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ARTICLE INFO ABSTRACT

Keywords: Scientific simulation can generate petabyte-level data per run nowadays. To significantly reduce the data size
HPC ) while simultaneously maintaining the compression quality based on certain user requirements, error-bounded
Lossy data compression lossy compression techniques such as SZ and ZFP are now becoming popular. However, these techniques still
Machine learning . . . . . .
cannot achieve a reduction ratio of more than two orders of magnitude with a low compression error. On the
Autoencoder . X . . . . .
Transfer learning other hand, in deep learning, the autoencoder techniques have been widely used in data compression, especially
Incremental learning images. As an alternative, the compression autoencoder (CAE) has recently been investigated to compress the
scientific data. Although CAE provides a higher compression ratio than SZ and ZFP, it suffers from a high training
overhead, which makes it almost impractical in real compression scenarios. In this paper, we propose a new
locality-based transfer learning method in order to significantly increase the training speed of CAE while
achieving a high compression ratio. We also adopt incremental learning to maintain a high prediction accuracy
and use KL-divergence as an indicator to quickly identify whether a target domain has a low testing error. Our
evaluation results show that, after using the locality-based transfer learning, the training time can be reduced by
up to 1200 times, and still has a 2 to 4X compression ratio gain over the state-of-the-art scientific data lossy

compressor SZ.

1. Introduction

Lossy compression has recently become a hot topic for HPC data
scientists. According to recent reports (Lu et al., 2017; Tao et al., 2017;
Austin et al., 2016; Zhang et al., 2019), HPC scientific simulations can
generate terabytes or even petabytes of data per run. This large-scale
scientific data has brought great stress on data storage, data process-
ing, and data transferring for HPC systems. To address these issues,
several lossy compressors designed specifically for HPC scientific data
have recently been proposed; these include ISABELA (Lakshminar-
asimhan et al., 2011), ZFP (Lindstrom, 2014), and SZ (Di and Cappello,
2016). These compressors ensure that the data loss is strictly contained
within an error bound that is specified by the user, while at the same
time providing a much higher compression ratio than other
general-purpose lossless compressors can provide. Although these lossy
compressors can sometimes reach compression ratios in the hundreds,
previous research (Lu et al., 2018) has found that, under reasonable
error bounds, it is hard for them to achieve a compression ratio up to
100x in general cases. As a result, an autoencoder-based lossy
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compressor (Liu et al., 2021a) for scientific data has been proposed
recently. It is reported that the compression autoencoder (CAE) can
provide a much higher compression ratio than the state-of-the-art HPC
lossy compressors SZ and ZFP (2 ~ 4 times) in general cases while still
satisfying the compression requirements of HPC scientific data.

However, as a tradeoff of the high compression ratio, the compres-
sion autoencoder suffers from a high training time overhead due to the
training process of the machine learning method. To compress a dataset,
the training time of CAE can usually take hours or even days. Thus, it is
urgent to reduce the training overhead of CAE to make it practical for
HPC data compression.

To deal with the high computation overhead of the training process,
several techniques are applied in machine learning recently. Transfer
learning is used to improve a learner from one domain by transferring
information from a related domain (Weiss et al., 2016). Transfer
learning is usually applied when there is not enough data for training or
the training overhead is significantly high. Incremental learning is a
machine learning method where the learning process takes place
whenever new data comes as input, and the learning process is adjusted
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Fig. 1. A fully-connected three-layers autoencoder.
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Fig. 2. The seven-layer compression autoencoder prototype; the input file
corresponds to original file, the encoder corresponds to compressor and the
decoder corresponds to decompressor.

according to the new incoming data (Ade and Deshmukh, 2013; Joshi
and Kulkarni, 2012). Incremental learning is usually applied to learning
from streaming data, which arrive over time, with limited memory re-
sources and, ideally, without sacrificing model accuracy (Gepperth and
Hammer, 2016). Compared to traditional machine learning, the main
difference of incremental learning is that it does not assume the avail-
ability of a sufficient training set before the learning process, and the
training data comes over time. The properties of transfer learning and
incremental learning perfectly compensate for the flaw of CAE and
match the features of the HPC scientific data in two aspects. First, for
most of the scientific simulation, the datasets are generated based on
contiguous timesteps; second, due to the property of the simulation, the
adjacent datasets pieces of the spatial-temporal scientific datasets will
have data locality to a certain ex-tent. This indicates that by adapting
transfer learning and incremental learning, the previously learned
knowledge is still highly valid for currently received new data. For the
traditional CAE, whenever compressing a new file, it is required to train
part of the datasets for certain epochs to ensure a high prediction ac-
curacy, which usually indicates a high compression ratio. With transfer
learning and incremental learning, CAE only needs to train certain parts
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of the dataset whenever necessary (such as when the testing error rea-
ches a threshold), which can reduce the training time significantly.

