Monge--Amp\`ere equation achieving online efficiency without resorting to any direct approximation of
the nonlinearity. Several challenging numerical tests demonstrate the accuracy and high efficiency of
our reduced solver for solving the parameterized Monge--Amp\`ere equation, effectively transporting
the nontrivial boundaries.
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stencil finite difference method, transport boundary, reduced basis method, reduced residual reduced
over-collocation approach
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1. Introduction. The optimal mass transport (OMT) problem has received sig-
nificant attention in recent years thanks to its wide applicability in areas such as image
retrieval [48, 56], shape and image registration [37, 45], super-resolution reconstruc-
tion [43], cancer detection [4, 51], machine learning [32, 2, 21, 29, 44, 50], and adaptive
grid generation [57], just to name a few. Among these applications, an interesting
scenario emerges when the OMT problem needs to be solved repeatedly and often
in a real-time manner. For example, in image processing, solving an OMT problem
provides the optimal transformation between one pair of images out of potentially
many that are closely related. Another example is that one OMT problem needs to
be resolved for determining the grid movement in adaptive grid generation [57] for
every round of a posteriori error estimation. Given appropriate parameterizations,
these problems can be modeled by a parameterized optimal mass transport (pOMT)
problem, the focus of the current paper.

Initially proposed by Monge [49] in the 18th century, OMT seeks the optimal
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REDUCED BASIS METHODS FOR pOMT PROBLEMS A3537

mass-preserving transform between two distributions of mass for a given cost of trans-
portation. Given two bounded and open domains X,Y \in Rd, let \nu X(xxx,\bfitmu ) be a prob-
ability measure on X, parameterized by a p-dimensional parameter \bfitmu \in \scrD \subset Rp.
\nu Y (yyy,\bfitmu ) = T\#\nu X is its push-forward on Y with a measurable map T : X \mapsto \rightarrow Y
satisfying the following mass-preserving property for any continuous function h(yyy):\int 

Y

h(yyy)d\nu Y (yyy,\bfitmu ) =

\int 
X

h(T (xxx))d\nu X(xxx,\bfitmu ).

OMT seeks a minimizer of the cost functional I(T ) =
\int 
X
c(xxx, T (xxx))d\nu X(xxx,\bfitmu ), where

c(xxx,yyy) denotes the cost of transporting a unit of mass from the point xxx \in X to the
point yyy \in Y . If the measures are absolutely continuous with (parametric) positive
densities fX(xxx,\bfitmu ), fy(yyy,\bfitmu ), that is,

d\nu X(xxx,\bfitmu ) = fX(xxx,\bfitmu )dxxx, d\nu Y (yyy,\bfitmu ) = fY (yyy,\bfitmu )dyyy,

by simple calculation, the mass balance condition could be rewritten as

(1.1) det (DT (xxx)) fY (T (xxx),\bfitmu ) = fX(xxx,\bfitmu ),

where det (DT (xxx)) denotes the determinant of the Jacobian of T (xxx). Although there
are other formulations of this problem, such as Kantorovich formulation [41], we focus
on the Monge formulation in this paper and aim to develop a fast solver for it. In
the special case of the quadratic cost function c(xxx,yyy) = 1

2 | xxx  - yyy| 2, the minimizing
map T (xxx) can be expressed as the gradient of a convex function [22, 54] justifying a
substitution of T by \nabla u in (1.1). This results in the following parametric Monge--
Amp\`ere equation, which is augmented by the convexity constraint on u for uniqueness
and stability [1, 34]. We also enforce the so-called transport or second boundary
condition (1.2b):

det
\bigl( 
D2u(xxx,\bfitmu )

\bigr) 
=

fX(xxx,\bfitmu )

fY (\nabla u(xxx,\bfitmu ),\bfitmu )
, xxx \in X,(1.2a)

\nabla u(X,\bfitmu ) = Y,(1.2b)

u(xxx,\bfitmu ) is convex in X.(1.2c)

Here, D2u(x) denotes the Hessian of the function u. The challenge in solving (1.2)
resides in the strong nonlinearity, the convexity constraint, the difficulty of approxi-
mating the transport boundary condition, and the low regularity of its solution. The
literature on numerical methods is therefore rather scarce. Benamou and Brenier [5]
presented a fluid flow approach which was further developed by Haber, Rehman, and
Tannenbaum [36]. The method is computationally expensive due to the introduc-
tion of an additional dimension. More recently, Froese [27] proposed an approach for
solving (1.2) by iteratively solving a sequence of Neumann boundary value problems
of the Monge--Amp\`ere equation and proved that the numerical solution converges to
the viscosity solution. Benamou, Froese, and Oberman [6] developed an approach
by reformulating the transport boundary condition by an implicit Hamilton--Jacobi
equation and gave the proof of convergence.

The situation is exacerbated by the need to solve the problem for a large number
of parameter values. To the best of our knowledge, there is no existing work based
on systematic model order reduction for the parameterized Monge--Amp\`ere equation.
In this article, we aim to provide the first such work. Our first contribution is the
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A3538 SHIJIN HOU, YANLAI CHEN, AND YINHUA XIA

proposal of a truth solver by extending the narrow-stencil finite difference scheme
of [23], originally designed for the Hamilton--Jacobi--Bellman equations, to our con-
text. An improvement of the standard finite difference scheme, this narrow-stencil
scheme is amenable to the reduced basis (RB) framework while being more robust
in handling singular solutions thanks to the introduction of the artificial viscosity
and numerical moment. In addition, we adopt the framework of [27] in dealing with
the transport boundary. The reduced residual reduced over-collocation (R2-ROC)
method proposed in [14] serves as our reduced order modeling approach. The R2-
ROC is a class of reduced basis methods (RBMs) [53, 38, 35] specifically designed for
nonlinear and nonaffine problems. Like RBM, but based on an underlying scheme of a
nodal form, it features an offline/online decomposition strategy, the a posteriori error
estimator/indicator, and a classical greedy algorithm. The main task of the offline
phase is to construct a problem-dependent, low-dimensional surrogate space and set
the stage for online computations. After the (time-consuming) offline stage, the full
speed of the method will then be appreciated online when the reduced solver is per-
formed on demand and usually with a cost only dependent on the (much lower) RB
space dimension. Due to the strong nonlinearity of the Monge--Amp\`ere equation, the
classical RBM will suffer on its online complexity resulting from its dependence on the
number of (discrete) empirical interpolation method (EIM/DEIM) [3, 12, 33] terms.
The R2-ROC method eliminates this dependence by augmenting and extending the
EIM approach as a direct PDE solver, judiciously determining a set of over-collocation
points, and taking advantage of the simplicity of evaluating the hyper-reduced well-
chosen residuals. It achieves offline/online computation efficiency and, more interest-
ingly, the independence of the number of EIM/DEIM expansion terms. Our second
contribution of this paper is to adapt the R2-ROC method, designed for the classical
Dirichlet or Neumann boundary conditions, for the much more intricate transport
boundary condition imposed by the Monge--Amp\`ere equation.

The organization of this paper is as follows. In section 2, we review some theoreti-
cal results for the Monge--Amp\`ere equation before describing an iterative algorithm for
implementing the transport boundary condition and a narrow-stencil finite difference
scheme for approximating the Monge--Amp\`ere equation. The combination of them
provides an efficient full order model (FOM). In section 3, we introduce the R2-ROC
method and our adaptation to the transport boundary case toward our reduced order
model. In section 4, we present numerical results for the Monge--Amp\`ere equation
and the parameterized Monge--Amp\`ere equation to demonstrate the efficiency and
accuracy of our methods. Concluding remarks are made in section 5.

2. A narrow-stencil finite difference method for \bfitL \bftwo optimal mass trans-
port problem. This section is devoted to a detailed description of our truth solver,
an extension of the narrow-stencil finite difference scheme of [23] to the Monge--
Amp\`ere equation adopting the framework of [27] in dealing with the transport bound-
ary condition. In order to properly inform the numerical scheme, it is important to
know when a classical C2 solution exists. Toward that end, we first review some
regularity results for the Monge--Amp\`ere equation.

2.1. Regularity. The classical C2 solution of the Monge--Amp\`ere-type equation
exists under certain regularity conditions on the data and computational domains. We
present below the regularity results for the Dirichlet boundary value problem

det(D2u(xxx)) = f(xxx), xxx \in X,(2.1a)

u(xxx) = g(xxx), xxx \in \partial X,(2.1b)
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REDUCED BASIS METHODS FOR pOMT PROBLEMS A3539

and then the transport boundary value problem (1.2).

Theorem 2.1 (see [60, 7]). Suppose that X is strictly convex with boundary
\partial X \in C2,\alpha .1 Suppose also that the function f \in C\alpha (X) is strictly positive and the
boundary values g \in C2,\alpha (\partial X). Then the Dirichlet boundary value problem of Monge--
Amp\`ere equation (2.1) has a unique C2,\alpha solution.

