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As the use of X-ray computed tomography (CT) grows in medical diagnosis, so does the concern for the harm a
radiation dose can cause and the biological risks it represents. StaticCodeCT is a new low-dose imaging architecture
that uses a single-static coded aperture (CA) in a CT gantry. It exploits the highly correlated data in the projection
domain to estimate the unobserved measurements on the detector. We previously analyzed the StaticCodeCT
system by emulating the effect of the coded mask on experimental CT data. In contrast, this manuscript presents
test-bed reconstructions using an experimental cone-beam X-ray CT system with a CA holder. We analyzed the
reconstruction quality using three different techniques to manufacture the CAs: metal additive manufacturing,
cold casting, and ceramic additive manufacturing. Furthermore, we propose an optimization method to design the
CA pattern based on the algorithm developed for the measurement estimation. The obtained results point to the
possibility of the real deployment of StaticCodeCT systems in practice. ©2021Optical Society of America

https://doi.org/10.1364/AO.438727

1. INTRODUCTION

Given the various computed tomography (CT) scanning tech-
nologies available today, multiple approaches to reduce X-ray
radiation dosage while preserving reconstruction quality for
imaging analysis have been recently proposed [1]. Coded aper-
ture X-ray CT (CAXCT) is one state-of-the-art method that
typically requires the use of tens to hundreds of different coded
aperture (CA) patterns in a single scan to attain satisfactory
image reconstruction quality. Furthermore, the physical CA has
to be changed in concert with the view angles, making its imple-
mentation impractical [2]. In contrast, we recently introduced
a radically new approach to CAXCT that uses a single-static CA
in the CT gantry, together with a new method for image recon-
struction tailor-made for the new sensing mechanism coined
StaticCodeCT [3]. We showed that the 3D tensor formed by
stacking the 2D coded CT projections of StaticCodeCT is
low-rank. Additionally, we showed that the correlation of the
multidimensional data can be efficiently exploited to synthe-
size the missing measurements, allowing fast and accurate 3D
object recovery using standard CT reconstruction algorithms,
particularly the Feldkamp-Davis-Kress (FDK) algorithm.

Given the StaticCodeCT architecture, a fundamental ques-
tion arises: Can we design the structure of the CA to maximize
the quality of image reconstruction and, if so, how? Our pre-
vious work has addressed the mask optimization problem in

CAXCT based on the structure of the sensing matrix [4–6].
Specifically, because the sensing matrices in CT are sparse and
structured, we demonstrated that random CAs are suboptimal
and that, by optimizing the binary pattern of the Cas, we can
attain higher reconstruction quality [7,8]. Here, however, we
cannot apply the same methods because they are tailor-made
for iterative reconstruction approaches under the umbrella of
compressive sensing (CS). Tensor completion relies on different
mathematical principles; thus, the code aperture optimization
in StaticCodeCT is still an open problem. This manuscript
develops an optimization framework based on the data comple-
tion strategy used to estimate the missing data that we presented
in [3]. Details on the CA optimization algorithm are provided in
Section 3.

To attain structured illumination in transmission X-ray
imaging, materials with high attenuation factors, or high den-
sities, are inserted in the paths of the X-ray beams. Machining
of high-Z alloys, for instance, was used by Holmgren et al. to
manufacture CAs in [9]; however, this technique requires special
design considerations given the limitations of the machines
and materials involved in the process. To address these con-
straints, the authors proposed a more flexible approach based
on conventional 3D printing. Specifically, they 3D printed
the CA patterns in plastic, filled them with tungsten powder,
and sealed them with epoxy. Nonetheless, for high-resolution
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CAs, it is challenging to accurately fill the holes and clean the
elements of the structure through which the X-rays must pass.
Recently, other manufacturing techniques have been used
to construct X-ray collimators, as well as CAs such as metal
additive manufacturing [10], cold-casting [11], and ceramic
additive manufacturing [12]. Yet, to the best of the authors’
knowledge, none of these methods have been used to build CAs
for use in X-ray transmission CT. The contributions of this
work are thus twofold. First, we developed a CA optimization
algorithm that builds upon the principles of the algorithms
used for the tensorial completion of measurements. Second, we
present a test-bed implementation of the StaticCodeCT system
using three manufacturing techniques for CA prototyping. We
demonstrate that using low-cost manufacturing methods, such
as 3D printing with cold casting, together with the proposed
CA optimization, we can reconstruct a 3D object with high
accuracy. Using a microtomography cone-beam CT system,
we attained reconstructions with peak signal-to-noise ratios
(PSNR) of up to 32 dB while reducing 70% of the full-scan
radiation dosage.