Motivated by the above analysis, we propose a new locality-based
transfer learning method to significantly reduce the training overhead
of the compression autoencoder, and we use adaptive incremental
learning to avoid the possible high prediction error brought by the new
learning method. The contributions of this paper include:

1. Based on the features of HPC scientific data, we propose a new
locality-based transfer learning method for the compression
autoencoder, which reuses the knowledge from other variables or
spatial-temporal locality, thus reducing the training time
significantly.

2. We apply adaptive incremental learning during the learning process
to avoid the potential high prediction error during the learning
process and maintain a high compression ratio.

3. We use mean testing error and KL-Divergence as the metrics to detect
the concept drift. Our experiment results show that, in most cases,
KL- Divergence is a good indicator of the mean testing error when the
new learning method is applied. We also apply Log Scaling normal-
ization and Min-Max normalization to map all numbers into a same
range before an input file enters the autoencoder. Our experiment
results show that, in most cases, by detecting coefficient of variation
for the variance number of each data piece, we can determine the
proper normalization method for a specific dataset.

The rest of this paper is organized as follows. In section 2, we
describe the background and our motivation. In Section 3, we introduce
our locality-based transfer learning on the compression autoencoder
method and overall design. In Section 4, we report the evaluation results
of our design using several real-world HPC datasets. In Section 5, we
discuss related work. The conclusions are given in Section 6.

2. Background

In this section, we describe the research background. In Section 2.1,
we introduce the compression autoencoder and describe the training
overhead limitation. In Section 2.2 and 2.3, we introduce training
methods transfer learning and incremental learning. In Section 2.4, we
introduce the KL-Divergence metric. In Section 2.5 and 2.6, we describe
the normalization methods and metric used for normalization method
selection. The motivation is described in Section 2.7.

2.1. CAE for scientific data lossy compression

An autoencoder is a popular type of neural network commonly used
for feature learning and dimension reduction (Kamyshanska and
Roland, 2014). The simplest form of an autoencoder is a feedforward,
non-recurrent neural network that aims to copy its inputs to its outputs.
The structure of an autoencoder with three fully-connected hidden
layers is shown in Fig. 1. In this example, there are three layers Ly, Ly, Ls,
which represent the input, an intermediate hidden layer, and the output,
respectively. In addition, an autoencoder always consists of two parts,
the encoder and decoder, which can be defined as transitions ¢ and v,
respectively. Assuming we have a set of training examples X = {x;, x2,
x3, x4}, a set of code layer neurons Z = {z;, zp, z3}, and a set of trained
output as X’ = {X’1, X'y, X'3, X'4}, then we have:

d X > 7 (€9)]

Y Z =X (2
In this simple example, there is only one hidden layer, so we have:

Z = o(WX + b) 3

where ¢ is an element-wise activation function, such as a sigmoid
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Fig. 3. The relationship between KL-divergence and mean testing error for 2 variables of HACC dataset: HACC-yy (a and b) and HACC-zz (c and d); each variable is

tested with two piece sizes.

function or a rectified linear unit; W is a weight matrix; and b is a bias
vector. The Z layer is usually referred to as a code layer, which can be
regarded as a compressed representation of the input X. After encoding,
we then have the following mapping from Z to the reconstruction X,
which is the same shape as the input X:

7

X

=0 (W Z + b) 4)

Essentially, we want the output to be equal to the input: X* = X.
However, due to the internal properties of the neural network, there is
almost always some data loss during the reconstruction. Usually, an
autoencoder’s reconstruction error (also known as a cost function) is
defined as squared errors:

In the case where there are fewer hidden units m in layer L, than
input units n in layer L;, the network is forced to learn a compressed
representation of the input. Thus, a compression autoencoder (CAE) is
formed.