Theorem 2.2 (interior regularity [8, 9]). Suppose that X, Y are bounded, con-
nected, open sets and Y is convex. Suppose also that the density functions

fX : X \rightarrow (0,\infty ), fY : Y \rightarrow (0,\infty )

are bounded away from 0 and \infty . Then the solution of the Monge--Amp\`ere equation
(1.2) belongs to C1,\alpha (X) for some 0 < \alpha < 1. If , in addition, the density function
f, g \in C\beta for some 0 < \beta < 1, then the solution of the Monge--Amp\`ere equation
belongs to C2,\alpha for every 0 < \alpha < \beta .

2.2. Transport boundary condition. In this section, we describe an efficient
algorithm proposed in [27] for dealing with the transport condition (1.2b). Indeed,
when X, Y are both convex, the transport condition can be enforced by requiring
that the boundary points of X are mapped to the boundary points of Y [52, 58, 59].
That is,

\nabla u(\mu \mu \mu ) : \partial X \mapsto \rightarrow \partial Y.

Assuming that the boundary of the target region \partial Y can be represented as the zeroth
level set of a function \Phi , we have that the transport map must satisfy

(2.2) \Phi (\nabla u(xxx;\mu \mu \mu )) = 0, xxx \in \partial X.

The appearance of the gradient and the simplicity of implementing a Neumann bound-
ary condition motivated the authors of [27] to replace the condition (2.2) with the
Neumann boundary condition

\nabla u(xxx;\mu \mu \mu ) \cdot nnn(xxx) = \phi (xxx;\mu \mu \mu ),

where \phi (xxx;\mu \mu \mu ) is a function to be determined and nnn denotes the unit outward normal.
Froese [27] further proposed the following iterative approach for approximating the
function \phi (xxx;\mu \mu \mu ). Given the kth iteration uk(xxx;\mu \mu \mu ) of the approximate solution to the
Monge--Amp\`ere equation with the transport boundary condition, we proceed to the
next iteration as follows. We first compute \phi k(xxx;\mu \mu \mu ) for xxx \in \partial X via

(2.3) \phi k(xxx;\mu \mu \mu ) = P\partial Y (\nabla uk(xxx;\mu \mu \mu )) \cdot nnn(xxx),

where P\partial Y (vvv) denotes the shortest-distance projection of vvv onto the set \partial Y : P\partial Y (vvv) =
argminwww\in \partial Y | | www  - vvv| | 2L2 .

After that, we find a convex function uk+1(xxx;\mu \mu \mu ) : X \mapsto \rightarrow R and a constant
\sigma k+1(\mu \mu \mu ) \in R+ such that

det(D2uk+1(xxx;\mu \mu \mu )) = \sigma k+1(\mu \mu \mu )
fX(xxx;\mu \mu \mu )\widehat fY (\nabla uk+1(xxx;\mu \mu \mu );\mu \mu \mu )

, xxx \in X,(2.4a) \int 
X

uk+1(xxx;\mu \mu \mu )dx = 0,(2.4b)

\nabla uk+1(xxx;\mu \mu \mu ) \cdot nnn(xxx) = \phi k(xxx;\mu \mu \mu ), xxx \in \partial X.(2.4c)

1The H\"older space Ck,\alpha (\Omega ), where \Omega is an open subset of some Euclidean space and k \geq 0 an
integer, consists of those functions on \Omega having continuous derivatives up through order k and such
that the kth partial derivatives are H\"older continuous with exponent \alpha , where 0 < \alpha \leq 1 [30].
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A3540 SHIJIN HOU, YANLAI CHEN, AND YINHUA XIA

Here, \widehat fY (yyy;\mu \mu \mu ) is the extended target density function of fY (yyy;\mu \mu \mu ) defined as

\widehat fY (yyy;\mu \mu \mu ) = \Biggl\{ 
fY (yyy;\mu \mu \mu ), yyy \in Y,

fY (yyy0;\mu \mu \mu ), yyy /\in Y,

where yyy0 is a point in the interior of the target set Y . This extension assigns positive
values outside of Y to accommodate the fact that it is a density and, during itera-
tions, \nabla uk+1 in (2.4a) may map (part of) X out of Y . It is worth noting that more
complex extensions with higher regularity may be required for the convergence of the
Monge--Amp\`ere solver; see [27]. We adopt this simple position extension of fY (yyy;\mu \mu \mu ),
which is enough for our solver introduced in section 2.3. This iteration proceeds until
the difference between uk and uk+1 is sufficiently small. To start it, we simply let
\phi  - 1(xxx;\mu \mu \mu ) = Bxxx \cdot nnn(xxx), where B > 0 is large enough to ensure the set \{ Bxxx | xxx \in X\} 
contains Y .

Remark 2.3. As is well known, the solution of the Neumann boundary value prob-
lems may not exist. Even if it exists, the solution is unique only up to a constant.
For these reasons, the variable \sigma k+1(\mu \mu \mu ) in (2.4a) and the mean-zero condition (2.4b)
are introduced. The projection P\partial Y (vvv) is introduced to mitigate the misalignment of
\nabla uk(\partial X;\mu \mu \mu ) and \partial Y , which contributes to obtaining the correct choice of \phi (xxx;\mu \mu \mu ).

Remark 2.4. An L2 optimal mapping does not lead to twisting or rotation. When
we consider the simple case of mapping a rectangle to another rectangle, each side of
X will be mapped to the corresponding side of Y . Since the directional derivative of
u at xxx \in \partial X is determined, we obtain an exact Neumann boundary condition. In this
case, the transport boundary problem becomes a Neumann boundary value problem.

2.3. Discretization for the Monge--Amp\`ere equation. With the iterative
framework for the transport problem, we propose to incorporate a finite difference
solver [47, 23] for the Neumann boundary value problems (2.4) which would conclude
the description of our FOM. This finite difference solver adopts artificial viscosity and
moment terms to regularize a standard finite difference scheme. To describe it in
detail, we first fix some notations. Assume that X is a d-dimensional hypercube, i.e.,
X =

\prod d
i=1(ai, bi). We distribute \scrN i grid points uniformly on the ith dimension and

define

hi =
bi  - ai
\scrN i  - 1

, \scrN =
d\prod 

i=1

\scrN i, and \Theta =
\bigl\{ 
\theta = (\theta 1, \theta 2, . . . , \theta d)

\bigm| \bigm| 1 \leq \theta i \leq \scrN i, i = 1, 2, . . . , d
\bigr\} 
.

Then we denote the rectangular mesh by \scrT h = \{ 
\prod d

i=1(ai+(\theta i - 1)hi, ai+\theta ihi)| \theta \in \Theta \} 
and the grid points set by X\scrN = \{ xxx\theta = (a1 + (\theta 1  - 1)h1, a2 + (\theta 2  - 1)h2, . . . , ad +
(\theta d  - 1)hd)| \theta \in \Theta \} . The finite difference approximation of u(xxx;\mu \mu \mu ) on the grid \scrT h is
denoted by u\scrN (xxx\theta ;\mu \mu \mu ). With appropriate rearrangement, the approximation u\scrN (\mu \mu \mu ) =
u\scrN (X\scrN ;\mu \mu \mu ) can be regarded as an \scrN \times 1 vector and represent our numerical solution.

2.3.1. Difference operators. We first introduce several difference operators for
approximating the first and second derivatives. Let \delta \pm xi

u\scrN (xxx\theta ;\mu \mu \mu ) denote the standard
forward and backward finite difference operators. That is,

\delta +xi
u\scrN (xxx\theta ;\mu \mu \mu ) :=

u\scrN (xxx\theta + hieeei;\mu \mu \mu ) - u\scrN (xxx\theta ;\mu \mu \mu )

hi
,

\delta  - xi
u\scrN (xxx\theta ;\mu \mu \mu ) :=

u\scrN (xxx\theta ;\mu \mu \mu ) - u\scrN (xxx\theta  - hieeei;\mu \mu \mu )

hi
,
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REDUCED BASIS METHODS FOR pOMT PROBLEMS A3541

where \{ eeei\} di=1 denote the canonical basis vectors for Rd. The central difference oper-
ator is \delta xi

:= 1
2 (\delta 

+
xi

+ \delta  - xi
). Naturally, we can define the gradient operators \nabla +

h ,\nabla 
 - 
h ,

and \nabla h by
\nabla \pm 

h := [\delta \pm x1
, \delta \pm x2

, . . . , \delta \pm xd
]T , \nabla h := [\delta x1 , \delta x2 , . . . , \delta xd

]T .