2. FORWARD MODEL

StaticCodeCT for a cone-beam system uses a single 2D CA pat-
tern, which is static with respect to the CT gantry. As shown in
Fig. 1, this system is mechanically simple and can thus be readily
implemented on existing scanners. For the depicted cone-beam
X-ray CT system, the source location varies continuously in a
circular trajectory around the object, and the X-ray projections
I (E ) are measured at different angles using a 2D flat panel
detector (FPD). The projections are given by Beer–Lambert’s
law [13]:

I (E )= S(E )T(E ) Q(E ) P (E ) exp

(
−

∫
`

µ(`, E )d`
)
,

(1)
whereµ(`, E ) is the linear attenuation coefficient of the object
at position `, S(E ) is the X-ray source spectrum, Q(E ) is the
energy-dependent detector response, T(E ) accounts for the
effect of the CA, and P (E ) is the effective energy flux. Namely,
T(E )= exp[−µb(E )δ], whereµb(E ) is the linear attenuation
coefficient of the blocking element at the energy E , and δ is
the length of the intersection of the X-ray beam with the CA
blocking element. In the ideal case, T(E )≈ 0 for the blocking
elements; otherwise, T(E )≈ 1. In this paper, this approxima-
tion is valid for the testbed experiments given the thresholding
algorithm applied to the measurements before reconstruction,
as detailed in Section 4.

After discretizing the system, the projections at the M1 ×M2

2D FPD can be rewritten as follows:

y=CHx, (2)

where x ∈RN3
is a column vector corresponding to the lin-

ear attenuation coefficients of the N × N × N object under
inspection, H ∈RM1 M2 P×N3

is the system matrix, where each
value H j i in the matrix corresponds to the intersection length
of ray j with voxel i , and C ∈RD×M1 M2 P is a binary matrix
that accounts for the CA, where D is the number of unblocked
elements in the system. Particularly, in the column vectors of

Fig. 1. StaticCodeCT system in a cone-beam setting. A static CA
mask is placed in front of the rotating source.

C, c j ∈RD
= 0 if the j th detector element corresponds to a

blocking CA element. The remaining column vectors form
the standard basis in RD. Conventionally, the linear attenu-
ation coefficients, x, are recovered by solving the following
regularization problem in CAXT [2]:

x̂= argmin
x
‖y−CHx‖2

2 + λ8(x), (3)

where λ is a regularization constant, ‖ · ‖2 corresponds to the
`2 norm, and8(x) represents any prior information about the
data. In CAXCT, this term usually promotes the sparsity of the
object on a particular basis; then, conventional CS algorithms
are used to solve the ill-posed inverse problem [14]. In contrast,
we proposed a novel two-step reconstruction framework to
reconstruct the 3D object in [3], which exploited the correlation
in the measurement space rather than using prior information
about the object data. Specifically, we first construct a 3D tensor
of observations by stacking the 2D FPD measurements; then,
we formulate a tensor completion problem in the measurement
domain as follows:

Ŝ = argmin
S

rank (S) s.t. P� (S)=P� (Y) , (4)

where Ŝ is the estimate of the projection data tensor, Y is the
observed incomplete tensor, and P�(Y)=Y(i, j , k) for
(i, j , k) ∈�; otherwise, P�(Y)= 0, and � is the index set
of the detector elements associated with the unblocking CA
elements. In this paper, we used the algorithm described in [3] to
estimate the missing measurements at the FPD by exploiting the
low-rank nature of the 3D tensor as described in Eq. (4). Then,
given the synthesized full set of cone-beam measurements, the
physics governing the X-ray projection measurements are used
to accurately recover the 3D object using the FDK or iterative
image reconstruction algorithms.

3. CA OPTIMIZATION

The CAs elements in X-ray transmission can take two values:
0 to block the X-ray beam (opaque region) or 1 to let the X-
ray beam pass (transparent region). The correct design and
distribution of the elements in the CA can have an impact on
the reconstruction quality. Interestingly, in [2], Kaganovsky
et al. showed that randomly subsampling the detectors at each
view angle exhibited the reconstructions with the lowest error.
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However, because the sensing matrices in CT are sparse and
structured, due to the nature of line-integral projections, ran-
dom CAs are suboptimal according to CS theory [4,15]. Several
strategies taken for the design of CAs have shown that better
than random distributions can be found to produce recon-
structions of higher quality. For example, in [7], Cuadros et al.
proposed an optimization approach to design the structure
of the CAs based on the minimization of the coherence of the
sensing matrix for fan-beam CT. Then, to accelerate the opti-
mization, similar efforts using a different cost function based
on the mutual information of the sensing matrix were pro-
posed in [5,6]. However, all of these methods generate different
CA patterns for each view angle, which is not feasible in real
applications. Furthermore, they are tailor-made for iterative
reconstruction approaches that minimize cost functions with
sparse regularizations under the CS framework. In contrast, the
reconstruction algorithm developed in [3] relies on different
mathematical principles; thus, the optimization of the CAs is
still an open problem.