To greatly improve the lossy compression ratio for scientific data, an
autoencoder-based lossy compressor (Liu et al., 2021a) has recently
been proposed. The compression autoencoder prototype for scientific
data lossy compression is shown in Fig. 2. The autoencoder has seven
layers with three layers L1,, L2, L3, in the encoder part, three layers L1,
L24, L34 in the decoder part, and one code layer Z. Before the input file I
(which contains the scientific data) enters the neural network, it is
divided into several batches b; € I. After the input is divided into batches,
each batch b; contains a part of the original scientific data and then go
into the input layer L1, for training. When a batch enters the input layer,
each element of the original scientific data becomes one neuron in the
layer. In the encoder part, the number of neurons decreases as the layer
goes from the input layer L1, to the code layer Z. Each layer in the
encoder part has a weight matrix and bias vector that are used to

accomplish dimension reduction. After three layers of compression, the
information stored in L1, is represented in layer Z with significantly
fewer neurons. The decoder is similar to the encoder in that each layer
has a weight matrix and bias vector. The information in the Z layer goes
through the three decoder layers and is then written to the output file. If
the whole autoencoder is regarded as a compressor, then layer L1, is the
original file, layer Z is the compressed file, layer L3, is the decompressed
file, and the encoder and decoder represent the compression and
decompression, respectively.

According to (Liu et al., 2021a), for common error bounds, the
compression autoencoder outperforms the compression ratios of SZ by 2
to 4X, and ZFP by 10 to 50X, respectively in general cases.

2.2. Transfer learning

Traditionally, machine learning algorithms (Yin et al., 2006; Kun-
cheva and Rodriguez, 2007; Baralis et al., 2007) make predictions on
future data by utilizing models trained on previously collected data. In
order to have an accurate predictor, it is important for a model to be
well-trained. However, there exist several issues relating to the training
step. These problems include not having enough labeled data for
training or having a very high training overhead. In order to alleviate
these problems, semi-supervised classification (Zhu, 2005; Nigam et al.,
2000; Blum and Mitchell, 1998; Joachims, 1999) has been proposed.
This technique makes use of a large amount of unlabeled data and a
small amount of labeled data for training. Nevertheless, most of these
works will assume that the distributions of the labeled and unlabeled
data are the same. In contrast, transfer learning allows the domains,
tasks, and distributions used in training and testing to be different,
which makes some impossible training processes practical.
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Fig. 4. The relationship between KL-divergence and mean testing error for 2 variables of SCALE-LETKF dataset: SCALE-LETKF-PRES (a and b) and SCALE-LETKF-RH

(c and d); each variable is tested with two piece sizes.

In general, transfer learning aims to extract knowledge from one or
more source tasks and apply it to a target task, which is usually in a
different do-main than the source tasks. As a formal definition (Pan and
Yang, 2009), assume that we have a source domain Ds, a learning task T,
a target domain D;, and learning task T; By implementing transfer
learning, we aim to improve the learning of the target predictive func-
tion f{(-) in D; using the knowledge in Ds and T where Dy . Dy or Ts » Ty

In the above definition, the condition D, .. D; implies that either the
training data domains or the data distributions of the source and target
should be different. Similarly, T; . T; implies that either the testing
datasets or the prediction functions of the source and target should
differ. It should be noted that when D; = D; and T; = T; (meaning that the
domains and learning tasks of the source and target domains are the
same), the learning problem becomes a traditional machine learning
problem.

2.3. Incremental learning

As described in Section 2.1, CAE is built based on the autoencoder,
and the compression process consists of two steps, the training and
testing processes. Whenever a dataset is to be compressed, a part of the
dataset is used as the training dataset, and then the testing process
compresses the testing dataset; this is a traditional machine learning
workflow. The key idea of machine learning is to transform previously
learned knowledge to the currently received data, thus accumulating the
experience over time to support the decision-making process and
achieving global generalization (Ade and Deshmulkh, 2013). Compared
with traditional machine learning, the raw/new data (which comes from
the environment that the machine learning prototype interacts with) is
incrementally available over the learning lifetime.

Incremental learning has now been widely used in both supervised

and unsupervised learning, and multiple popular models and algorithms
have been proposed recently. These include explicit treatment of concept
drift, mentioned in several works (Kulkarni and Ade, 2014; Tsymbal,
2004; Ditzler et al., 2015; Polikar and Alippi, 2013) and tries to deal
with concept drift at execution time; explicit partitioning approaches,
where some incremental learning models rely on a local partitioning of
the input space, and a separate classification/regression model for each
partition (Vijayakumar and Schaal, 2000; Nguyen-Tuong and Peters,
2008; Sigaud et al., 2011; Butz et al., 2005; Cederborg et al., 2010); and
ensemble methods, which combine a collection of different models by a
suitable weighting strategy. The ensemble method has been proven to be
particularly useful when dealing with concept drift (Ma and Ben-Arie,
2014; Bertini et al., 2013; Yin et al., 2015). Based on these mod-
els/methods, incremental learning has been used in many typical ap-
plications, such as data analytics and big data processing (Hammer
et al., 2014; Xin et al., 2015), robotics (Wang and Wang, 2014; Zhang
et al., 2016), image processing (Dou et al., 2015; Bai et al., 2015), and
outlier detection (Hartert and Sayed-Mouchaweh, 2014; Yin et al.,
2014).