Various compositions of these operators will approximate the second derivatives
\partial 2
xixj

. Indeed, for \mu , \nu \in \{ +, - \} , D\mu \nu 
h,ij := \delta \nu xj

\delta \mu xi
are approximations of \partial 2

xixj
. They

naturally induce the approximations of the Hessian operator

D\mu \nu 
h := [D\mu \nu 

h,ij ]
d
i,j=1, \mu , \nu \in \{ +, - \} .

For our purpose, we will adopt the following two second order accurate approxima-
tions:

D
2

h :=
D+ - 

h +D - +
h

2
, \widetilde D2

h :=
D++

h +D -  - 
h

2
.

2.3.2. The narrow-stencil finite difference scheme. We are now ready to
describe the narrow-stencil finite difference scheme for the Monge--Amp\`ere equation.
We start by rewriting the Monge--Amp\`ere operator in (2.4a) in the following form:

G(D2u(xxx;\mu \mu \mu ),\nabla u(xxx;\mu \mu \mu ), u(xxx;\mu \mu \mu ),xxx, \sigma (\mu \mu \mu )) := \sigma (\mu \mu \mu )
fX(xxx;\mu \mu \mu )\widehat fY (\nabla u(xxx;\mu \mu \mu );\mu \mu \mu )

 - det(D2u(xxx;\mu \mu \mu )).

Then the narrow-stencil finite difference scheme seeks a grid function u\scrN (xxx\theta ;\mu \mu \mu ) for all

xxx\theta \in X\scrN such that \widehat G(u\scrN (xxx\theta ;\mu \mu \mu ),xxx\theta , \sigma (\mu \mu \mu )) = 0, where the numerical Monge--Amp\`ere
operator is defined as
(2.5)\widehat G(u\scrN (xxx\theta ;\mu \mu \mu ),xxx\theta , \sigma (\mu \mu \mu )) = G(D

2

hu
\scrN (xxx\theta ;\mu \mu \mu ),\nabla hu

\scrN (xxx\theta ;\mu \mu \mu ), u
\scrN (xxx\theta ;\mu \mu \mu ),xxx\theta , \sigma (\mu \mu \mu ))

+ 2A : ( \widetilde D2
hu

\scrN (xxx\theta ;\mu \mu \mu ) - D
2

hu
\scrN (xxx\theta ;\mu \mu \mu )) - bbb \cdot (\nabla +

h u
\scrN (xxx\theta ;\mu \mu \mu ) - \nabla  - 

h u
\scrN (xxx\theta ;\mu \mu \mu )).

In this equation, A(u\scrN (xxx\theta ;\mu \mu \mu ),xxx\theta ) : R\scrN \times X\scrN \rightarrow Rd\times d is a matrix-valued function
and bbb(u\scrN (xxx\theta ;\mu \mu \mu ),xxx\theta ) : R\scrN \times X\scrN \rightarrow Rd is vector-valued. In this article, we simply
choose A = \alpha I and bbb = \beta eee for \alpha \geq 0 and \beta \geq 0, where I denotes the d \times d identity
matrix and eee the d-dimensional column vector with all elements equal to 1.

Next, we introduce the discretization of the uniqueness and boundary conditions
(2.4b) and (2.4c). Since (2.5) is an approximation of the fourth order PDE, we have
to introduce an additional boundary condition to guarantee that the discrete problem
is well-posed. As [25] has done, here we introduce one discrete additional boundary
condition

(2.6) \nabla h(\Delta hu
\scrN (xxx\theta ;\mu \mu \mu )) \cdot nnn(xxx\theta ) = 0, xxx\theta \in X\scrN \cap \partial X,

where discrete operator \Delta h is defined by the nine-point finite difference scheme. For
the transport boundary condition (2.2), we simply discretize the gradient by the
central difference

(2.7) \Phi (\nabla hu
\scrN (xxx\theta ;\mu \mu \mu )) = 0, xxx\theta \in X\scrN \cap \partial X.

We finish by discretizing the uniqueness condition via the mean value of each compo-
nent of vector u\scrN (\mu \mu \mu ),

(2.8)

\sum 
xxx\theta \in X\scrN u\scrN (xxx\theta ;\mu \mu \mu )

\scrN 
= 0.
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Fig. 1. Schematic of the ghost points.

This system can be solved by Newton's method efficiently, with details on initial-
ization provided in section 2.4. We note here that handling the boundary conditions
(2.6), (2.7) will require the introduction of two layers of ghost points as depicted in
Figure 1. The values at the first layer of ghost points near the boundary are deter-
mined by the boundary condition. For instance, the normal derivative in the direction
nnnx1

at point xxx1,1 can be discretized as

unnnx1
(xxx1,1;\mu \mu \mu ) \approx 

1

2h1
(u\scrN (xxx - 1,1;\mu \mu \mu ) - u\scrN (xxx2,1;\mu \mu \mu )).

In the general case, we define the normal derivative in the diagonal direction
at the four corners by the sum of the normal derivative in two orthogonal outward
directions and still apply the central difference scheme to discretize the derivative:

unnndiag
(xxx1,1;\mu \mu \mu ) \approx 

1

2
\sqrt{} 
h2
1 + h2

2

(u\scrN (xxx - 1, - 1;\mu \mu \mu ) - u\scrN (xxx2,2;\mu \mu \mu ))

=
1\surd 
2
(unnnx1

(xxx1,1;\mu \mu \mu ) + unnnx2
(xxx1,1;\mu \mu \mu )).

The values of the most outer ghost points are determined by the additional boundary
condition (2.6), for example

0 =
\partial \Delta hu

\scrN (xxx1,1;\mu \mu \mu )

\partial nnnx1

=
(
u\scrN (xxx - 2,1;\mu \mu \mu ) - 2u\scrN (xxx - 1,1;\mu \mu \mu )+u\scrN (xxx1,1;\mu \mu \mu )

h2
1

+ \delta 2x2
u\scrN (xxx - 1,1;\mu \mu \mu )) - (\delta 2x1

+ \delta 2x2
)u\scrN (xxx2,1;\mu \mu \mu )

2h1
,

which means that

u\scrN (xxx - 2,1;\mu \mu \mu ) =  - u\scrN (xxx1,1;\mu \mu \mu )+2u\scrN (xxx - 1,1;\mu \mu \mu )+h2
1( - \delta 2x2

u\scrN (xxx - 1,1;\mu \mu \mu )+(\delta 2x1
+\delta 2x2

)u\scrN (xxx2,1;\mu \mu \mu )).

Remark 2.5. This scheme only entails a 14-point stencil in two dimensions. By
contrast, the monotone finite difference method (FDM) of [28] needs more points
because of the discrete-direction error. For this reason, it is called the narrow-stencil
scheme. We next examine the last two terms in the scheme (2.5) to reveal that the
narrow-stencil FDM introduces the stabilization terms, i.e., numerical moment and
numerical viscosity [24, 26, 20]. Indeed, a direct calculation shows that

(\delta +xi
 - \delta  - xi

)u\scrN (xxx\theta ;\mu \mu \mu ) = hi
u\scrN (xxx\theta  - hieeei;\mu \mu \mu ) - 2u\scrN (xxx\theta ;\mu \mu \mu ) + u\scrN (xxx\theta + hieeei;\mu \mu \mu )

h2
i

= hi\delta 
2
xi
u\scrN (xxx\theta ;\mu \mu \mu ).
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REDUCED BASIS METHODS FOR pOMT PROBLEMS A3543

Therefore, \beta eee \cdot (\nabla +
h  - \nabla  - 

h )u
\scrN (xxx\theta ;\mu \mu \mu ) \approx \beta h\Delta u(xxx\theta ;\mu \mu \mu ), which amounts to addition of nu-

merical viscosity, a known technique for constructing a convergent difference scheme;
see, e.g., [20]. Further, we can show that, for all i, j \in \{ 1, 2, . . . , d\} ,

( \widetilde D2
h,ij  - D

2

h,ij)u
\scrN (xxx\theta ;\mu \mu \mu ) =

1

2
(\delta +xi

\delta +xj
+ \delta  - xi

\delta  - xj
 - \delta +xi

\delta  - xj
 - \delta  - xi

\delta +xj
)u\scrN (xxx\theta ;\mu \mu \mu )

=
hihj

2
\delta 2xi

\delta 2xj
u\scrN (xxx\theta ;\mu \mu \mu ).

This means that

\alpha I : ( \widetilde D2
h  - D

2

h)u
\scrN (xxx\theta ;\mu \mu \mu ) \approx \alpha h2\Delta 2u(xxx\theta ;\mu \mu \mu ),

which introduces the numerical moment in the vanishing moment method of [24].
Synthesizing the above observations, it is clear that the proposed scheme is an ap-
proximation of the following fourth order quasilinear PDE:

\alpha h2\Delta 2u(xxx;\mu \mu \mu ) - \beta h\Delta u(xxx;\mu \mu \mu ) +G(D2u(xxx;\mu \mu \mu ),\nabla u(xxx;\mu \mu \mu ), u(xxx;\mu \mu \mu ),xxx, \sigma (\mu \mu \mu )) = 0,

which is a regularization of the original nonlinear PDE.