As described in [3], the initialization for the tensor of mea-
surements is based on the matrix completion of the individual
frontal slices corresponding to the FPD measurements at each
angle. Mathematically, the problem is to recover the original
set of measurements S p from the observed measurements
Q(p)
=P�(S p)+ V =P�(Y p), where V is additive white

Gaussian noise with standard deviation σ . The estimated FPD
measurements at each pth view angle are then estimated as
follows:

Ŝ p
= argmin

S p

1

2σ 2
‖Q(p)

−P�
(
S p)
‖

2
2 + λ8

(
S p) , (5)

where 8(S) is a regularization term. The matrix completion
problem is to recover an M1 ×M2 frontal slice of the mea-
surements’ tensor when only m�M1 M2 of its entries are
observed. Thus, in this work, the goal is to find the location
of the m nonzero entries on the CAs, such that higher-quality
estimations are obtained when using the matrix completion
framework. Matrix completion can recover an M ×M matrix
of low-rank r from Mr log2 M noisy randomized samples with
an error proportional to the noise level. If the missing entries
are spread across the rows of the matrix, even fewer matrix
observations are needed for recovery [16]. Pimentel-Alarcon
et al. showed that uniform sampling of the matrix with only
max(r , log2 M) observed entries per column satisfies recovery
conditions with high probability [17]. As described in [3], the
estimation of the FPD measurements is similar to an image
inpainting problem solved using matrix completion algorithms
during initialization. Thus, we optimize the CA pattern such
that the passing elements are as uniformly spread as possible. By
sampling the FPD uniformly, we can recover the unobserved
projections with high probability. The resulting optimal CA
is called a “blue noise CA,” since its distribution exhibits the
spatial characteristics of the blue noise patterns, which sup-
press low-frequency components of noise [18,19]. Intuitively,
blue-noise sampling generates randomized uniform point
distributions, conversely to random patterns, where samples
can be close or far from each other. In Section 4A, the PSNR
of the estimated measurements at the FPD is presented for the
proposed optimized CAs, alternative designs, and random CAs.

Fig. 2. (A) DBS Blue noise CA and (B) its 2D Fourier spectrum. (C)
Random CA and (D) its 2D Fourier spectrum. (E) Bayer CA and (F) its
2D Fourier spectrum.

To find the optimal blue noise patterns for the CAs to be used
in the cone-beam CT system, we used the direct binary search
(DBS) algorithm. DBS was originally developed in halfton-
ing to optimally represent continuous-tone images [20]. It is
an iterative approach that evaluates the effect of trial changes
for each pixel in a binary image until it closely resembles the
original image after low-pass filtering. Here, the original image
corresponds to a single intensity image with a gray-level equal
to the CA’s desired transmittance, and, due to its resemblance
to the human visual perception, an exponential model is used
as the low-pass filter [19]. The algorithm starts with a random
CA of the target transmittance. Then, at each pixel location,
the effect of toggling the pixel’s state or swapping its value with
any of its eight nearest neighbors is evaluated. The operation
that results in the lowest difference to the original image is per-
formed; then, the algorithm moves to the next pixel. Figure 2(A)
depicts the first 102× 105 pixels of a single realization of a blue
noise CA obtained using the proposed DBS algorithm for a
614× 630 detector and 25% transmittance. The size of the
detector is derived from the testbed used in this manuscript,
as shown in Section 4. Note, the Fourier spectrum shown in
Fig. 2(B) has weak low-frequency energy but strong high-
frequency energy, which results in a uniform distribution of the
blocking elements, as shown in Fig. 2(A). On the other hand,
random CAs like the one depicted in Fig. 2(C) have a flat Fourier
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spectrum (depicted in Fig. 2(D)) that contains an equal amount
of energy in all frequency bands. Additionally, given the ran-
dom spatial distribution of these codes, clusters of zero-valued
elements are likely to appear, as shown in Fig. 2(C). Finally,
note that it is also possible to obtain a uniform structure using a
Bayer pattern as shown in Fig. 2(E), which pushes the energy to
higher frequencies, but on a regular pattern as shown in Fig. 2(F)
[21]. This CA, however, gives less flexibility if modifications are
needed when manufacturing the CA as the structure of the Bayer
pattern is always similar to a checkerboard, as shown in 2(E). In
the latter case, if the structure changes then the uniformity can
be lost. With the DBS algorithm, on the other hand, one can
add modifications to the patterns while attaining uniformity
given that multiple blue noise patterns obey the uniformity
constraint embedded in the algorithm. Note the frequency of
the blue noise pattern of the CA determines the percentage of
rays that are blocked at each view angle. In this experiment, we
selected 25%, as this ideally reduces 75% of the radiation, which
is a common goal for state-of-the-art X-ray radiation dosage
reduction methods.

