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Sex-determining regions have been identified in the Nile tilapia on linkage groups (LG) 1, 20
and 23, depending on the domesticated strains used. Sex determining studies on wild
populations of this species are scarce. Previous work on two wild populations, from Lake
Volta (Ghana) and from Lake Koka (Ethiopia), found the sex-determining region on LG23.
These populations have a Y-specific tandem duplication containing two copies of the Anti-
Muillerian Hormone amh gene (named amhY and amhAY). Here, we performed a whole-
genome short-reads analysis using male and female pools on a third wild population from
Lake Hora (Ethiopia). We found no association of sex with LG23, and no duplication of the
amh gene. Furthermore, we found no evidence of sex linkage on LG1 or on any other LGs.
Long read whole genome sequencing of a male from each population confirmed the
absence of a duplicated region on LG23 in the Lake Hora male. In contrast, long reads
established the structure of the Y haplotype in Koka and Kpandu males and the order of
the genes in the duplicated region. Phylogenies constructed on the nuclear and
mitochondrial genomes, showed a closer relationship between the two Ethiopian
populations compared to the Ghanaian population, implying an absence of the LG23Y
sex-determination region in Lake Hora males. Our study supports the hypothesis that the
amh region is not the sex-determining region in Hora males. The absence of the Y amh
duplication in the Lake Hora population reflects a rapid change in sex determination within
Nile tilapia populations. The genetic basis of sex determination in the Lake Hora population
remains unknown.

Keywords: sex chromosome, sex determination, Y-haplotype, AMH, duplication, populations

1 INTRODUCTION

Genetic sex determination (GSD) inherited through sex chromosomes has been highly conserved
and relatively stable in mammals and birds for millions of years (Cortez et al., 2014). In the majority
of mammals, sex chromosomes are heteromorphic and follow an XX/XY system. The degenerated Y
chromosome carries in most mammals the Sry gene, the master gene that triggers the development of
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male gonads (Sinclair et al., 1990). Birds in contrast have a
derived heteromorphic ZW/ZZ system and in most cases ZW
embryos become female. Testes develop in the presence of a
double dose of the dmrt1 gene on the Z chromosome (Smith et al.,
2009; Graves, 2014). The mechanisms of sex determination
evolve more rapidly in other vertebrates (Bachtrog et al,
2014). In reptiles, amphibians and fish, sex chromosomes and
sex-determination genes often differ among even closely related
species (Ezaz et al., 2009; Myosho et al., 2012; Jeffries et al., 2018).
Temperature-dependent sex determination (TSD) is also
widespread amongst reptiles (Holleley et al., 2016). Most fish
species have a GSD dependent on single genes with a large effect
carried by sex chromosomes, although some depend on
interactions between several genes (Capel, 2017). The
environment, particularly temperature, can also determine fish
sex (Environmental Sex Determination = ESD) or influence
sexual differentiation (Temperature Induced Sex
Differentiation = TISD). In the case of temperature-sensitive
GSD species, sex reversals can lead to mismatches between
phenotypes and sexual genotypes (Baroiller and D’Cotta, 2016).

Sex chromosomes evolve in response to unique patterns of
mutation, selection and recombination (Bachtrog et al., 2011). In
the classical model of sex chromosome evolution, a new sex
chromosome originates when an autosome acquires a sex-
determining mutation (e.g., a new Y). If this new sex locus is
linked to male-beneficial alleles (sexually antagonistic alleles), it is
expected to increase in frequency (Rice, 1987; Charlesworth et al.,
2005; van Doorn and Kirkpatrick, 2010). Selection favors
suppression of recombination to maintain linkage
disequilibrium between the new Y locus and male-beneficial
alleles at nearby loci. The non-recombining region may then
accumulate a variety of mutations, inversions, and repetitive
elements (Kirkpatrick 2010; Bachtrog, 2013; Blaser et al,
2014). Over time the X and Y may become morphologically
distinct (Bachtrog, 2013; Abbott et al., 2017). In contrast, 95% of
teleost fishes have cytogenetically homomorphic sex
chromosomes (Arai, 2011), implying that recombination
suppression is probably recent. This is most likely due to the
high turnover rates of teleost sex chromosomes, so that the
differentiation of the sex chromosomes is reinitiated (Sember
et al.,, 2021). The differences between sexes may be limited to a
single missense SNP, such as in pufferfish (Kamiya et al., 2012).

Genomic sequencing has shed light on the diversity of sex
systems and sex chromosomes in fish lineages, emphasizing their
plasticity with rapid turnover of teleost sex chromosomes and in
many cases the existence of multiple sex chromosomes (Sember
etal., 2021; Tao et al., 2021). There are frequent transitions in the
sex chromosome system, even within the same genus (Cnaani
et al., 2008; Takehana et al., 2008; Roberts et al., 2009; Bohne et al.,
2019). Some sex-determining genes have been conserved but
translocated into different chromosomes (Guiguen et al., 2018).
For instance, in the ricefish, the sex-determination gene dmY
(also called dmrt1bY) was found on linkage group (LG) 1 in the
medaka Oryzias latipes (Matsuda et al., 2002; Nanda et al., 2002).
However, in O. luzonensis the sex-determiner is a Y-linked copy
of the gsdf gene located on LG12 (Myosho et al., 2012) and in
other Oryzias it is sox3 on LG10 (Takehana et al, 2014). A
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remarkable number of sex chromosome turnovers have occurred
in the family Cichlidae, where over 20 sex-determiners have been
identified on more than 17 different LGs during an adaptive
radiation in East Africa (Gammerdinger & Kocher, 2018; El
Taher et al, 2021). Sex determiners have evolved multiple
times on the same chromosomes (e.g., on LG5, LG7 and
LG19) (Bohne et al, 2019; El Taher et al, 2021).
Differentiation of the sex chromosomes can be limited to a
small region, or extend over the whole chromosome indicative
of extensive recombination suppression (EI Taher et al., 2021).