2.4. The algorithm for the transport boundary problem. Integrating the
iterative approach for the transport boundary condition with the narrow-stencil finite
difference scheme for the Neumann boundary value subproblem, we are ready to pres-
ent our FOM for the transport boundary problem of the Monge--Amp\`ere equation.
Indeed, due to the (exact) transport boundary condition (2.2) being turned into the
sequence of Neumann boundary conditions (2.4c), the discretized transport bound-
ary condition (2.7) is also replaced by a sequence of discretized Neumann boundary
conditions of the type

(2.9) \nabla hu
\scrN ,k+1(xxx\theta ;\mu \mu \mu ) \cdot nnn(xxx\theta ) = \phi k(xxx\theta ), xxx\theta \in X\scrN \cap \partial X.

Hence, for a given \phi k, we define the nonlinear problem as solving for (u\scrN ,k+1, \sigma k+1)T

such that they satisfy (2.5) with the boundary condition (2.6) and the uniqueness
condition (2.8), all with (u\scrN , \sigma )T replaced by (u\scrN ,k+1, \sigma k+1)T and the Neumann
boundary condtion (2.9). For notational simplicity, we denote the whole system of
equations encompassing (2.5), (2.6), (2.8), and (2.9) by

(2.10) F (u\scrN ,k+1(\mu \mu \mu ), \sigma k+1(\mu \mu \mu );\phi k(X\scrN \cap \partial X;\mu \mu \mu )) = 0.

We are now ready to present the algorithm for solving the problem (1.2) for a given
value of \mu \mu \mu , in Algorithm 2.1, with the Neumann boundary data \phi k(X\scrN \cap \partial X;\mu \mu \mu )
being given an initial value and then corrected, after every solve of (2.10), through
projecting the mapping \nabla hu

\scrN ,k+1(\mu \mu \mu )(X\scrN \cap \partial X;\mu \mu \mu ) to \partial Y . Newton's method is used
for rapidly solving the nonlinear system (2.10). To assist with the convergence of
Newton's method, an initialization sufficiently close to the exact solution is neces-
sary. We adopt the approach of [28] and take the initial value of the kth iteration,

(u\scrN ,k
0 (X\scrN ;\mu \mu \mu ), \sigma k

0 (\mu \mu \mu ))
T , as the solution of

\Delta hu
\scrN (xxx\theta ;\mu \mu \mu ) = \sigma (\mu \mu \mu )

\biggl( 
2fX(xxx\theta ;\mu \mu \mu )

fY (xxx\theta  - yyy0;\mu \mu \mu )

\biggr) 1
2

, xxx\theta \in X\scrN ,\sum 
xxx\theta \in X\scrN u\scrN (xxx\theta ;\mu \mu \mu )

\scrN 
= 0,

\nabla hu
\scrN (xxx\theta ;\mu \mu \mu ) \cdot nnn(xxx\theta ) = \phi k(xxx\theta ), xxx\theta \in X\scrN \cap \partial X.
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A3544 SHIJIN HOU, YANLAI CHEN, AND YINHUA XIA

Algorithm 2.1 The algorithm for the transport boundary problem of Monge--Amp\`ere
equation

1: Set \phi  - 1(xxx;\mu \mu \mu ) = Bxxx \cdot nnn for sufficient large B, the error tolerance \epsilon , and
the maximum number of iterations K. Compute (u\scrN ,0(\mu \mu \mu ), \sigma 0(\mu \mu \mu ))T by solving
F (u\scrN (\mu \mu \mu ), \sigma (\mu \mu \mu );\phi  - 1(X\scrN \cap \partial X;\mu \mu \mu )) = 0.

2: Initialize k = 0 and r = 1.
3: while r \geq \epsilon and k < K do
4: Compute \phi k(xxx\theta ;\mu \mu \mu ) = P\partial Y (\nabla hu

\scrN ,k(xxx\theta ;\mu \mu \mu )) \cdot nnn for xxx\theta \in X\scrN \cap \partial X.
5: Compute (u\scrN ,k+1(\mu \mu \mu ), \sigma k+1(\mu \mu \mu ))T by solving F (u\scrN (\mu \mu \mu ), \sigma (\mu \mu \mu );\phi k(X\scrN \cap \partial X;\mu \mu \mu )) =

0.
6: Compute the relative error r = | | u\scrN ,k+1(\mu \mu \mu ) - u\scrN ,k(\mu \mu \mu )| | \ell \infty (R\scrN ).
7: Let k = k + 1.
8: end while

3. The reduced residual reduced over-collocation (R2-ROC) method.
Following the FOM presented in the last section, we introduce our proposed reduced
order model (ROM) for the transport boundary problem of the Monge--Amp\`ere equa-
tion. Specifically, we adopt the reduced over-collocation (ROC) approach [14] devel-
oped for parameterized nonlinear partial differential equations. The unique feature is
the immunity to the degradation in online efficiency suffered by classical RBM due
to the EIM-like expansion of the nonlinear and nonaffine terms. To illustrate the
algorithm, we first recall that we denote by u(xxx;\bfitmu ) the exact solution of the Monge--
Amp\`ere equation (1.2), which is nonlinear and parameterized in a nonaffine fashion
by \mu \mu \mu . Moreover, the resulting FOM solution corresponding to parameter \bfitmu is denoted
by u\scrN (X\scrN ;\bfitmu ), which we assume is close enough to the exact solution u(xxx;\bfitmu ) for us
to adopt as a reference for the ROM. Now we are ready to briefly review the R2-ROC
algorithm. We first note that it is an RBM exploiting the full advantages of nodal
form solvers both offline and online. It can be viewed as adopting hyper-reduction
for reduced residual minimization. Hyper-reduction approaches include the EIM [3],
the DEIM [12], Gauss--Newton approximation tensor (GNAT) [10] and its extensions
[18, 19], nonlinear manifold least-squares Petrov--Galerkin (NM-LSPG) [46] utilizing
GNAT, and autoencoders [31]. R2-ROC, instead of reconstructing the residuals on a
global basis like GNAT, which can be inefficient, collocates them on some well-chosen
nodes. The method was integrated with NM-LSPG and convolutional autoencoders
for some nonlinear manifold hyper-reduced ROMs [55] achieving accuracy and inter-
pretability. R2-ROC has two components: an online (reduced) solver of size n that
is between 1 and N with N usually much smaller than \scrN , and an offline training
component which repeatedly calls the online solver of increasing size n to build up a
surrogate solution space from scratch dimension-by-dimension.

Online solver. Given the reduced space Wn and a collocation set Xm, a subset
of the full grid X\scrN , of cardinality m that is comparable to n, the R2-ROC method
identifies a surrogate solution for any specific parameter \bfitmu in the following form:

\widehat un(\bfitmu ) = Wn\bfitc n(\bfitmu ).

Here, for simplicity of notation, we also adopt Wn for the snapshot matrix whose
column space forms the reduced space Wn. We subject this surrogate solution to the
FOM equation (2.10) which encompasses (2.5), (2.6), (2.8), and (2.9). Note, however,
that \widehat un(\bfitmu ) automatically satisfies the uniqueness condition (2.8) due to the fact that
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REDUCED BASIS METHODS FOR pOMT PROBLEMS A3545

the constraint \sum 
xxx\theta \in X\scrN \widehat un(xxx\theta ;\mu \mu \mu )

\scrN 
\equiv 0

is linear and that all RB snapshots \{ ui\} ni=1 satisfy it by definition. Therefore, we just
need to subject \widehat un(\mu \mu \mu ) to (2.5), (2.6), and (2.9) written as a nonlinear system, the
ROM counterpart of the FOM equation (2.10):

(3.1) Fr(Wncccn(\mu \mu \mu ), \sigma (\mu \mu \mu );\phi 
k(X\scrN \cap \partial X;\mu \mu \mu )) = 0,

with\scrN equations for unknown (cccn(\mu \mu \mu ), \sigma (\mu \mu \mu ))
T . The kth iterate of the solution, \bfitc kn(\bfitmu ) \in 

Rn\times 1 and \sigma k(\mu \mu \mu ), is obtained by minimizing a subsampled residual

(\bfitc kn(\bfitmu ), \sigma 
k(\mu \mu \mu ))T = argmin

cccn\in Rn\times 1,\sigma \in R

\bigm\| \bigm\| P\ast 
\bigl( 
Fr(Wncccn(\mu \mu \mu ), \sigma (\mu \mu \mu );\phi 

k(X\scrN \cap \partial X;\mu \mu \mu ))
\bigr) \bigm\| \bigm\| 

\ell 2(Rm)
.