2.4. KL-divergence

Kullback Leibler (KL) Divergence is a widely used tool in statistics
and pat-tern recognition that measures the closeness of two distributions
(Rosenberg et al., 2001; Hershey and Olsen, 2007; Yu et al., 2013).
Typically, KL-divergence is used to measure how one probability (P)
distribution is different from a second approximate distribution Q. The
KL-divergence for two discrete probability distributions is defined in
equation (1) below, where m is the number of classes in the discrete
distribution and x is the same probability space:

The closer the two distributions are to one another, the smaller the
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2.5. Normalization

Based on the examination of original datasets, we notice that
numbers in most HPC scientific datasets range from 10° to 1078, The
goal of normalization is to transform the distribution of multiple data

pieces to be on a similar scale (Transforming Numeric Data). In our case,
the normalization process maps all the numbers into a range [0.01, 0.1).
Narrowing the range of an input file can improve the training stability
and performance of our training model. Without normalization, if the
gradient update is too large, the training could blow up with a large
prediction error (Transforming Numeric Data). A good normalization
method could also improve the performance of transfer learning since it
converts the source piece and testing pieces into a similar scale. Log
Scaling and Min-Max normalization are two widely used normalization
methods in statistics.

2.5.1. Log scaling
Basically, log scaling is used to compute the log of input values to
reduce the range of values to a narrow range. Assume the value of the

input example is x and the output data after normalization is x’. Then the
equation can be defined as:

x = log(x)

7
2.5.2. Min-max

Min-Max normalization is also a widely used normalization method
to trans-form features to be on a similar scale (Transforming Numeric
Data). Typically, it is more effective if we know the approximate upper
and lower bound of the input file. Similar to the log scaling, it can
convert the input values from their original range to a standard range
such as [0.01, 0.1). Assume the value of the input examples are X = {x1,
Xo, X3, X4, X5} and normalized output examples are X’ = {x’1, X", X’3, X4,
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x’s}. Then for normalized number x’ in dataset X' and original number x
in dataset X we have:

(X - Xmin)/(Xmax - Xmin) (8)

2.6. Coefficient of variation

The coefficient of variation is used to measure the spread for a set of
data (Davis and Domingos, 2010). It is defined as

CV = o/u €©)

where o is standard deviation and p is mean. Coefficient of variation is
proposed to help us compare the variability in different datasets.

2.7. Motivation

As described in 2.1, the compression ratio of the CAE is 2 to 4x higher
than SZ. This is achieved by setting a high theoretical compression ratio
on the autoencoder and training the neural network for a long time
(typically hours or even up to days when a high compression ratio is
desired (Liu et al., 2019)). The reason is that the matrix calculation
required for CAE is increasing quadratically. Although CAE can achieve
a high compression ratio, the high training overhead remains a big

challenge for practical use. However, according to (Liu et al., 2021a), for
the scientific data within the same application/benchmark, similar data
features are shared among different timesteps which implies that the
training overhead can be reduced significantly by reusing knowledge
from the other timesteps of the same application/benchmark. We can
take advantage of this feature and use new training and normalization
methods to gain a high compression ratio with a low training overhead.

3. Design

In this section, we first give a detailed introduction to cross-variable
learning and spatial-temporal learning framework implemented to
reduce training overhead based on transfer learning described in Section
2.2. Then based on the proposed learning methods, we design a two-step
learning method for CAE based on incremental learning described in
Section 2.3. Finally, we introduce normalization algorithms used for
CAE with proposed learning methods and the metric used to determine
when to use the correct normalization algorithm.

3.1. Cross-variable learning and locality-aware learning

In this paper, we focus primarily on scientific datasets generated
from high-performance computing (HPC) applications. These
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applications or benchmarks can generate multiple snapshots that each
contain multiple variables, such as FLASH (ASCF Center), NEK5K
(Nek5000 Guide, 2015), and SDR Benchmark (SDR). Within one appli-
cation, the data points in the variables are organized based on timesteps
or spatial dimensions. For example, the HACC datasets from the SDR
benchmark have six variable arrays (x,y,z,vx,vy,vz), each of which
represents one dimension of particles, either coordinate or velocity. The
NSTX GPI dataset, meanwhile, has 369,357 steps, 2D time-series data.
For each timestep, there is an 80 x 64 Fusion Gas Puff Image data. For
these scientific datasets, each data point has a specific data type, such as
a multidimensional floating-point array or string data (Tao et al., 2017).