The high species diversity of teleost fish (approximately 27,000
living species) has been proposed to be related to the genomic
plasticity of this clade (Helfman et al., 2009). Fishes have a higher
rate of evolution and gene duplications than other vertebrates
(Mank and Avise, 2009). Indeed, gene duplications are a substrate
for the evolution of innovations by giving the duplicated copy
(paralog) the possibility to partition the function of the original
gene (subfunctionalization), or to acquire a new function
(neofunctionalization) (Sandve et al., 2018). Several teleost sex-
determining genes have emerged from gene duplication (Mank
and Avise, 2009; Ortega-Recalde et al., 2020). Dmy of medaka is a
duplicate of the male-differentiating dmrtl gene found on the
autosomal LG9, that was translocated to LG1 (Matsuda et al,,
2002; Nanda et al., 2002). In the Patagonian pejerrey (Odontesthes
hatcheri) and the Northern pike (Esox lucius) duplicated copies of
the amh gene have taken on the role of master sex-determiner
(Hattori etal., 2012; Pan et al., 2019). Duplication of genes outside
the sex pathway can also result in a major sex-determinant such
as the sdy gene in salmonids, a neofunctionalized paralog of an
immune-related gene (irf9) (Yano et al., 2012).

Nile tilapia have an XX/XY GSD that can be overridden at high
temperatures to generate XX males (Baroiller et al., 2009). This
environmental sensitivity, together with extensive hybridization
among cultivated strains, has complicated the characterization of
the sex chromosomes in tilapias. In some strains sex has been
linked to LG1 (Cnaani et al,, 2008; Gammerdinger et al., 2014;
Palaiokostas et al., 2015) while others show sex linkage on LG23
(Eshel et al., 2014; Li et al.,, 2015; Wessels et al., 2017; Céceres
et al,, 2019) or to both (Taslima et al., 2021). LG20 has also been
linked to sex in the domesticated Manzala-Stirling strain
(Palaiokostas et al., 2015). The causal gene(s) on LGI1 has (ve)
not yet been identified. In the Japanese domesticated strain of
Nile tilapia, the amh gene on LG23 has been identified as the sex-
determination gene, which evolved through a tandem duplication
within the same LG. Hence, males have three amh copies: one on
the X chromosome and two copies located in tandem on the Y
chromosome, one with a missense SNP (amhY) and the other
with an insertion that causes a premature stop codon (amhAY)
(Li et al, 2015). We previously found that sex in three wild
populations, from Burkina Faso and Ghana (West Africa), and
Ethiopia (East Africa) was linked to LG23 (Sissao et al., 2019;
Triay et al, 2020). The sex-determining region of the Y
chromosome contains an amh duplication estimated to be
~51kb using short reads from whole genome sequencing
(WGS) and encompassing the adjacent oazl and dotll genes
(Triay et al., 2020). However, we were not able to determine the
order of the genes on the Y haplotype. We also identified
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differences in the amhAY copy in the two wild populations
compared with domesticated strains. AmhAY in the Ethiopian
Koka population lacks the 5 bp insertion which causes a
premature stop codon (Triay et al, 2020). In addition, some
amh markers that were sex-linked in the West African population
did not discriminate between XX and XY individuals in the
Ethiopian population (Sissao et al., 2019; Triay et al., 2020).

Here, we explore the genetic basis of sex determination in
another Ethiopian population from Lake Hora, which is
geographically and phylogenetically close to the population in
Lake Koka. Both populations live in cold lakes (17-26°C) and
belong to the subspecies O. niloticus cancellatus. We expected that
the sex-linked duplication of the amh region on LG23 would also
be present in Hora males. We used WGS to compare pools of
Hora males and females, but failed to identify a sex-linked region.
We then used long-read Nanopore sequencing to characterize the
LG23 Y haplotype of males from the Kpandu (Ghana) and Koka
(Ethiopia) populations and compared them to the corresponding
LG23 region of a male from Lake Hora (Ethiopia). Lack of sex-
associated SNP pattern on LG23 and Y specific structures and
sequences of the duplicated amh region in Hora males, support
the hypothesis that the amh region is not the sex-determining
region in Hora males and suggests that turnover of the sex-
determination system can occur extremely rapidly. Finally, we
built phylogenetic trees to characterize the evolutionary history of
these populations.

2 MATERIALS AND METHODS

2.1 Fish Samples and DNA Extractions

Nile tilapia (Oreochromis niloticus) were caught in 2002 and 2003
from the Sudano-Sahelian basin in West Africa and from two
populations in the Ethiopian Rift Valley basin of East Africa
(Bezault, 2005). The Kpandu population belongs to the
subspecies O. niloticus niloticus and was collected in Ghana
from a dendritic expansion of the eastern side of Lake Volta
where temperatures fluctuate between 27 and 32°C. The
Ethiopian populations belong to the subspecies O. niloticus
cancellatus and were collected from two cold-temperature
(between 17 and 26°C) lakes in the Awash River basin in the
Ethiopian highlands. Lake Koka is a large artificial reservoir of the
Awash River of 255 km* with an average depth of 9 m. Lake Hora
is an isolated lake of about 1 km” with a depth of up to 35 m. Fully
mature fish were collected using seine nets and the phenotypic sex
was then defined by external examination of the genital papilla
(males have only one urogenital orifice whereas females have a
genital opening and a urinary orifice; see Baroiller and D’Cotta,
2019). Fish were anaesthetized (but not sacrificed) with 2-
phenoxyethanol to sample the fin clips which were preserved
in 96-100% ethanol.

High-molecular weight genomic DNA (gDNA) was lysed
from the fin clips in TNES-Urea buffer (4 M urea; 10 mM
Tris-HCI, pH 7.5; 125 mM NaCl; 10 mM EDTA; 1% SDS) and
extracted using the phenol-chloroform procedure. The gDNA
was stored in Tris-EDTA buffer at -20°C. DNA was quantified
first on a NanoDrop spectrophotometer (ThermoFisher, France)
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to estimate the absorbance ratios and the concentration was then
measured on a Qubit 2.0 fluorometer (Invitrogen Carlsbad,
United States). gDNA quality was also verified on a 0.8%
agarose gel.