We note that, just like the transport boundary condition (2.7) was enforced on the
FOM level numerically being replaced by a sequence of discretized Neumann boundary
conditions (2.9) which is embedded in (2.10), the transport boundary condition is also
enforced on the ROM level by (3.1). The Neumann boundary data \phi (Xm \cap \partial X;\mu \mu \mu ) is
corrected at every iteration through projecting the RB mapping \nabla h\widehat un(\mu \mu \mu )(X

m\cap \partial X;\mu \mu \mu )
to \partial Y . Along the same notion, just like the boundary \partial X will not be transported
exactly to \partial Y (with an error at the level of the FOM accuracy), the transported \partial X
will also differ from \partial Y on the ROM level by an error at the ROM level, as confirmed
by our numerical experiments.

We also note that, in this paper, we focus on the parameterized Monge--Amp\`ere
equation with parameters describing the variation of the densities. While the variation
of the density near the boundary may lead to the change of the mapping at the
boundary, which is reflected by the function \phi (X\scrN \cap \partial X;\mu \mu \mu ), the parameters do not
directly delineate any boundary deformations. Any low-rank structure of the density
function with respect to the parameter \mu \mu \mu translates to one for the boundary function
\phi (X\scrN \cap \partial X;\mu \mu \mu ). This is another insight that the low-dimensional RB approximation
is capable of deriving a reliable mapping from \partial X to \partial Y even between polygonal and
curved boundaries, as shown by our numerical experiments.

The RB space Wn, the reduced collocation set Xm, and the subsampling matrix
P\ast \in Rm\times \scrN that is constructed according to Xm will be generated in the offline
process that is described next. The online algorithm is presented in Algorithm 3.1.

Online efficiency and robustness with respect to the shortest-distance
projection P\bfpartial \bfitY . The RB method is said to be online-efficient if the RB solver
can be assembled and the RB approximation solved in complexity independent of \scrN 
in the online stage and the error estimator can be computed, via an offline-online
decomposition if necessary, in complexity independent of \scrN online [11]. The R2-ROC
method is online-efficient as established in [14]. Our version of the R2-ROC method
for solving the parameterized Monge--Amp\`ere equation with a transport boundary
features the added layer of iteration and the shortest-distance projection P\partial Y in (2.3).
We note that the iteration is up to a fixed number K and that P\partial Y is only carried out
for part of the boundary points, Sk(\bfitmu ) (\subset X\scrN \cap \partial X), whose cardinality only depends
on m. Therefore, we conclude that our R2-ROC method remains online-efficient.

Moreover, we emphasize that the shortest-distance projection P\partial Y (\nabla uk(xxx;\mu \mu \mu ))
at each iteration must be calculated exactly whenever possible. If, for example, it is
done via a simple search algorithm on the discrete points of boundary \partial Y (discretizing
\partial Y by \partial Y\scrN and calculating P\partial Y (vvv) as argminyyy\in \partial Y\scrN 

\| yyy  - vvv\| ), the truth solver and
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A3546 SHIJIN HOU, YANLAI CHEN, AND YINHUA XIA

Algorithm 3.1 Online algorithm: the reduced algorithm for the transport boundary
value problem of Monge--Amp\`ere equation

1: Set \phi  - 1(xxx;\mu \mu \mu ) = Bxxx \cdot nnn for sufficient large B, the error tolerance \epsilon , and
the maximum number of iterations K. Compute (ccc0n(\mu \mu \mu ), \sigma 

0(\mu \mu \mu ))T by solving
P\ast Fr(Wncccn(\mu \mu \mu ), \sigma (\mu \mu \mu );\phi 

 - 1(X\scrN \cap \partial X;\mu \mu \mu )) = 0.
2: Initialize k = 0 and r = 1.
3: while r \geq \epsilon and k < K do
4: Compute \phi k(xxx\theta ;\mu \mu \mu ) = P\partial Y (\nabla h\widehat uk

n(\mu \mu \mu )(xxx\theta ;\mu \mu \mu )) \cdot nnn for some xxx\theta \in Sk(\bfitmu ), where\widehat uk
n(\mu \mu \mu ) = Wnccc

k
n(\mu \mu \mu ).

5: Compute (ccck+1
n (\mu \mu \mu ), \sigma k+1(\mu \mu \mu ))T by solving\bigm\| \bigm\| P\ast Fr(Wncccn(\mu \mu \mu ), \sigma (\mu \mu \mu );\phi 

k(X\scrN \cap \partial X;\mu \mu \mu ))
\bigm\| \bigm\| 
\ell 2(Rm)

= 0.

6: Compute the relative error r =
\bigm\| \bigm\| ccck+1

n (\mu \mu \mu ) - ccckn(\mu \mu \mu )
\bigm\| \bigm\| 
\ell \infty (Rn)

.

7: Let k = k + 1.
8: end while

our reduced solver, albeit feasible, are both less robust. The exact projection is
straightforward when, for example, the target boundary \partial Y is a polygon or a circle.
Appropriate projections do exist for less straightforward geometries such as the ellipses
[42, 27].

Offline training. The offline component utilizes the classical parameter-greedy
framework with an error indicator based on the hyper-reduced residual [14] to iter-
atively construct the RB space Wn and subsequently enrich the collocation set Xm,
which determines the subsampling matrix P\ast . The algorithm judiciously identifies
parameter values

\bigl\{ 
\bfitmu 1, . . . ,\bfitmu N

\bigr\} 
one by one and constructs the RB space via the cor-

responding snapshots. With these notations set, we start the greedy procedure with
a randomly chosen \bfitmu 1 and obtain the snapshots u\scrN (X\scrN ;\bfitmu 1) by the high fidelity al-
gorithm. The RB space W1 is then set as W1 = \{ u1\} = \{ u\scrN (X\scrN ;\bfitmu 1)\} , and the first
collocation point is chosen as the EIM point of the first basis \bfitx 1

 \star = argmaxx\in X\scrN | u1| .
In addition, we add a collocation point, xxx0

 \star = argmaxxxx\theta \in X\scrN | u\scrN (xxx\theta ;\mu \mu \mu 
1) - u\scrN (xxx1

 \star ;\mu \mu \mu 
1)| ,

to guarantee the well-posedness of the RB problem. We then use the online proce-
dure described above to obtain an RB approximation \widehat un(\bfitmu ) for each parameter \bfitmu in
\Xi train (a discretization of the parameter domain \scrD ) and compute its error indicator
\Delta RR

n (\bfitmu ):
\Delta RR

n (\bfitmu ) := \| P\ast rn(\bfitmu )\| \ell \infty (Rm), where

rn(\bfitmu ) = Fr(Wnccc
Kn(\bfitmu )
n (\mu \mu \mu ), \sigma Kn(\bfitmu )(\mu \mu \mu );\phi Kn(\bfitmu ) - 1(X\scrN \cap \partial X;\mu \mu \mu ))

is the full residual for the current RB approximation \widehat un(\bfitmu ) of parameter \bfitmu , andKn(\bfitmu )
is the corresponding number of Neumann boundary iterations. P\ast rn(\bfitmu ) \in Rm\times 1 then
represents its reduced (subsampled) version,2 whose evaluation is independent of \scrN .
After these error indicators are evaluated, we proceed as follows to enrich the RB
space and expand the collocation sets.

2The conventional error estimate calculates the negative order norm of the residual and scales it
by the (parametric) stability factor. It is challenging to compute the nonlinear and nonaffine cases
with an EIM expansion due to the involvement of the successive constraint method [39, 40] used to
efficiently estimate the parametric stability factor and the delicacy of evaluating the residual norm
even for the linear problem [11, 17]. This simple error indicator based on the reduced residual [14]
has shown to be promising for nonlinear and nonaffine problems without the need of EIM expansion.
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REDUCED BASIS METHODS FOR pOMT PROBLEMS A3547

1. Greedy in \mu : The greedy choice is through maximizing \Delta RR
n (\bfitmu ) over the

training set \Xi train:

(3.2) \bfitmu n+1 = argmax
\bfitmu \in \Xi train

\Delta RR
n (\bfitmu ).

2. Xm expansion: With the newly selected \bfitmu n+1, we solve for the truth ap-
proximations un+1 = u\scrN (X\scrN ;\bfitmu n+1). We then obtain the first additional
collocation point from the EIM process of un+1 and the second additional
point by the EIM process of the full residual rn(\bfitmu 

n+1).
The offline algorithm of the ROC method is shown in Algorithm 3.2. We next provide
more details on two aspects of this algorithm, namely the role of the two sets of
collocation points, and the effectivity of the hyper-reduced error indicator.