By adopting incremental learning to reduce the training overhead,
new data points will be used for batch learning when concept drift is
detected. In order to get a high prediction accuracy from CAE, intui-
tively, the more similar the new data is to the previous training data, the
better the testing result is. Based on the data features of the spatial-
temporal scientific datasets, we propose two new learning methods to
improve the training speed based on transfer learning:

@ Cross-variable learning When compressing a variable, we reuse the
training knowledge from another variable (from the same applica-
tion/benchmark) which has already been trained. Assume an appli-
cation generates N variables; then reusing variable knowledge can
potentially improve the training speed by up to N times.

@ Spatial-temporal learning When compressing a variable, we only train
part of the timesteps/pieces within that variable. For the remaining
timesteps/pieces, we reuse the training knowledge from the previ-
ously trained timesteps/pieces. Assume the timesteps to train is 1/T

of the total timesteps in the variable; then reusing spatial-temporal
knowledge can improve the training speed by T times.

3.2. Incremental learning for CAE

As described in Section 2.3, incremental learning is designed to
transform previously learned knowledge to the currently received data
to make it possible accumulating the experience over time. Our incre-
mental learning method for CAE is built on two steps.

3.2.1. Preserving previous knowledge and learning new knowledge

As described in Section 2.1, when CAE compresses a file f1, part of the
file fi trqin Will first be used as the training dataset. After the training
process, a set of weights and biases WBy; will be generated. Then the rest
of the file fi (5 will be used as the testing dataset and go through the
testing (compression) process with the generatedWBy;. With the tradi-
tional training method, this process (train-then-test) will be conducted
whenever a new dataset is to be compressed, thus incurring a high
computation overhead from the training process. After adopting the new
incremental learning method, the weights and biases WB;; generated
after trainingfl train can not only be used by fi, but also for the files that
are considered similar to f;. Assume that by using WBy, due to the
similarity feature of the scientific datasets, the testing results are good
enough for the following to-be-compressed files (timesteps or variables)
f2, fs, ..., until file f;. Then a new training process will need to be con-
ducted to adjust WBypy such that the updated weight and bias WBy;> can
guarantee a low testing error for f; and the following to-be-compressed
timesteps or variables.
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3.2.2. Detecting concept drift

Detecting concept drift is a critical part of the incremental learning
process, since the concept drift will determine when to start the incre-
mental learning; that will affect both the training overhead and pre-
diction accuracy. To detect concept drift, we need to find a good metric
to measure the similarity between the datasets.

Assume that an HPC application dataset S is split into m pieces. Due
to the spatial or temporal locality, the adjacent pieces, such as s; and sa,
will preserve some data locality, and thus have high similarity. Intui-
tively, testing s, with the weight and bias generated from s; will result in
good prediction accuracy. However, as described in the previous sec-
tion, the data generated from the HPC application is usually in a time-
step manner, and therefore the timesteps generated later will gradually
share less similarity with the previously generated timesteps.

In this paper, we use two thresholds a and f to serve as the metrics to
measure the similarity between two datasets and determine when to
start the incremental learning.

@ o is the mean testing error threshold. For the data pieces {sq, s1, ...,
Sm—1) within dataset S, assume the mean testing error comes from
CAE testing process with the weight and bias from s is {ty, t;, ...,
tm-1}. Then, according to the previous analysis, these testing errors
will increase gradually. As the mean testing error is a good indicator
for the compression ratio, a high mean testing error usually results in
alow compression ratio from CAE. Therefore, when the mean testing
error reaches a high enough threshold ¢, incremental learning needs
to be conducted to increase the prediction accuracy and thus
decrease the mean testing error.

@ / is the KL-divergence threshold. As introduced in Section 3.4, KL-
divergence is a popular metric to measure the closeness of two dis-
tributions. Compared to the mean testing error metric, the advantage
of KL-divergence is that it is much faster to get the KL-divergence
between two datasets than getting the mean testing errors from the
machine learning testing process. Similarly, for the data pieces {s,
s, ..., Sm—1) within dataset S, still using part of sy as the training
dataset, we can use the KL-divergences of data pieces {sy, ..., S;m—1} to
detect the dataset similarity. When the KL-divergence reaches a high
enough threshold g, then incremental learning may become neces-
sary. In the evaluation section, we show that in most cases, KL-
divergence can quickly and accurately (more than 95% accuracy)
detect the concept drift.