2.2 Whole Genome Short Reads Sequencing

Analysis of Hora

2.1.1 Libraries and Sequencing

Twenty WGS libraries were prepared at Macrogen (Seoul, Korea)
from the gDNA of ten males and ten females gDNA that had been
sonicated to obtain 550 bp fragments. All libraries were prepared
using the TruSeq DNA PCR-Free kit (Illumina) except one male
library where TruSeq Nano DNA Kit (Illumina) was used due to
limited amounts of gDNA. Libraries were sequenced (150bp
paired-end) in an S4 flow cell on a NovaSeq 6000 (Illumina,
San Diego, CA).

2.1.2 Data Processing

Raw data quality was checked using FastQC (0.11.7). Illumina
TruSeq adapters were trimmed and short reads (<15bp) removed
using fastp (version 0.21.0) (Chen et al., 2018). The fastq files were
pooled according to the phenotypic sex of the samples, resulting
in a pool of females reads (with 10 samples) and a pool of males
reads (with 10 samples). The two pools were mapped to the latest
O. mniloticus  reference  genome available on NCBI
(O_niloticus_ UMD_NMBU, Genbank ID: GCA_001858045.3)
using BWA mem mapper (version 0.7.15) (Li and Durbin, 2009).
Sam files were then converted to Bam files and sorted using
SAMtools (version 1.9) (Li et al., 2009) and read groups were
added to the two pools using Picard AddOrReplaceReadGroups
(2.7.0) (Broad Institute, 2019). The output files were then
combined with SAMtools mpileup (version 1.9). Using
Popoolation2 mpileup2sync.pl (version 1.2.2) (Kofler et al,
2011), the mpileup file was transformed to a synchronized file
(sync). Finally, the sync file was processed with
Sex_SNP_finder GA.pl (Gammerdinger et al, 2014) to
calculate the Fst between males and females. This pipeline
allowed us to identify sites that are fixed (or nearly fixed) in
one sex and at intermediate frequencies in the other sex. The

following parameters were used in Sex_SNP_finder:
fixed_threshold = 0.9; minimum_polymorphic_frequency =
0.3; maximum_polymorphic_frequency = 0.7;
minimum_read_depth = 10; maximum_read_depth = 100;
minimum_read_count = 2; sex SNP_finder_window_size =

10000. Finally, the Fst were plotted on a manhattan plot using
R and the qgman package (version 0.1.4) (Turner, 2018).

2.3 Library Construction for MinlON

Sequencing

One Kpandu male, one Koka male and one Hora male were
sequenced using the MinION platform (Oxford Nanopore
Technology). The male genomic DNA libraries were
constructed from 3 to 4 pg of high molecular weight gDNA by
MGX (Montpellier, France) using the Ligation Sequencing Kit 1D
(ONT). Samples were fragmented, the ends repaired and adapters
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ligated. The flow cell FLO-MIN106 (flow cell 9.4.1) was charged
twice, with a DNase treatment performed on the flow cell to
reactivate the pores when half of the library was sequenced.

2.4 Subsetting of Read Datasets,
Identification of Y Specific Reads and

Assembly

Using the results of the Illumina short reads (2 x 150bp) whole
genome sequencing published in Triay et al. (2020), we built an
expected Y haplotype for the LG23 sex region (Figure 1). This
expected Y haplotype is based on the sequence of the X haplotype
of the reference genome (an XX female), to which the region
corresponding to the duplication of the oazl to dot1l genes was
inserted according to the breakpoints described in Triay et al.
(2020). We kept the nucleotides matching the small deletions
(<500bp) found using the short read data in this expected
haplotype, as we assumed the Nanopore reads to be long
enough to cross short deletions. However, we deleted the
sequences corresponding to the two large (>5kb) deletions to
obtain the final sequence of the theoretical Y.

Oxford Nanopore MinION raw reads were used to build a
BLAST database (Camacho et al., 2009) against which were blasted
the sequences of the oazl, amh and dot1l genes extracted from the
latest available O. niloticus XX female reference genome
(O_niloticus_UMD_NMBU, Genbank ID: GCA_001858045.3).
Since the first intron of the dotll gene is very similar to the
sequence of the unrelated vasa gene, we split the sequence of
dot1l in order to remove this intron and limit its influences in the
blast results. All raw reads for which at least one of the sequences
presented blast hits were kept. This subset of reads was then

trimmed for 23bp at the 3’ and 5’ ends to remove regions with
low quality bases. This set of trimmed reads was then mapped onto
the theoretical Y haplotype in order to identify Y specific reads
according to the presence of Y specific indels described in Triay
etal. (2020). We mainly focused on the deletion of about 275bp in
length in oazl shown to be Y specific in both Kpandu and Koka
males (Triay et al., 2020). All reads presenting this deletion were
thus labelled as “Y-specific” reads. Conversely, all other reads were
labelled as “Non Y-specific.”

Reads of each subset (All Reads, Y specific, Non Y-specific)
were de novo assembled using Canu (version 2.1.1) (Koren et al.,
2017). The resulting contigs were automatically annotated using
Geneious (version 9.0.5) (Kearse et al., 2012), based on the
annotation of the reference genome for the defined region.
Contigs that could not be annotated were checked using
BLAST (version 2.11.0) and were removed when not
belonging to the LG23 region of interest. This was the case
mainly for the “Non Y-specific” subset of reads and when all
reads were used to build de novo assemblies. This BLAST
approach, used to identify genes belonging to the LG23 sex
region, led us to keep some reads of the oazlb gene (a paralog
of oazl) and vasa (of which part of the sequence is similar to the
dot1l gene). However, contigs containing those genes were easily
removed from the final set of contigs. Contigs that were
confirmed to belong to LG23 were mapped to the O. niloticus
XX female reference genome and to the Y theoretical haplotype
using the Geneious assembler (version 9.0.5) with high sensitivity
settings to check for the haplotype they corresponded to and
whether the structure was the expected one.

In order to increase the contiguity of the Koka Y haplotype, we
did a pairwise alignment of only the Y-specific reads using
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MAFFT (Katoh and Standley, 2013) with a scoring matrix of
100PAM/K = 2 and an automatically chosen algorithm. Among
the Y-specific reads, some contained both the amh copies or both
the dotll copies. Thus, the pairwise alignment allowed us to
compute a consensus sequence with the Y specific reads,
increasing the length of the Y haplotype contig for the Koka
male, even though the whole region could not be constructed
using long reads assembly software. However, this method of
consensus sequence with a low coverage of reads results in many
ambiguities.