4. MATERIALS AND METHODS

We used the Rigaku GX 130 CT Scanner located in the
Advanced Material Characterization Laboratory (AMCL) at the
University of Delaware to obtain the X-ray projection data. Due
to hardware constraints, the mounting hardware for CAs on the
Rigaku CT scanner is located on the detector side as shown in
Fig. 3(A). However, it can be shown that the forward model of
the system does not change if the CA is placed after the object
and before the detector. In this work, micro-CT projection data
of a Juglans hopeiensis walnut were obtained at P = 803 view
angles uniformly distributed around the object. This number
of projections is suggested by the configurations of the scanner,
and we refer to it as the “full-set” of projections. Table 1 has the
remaining hardware settings used for the microCT scanner.

Table 1. Hardware Settings Used for the Rigaku GX
130 CT

Setting Value

X-ray focus (min) 5µm
X-ray source to center of rotation 120 mm
FPD to center of rotation 224 mm
X-ray tube potential 130 kV
X-ray tube current 61µA
Al filter 5 mm
Cu filter 0.06 mm
FPD size 2352× 2944 pixels
FPD detector elements’ size 49.5µm

A. Simulation Results

In this work, we extract the bounding box of the walnut pro-
jections, which corresponds to the center 1842× 1890 region
of the FPD. The FDK cone-beam reconstruction algorithm
from the ASTRA tomography toolbox [22] was used to recon-
struct the 512× 512× 512 FDK-reference volume of the
walnut with a voxel size of 90 µm. In this paper, we use cubic
voxels, but the proposed algorithm can be generalized to other
geometries by making the appropriate adjustments in the CT
reconstruction stage. We used the full set of projections without
pixel binning for the reconstruction of the reference volume. In
contrast, our previous work in [3] used binned projections to
reconstruct the reference volume. Figure 3(B) shows the prin-
cipal slice directions on the reference volume; Fig. 3(C) depicts
its central axial slice. We evaluate the reconstruction quality by
comparing the reconstructed object in each case to the reference
FDK volume [23]. Particularly, we used the PSNR, calculated
as PSNR= 10log10(R

2/MSE), where R is the maximum value
in the reference data cube, and the MSE of two N3 data cubes,
I1 and I2, is MSE=

∑
x ,y ,z [I1(x , y , z)− I2(x , y , z)]2/(N3),

and the structural similarity index (SSIM). Finally, it should
be noted that the radiation dosage in all the low-dose systems
compared in this subsection is set to be equivalent for a fair
comparison.

Fig. 3. (A) Rigaku GX 130 CT Scanner with CA mounting hardware. (B) Principal slice directions of a Juglans hopeiensis walnut. Central axial slice
reconstructions for (C) conventional CT and FDK algorithm. CS-based algorithms and (D) SparseCT, and (E) StaticCodeCT with an optimized CA.
(F) Proposed approach. (C1)–(F1) Zoom of the highlighted regions. Depicted PSNR and SSIM were calculated per slice.
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The first simulation experiment compares the StaticCodeCT
system using an optimized CA with the SparseCT system
[24,25]. For both systems, we used the CT configuration as
shown in Table 1. Due to hardware constraints for the GPU
implementation of the tensor completion algorithm used for
the measurement estimation, we performed pixel binning to
attain 614× 630 projections, that is, the effective pixel size at
the detector was set to 148.5 um. In this subsection, the colli-
mators’ pixel elements, and the CA elements are designed to
have a one-to-one correspondence with the detector. For the
SparseCT system, we used the same configuration described
in [3], and 3D-TV regularization was used for the recon-
struction [26]. Figure 3(D) depicts the central axial slice of
the SparseCT reconstruction. The volume PSNR and SSIM
attained with SparseCT were 38.22 dBs and 0.8, respectively.
For the StaticCodeCT system, an optimized CA with 25%
transmittance is emulated by setting to zero the FPD mea-
surements that correspond with the location of the blocked
elements on the CA at each view angle. Figure 3(E) depicts the
reconstructed slices obtained using 3D-TV regularization and
the algorithm in [26] using the observed measurements only.
Note that we obtained the same behavior described in [3]; how-
ever, with the optimized CA, the rings describe a more uniform
structure, as shown in Fig. 3(E-1). The results attained with the
algorithm proposed in [3] have a volume PSNR and SSIM of
43.12 dBs and 0.96, respectively. Figure 3(F) depicts the recon-
struction obtained using the FDK algorithm after the proposed
tensor completion is performed to recover the missing projec-
tion data. The volume PSNR of the reconstruction obtained
using the proposed method is approximately 5 dBs higher than
the PSNR obtained using conventional CS algorithms and the
SparseCT systems.