Algorithm 3.2 Offline algorithm: the reduced over-collocation methods for the trans-
port boundary value problem of Monge--Amp\`ere equation

1: Choose \mu \mu \mu 1 randomly in \Xi train, and obtain u\scrN (\mu \mu \mu 1) by Algorithm 2.1. Find xxx1
 \star =

argmaxxxx\theta \in X\scrN | u\scrN (xxx\theta ;\mu \mu \mu 
1)| and xxx0

 \star = argmaxxxx\theta \in X\scrN | u\scrN (xxx\theta ;\mu \mu \mu 
1)  - u\scrN (xxx1

 \star ;\mu \mu \mu 
1)| .

Then let n = 1, m = 2, Xn
s = \{ xxx1

 \star \} , Xm = Xn
s \cup xxx0

 \star , and u1 = u\scrN (\mu \mu \mu 1)/u\scrN (xxx1
 \star ;\mu \mu \mu 

1).
2: Initialize W1 = \{ u1\} and X0

r = \emptyset .
3: for n = 2, . . . , N do
4: Solve cccn - 1(\mu \mu \mu ) by Algorithm 3.1 with Wn - 1, X

m, and calculate \Delta RR
n - 1 for every

\mu \mu \mu \in \Xi train.
5: Find \mu \mu \mu n = argmax\mu \mu \mu \in \Xi train

\Delta RR
n - 1(\mu \mu \mu ).

6: Solve un := u\scrN (\mu \mu \mu n) by Algorithm 2.1. Orthogonalize un: find \{ \alpha j\} , and let

un = un  - 
\sum n - 1

j=1 \alpha juj such that un(X
n - 1
s ) = 0.

7: Find xxxn
 \star = argmaxxxx\theta \in X\scrN | un(xxx\theta )| , un = un/un(xxx

n
 \star ), and letXn

s = Xn - 1
s \cup \{ xxxn

 \star \} .
8: Assume that \sigma (\mu \mu \mu n), \phi (X\scrN \cap \partial X;\mu \mu \mu n) are obtained when solving cccn - 1(\mu \mu \mu 

n) in
step 5 of Algorithm 3.1. Then compute the full residual vector rn - 1 =
F1(Wn - 1cccn - 1(\mu \mu \mu 

n), \sigma (\mu \mu \mu n);\phi (X\scrN \cap \partial X;\mu \mu \mu n)) and orthogonalize rn - 1: find \{ \alpha j\} ,
and let rn - 1 = rn - 1  - 

\sum n - 2
j=1 \alpha jrj such that rn - 1(X

n - 2
r ) = 0.

9: Find xxxn - 1
 \star  \star = argmaxxxx\theta \in xxx\scrN | rn - 1(xxx\theta )| . Let rn - 1 = rn - 1/rn - 1(xxx

n - 1
 \star  \star ) and

Xn - 1
r = Xn - 2

r \cup \{ xxxn - 1
 \star  \star \} .

10: Update Wn = [Wn - 1, un], X
m = Xn

s \cup Xn - 1
r \cup xxx0

 \star .
11: end for

The role of the two sets of collocation points. The role of the two sets of
points, one from the snapshots and the other from the residual of their corresponding
RB approximations when the RB space is one dimension less,

rn - 1 = Fr(Wn - 1cccn - 1(\mu \mu \mu 
n), \sigma (\mu \mu \mu n);\phi (X\scrN \cap \partial X;\mu \mu \mu n)),

is to collectively produce accurate and stable representations for both the reduced
solutions and the residuals at other parameter values. The first set of points, consisting
of the maximizers from an EIM process of the RB functions [13, 14], is denoted by
Xn

s = \{ xxxi
 \star \} ni=1. The basis functions, together with these points, lead to a stable and

accurate interpolation procedure with slow growth in Lebesgue constant [3, 33] for the
truth approximations u\scrN (\mu \mu \mu ). These truth approximations are of course not accessible
by the ROM solver, which, instead of interpolation, looks for the element in the RB
space, for each \bfitmu , that minimizes the (subsampled) residual when it is subject to the
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PDE corresponding to that \bfitmu . It is therefore critical to represent these residuals well.
This goal is achievable with only the first set of points for simple linear equations [13],
but it is out of reach for nonlinear or linear but degenerate cases [15]. Therefore, we
introduce the second set of points to better control the residual of the numerical PDE
at the ROM level. The residual vectors corresponding to the snapshots \{ rn - 1\} Nn=2

serve naturally as a set of basis functions for representing a generic residual rn(\mu \mu \mu ).
Their EIM interpolation points Xn - 1

r = \{ xi
 \star  \star \} n - 1

i=1 are then introduced as the second
part of our over-collocation set. Analysis of [14] demonstrates the optimality of these
two sets of points for the purpose of representing the RB solution and controlling
the residuals, respectively. Given an error-residual relation, the ROC solution will
produce accurate surrogate solutions.

Remark 3.1. In [14], the first set of points consisting of the interpolation points
for the truth solution is produced by the generalized EIM (GEIM) process which,
due to its adoption of the discrete PDE operator, leads to the mentioned optimality.
The strong nonlinearity of the Monge--Amp\`ere equation makes it difficult for us to
directly exploit the approach of [14]. Our first set of points is instead obtained from
the (weaker) interpolation process that does not consider any discrete PDE operators.

Effectivity of the hyper-reduced error indicator. The efficiency of our
hyper-reduced error indicator \Delta RR

n is apparent thanks to the low-cost evaluation that
is independent of \scrN and the number of EIM expansion terms. Its effectivity is entirely
dependent on the choice of the over-collocation points. As a reference, we introduce
the error estimator based on the full residual

\Delta R
n (\mu \mu \mu ) = \| rn(\mu \mu \mu )\| \ell \infty (R\scrN ).

Given a residual to error map and a nonoscillatory (with respect to the parameter)
stability factor, it can serve as a reliable estimator with a near-constant effectivity
index [38, 53]. However, we note that this estimator is not online efficient, as it is
dependent on \scrN . If, for example, the maximizers of \| rn(\bfitmu )\| over the full grid are
contained inXn

s

\bigcup 
Xn - 1

r or \Delta R
n (\mu \mu \mu ) is bounded above and below by \Delta RR

n (\mu \mu \mu ), our hyper-
reduced error indicator will be equally reliable. Although we do not have such proofs,
our numerical examples in section 4.2 (Figure 5) indicate that our hyper-reduced
version \Delta RR

n (\mu \mu \mu ) is very much comparable to \Delta R
n (\mu \mu \mu ).

4. Numerical results. In this section, we present the computational results to
verify two main works of this paper: the proposed narrow-stencil FDM is effective
in solving the transport boundary problem of the Monge--Amp\`ere equation, and the
adapted R2-ROC method can efficiently solve the parameterized transport boundary
problem.

4.1. FDM results. In this section, we focus on our Monge--Amp\`ere equation
solver. The results of four tests are presented to gauge the performance of the proposed
approach for approximating the viscosity solutions. The problems are described in
Table 1, which lists the original density fX(xxx), the target density fY (yyy), and the
exact mapping \nabla xxxu. The first one maps the square ( - 0.5, 0.5)\times ( - 0.5, 0.5) onto the
rectangle(0.5, 1.5)\times ( - 0.25, 0.25). The second test maps the density

fX(xxx) = 1+4(q\prime \prime (x1)q(x2)+q(x1)q
\prime \prime (x2))+16(q(x1)q(x2)q

\prime \prime (x1)q
\prime \prime (x2) - q\prime (x1)

2q\prime (x2)
2)
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on the square ( - 0.5, 0.5)\times ( - 0.5, 0.5) onto a uniform density on the same square with
the auxiliary function q(z) defined as follows:

q(z) =

\biggl( 
 - 1

8\pi 
z2 +

1

256\pi 3
+

1

32\pi 

\biggr) 
cos(8\pi z) +

1

32\pi 2
zsin(8\pi z).

The third one maps a uniform density on the unit square (0, 1) \times (0, 1) onto a
density that blows up at a point on the same square. The last one maps a uniform
density on the square ( - 0.5, 0.5) \times ( - 0.5, 0.5) onto a Gaussian density on the disk
y21 + y22 \leq 1. This last test is meant to verify the effectiveness of our approach for
transporting a rectangular boundary to a circular one, a nontrivial task.

Table 1
Setup of the test problems for the transport boundary case.