2.5 Alignments and Phylogeny

2.5.1 Nuclear Phylogeny

The 42 loci used by Meyer et al. (2015) to construct their cichlid
phylogeny were retrieved in the trimmed data of our wild
populations using HMMER (version 3.3.2) (Wheeler and
Eddy, 2013) (Supplementary Table S1). In order to maximize
the accuracy of nucleotide sequences comparisons, we decided to
use only the Illumina short reads data obtained from Hora in the
current study, and those for Koka and Kpandu from our previous
study (Triay et al., 2020). Because a B chromosome is suspected to
be present in the WGS short reads from the female pool of Koka
as well as in the male pool of Kpandu individuals, we selected for
the phylogeny the Koka male pool, the Kpandu female pool and
the Hora female pool. The targeted regions of the mapping
alignments were converted from the BAM file to consensus
fasta files after SNP calling using bcftools (version 1.9)
(Narasimhan et al., 2016). For the two outgroups Etia nguti

and Hemichromis elongatus, and for the O. niloticus reference
genome, we used the fasta files available on NCBI (Genbank IDs:
GCA_015106755.1, GCA_015108515.1 and GCA_001858045.3
respectively). When needed, we produced a reverse complement
in order to obtain sequences in identical sense to the sequences of
Meyer et al. (2015). The 42 sequences of all samples were then
combined into a unique fasta and we added some of the species of
Meyer et al. (2015). All sequences were then aligned using
MAFFT (v7.475) (Katoh and Standley, 2013) and sites
presenting more than 50% missing data among all species/
samples, usually corresponding to species-specific insertions,
were removed using trimAl (version 1.4. rev22) (Capella-
Gutiérrez et al, 2009). Finally, a Maximum-Likelihood
phylogeny was produced using IQtree (1.6.12) with 100
bootstraps for node support.

2.5.2 Mitochondrial Phylogeny

We assembled the mitochondrial genomes from Koka, Hora and
Kpandu O. niloticus wild populations obtained from the short
reads of our Whole Genome Sequencing trimmed data using
MitoFinder (version 1.4) (Allio et al, 2020). We used the
reference mitochondrial genome as the basis for annotation
(Genbank ID: GU238433.1). In addition, we used the closely
related species Haplochromis burtoni as outgroup (NCBI ID:
NC_027289.1). In order to use the same basis as the one used
for gene annotation, we also ran the reference mitochondrial
genome and Haplochromis burtoni through Mitofinder to extract
individual genes. The sequences of the 13 mitochondrial protein-

Frontiers in Genetics | www.frontiersin.org

May 2022 | Volume 13 | Article 820772


https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Triay et al.

coding genes and the two ribosomal subunits (Supplementary
Table S2) were then aligned using MAFFT (v7.475) (Katoh and
Standley, 2013). A maximum-likelihood phylogeny was inferred
from the concatenated sequence alignments using IQtree 1.6.12
(Nguyen et al., 2015) with 100 bootstraps for node support.

2.5.3.Phylogeny of Sex Haplotypes

Because of the low coverage of long reads data and due to the
high error rate of Oxford Nanopore MinION data, we could not
use the Y haplotypes built from the de novo analyses. Thus, we
focused on the amh gene region and more precisely on the
LG23 region from 34,489,620 to 34,532,693 bp according to the
XX reference genome and analyzed only female individuals.
This corresponds to the region defined as carrying the major
sex-determinant in previous studies (Li et al., 2015; Cdceres
etal., 2019; Triay et al., 2020; Taslima et al., 2021). This region
was extracted from Kpandu, Koka and Hora female mapping
files using SAMtools (version 1.9) (Li et al, 2009). These
regions were then converted to consensus sequences using
Geneious (version 9.0.5) (Kearse et al., 2012). The sequences,
along with fasta files of this region from O. niloticus and O.
aureus were aligned using MAFFT (v7.475) (Katoh and
Standley, 2013). The subsequent alignments were then used
to build a phylogeny of Females X haplotypes with 100
bootstraps with IQtree (1.6.12) (Nguyen et al., 2015). The
final visualization of all the trees (nuclear, mitochondrion
and X haplotypes) were formatted using Geneious (version
9.0.5) (Kearse et al., 2012).

3 RESULTS

3.1 Absence of Sex-Association on LG23 in
Lake Hora

We had previously shown that males had a specific duplication of
the amh gene (amhY/amhAY) on LG23 in the Ethiopian Koka
population as well as in the Ghanaian Kpandu population (Triay
et al., 2020). We wanted to know if this was also the case in the
Ethiopian Hora population. For this, we performed a short read
WGS of wild-caught Hora males and females to search for strong
sex-biased SNPs between sexes through a genome wide
association study (GWAS). We obtained from this sequencing
between 108,570,962 and 129,028,644 total reads, representing a
mean of 17X per sample. We pooled by sex all the female reads
and all the male reads, and then used for our analysis a random
subset of 20% of the reads for each pool. The Manhattan plot of
Fst (Figure 2) did not reveal any obvious sex pattern on LG23. In
the oazl to dotll region we found only one SNP in a non-coding
region that differed between males and females. Furthermore, we
did not see any reliable signal of sex-specific heterozygosity on
other linkage groups for this population.

We also did not find evidence of a B chromosome. We did not
observe any of the 16 shared regions of high coverage that
potentially belong to a B chromosome, which we had
previously found in Kpandu males and Koka females (Triay
et al, 2020). Thus, the noisy Fst signal is not from the
presence of B chromosomes. Further male/female comparisons
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will be needed to determine the significance of the high Fst peaks
along the genome.