We performed a second experiment to compare the per-
formance of the StaticCodeCT system to the sparse view-angle
CT system because the latter is the state-of-the-art preferred
standard to reduce the number of measurements in X-ray
imaging systems [27]. The reconstruction algorithm used to
reconstruct the object in the sparse view-angle CT system is
the 3D TV regularization algorithm developed in [26]. The
cone-beam hardware configuration remains unchanged from
the previous experiment. Two CA CT systems with 25% trans-
mittance are emulated. Then, the resulting coded projections
are inpainted using the algorithm described in [3]. The first CA
had a blue noise pattern obtained using the algorithm described
in Section 3, while the second CA had a random pattern.
Figure 2 depicts a 102× 105 section of the 614× 630 CAs and
their corresponding spectra. Subsequently, we used the FDK
reconstruction algorithm to recover the data cube in all cases.
Figures 4(A)–4(C) depict the central 256th sagittal, coronal,
and axial reference slices, respectively. Figures 4(D)–4(F) depict
the reconstructions obtained using the optimized CAs with
volume PSNR and SSIM of 43.12 dBs and 0.96, respectively;
Figs. 4(G)–4(I) depict the reconstructions obtained using the
random CAs with volume PSNR and SSIM of 42.13 dBs and
0.95, respectively; Figs. 4(J)–4(L) depict the reconstructions
obtained using sparse view angles with volume PSNR and SSIM
of 38.48 dBs and 0.87, respectively. For a fair comparison, the
available view angles are uniformly sampled to obtain P = 201
for the sparse view-angle CT system. Namely, the resulting 201

Fig. 4. FDK Reconstructions of the central 256th sagittal, coronal, 
and axial slices of a Juglans hopeiensis walnut for (A)–(C) conven-
tional CT, StaticCodeCT with 25% transmittance using a (D)–(F) 
blue-noise CA, and a (G)–(I) random CA. (J)–(L) Sparse view-angle 
CT. (A1)–(C1) Zoom of highlighted regions in (A)–(C). (D1)–
(L1) Normalized absolute error of the highlighted regions in 
(D)–(L). Depicted PSNR and SSIM were calculated per slice.

angles are evenly distributed in the gantry orbit. We do not sam-
ple the view angles randomly given that it has been previously
shown that uniformly sampling the view angles results in similar
reconstruction quality compared with randomly sampling
them [2]. The absolute error images of the highlighted regions,
depicted in Figs. 4(A-1)–4(L-1), show that the proposed system
can obtain smooth reconstructions using conventional and fast
CT algorithms. Furthermore, the volume PSNR of the recon-
structions obtained using the proposed approach is 5 dBs higher
than that attained with the sparse-view CT system, and 1 dB
higher than the PSNR of the reconstructions obtained using a
random CA.

In the previous experiments, we assumed a one-to-one cor-
respondence of the CA elements with the detector elements; in
practice, however, this is a challenging task due to manufactur-
ing restrictions. To evaluate the performance of the proposed
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Fig. 5. Average PSNR obtained using DBS, void and cluster (VC),
random, and Bayer CA for different mapping scenarios. Subsampling
ratio of 10 corresponds to having a CA element map to 10× 10 detec-
tor elements in the FPD.

optimized CAs as well as the reconstruction algorithm proposed
in [3], we simulated a third scenario where the elements of the
CA do not have a one-to-one correspondence with the detector
elements. We maintained the same hardware CT configura-
tion, but the pixel binning was modified to attain 630× 630
projections on the center 1890× 1890 region of the FPD.
For this analysis, we compared both the PSNR of the tensor of
measurements and the PSNR of the reconstructions obtained in
each case. Additionally, given that multiple algorithms produce
a uniform distribution of elements in the CA, we evaluate the
performance of three different strategies: (A) DBS algorithm
described in Section 3; (B) void and cluster algorithm [19];
and (C) Bayer patterns. We compare these three strategies with
random CA when the CA elements map to 1× 1, 2× 2, 3× 3,
5× 5, 6× 6, 7× 7, 9× 9, and 10× 10 pixels on the detector.
For all the CA, the transmittance was approximately 25%.
Figure 5 depicts the average PSNR obtained in the measurement
domain and the volume PSNR of the reconstructed object for
each case. When there is one-to-one correspondence, the DBS
algorithm gives the highest performance. Note the uniform
CAs have higher performance than the random CA, and the
three strategies only differ in 1 to 2 dBs for a different number of
pixels at the detector. For the next section, we selected the DBS
algorithm because this algorithm allowed for modifications
needed for the CA manufacturing.

B. CA Manufacturing

Additive manufacturing (AM) is a rapidly evolving technol-
ogy used to fabricate geometrically complex structures using a
layer-by-layer material deposition process. In this work, three
different AM techniques to build the CAs were investigated.