By adopting these two thresholds, we can determine when previous
knowledge is still relevant and useable. When testing errors and KL-
divergence become high, we can start incremental learning to main-
tain CAE mean testing error at a low level for the following testing
datasets. The advantage of using KL-divergence is two-fold: 1) Com-
bined with mean testing error, KL-divergence increases the prediction
accuracy of whether the following testing datasets will have low testing
error; and 2) Compared to mean testing error, calculating KL-divergence
is almost cost-free. Simply using KL-D as an indicator can quickly
identify the concept drift without going through the testing process,
which has a much higher computation overhead than calculating the KL-
divergence. And based on our evaluation results on real-world HPC
datasets, the prediction accuracy for using KL-D to predict mean testing
error is over 95%.

3.3. Normalization for CAE

As described in Section 2.5, most HPC scientific datasets may
distribute in very different orders of magnitude which range from 10%to
1078, These numbers go through the sigmoid activation function in both
encoder and decoder layers. The sigmoid function maps all these
numbers into the range (0,1). Then with the normalization scheme, all
numbers of input files are mapped into the range [0.01, 0.1). Normalized
numbers and the corresponding exponential numbers are stored after
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normalization. At last, the normalized numbers go into the encoder
layers of the autoencoder to generate compressed datasets. We decom-
press the compressed datasets by using the corresponding exponential
numbers to transfer the numbers back to their original numbers then
generating the output file. As described in Section 2.5, normalization
converts numbers in a dataset to be in a similar scale which is mean-
ingful for cross-variable learning and spatial-temporal learning methods
described in Section 2.1. Source piece and testing pieces are more
similar after proper normalization which should improve prediction
accuracy. We implement Log Scaling and Min-Max normalization
methods to compare their training performance for the same dataset.

@ Log Scaling As described in Section 2.5.1, Log Scaling normalization
is a widely used normalization method in statistics. However, a
prediction problem for the autoencoder is caused by Log Scaling
normalization. For instance, we get four contiguous numbers
{99528.03906, 99230.46875, 110569.96093, 109720.05468} as
input data. The original data is very smooth by direct looking. But
after Log Scaling normalization, the four numbers are
{0.9952803906, 0.9923046875, 0.11056996093, 0.10972005468}.
It is obvious that the normalized data is not as smooth as the original
numbers since the numbers jump from 0.9923046875 to
0.11056996093. With the entire dataset, the same type of jump may
happen thousands of times which will decrease training performance
and prediction accuracy.

@® Min-Max To make the comparison, we implement Min-Max
normalization which is also widely used in statistics as a normali-
zation method. Intuitively, Min-Max is very sensitive to outliers in
the dataset since as described in Section 2.5.2, Min-Max normaliza-
tion is depending on the range of maximum and minimum of one
dataset. An outlier can change the normalization result by changing
the maximum or minimum value of one dataset and altering the min-
max range.

By adopting these two normalization methods, we can determine the
relationship between normalization methods and training performance
for cross-variable learning and spatial-temporal learning by measuring
the mean testing error of each test piece. Note that we are using Min-
Max normalization as the default unless otherwise mentioned.

3.4. Coefficient of variation

As described in Section 3.1, we only train part of the timesteps/
pieces within one dataset and test the remaining timesteps/pieces by
reusing the trained model from the previously trained timesteps/pieces.
By adopting variance for each timestep/piece and detecting coefficient
of variation for tested piece variances, we can determine when to use
Log Scale normalization or Min-Max normalization prior to the training.

4. Evaluation

All experiments are tested on an Ubuntu 16.04.5 LTS server with an
Intel(R) Xeon(R) CPU E5-2620 V4 @ 2.10 GHz and 128 GB memory
(clock:2133 MHz). As described in Section 3.1, the datasets we used are
generated from high performance computing(HPC) applications. The
source codes for our compression autoencoder with locality-based
transfer learning model as well as training hyperparameters and scien-
tific datasets we used are publicity available at https://github.com/
NanWang1208/Locality-Based-Autoencoder.