3.2 No Y Specific Reads in Hora Males in the
Expected LG23 Sex-Linked Region

We next performed a long-reads nanopore sequencing to study in
Hora males in more depth the region around the amh gene that is
duplicated and male-specific in the Koka and Kpandu
populations. We sequenced on a MinION a male from each
population. We obtained for the Hora male a total of 777,765 long
nanopore reads corresponding to 4,034,783,321 bp, 4,474,365
reads corresponding to 22,830,560,109 bp for the Kpandu male
and for the Koka male a total of 5,266,388 reads corresponding to
14,776,650,374 bp. The average error rate was 6.44%. This
resulted in 228 reads of Kpandu, 287 of Koka and 236 reads
of Hora that passed the oazl, amh and dot1l BLAST filter. The
expected Y haplotype structure we constructed is correct since
Kpandu and Koka reads mapped to the Y haplotype with high
quality, confirming the structure we previously described using
WGS short reads data (Triay et al., 2020). However, the coverage
was different along this region for the three males. It appeared to
be almost constant along the region for the Kpandu and Koka
males, but approached 0 in the Hora male (Figure 3). We found
no reads in the Hora male that had a good mapping score over the
Y specific regions. Moreover, the Hora male presents none of the
expected Y specific indels (such as the 275 bp deletion in the
truncated copy of the oazl gene). This confirms that this Hora
male does not carry any tandem duplication in this region and
that the amh duplicated region is most likely not the sex-
determining region in the Hora population.

3.3 Assembly of the Sex Haplotypes

For the Kpandu and Koka males we considered the reads containing
a deletion of 275 bp in the truncated oazl copy as “Y-specific” reads.
The reads not containing this deletion were considered as belonging
to the X chromosome. This resulted in 15 long reads that were
considered Y-specific for the Kpandu male and 11 for the Koka male.
In order to obtain the Y haplotype and study it in more detail, our
first approach was to do a de novo assembly of the long reads from
the sex-region. The contigs obtained were compared to the O.
niloticus XX reference genome (a female from the Stirling-
Manzala strain). The automatic annotation of contigs based on
the reference genome and the expected Y haplotype allowed us to
label the different contigs as X or Y haplotypes.

We observed only one long contig for the Hora male,
consistent with an X haplotype (Figure 4). No Y haplotype
was assembled, in agreement with the fact that the mapping
results revealed no reads presenting Y-specific structures. In
contrast, two contigs were assembled for the Kpandu male:
one perfectly corresponding to the X reference genome
haplotype, and another one presenting the Y-specific
structures. The second contig however is much smaller than
the X haplotype and is centered around the oazl-dot1l chimera
and a second copy of the amh gene [corresponding to the amhAY
described in the Japanese strain (Li et al., 2015)]. Finally, three
contigs were built from the Koka reads. The longest contig carries
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FIGURE 3| IGV snapshot of long reads mapping obtained from the Kpandu (Lake Volta, Ghana) male, the Lake Koka (Ethiopia) male and the Lake Hora (Ethiopia)
male. Reads were mapped onto a Y expected haplotype. Dashed arrows highlight the coverage level over the beginning of the Y specific region. Reads mapping to the
oaz1-dot1! chimera presenting a 275 bp deletion found in the oaz? truncated copy (within the dashed rectangle) were labelled as Y-specific.

.

Y-specific structures, such as the dotll-oazl chimera and the
Y-specific indels corresponding to the duplicated region.
However, the first copy of the amh gene (which is the amhY
in the Japanese strain) is not as fully reconstructed as for the
Kpandu male. Two smaller contigs contain respectively the
conserved version of the oazl gene and the beginning of the
amhY gene. No clear X haplotype was built from the de novo
using all reads for the Koka male. De novo assemblies of “Non-Y
specific” reads did not produce any contig long enough to be
associated to the X haplotype either. Moreover, the longest contig
assembled using the non Y-specific reads was identified as
belonging to the Y haplotype as part of the chimera that could
be identified with the automated annotation. Although a Y
haplotype is present in the Koka assembly output, we did a de
novo assembly with a pairwise alignment method to obtain a
longer Koka Y contig.

The alignment of the Kpandu and Koka Y haplotypes obtained
from MinION long reads together with the X haplotypes from the
WGS short reads showed that the large structure corresponding
to the tandem duplication of oazl-amh-dotll genes was well
aligned between the two Y haplotypes, and that it was absent in all
X haplotypes. This confirmed once again the existence of the Y

structure as suggested. The low coverage of the MinION long
reads however did not allow us to correct for the sequencing
errors or ambiguities, and although it is very informative for the
duplicated region it did not allow us to perform SNP or
phylogenetic analyses with these Y haplotypes.

3.4 Comparing Sex Haplotypes to

Population Phylogeny

To establish the phylogenetic relationships among the three
populations studied, we constructed phylogenetic trees based
on nuclear genes, on the mitochondrial genome and finally on
the X haplotype. Both the nuclear and the mitochondrial
phylogenies showed that the two Koka and Hora populations
from Ethiopia are more closely related to each other than to the
Kpandu population from Ghana (Figure 5). These results are
consistent with the geographical location of these three
populations as well as with the subspecies taxonomy since
both Koka and Hora are populations of O. niloticus
cancellatus while the Kpandu population belongs to the
subspecies O. niloticus niloticus (Trewavas, 1983; Bezault et al.,
2011). The mitochondrial phylogeny also strongly supports a
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FIGURE 4 | Contigs output of the Canu de novo assembly of the three males belonging to the wild populations of Hora, Koka and Kpandu. Koka and Hora (in blue)
are Ethiopian males from lakes of the same names, whereas Kpandu (in red) is from Lake Volta in Ghana. All contigs are visually aligned to the oaz7 gene of the reference
genome, based on Geneious automated annotations from the XX reference genome and from the expected Y haplotype built previously. X and Y labels of contigs are
deduced according to the structure of contigs, presenting or not the dot7/-oaz1 chimera, specific to the Y haplotype as described in Triay et al. (2020).

sister clade relationship between the Kpandu O. niloticus
population and the O. aureus individual. The X haplotypes of
Ethiopian populations also form a monophyletic group, with the
Ghanaian Kpandu population as a sister group. In X haplotypes,
the divergence between Hora and Koka females is hardly
noticeable. Surprisingly, the position of the Kpandu population
is different in the three trees. According to the mitochondrial
data, Kpandu branches closely to O. aureus, as a sister group to all
other O. niloticus sampled here. In the X haplotypes’ phylogeny,
the Kpandu population is a sister clade to the reference genome, a
tree topology that might be due to the Manzala-Stirling stock
(from which was sampled the individual sequenced for the
reference genome) originating from the Nile Basin. This basin
was isolated from the Sudano-Sahelian region comprising the
Kpandu population by several paleo-geographic events (Bezault
et al.,, 2011). However, this result does not stand when studying a
wider proportion of the genome, as the analysis of a
concatenation of 42 nuclear exons yields a tree where Kpandu
is a sister-clade to the Hora and Koka populations although the
support for this relation is the weakest in the tree (with a
bootstrap support of 71).