1. Metal CA

Wolfmet 3D is a metal additive manufacturing (MAM) process
provided by M&I Materials [10]. It uses a high-power laser to
fuse and melt specific parts of successive layers of metallic pow-
ders to build 3D structures, a technique called “selective laser

melting.” For the CA used in this work, the metallic powder is
pure tungsten. Objects fabricated using this technique can be
mechanically weak and do not have a self-supporting structure.
Namely, if there is a blocking element surrounded by “unblock-
ing elements,” then this element would be floating as the CA
frame would not support it. The thickness is set to be 2 mm to
avoid a fragile structure and prevent damage during the EDM
wire-cutting process, in which the part is separated from a steel
back-plate used for construction. Additionally, the CA must
be self-supporting, i.e., a structure with no two holes touching
(NTHT). However, the DBS algorithm used to attain the blue
noise patterns, which are optimal for the StaticCodeCT system,
does not necessarily produce an NTHT distribution. Thus,
the algorithm used to attain the MAM CA alternates between
blue noise generation using DBS and the removal of blocking
elements inside clusters of unblocking elements until there
are no more possible changes, and a self-supporting structure
is obtained. Hereinafter, this CA will be referred to as MAM
(depicted in Fig. 6(A)).

2. PlasticCA

Cold casting is a low-cost AM method that casts a radiopaque
material onto a 3D printed structure. Given the support of
the mold the pattern does not need to be NTHT, and the CA
elements’ dimensions can be adjusted for different applica-
tions. In this work, the radiopaque material is a tungsten epoxy
resin composite (Technon Poly Kits [28]), which contains 100
mesh tungsten powder (149 µm maximum particle size) and
two-part epoxy resin. According to the mixing instructions for
Poly/Technon, the required compound viscosity (ρ) ranges
from 9.5 to 10.5 gr/cc, and the maximum percentage of pow-
der that can be mixed with the resin composite is 96.2% by
weight. Thus, for a pourable compound, this ratio was main-
tained below 93.5%. Two plastic mold designs were sent to
Shapeways [29] for manufacturing. The printing material was
set to “Fine Detail Plastic” with two printing options, smooth
and smoothest, with resolutions of 32 µm and 29 µm for CAs
with pixel pitch 576 and 493 µm, hereinafter referred to as
CC576 and CC493, respectively. Figure 6(B-1) depicts the 3D
printed plastic mold; Fig. 6(B-2) depicts the result after casting
the tungsten-epoxy mixture. This structure was cured for 24 h at
room temperature and then polished [11]. Figure 6(C) depicts
the polished result for the CC576 CA.

3. CeramicCA

Ceramic-based additive manufacturing offers advantages
over traditional manufacturing processes that require high
mechanical strength and thermal resilience. Conventional
manufacturing of ceramics is a time-consuming and expen-
sive process that is often limited in geometrical complexity,
where these limitations are often amplified when producing
high-resolution features. In this work, yttria-stabilized zirco-
nia ceramic parts were fabricated using the XJet Carmel 1400
system. This AM system utilizes a proprietary nanoparticle
jetting technology (NPJ) that deposits small droplets of ink
consisting of a highly loaded dispersion of ZrO2 nanoparti-
cles (>10 nm) suspended within a carrier-agent or support
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Fig. 6. (A)–(D) Coded aperture photos, bottom white line indicates the scale, (E)–(H) transmission radiographs, (I)–(L) horizontal line profiles in
the transmission radiograph. Left to right, the columns correspond to MAM, CC493, CC576, and ceramic CAs. (B1) 3D printed plastic mold. (B2)
Poly/Technon cast into the plastic mold.

material inks. During the printing process, and after the print
carriage completes a material deposition pass, heating lamps
and a hot air dryer evaporate the carrier agent from the top sur-
face. Afterward, an abrading roller planarizes the print surface
before the next material print pass. This process consolidates
the material and smooths the surface for subsequent layers,
where these processes are repeated layer-upon-layer until the full
3D part is completed. After the print process has finished, the
build tray is submerged within a circulating water bath at 30◦C
to initiate the dissolution of support material. The removal of
support material can take as long as 24 h depending on the size
and complexity of the printed part. After the support material
has been completely removed, the part is carefully placed into
a desiccating chamber and allowed to dry completely. Last, the
fully dried green ceramic parts are fired in a sintering furnace
using a programmable heating profile, up to nearly 48 h. After
reaching temperatures of 1450◦C, the ceramic nanoparticles
sinter together, forming an isotropic part that reaches 99.5%
theoretical density. An example of a CA with a thickness of
0.73 mm obtained using this process is shown in Fig. 6(D).