4.1. Relationship between KL-Divergence and mean testing error

To verify that KL-divergence can be used as a metric to quickly
determine whether a target dataset will have a good testing result (low
testing error), we conduct experiments on several real-world HPC
datasets from SDR benchmark (SDR). We test two variables from each of
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HACC and SCALE-LETKF, respectively, with different piece sizes. For
HACC, we have two different piece sizes, 17 MB and 11 MB; for SCA-
LE-LETKF, we also have two different piece sizes, 8.4 MB and 5.4 MB.
For both of them, we use piece 1 as the source dataset, and test the
following 22 pieces with the weights and biases from piece 1. We also
calculate the KL-divergence between each piece and piece 1. The
experimental results are shown in Figs. 3 and 4. The results indicate that,
when KL-divergence is high (usually greater than 0.2), the testing error
of the corresponding data piece has a high testing error (usually greater
than 1).

4.2. Mean testing error for different source training files

As discussed in section 3.1, when using transfer learning for different
target data pieces with the same source data piece, the testing results
may have high or low testing errors, based on the data features. We then
further conduct experiments on dataset HACC-yy and HACC-zz to
investigate whether choosing a different source data piece as the
training data would have an impact on the testing errors for different
target data pieces. We choose three different data pieces as the training
data for each of the two datasets. Fig. 5 shows the test results, which
indicate that different source data pieces would have almost the same
testing errors, or the same prediction accuracy trend.

4.3. Training time with transfer training

As mentioned in work (Liu et al., 2021a), the autoencoder usually
takes at least 1 h to train a small size of data (around 1 MB) for 25,000
epochs, and this training time can go up dramatically when the
compression ratio is set to a higher number or the file size becomes
extremely large (gigabyte-level or even terabyte-level). However, after
using cross-variable learning and spatial-temporal learning, the training
time can be reduced 2 ~3 magnitude based on work (Liu et al., 2021a),
depending on the variable number and time steps.

4.4. Compression ratio comparison with transfer learning

Although transfer learning can save a significant amount of training
time by reusing the knowledge from the source variable or timesteps,
one big concern is whether it has low prediction accuracy, which results
in a low compression ratio. Lossy compressors such as SZ, ZFP, and
ISABELA are widely used in data compression, previous research (Liu
etal., 2021a; Lu et al., 2018) indicates that the SZ compressor can reach
the highest typical compression ratio (3.3-436) for scientific data which
is the best compressor to compare. To verify that after using transfer
learning, CAE can still outperform SZ in compression ratio, we again
tested two datasets, HACC for cross-variable learning and XGC for spa-
tial-temporal learning. For HACC, we choose one of 64 or 100
equally-split data pieces as the source variable; for XGC, we choose one
of the nine timesteps as the source time step. Fig. 7 shows the
compression ratio comparison of CAE and SZ under different relative
error bounds, 0.1, 0.01, and 0.001, with transfer learning. The results
indicate that, after using transfer learning, our compression autoencoder
still has a 2 to 4X compression ratio gain over SZ.

4.5. Testing accuracy improvement with incremental learning

We choose the NSTX GPI dataset from the SDR benchmark to eval-
uate our incremental learning scheme since the GPI dataset has multiple
timesteps and can show an obvious concept drift phenomenon as the
timestep moves forward. Again, we split the dataset into multiple data
pieces with each data piece containing a certain number of timesteps.
Date piece 1 is used as the source training dataset. As Fig. 6 shows, as the
timestep moves forward (the data piece number increases), the mean
testing error of the target testing data piece gradually goes up, because
the temporal locality with data piece 1 becomes weaker and weaker. The
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light blue line shows the baseline testing result. When the testing data
piece reaches number 15, the mean testing error will become higher
than 0.30. In this example, we set 0.3 as the mean testing error
threshold, which means that if any target testing data piece has a mean
testing error higher than 0.3, then concept drift is detected, and we need
to do incremental learning to reduce the mean testing error. The results
in Fig. 6 indicate that the mean testing error can be reduced for all
following target data pieces if we do a 10% incremental learning of data
piece 11 (the orange line). The mean testing error can be reduced
obviously if we conduct a 20% incremental learning of data piece 11
(the dark blue line), in which case the following target testing data
pieces will all have a mean testing error lower than the pre-defined
threshold.