4 DISCUSSION

Among populations of O. niloticus the sex determining locus has
been found on LGI1 (Lee et al., 2003; Cnaani et al., 2008;
Gammerdinger et al., 2014; Palaiokostas et al., 2015) or on

LG23 (Eshel et al., 2014; Li et al., 2015), or ob both (Taslima
etal., 2021). The most prevalent and widespread sex chromosome
is LG23 since it has been found now in numerous domesticated
strains (Eshel et al,, 2014; Li et al., 2015; Wessels et al., 2017;
Céceres et al., 2019; Curzon et al., 2020; Taslima et al., 2020) and
also in wild populations (Sissao et al., 2019; Triay et al., 2020). We
have previously shown that the amhY and amhAY tandem
duplication on the Y haplotype of LG23 is found in males of
the two wild populations of Kpandu (from the Volta Lake in
Ghana) and Lake Koka (in Ethiopia) (Triay et al., 2020). Because
of the distant relationship of Kpandu-Volta in West Africa and
Koka populations in East Africa (Bezault et al., 2011), we presume
that the male-specific region is most likely ancestral in the O.
niloticus species. Hence, we expected to find the same male-
specific region on LG23 in another closely related population
living in Lake Hora also from Ethiopia. Surprisingly, our short
read genomic sequencing of Hora males and females revealed no
association of sex with LG23 (Figure 2). Furthermore, among a
total of ten wild males studied, no evidence of a duplication was
observed in the alignment of the amh region. These results
indicate that the LG23 Y is either segregating in very low
frequencies and is no longer the major sex determinant in the
Hora population or that it could have been lost entirely.

In our previous study, we predicted a Y haplotype based on the
analyses of short reads of the duplicated region in males of the
Koka and Kpandu populations (Triay et al., 2020). Assemblies of
the Nanopore long reads, aided by this expected Y haplotype,
allowed us to cross the duplicated region encompassing the two
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amh genes on LG23. We were able to confirm the presence of this
Y-specific duplication, its structure and the order of genes inside
this region, in wild populations from Lake Koka in Ethiopia and
Lake Volta in Ghana (Figure 3). In both populations, the
duplication occurs within the oazl and dotll genes, and
contains truncated copies of dotll and oazl upstream of the
amhY promoter. Kpandu males from Lake Volta have a similar
structure and the same indels as the males from the Japanese
strain analyzed by Li et al. (2015). One of the amh genes on the Y
of Kpandu males resembles the truncated amhAY copy found in
the males from the Japanese strain (Li et al., 2015) since it also has
the ~233 bp deletion in the last exon 7 as well as the 5 bp insertion
of exon 6 that causes a premature stop codon. Therefore, the
other Kpandu amh gene is presumably the SD amhY gene but it
does not have the missense SNP found in the Japanese strain (Li
etal., 2015). In contrast, the two amh genes in Koka males do not
have neither the missense SNP of amhY, nor the indels within
amhAY, particularly the 5 bp insertion responsible for a truncated
gene. Consequently, both the amhY and amhAY of Koka males
might be functional and may play a role in maleness. In Hora
males however, no Y haplotype could be constructed from the
long reads (Figures 3, 4). The assemblies of Hora males revealed
that they had a single copy of amh similar to the X haplotype, and
confirmed that there is no male-specific duplication around the

ambh region on the LG23. Hora males could therefore have lost the
sex determining region and LG23 is likely no longer the sex
chromosome.

Regarding the rest of the genome, although we found an
overall high Fst throughout the genome, we found no
significant association of sex with other LGs. In particular, we
did not find an association with LGlin Hora individuals. Sex
segregated for LGl in some domesticated strains from US
commercial stocks (Gammerdinger et al., 2014), in a Ghanaian
family (Cnaani et al., 2008) and in the Manzala-Stirling strain
(Palaiokostas et al., 2015). In this last strain, LG23-Y is still
segregating at low frequencies (Taslima et al., 2021), although sex
maps to LG23 in both the Manzala-Goéttingen stock (Wessels
et al,, 2017) and the Manzala-Tihange stock (Sissao et al., 2019)
which originated from the Manzala-Stirling stock. No wild
population studied to date shows sex segregation to LGI. It is
plausible that LGl might have become the pair of sex
chromosomes under conditions such as domestication
inducing gene loss or fixation by drift. The fact that this
individual presents such a long branch in our phylogenies
reinforces the idea of a strong molecular divergence of this
stock. This might have occurred during gynogenesis to
produce the homogygous female clonal line from which the
reference genome individual belonged (Sarder et al., 1999).
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Change in SD system with the loss of the sex chromosome
occurred in laboratory stocks of zebrafish (Wilson et al,
2014). Alternatively, this molecular divergence of the Manzala-
Stirling strain could result from a hybridization that might have
happened during the process of domestication, which could
explain the large divergence observed with other O. niloticus
populations. This could even be the cause of the emergence of a
new sex-determining system on LGl. For instance, the Thai-
Chitralada hybrid, a strain originating from crosses of O.
niloticus, O. mossambicus and O. aureus, presents sex-
associated markers on LGI1, LG3 and LG23 (Curzon et al,
2019). An introgression of closely related species of O.
niloticus could thus favor the turnover of sex-chromosomes so
that LG1 became fixed as a new sex chromosome.

The absence of the Y amh duplication in the Hora Lake
population reflects a rapid change in SD within Nile tilapia
populations. This is another example of the rapid turnover of
SD within the cichlid family. Indeed, more than 20 different
major sex-determining genes, on more than 17 LGs, have now
been described in cichlids, highlighting the fact that in this family
there are a great diversity of sex determining systems that have
emerged between closely related species (Gammerdinger and
Kocher, 2018; El Taher et al., 2021; Tao et al.,, 2021). To date,
cichlids from Lake Tanganyika, appear to have the highest rates of
sex chromosome turnover as well as transitions between male and
female heterogamety (El Taher et al., 2021).