Test Original density Target density Exact mapping

1 fX(xxx) = 1
0.16

exp

\biggl( 
 - 1

2

x2
1

0.42
 - 1

2

x2
2

0.42

\biggr) 
fY (yyy) = 1

0.08
exp

\biggl( 
 - 1

2
(y1 - 1)2

0.42
 - 1

2

y2
2

0.22

\biggr) 
\nabla xxxu =

\bigl( 
x1 + 1, x2

2

\bigr) 
2

fX(xxx) = 1 + 4(q\prime \prime (x1)q(x2) + q(x1)q\prime \prime (x2))+
1

ux1 = x1 + 4q\prime (x1)q(x2)

16(q(x1)q(x2)q\prime \prime (x1)q\prime \prime (x2) - q\prime (x1)2q\prime (x2)2) ux2 = x2 + 4q\prime (x2)q(x1)

3 1 fY (yyy) =
exp( - 2

\surd 
(y1 - 0.5)2+(y2 - 0.5)2)\surd 

(y1 - 0.7)2+(y2 - 0.7)2
-

4 1 fY (yyy) = 1 + 1
0.02\pi 

exp

\biggl( 
 - y2

1+y2
2

0.02

\biggr) 
-

We present the result in Table 2. Here, the maximum errors are computed based
on the exact solutions or the solutions on the finest grids. From the table, we can see
the solutions indeed achieve machine accuracy for the first test and order 2 accuracy
for the second, even without \alpha and \beta . For the third, many currently available methods

become slow or unstable when the ratio R = min\{ fX(xxx)
fY (\nabla u(xxx))\} is small. We see that

our approach works well with small \alpha , even when R is very small. We also provide in
Figure 2 a uniform Cartesian mesh and its images under the second, third, and fourth
maps.

Table 2
The number of iterations, CPU time, error of numerical solution, and order with respect to \scrN 

for the transport boundary case.

\scrN Test 1 (\alpha = \beta = 0)
time(s) max error

152 0.48 2.44E-15
312 0.11 5.88E-15
652 0.75 7.11E-15
1272 7.71 2.89E-14
2552 90.70 5.68E-14
5112 2789.93 7.17E-14

Test 2 (\alpha = \beta = 0)
time(s) max error order
0.05 2.72E-03 --
0.06 7.47E-04 1.78
0.51 2.24E-04 1.63
3.77 6.18E-05 1.92
51.55 1.55E-05 1.98

1676.06 3.88E-06 2.00

Test 3 (\alpha = 1, \beta = 0)
R time(s) max error order

1.92E-02 0.07 7.18E-02 --
3.19E-03 0.13 3.08E-02 1.17
8.39E-04 1.23 1.10E-02 1.40
1.55E-04 10.39 4.14E-03 1.45
2.00E-04 130.04 1.23E-03 1.75
8.08E-05 2052.19 -- --

Test 4 (\alpha = 10, \beta = 0)
iteration time(s) max error order

20 0.85 2.81E-01 --
22 2.27 2.20E-01 0.33
21 17.02 1.30E-01 0.72
20 173.45 5.39E-02 1.31
21 2331.48 1.39E-02 1.95
21 93834.32 -- --

Fig. 2. A uniform Cartesian mesh and its images under the map \nabla u for the second, third, and
fourth tests of Table 1.
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4.2. RBM results for the parameterized transport boundary problem.
In this section, we present numerical results for the following five problems to demon-
strate the applicability and the efficiency of the R2-ROCmethod for the parameterized
transport boundary problem of the Monge--Amp\`ere equation.

RB-Test 1. Transporting the following density to a uniform density on the
square ( - 0.5, 0.5)2:

fX(xxx, \mu ) = 1 + 4(q\prime \prime \mu (x1)q\mu (x2) + q\mu (x1)q
\prime \prime 
\mu (x2)) + 16(q\mu (x1)q\mu (x2)q

\prime \prime 
\mu (x1)q

\prime \prime 
\mu (x2) - q\prime \mu (x1)

2q\prime \mu (x2)
2),

where the auxiliary function is given by q\mu (z) = ( - 1
\mu \pi z

2 + 1
32\mu \pi 3 + 1

4\mu \pi ) cos(8\pi z) +
1

4\mu \pi 2 z sin(8\pi z) and the exact solution is provided as

\nabla u = (x1 + 4q\prime (x1, \mu )q(x2, \mu ), x2 + 4q\prime (x2, \mu )q(x1, \mu )) .

RB-Test 2. Transporting a uniform density to a density that blows up at a
moving point (\mu 1, \mu 2) on the square (0, 1)2:

fY (yyy,\mu \mu \mu ) =
exp( - 2

\sqrt{} 
(y1  - 0.5)2 + (y2  - 0.5)2)\sqrt{} 

(y1  - \mu 1)2 + (y2  - \mu 2)2
.

RB-Test 3. Transporting a uniform density to the following density function on
the square (0, 1)2:

fY (yyy, \mu ) = 1 + 5 exp( - 50| (y1  - 0.5 - \mu )2 + (y2  - 0.5)2  - 0.09| ).

RB-Test 4. Transporting a uniform density to the following density function on
the square (0, 1)2:

fY (yyy, \mu ) = 1 + 5 exp( - 50| (y1  - 0.5 - 0.25 cos(2\pi \mu ))2 + (y2  - 0.5 - 0.25 cos(2\pi \mu ))2  - 0.01| ).

RB-Test 5. Transporting a uniform density on the square ( - 0.5, 0.5)2 to the
following density on the disk y21 + y22 \leq 1:

fY (yyy, \mu ) = 1 + exp

\biggl( 
 - y21 + y22

2\mu 2

\biggr) 
/(2\pi \mu 2).
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(a) \mu = 5 (b) \mu = 8 (c) \mu = 10 (d) \mu = 20

(e) \mu \mu \mu = (0.3, 0.6) (f) \mu \mu \mu = (0.1, 0.9) (g) \mu \mu \mu = (0.5, 0.5) (h) \mu \mu \mu = (0.8, 0.7)

(i) \mu = 0 (j) \mu = 0.25 (k) \mu = 0.5 (l) \mu = 0.75

(m) \mu = 0 (n) \mu = 0.25 (o) \mu = 0.5 (p) \mu = 0.75

(q) \mu = 0.1 (r) \mu = 0.14 (s) \mu = 0.19 (t) \mu = 0.24

Fig. 3. The image of the truth solutions at representative parameter values for RB-Tests 1--5
of Table 3 (from top to bottom).D
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Figure 3 shows the truth approximations at representative parameter values that
are generated with the narrow-stencil FDM on a mesh of size \scrN = 1272 and (\alpha , \beta )
values given in Table 3. Parametric variations are clearly visible for each example. In
particular, we aim to capture a moving singular point for RB-Test 2, a circle of denser
measure moving to the right for RB-Test 3, and a nontrivial task of transporting a
rectangular boundary to a circular one in RB-Test 5.

Table 3
Test problem setup for the parametric transport boundary case.

RB-Test (\alpha , \beta ) \Xi train \Xi test

1 (0, 0) (5 : 0.2 : 20) (5.1 : 0.2 : 19.9)

2 (200, 0) (0.1 : 0.04 : 0.9)2 (0.13 : 0.08 : 0.89)2

3 (50, 0) (0 : 0.02 : 1) (0.01 : 0.02 : 9)

4 (50, 0) (0 : 0.02 : 1) (0.01 : 0.02 : 9)

5 (10, 0) (0.1 : 0.01 : 0.3) (0.105 : 0.01 : 0.295)

For these calculations, the error tolerance \epsilon is 10 - 8, and the maximum number
of iterations K is 100. Using the training and testing sets specified in Table 3 for the
R2-ROC method, we generate the RB space and the collocation set, with which we
compute the RB solution \widehat uN (\mu \mu \mu ), where N is the number of basis functions that we
used. To test the R2-ROC method, we compute the maximum error E(N) between
the mappings induced by the RB solution \widehat uN (\mu \mu \mu ) and the truth approximation u\scrN (\mu \mu \mu )
for all \mu \mu \mu \in \Xi test. That is,

E(N) = max
\mu \mu \mu \in \Xi test

\bigl\{ 
| | \nabla hu

\scrN (\mu \mu \mu ) - \nabla h\widehat uN (\mu \mu \mu )| | \ell \infty (R\scrN )

\bigr\} 
.