The number of elements in each CA was determined by the
manufacturing constraints of each method. In all cases, the CA
elements mapped to more than one detector element on the
FPD. Furthermore, the CA holder in the Rigaku CT scanner
allowed for the placement of a 5 mm thick structure that was
not adjustable. Thus, for each CA, different arrangements
were needed for the CA placement. In the MAM case, a 3 mm
thick plastic frame was 3D printed and placed together with
the MAM CA in the holder, which allowed the CA to be as
close to the detector as possible. On the other hand, given the
flexibility in the CC576 and CC493 structures, the thickness

of the area of the CAs aligned with the mounting frame was
calculated to minimize the number of detector elements cor-
responding to a projection of a single CA element. Last, in the
ceramic case, given the reduced size of the CA, a frame that
could hold the structure in the middle, for stability purposes,
was 3D printed and can be seen around the CA in Fig. 6(D).
The pixel pitch, thickness, approximate number of detector
pixels on the detector (DPD), and distance from the detector
(DD) for each of the CAs can be found in Table 2. The latter is
measured from the center of the detector to the center of each
structure. Figures 6(E)–6(H) depict the transmission radio-
graphs measured in the Rigaku CT scanner for each CA at s 1.
An enlarged area highlighted in each CA shows defects proper
of each manufacturing method. The MAM CA has the highest
density and thickness; thus, it has the greatest attenuation.
However, it presents rounded corners due to the resolution of
the 3D printing process and the thickness of the CA as shown
in Fig. 6(E). Figures 6(C) and 6(D) correspond to the cold-cast
CAs (CC493 and CC576), which present voids due to air
trapped in locations that should be radiopaque. Figure 6(G)
corresponds to the ceramic CA, which covers a smaller area due
to manufacturing constraints; however, similar to the MAM
CA, it has a more uniform projection given the uniformity of the
3D printed material. Note, only the CA elements of the cold-
cast CAs are cubic. In all the other cases, due to manufacturing
constraints, the thickness and the pixel pitch of the CA elements
are different. This disparity leads to having varying projection
sizes of a CA element on the detector, especially close to the
borders of the FPD.

Ideally, X-rays should originate from a point source.
However, this is not the case in real implementations, which
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Table 2. CA Dimensions

Code Pitch (µm) Thickness (µm) DPD DD (mm)

MAM 900 2000 22 38.00
CC493 493 493 12 38.09
CC576 576 576 14 37.82
Ceramic 940 730 17 39.5

present a “geometric” penumbra effect governed by the size and
shape of the X-ray focal spot. Furthermore, when a CA is placed
in front of the X-ray source, X-rays will pass through the edges
of the unblocked elements of the CA resulting in “transmission
penumbra.” The size of this penumbra will increase with the
thickness and pitch size of the CA elements, and the size of the
“geometric” penumbra will decrease as the CA is placed farther
from the X-ray source. To deal with these effects, object-free
projections using each mask are obtained with the CT scanner.
Then, using thresholding-based image segmentation, a mask
array indicating the location of the measurements free from
errors is obtained [25]. Figures 6(I)–6(L) depict a line profile
across the detector bins at the 780th row for each CA normalized
projection. Note, the unblocked elements are closer to 1 for the
ceramic and MAM Cas, as there is not any material on the X-ray
path in these cases. In the cold-cast CAs, on the other hand,
the fluctuations in the line profiles suggest there is leakage of
radiopaque material into the translucent elements, caused by
errors at the moment of polishing. These CAs, however, achieve
the best reconstruction quality compared with the MAM and
ceramic CAs. The binary mask obtained by thresholding the
normalized measurements is depicted in a red dotted line for
each case. The larger the thickness and pixel pitch, the more data
are unused after applying the mask. All CA patterns had 30%
transmittance at the time of fabrication. After the binary mask
is applied, the number of measurements used for the estimation
for the MAM, CC493, CC576, and ceramic CAs are 21.09%,
24.50%, 25.67%, and 14.81%, respectively.

CAs filter the X-ray spectra depending on the thickness and
density of the material used in the blocking elements. In this
work, the Amptek X-123CdTe X-ray spectrometer was used
to measure the filtered X-ray spectrum in each case and thus
determine the percentage of energy blocked by each CA. For
this experiment, an X-ray microfocus source with a tungsten
target was operated at 130 kV and 3µA. The spectrometer mea-
sured 1024 energy channels and a tungsten collimator was used
to reduce the incoming X-ray flux and avoid saturation. The
distances from the source to the CA and the spectrometer were
set to 100 and 800 mm, respectively. Figure 7 depicts the X-ray
source spectrum and the filtered spectra for each CA. The energy
is calculated from 30 to 130 keV, for each case. As expected,
the MAM CA blocks more than 99% of the original X-ray
spectrum. The CC493 CA, on the other hand, only blocks 86%
of the energy, given the thickness of the radiopaque material.
Last, the CC576 and the ceramic CAs block approximately 97%
of the energy. The latter demonstrates that the ceramic CAs can
be used as a radiopaque material to block the X-rays.