Our study emphasizes the need to analyse the evolution of sex
chromosomes at the population level. Studies in Nile tilapia have
demonstrated that in domesticated strains (Wessels et al., 2014;
Taslima et al., 2021) and wild populations (Bezault et al., 2007;
Sissao et al., 2019) the sex-determination system can be more
complex than just the amh gene on LG23. Sex in the Nile tilapia is
genetically inherited through the sex chromosomes but there is
also a genetic inheritance of autosomal factors and of temperature
sensitivity (Baroiller and D’Cotta, 2001; Bezault et al., 2007;
Baroiller et al.,, 2009; Wessels et al., 2017). Temperature could
facilitate the transition to a new sex chromosome/determination
system (Grossen et al., 2011; Baroiller and D’Cotta, 2016). This,
along with the results of the Hora population lacking the LG23 Y
sex-determinant suggest that the turnover in sex chromosomes
and sex-determination systems might not be rare events at the
intraspecific level. Variance in sexual conflict and recombination
patterns, two important factors possibly for the evolution of sex
chromosomes, could induce divergence between sex
chromosomes of different populations.

The absence of the Y chromosome on LG23 in Hora raises the
question of why the Hora population has experienced a turnover
in the system of sex determination. Causes for sex chromosome
turnovers can be numerous, including a loss of the sex-
determinant by drift, sex ratio bias (e.g. environmental effects
inducing sex-reversal), or pleiotropic effects of a sexually
antagonistic mutation (Tao et al, 2021). Demographic events
might have caused changes in Lake Hora SD. Lake Hora is
thought to have been restocked at the beginning of the 20th
century with the endemic subspecies O. n. cancellatus (Bezault,
2005). Lake Hora is, nevertheless, a small lake (~1.15 km?) and
the effective population size is supposedly small. The Hora
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population might have experienced a genetic bottleneck that
led to the loss of the major sex-determinant region on LG23-Y
by drift. Intraspecific differences in SD was also observed for the
haplochromine cichlid Pseudocrenilabrus philander for which
WGS detected a strong XY locus in LG7 in a lake population
whereas no GSD was found in the outflow creek population
which experienced genetic bottleneck (Bohne et al., 2019).

Sex ratio bias can also occur in O. niloticus species because of
the effects of environmental temperature. This species can
undergo a sex reversal over the threshold temperature of 32°C,
causing XX individuals to develop as viable and fertile males. This
temperature sensitivity is a variable and heritable trait (Bezault
et al., 2007; Wessels and Horstgen-Schwark, 2007; Baroiller et al.,
2009; Wessels and Horstgen-Schwark, 2011). In the most extreme
scenario, the increasing number of XX individuals (males and
females) in a population could progressively lead to the loss of the
Y chromosome and allow a new master gene to control sex-
determination in the population. XX males have been found in
many wild populations living in masculinizing temperatures
above 32°C such as Lake Metahara in Ethiopia (Bezault et al.,
2007; Baroiller et al., 2009). Lake Hora is referred to as a “cold”
lake because its temperature varies between 17 and 26°C during
the year, which is well below the masculinizing temperature.
Nevertheless, Lake Hora might have been restocked with a high
proportion of XX males. Hence, the loss of an ancestral LG23 Y
system in the Hora fish could have been facilitated by
demographic events of this small population, with colonization
of XX neo-males and perhaps influenced by founder effects of a
small number of females.

What could the current sex determining system(s) of the Hora
population be? When a major sex-determinant is lost, it can be
replaced by a new “master” gene, possibly already implicated in
the sex-determination and differentiation pathway. In the case of
the Hora population, we did not identify any obvious sex-
determinant loci when using whole genome sequencing of
wild male and female pools. This could be due to the new
major sex-determinant region being too recent to have
accumulated enough SNPs to be detected through genome
wide Fst analysis. It is also possible that after the loss of the
major determinant LG23 Y, other loci involved in sex
determination and differentiation pathway acquire a more
important role and coexist during a transition period until the
fixation and potential appearance of a new major determinant
(Furman et al., 2020; Tao et al., 2021). In this case, more than one
locus is segregating on several chromosomes, appearing as a
polygenic sex determining system (Mank and Avise, 2009;
Roberts et al., 2009). Although WGS of pooled sexes is a very
efficient method to quickly detect sex determination locus and the
linkage group acting as a sex chromosome when the system is
monogenic, it is not as efficient to detect polygenic systems
(Gammerdinger and Kocher, 2018). We cannot exclude the
scenario of two sex-determining loci (or more) segregating in
the Hora population as recently suggested by (Taslima et al,
2021) for the Manzala-Stirling stock, and evidenced in several
cichlids (Tao et al., 2021). Another alternative is that the SD in the
Hora population has suffered a transition from a genetic to an

environmental sex determination system as recently
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demonstrated in a ZZ/ZW lizard (Holleley et al., 2015).
Association of other genomic approaches, other than sex-
pooled WGS, with more alignments strategies will be
necessary to search further for the sex determination locus or
sex chromosome(s) in Hora fish.

The X and Y chromosomes of the Koka and Kpandu wild
populations of O. niloticus studied here are visually
homomorphic, like all cichlids sex chromosomes karyotyped
to date (Gammerdinger and Kocher, 2018). Reduced sex
chromosome differentiation is evidenced by the small size of
the sex-specific region (<0.5Mb) of LG23 suggesting that
recombination still occurs around the sex-region. The study of
genotype-phenotype associations using ddRAD methods on
families of Kpandu and Koka populations already suggested
that recombination could occur close to the male-specific
region (Triay et al., 2020). This reduced recombination further
highlights the fact that LG23 has remained a “young” pair of sex
chromosomes. The shared structure between males of the two
wild populations suggests this XX/XY system predates the
divergence of populations of O. niloticus. Thus, even if
chronologically old, Nile Tilapia sex chromosomes do not
seem to have evolved to a non-recombinant Y that starts to
differentiate, but is maintained at a state of low recombination for
long evolutionary times.