The left column of Figure 5 shows the maximum errors that are plotted against the
number of basis functions. Exponential convergence is observed in all cases. RB-Tests
2--4 are challenging due to moving singularities (i.e., the regions of low regularity vary
with the parameter \mu \mu \mu ). The convergence is noticeably slower. The same can be seen
for RB-Test 5, featuring a more challenging transport from a rectangular to a nonrect-
angular target domain. However, it is clearly still worthwhile to invest in the offline
process of the R2-ROC for all cases, even when only a modest number of inquiries
are needed. To verify the capability of the ROM solver in transporting the boundary,
we pick a boundary point on the square boundary \partial X of the most challenging case,
RB-Test 5, and examine how it is transported to the circle \partial Y when the parameter
value \mu \mu \mu = 0.135. We record the distance between the ROM target point (transported
by \nabla h\widehat uN (\mu \mu \mu )) and the FOM target point (transported by \nabla hu

\scrN (\mu \mu \mu )) as the Neumann
boundary iteration proceeds and we vary the ROM dimension N = 2, 4, 6, 8. The
histories of convergence of this distance for the picked point, all boundary points, and
grid points of the entire domain are displayed in Figure 4. It is clear that the se-
quence of ROM level Neumann boundary problems is highly effective in resolving the
transport boundary. Moreover, the terminal accuracy improves as the RB spaces are
enriched and they are at their expected ROM accuracy. Indeed, \| u\scrN (\mu \mu \mu ) - \widehat uN (\mu \mu \mu )\| are
at the 1E - 01, 1E - 03, 1E - 04, 1E - 04 levels for N = 2, 4, 6, 8. The terminal errors
for the entire domain, shown in Figure 4 (right), correspond well with the inverse
inequality relating \| \nabla h(u

\scrN (\mu \mu \mu ) - \widehat uN (\mu \mu \mu ))\| with \| u\scrN (\mu \mu \mu ) - \widehat uN (\mu \mu \mu )\| .
To demonstrate the efficiency, we compute the cumulative run time as a function

of the number of queries Nrun for the full and reduced solver with N basis, plotted
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Fig. 4. Test of ROM accuracy in transporting the boundary of RB-Test 5 (square to a circle).
We measure the distance between the ROM target point (transported by \nabla h\widehat uN (\mu \mu \mu )) and the FOM
target point (transported by \nabla hu

\scrN (\mu \mu \mu )) as the Neumann boundary iteration proceeds and we vary the
ROM dimension N = 2, 4, 6, 8. Shown in the figure are the histories of convergence of this distance
for a fixed point (left), all boundary points (middle), and grid points of the entire domain (right).

in the middle column of Figure 5. The offline cost is counted as an overhead for the
reduced solver. We then evaluate the break-even number of queries N e

run above which
it is more costly to run the full simulations for each query (and thus worthwhile
to invest the overhead cost training the reduced solver). These quantities and the
computation time of the R2-ROC method and the FOM are presented in Table 4.
As we can see, the break-even numbers of queries N e

run are modest across the board
thanks to the computation time of the R2-ROC online solver being hundreds of times
smaller than that of the full solver.

Table 4
Offline and online computational times for different tests.

Test N Ne
run

R2-ROC
Offline Online

1 7 10 29.45 0.0091
2 20 30 193.24 0.011
3 15 17 118.53 0.0093
4 15 17 122.32 0.0088
5 10 12 1023.16 0.5303

FDM
-

3.18
6.76
7.46
8.21
90.24

4.3. Dirichlet boundary value problem of the Monge--Amp\`ere equation.
For completeness, we test our methods on the Dirichlet boundary value problem of
Monge--Amp\`ere equation (2.1) and report the results in this section. In this case, the
narrow-stencil FDM could be applied directly without the need of an iterative pro-
cedure for boundary enforcement. We consider three tests of decreasing regularities.
Listed in Table 5 are their density function f(xxx), exact solution u(xxx) (which induces
the boundary condition g(xxx)), and computational domain X. The relative L\infty error
between exact solution u(xxx) and its approximation u\scrN (X\scrN ), and its convergence or-
ders together with the penalization parameters \alpha and \beta , are presented in Table 6.
This verifies that the method converges with the expected order of 2 when the first
derivative is continuous.

To test our reduced order solver, we consider two parameterized Monge--Amp\`ere
equations listed in Table 7, corresponding to two of the nonparametric cases in Table
5. Truth approximations are generated with \alpha = 1 and \beta = 0 on a uniform Cartesian
mesh of size \scrN = 1272. Figure 6 shows two representative solutions for each example.
For the first example, solutions for \mu = 0.1 and \mu = 1 differ the most around the
(1, 1)-corner of the domain, while for the second example it is more challenging with
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Fig. 5. R2-ROC results for the parameterized transport boundary problem of the Monge--Amp\`ere
equation: the histories of convergence (left), comparison in cumulative run time (middle), and the
collocation points for the R2-ROC method (right). On the top is for RB-Test 1 and the bottom for
RB-Test 5 of Table 3.
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Table 5
Setup of the Dirichlet test problems.

Test (f(xxx), u(xxx)) X

C\infty f(xxx) = (1 + x2
1 + x2

2) exp(x
2
1 + x2

2) X = (0, 1)\times (0, 1)
u(xxx) = exp

\biggl( 
x2
1+x2

2
2

\biggr) 
C1

f(xxx) =
\Bigl( 
1 - 0.2

| (x1 - 0.5,x2 - 0.5)| 

\Bigr) +

X = (0, 1)\times (0, 1)
u(xxx) = 1

2
((| (x1  - 0.5, x2  - 0.5)|  - 0.2)+)2.

C0
f(xxx) = 0

X = ( - 1, 1)\times ( - 1, 1)
u(xxx) = | x1| 

Table 6
Computation time, maximum error, and rates of convergence for the FDM solutions of the

Dirichlet case.

\scrN Test C\infty (\alpha = 1, \beta = 0)
time(s) error order

152 0.03 8.98E-03 --
312 0.07 2.38E-03 1.83
652 0.63 5.97E-04 1.87
1272 4.48 1.65E-04 1.92
2552 45.74 4.28E-04 1.94
5112 688.69 1.09E-05 1.96

Test C1 (\alpha = 10, \beta = 0)
time(s) error order
0.02 8.54E-02 --
0.05 2.07E-02 1.95
0.56 5.38E-03 1.82
5.52 3.05E-03 0.85
68.23 1.70E-03 0.84

1029.31 8.14E-04 1.06

Test C0 (\alpha = 200, \beta = 0)
time(s) error order
0.02 1.14E-00 --
0.07 1.00E-00 0.19
0.63 4.92E-01 0.96
4.69 2.03E-01 1.32
80.14 1.04E-01 0.96
-- -- --

the parameter \mu dictating the location of the regularity change in the solution.
The R2-ROC results are presented in Figure 7. From the left column, we can

see that the errors steadily decrease for the first test while it plateaus for the more
challenging second test. The middle column displays the comparison in cumulative
computation time for the R2-ROC method (with 15 bases for the first example and 7
for the second) and the finite difference method as we increase the number of simu-
lations Nrun. We see that the R2-ROC method starts to save time when the number
of simulations is above 18 or 8 for the two tests, respectively, and that the savings
become more dramatic as Nrun increases due to the negligible marginal expense of
R2-ROC.

Table 7
Setup of the test problems for the parametric Dirichlet case.

RB-Test (f(xxx), u(xxx)) \Xi train \Xi test

C\infty (\mu )
f(xxx) = 4\mu 2(1 + 2\mu (x2

1 + x2
2)) exp(2\mu (x

2
1 + x2

2)) (0.1 : 0.02 : 1) (0.11 : 0.02 : 0.99)
u(xxx) = exp(\mu (x2

1 + x2
2))

C1(\mu )
f(xxx) =

\Bigl( 
1 - \mu 

| (x1 - 0.5,x2 - 0.5)| 

\Bigr) +

(0.1 : 0.01 : .5) (0.105 : 0.01 : 0.495)
u(xxx) = 1

2
((| (x1  - 0.5, x2  - 0.5)|  - \mu )+)2

5. Conclusion. In this article, we develop a fast algorithm for the nonlinear
parameterized Monge--Amp\`ere equation with transport boundary, which models the
optimal transport problem with L2 cost function. It features a novel extension of the
narrow-stencil finite difference scheme [23] to our setting, incorporating the projection-
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(a) \mu = 0.1 (b) \mu = 1 (c) \mu = 0.1

(d) \mu = 0.5

Fig. 6. Truth solutions at representative parameter values for the C\infty (\mu ) test ((a) and (b))
and the C1(\mu ) test ((c) and (d)).
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Fig. 7. R2-ROC results for the parameterized Dirichlet boundary problem of the Monge--Amp\`ere
equation: the histories of convergence (left), comparison in cumulative run time (middle), and the
collocation points for the R2-ROC method (right). On the top is for the C\infty (\mu ) test and the bottom
for the C1(\mu ) test of Table 7.

iteration method [27] to deal with the transport boundary. The resulting solver is
shown to be effective and accurate even when facing low regularity. Building on this
truth approximation solver, we adapt the R2-ROC algorithm [14, 16] to the param-
eterized Monge--Amp\`ere equation with the transport boundary. Several challenging
tests with different parameter delineations are provided to demonstrate the method's
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capability in efficiently producing an accurate and reliable mapping induced by the
RB solution.
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