4.6. Mean testing error for different normalization methods

To test whether a normalized target dataset will have good training
performance with low testing error, we run experiments on several real-
world HPC datasets from the SDR benchmark as described in section 4.1
(SDR). We choose two variables from each of HACC and SCALE-LETKF
and each dataset is split equally into 64 pieces. For HACC, we choose
17 MB piece size; for SCALE- LETKF, we choose 8.4 MB piece size. For
both datasets, piece 1 will be trained as a source dataset and test the
remaining 22 pieces with the trained model from piece 1. The experi-
ment results are shown in Fig. 8. The experiment results of the HACC
dataset indicate that Log Scale normalization have better train-ing
performance (low mean testing error) compare with Min-Max normali-
zation and the coefficient of variation value is close to or larger than 1.
On the other hand, for SCALE-LETKEF, the results indicate that Min-Max
will have better training performance (low mean testing error) than Log
Scaling normalization, and the coefficient of variation value is small
(less than 1). The results indicate that, when the coefficient of variation
value for piece variations is high (usually close or larger than 1), Log
Scaling normalization has lower mean testing error than Min-Max
normalization.

5. Related work

Much research has been performed to accelerate training time by
minimizing the training overhead. For example, Osuna et al. (Osuma
et al., 1997) present a decomposition algorithm that is guaranteed to
solve the quadratic programming problem to improve training perfor-
mance. Joachims et al. (Joachims, 1998) analyze particular proper-ties
of learning with text data and explore the use of support vector machines
to reduce training time. Work has also been performed by Microsoft
(Platt, 1998) that uses sequential minimal optimization to avoid using a
time-consuming numerical QP optimization as an inner loop.

Transfer learning, a hot topic that aims to extract knowledge from
one domain to another, has been applied to multiple machine learning
scenarios recently. Transfer learning research can be generally divided
into four categories based on the way it is implemented (Brownlee,
2017): 1) Instance transfer (Dai et al., 2007a; Dai et al., 2007b; Qui-
nonero-Candela et al., 2009), in which some labeled data in the source
domain is re-weighted before being used in the target domain; 2)
Feature-representation-transfer (Raina et al., 2007; Dai et al., 2007c;
Johnson and Zhang, 2005), which finds a feature representation that
reduces differences between the source and target domains; 3)
Parameter-transfer (Lawrence and Platt, 2004; Williams et al., 2007;
Schwaighofer et al., 2005) which discovers shared parameters between
the source and target domain models that can benefit from transfer
learning; and 4) Relational-knowledge-transfer (Mihalkova et al., 2007;
Mihalkova and Mooney, 2008; Davis and Domingos, 2009), which
builds a mapping of relational knowledge between the source and target
domains.

Autoencoder-based error-bounded lossy compression techniques
have been studied for years and have implied various forms of data
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compression such as image compression (Theis et al., 2017; Sento, 2016)
and biometric compression (Testa and Rossi, 2015). However,
autoencoder-based compression models for image and biometric
compression models are not designed for float-point data compression
which can be generated by scientific simulations on high-performance
computing(HPC). Recently, several research has been performed to
use an autoencoder to compress scientific data. For example, Choi et al.
(2021) introduced a variational autoencoder model to com-press physics
plasma simulation data. Glaws et al. (2021) developed a turbulence flow
simulation data compressor by using a convolutional autoencoder. Liu
et al. (2021b) introduced a new AE-based error-bounded lossy
compressor that can handle 2D or 3D scientific datasets with a better
rate of distortion than other popular error-bounded lossy compression
techniques such as SZ and ZFP. These autoencoder-based compressors
compress scientific simulation data with a high compression ratio. At the
same time, they also have low compression throughput compared with
traditional lossy compression techniques since the relatively high
computation cost from the neural network training. Our locality-based
transfer learning framework allows us to accelerate training time and
lower the computation cost by the neural network to increase
compression throughput.

6. Conclusions

In this paper, we focus on reducing the high training overhead
brought by the machine learning process when the compression
autoencoder is used to compress the HPC scientific data. Based on the
features of the HPC scientific data describes in Section 3.1, we propose a
new learning method for the compression autoencoder based on transfer
learning and incremental learning, which reuses knowledge from other
variables or spatial-temporal locality, thus significantly reducing the
training time by 2 ~ 3 magnitude. We use adaptive incremental learning
during the learning process to avoid the problem of potential high pre-
diction error during the learning process and maintain a high
compression ratio (typically 2x to 4x higher than SZ). We use mean
testing error and KL-Divergence as the metrics to detect the concept
drift. Our experiment results show that, in most cases, KL-Divergence is a
good indicator of the mean testing error when incremental learning is
applied. We also use Log Scale and Min-Max normalization to improve
training performance and stability. Our experiment results show when
data is split equally and incremental learning is applied, the coefficient
of variation for piece variances is a good indicator to help us determine
which normalization method is best suited for a dataset.
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