Our phylogenetic studies confirmed that the Ethiopian Koka
and Hora populations, both from the subspecies Oreochromis
niloticus cancellatus, belong to a monophyletic clade with the
Kpandu population O. niloticus niloticus branching as a sister
group. These results appear contradictory with a shared ancestral
Y chromosome between Koka and Kpandu males that is not
shared between Koka and Hora. Microsatellite analysis showed
that the Koka population of the Ethiopian Awash basin is
genetically different at the macrogeographical level from the
Kpandu population located in the Sudano-Sahelian region
(Bezault et al, 2011). The phylogeny we inferred is in
accordance with this previous study: the subspecies O. n.
cancellatus found in Lake Koka and Lake Hora in the
Ethiopian basin are sister populations, reflecting the genetic
proximity seen at the micro-geographic level (Bezault et al,
2011), while the Kpandu population is more divergent. It is
parsimonious to think that the Y amh duplication on LG23 is
ancestral since it is found in Nile tilapia populations from two
distant African hydrographic basins. Nevertheless, to better
understand the evolutionary history of the LG23 Y
chromosome, phylogenies including additional populations are
required. It would be important to add populations from the Nile
region because fish from Lake Manzala (Egypt) might carry a sex
locus on LGl. It would also be important to add other
populations from the Ethiopian Rift Valley. Inferring a
phylogeny with several of these populations and checking for
the presence/absence of the amh duplication on LG23 Y would
enable us to date the event that led to the apparent loss of the
LG23 Y in the Hora population.

We noted an incongruence for the Kpandu position between
the nuclear, mitochondrial and the X haplotypes’ phylogenies
(Figure 5). Our mitochondrial DNA analysis demonstrates a
clustering of Kpandu O. niloticus population with the sample of

Sex Determination in Nile Tilapia

O. aureus, also a Nilo-Sudanic species. The formation of a
monophyletic group is consistent with the study of Rognon
and Guyomard, (2003) in which they hypothesize a complete
introgression of the mitochondrial DNA from O. aureus to O.
niloticus in Western African populations, but also in Egyptian
lakes. Clustering of Kpandu Nile tilapia and O. aureus was also
observed when using mtDNA but they were differentiated in
phylogenetic trees derived from nuclear DNA markers (SNPs)
(Syaifudin et al., 2019). Discordance between mtDNA and
nuclear DNA has been shown in several studies within the
Oreochromine cichlids (Ford et al., 2019). Mitochondria DNA
reflects only maternal inheritance, whereas species topology is
probably more reliable when using multi-nuclear markers (Meyer
et al, 2015; Ford et al., 2019). Ancient hybridization was
suggested as being the most likely explanation for the
discordance between mtDNA and nuDNA (Dunz and
Schliewen, 2013). If this is the case, our mitochondrial analysis
is not suitable to infer the relative position of Kpandu to our other
O. niloticus samples. By contrast, our nuclear DNA datasets
should not be affected by mitochondrial introgressions.
However, we observed two possible branchings of O. niloticus
samples. In our phylogeny built with the X haplotypes, Kpandu
groups with the reference genome while this population is a
sister-clade to the Ethiopian populations Hora and Koka in the
nuclear exon tree. These conflicting signals may result from a
methodological bias. Indeed, the nuclear exons’ phylogeny was
inferred using more data than the X haplotype analysis, sampled
from 42 different loci in the genomes. This methodology should
alleviate sampling errors due to loci-specific events, such as
incomplete lineage sorting or GC-biased gene conversion
(Degnan and Rosenberg, 2009), even if it does not completely
resolve related difficulties (Philippe et al., 2011). On the other
hand, we see that this node is the least supported in the tree,
hinting that this incongruence may be due to a phenomenon
affecting a large proportion of the genome. Thus, a biological
explanation such as hybridization with other strains may also
explain this discrepancy. Moreover, the individual of O. niloticus
used for the reference genome (a XX female belonging to a
gynogenetic homozygous clonal line generated at the
University of Stirling (Sarder et al, 1999) shows a longer
branch than all other samples in the three trees, which may
also be the result of admixture with another more distantly
related population. Proper admixture analyses could help
untangle this relationship between the Kpandu population and
the reference genome.

Our phylogenetic results suggest that at some point in the
evolutionary history of O. niloticus introgression with other
closely related cichlids species might have occurred. O.
niloticus might have hybridized in the past or recently due to
aquaculture practices with other closely related species since
several species coexist in many African fresh water basins. O.
aureus and O. niloticus divergence was estimated to be 2.93 MYA
(Xiao et al., 2015). They cohabitate in several river basins, both
being Nilo-Sudano species (Trewavas, 1983), but they are not
known to hybridize naturally (Payne and Collinson, 1983). In
Lake Manzala there is a question on whether hybridization might
have occurred between Nile tilapia and S. galilaeus confused
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perhaps as O. aureus (Ford et al, 2019). This might be the
explanation of a SD on LGI1 appearing in several O. niloticus
strains (Cnaani et al., 2008). Thus, particularly when studying sex
chromosomes, it might be essential to consider the other sex-
determining loci segregating in the sympatric species of studied
populations.

5 CONCLUSION

In this work, we sequenced the whole genome of a Nile tilapia
from Lake Hora, Ethiopia. The short read analysis revealed the
absence of sex-linked sequences on LG23 and we were unable to
find a strong association of sex with any region of the genome in
this population. Using long reads, we reconstructed a Y haplotype
corresponding to a duplicated male-specific region on the LG23
sex chromosome in populations from Lake Volta (Ghana) and
Lake Koka (Ethiopia). This male-duplication of LG23 spans
~51kb and is likely to be ancestral to the divergence of
Eastern and Western African populations. In contrast, the
amh male-specific duplication could not be detected in the
Hora males using either WGS or nanopore long reads,
suggesting that this population has lost the LG23 Y
chromosome. This work highlights that turnover of the sex-
determination system can occur rapidly even between closely
related populations in the O. niloticus species. One hypothesis is
that sex determination in the Hora population might be an allelic
diversification on another LG, or alternatively sex determiners
might be segregating on several LGs in a polygenic SD system.
Another alternative is that the Hora population have acquired an
ESD system. Further analysis will be required to understand the
sex-determination system in the Hora population and potentially
find the major sex-determination gene.
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