C. Experimental Results

The four CAs specified in Table 2 are placed in the Rigaku CT
lab, and the previous cone-beam configuration is used to attain

Fig. 7. Measured X-ray spectra of a 130 kV X-ray source with a
tungsten target using the blocking elements of each CA.

P = 803 projection measurements of a Juglans hopeiensis wal-
nut. Due to hardware constraints for the GPU implementation
of the tensor completion algorithm used for the measurement
estimation, the FPD measurements obtained with the MAM,
CC493, and CC576 CAs are cropped to an area of 1842× 1890
pixels; then, they are binned to a 614× 630. In the ceramic case,
the projections are cropped to a smaller region given the dimen-
sions of the CA. Namely, an area of 1560× 1764 pixels on the
detector is cropped; then, after pixel binning, a 520× 588 mea-
surement is obtained per view angle. In all cases, the detector
pixel pitch after binning corresponds to 148.5 µm. The PSNR
and SSIM in the slices are calculated in the circle of radius N
containing the walnut.

The coded projections are first inpainted using the matrix
completion algorithm to attain a suitable initialization. Then,
the estimated FPD measurements are stacked vertically, and the
tensor completion framework is used to estimate the measure-
ment’s tensor. The reconstructions of the central 257th axial
slice of the walnut obtained with each CA using the proposed
measurement’s estimation approach with the FDK, and the
simultaneous iterative reconstruction technique (SIRT) algo-
rithms are depicted in Figs. 8(A)–8(D) and Figs. 8(E)–8(H),
respectively. Given the higher number of elements used for esti-
mation in the cold-cast CAs’ case, the reconstructions obtained
using the CC493 and CC576 CAs have a higher PSNR and
SSIM, compared with the reconstructions obtained using the
CAs attained using the MAM and ceramic CAs. Furthermore,
the resulting effective detector pitch in each case determines
the resolution that can be attained for each experiment; in [3],
the authors demonstrate how the proposed method changes the
MTF of the system. The ceramic CAs have the lowest recon-
struction quality given the low number of elements used for
the measurement estimation explained due to a bend on the
structure obtained after curing the sample. However, this manu-
facturing method has the potential of obtaining high resolution
with a small thickness, and techniques to address the manufac-
turing drawbacks are currently being studied. Additionally, note
the CC493 reconstructions have higher PSNR and SSIM than
the CC576 reconstructions. This effect is expected because the
area of the projected CA elements of the CC493 CA is smaller.
Thus, the proposed estimation algorithm performs better in
this case.

For comparison, a CS-based reconstruction algorithm,
specifically the 3D TV regularization algorithm developed
in [26], is used to iteratively solve Eq. (3) for the observed
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Fig. 8. Central 257th axial reconstructions using the proposed
approach with the (A)–(D) FDK, and (E)–(H) SIRT algorithms.
(I)–(L) CS-based algorithms for MAM, CC493, CC576, and ceramic
CAs, respectively. Depicted PSNR and SSIM are calculated per slice.

measurements. Figures 8(I)–8(L) depict the central axial
slice reconstruction for each CA. The reconstructions show
concentric ring artifacts associated with the position of the

Fig. 9. 128th Sagittal, coronal, and axial reconstructions.
(A)–(C) Reference. Proposed method using (D)–(F) MAM, and
(G)–(I) CC493 CAs. Depicted PSNR and SSIM were calculated per
slice.

blocking elements of the CAs. Interestingly, these artifacts are
visually similar to the SD distribution of the static CA system.
Additionally, note the PSNR of the reconstructions obtained
using the proposed approach is approximately 3 dB higher
than the PSNR of the CS reconstructions and the SSIM is
superior for all the CA experiments. To further compare the
3D reconstructions of the two manufacturing methods with
the highest performance as well as to demonstrate that the 3D
volume reconstruction is available, Fig. 9 depicts the 128th
sagittal, coronal, and axial slices reconstructed using the pro-
posed method for the MAM and the CC493 CAs. Note the
ring artifacts in the reconstruction are less pronounced, and
the PSNR and SSIM for both CAs are higher compared with the
central slices.

5. CONCLUSIONS AND FUTURE WORK

The feasibility of using a single CA mask in a coded aperture CT
system was experimentally demonstrated using a cone-beam
X-ray microtomography system. Unlike previous approaches
to coded aperture CT based on the CS theory, we used our
previously introduced reconstruction framework based on
the completion of a 3D low-rank tensor in the measurement
domain. Additionally, even though a systemic approach to
designing an optimum sampling scheme is not straightforward,
the matrix completion scheme used for measurement estima-
tion was leveraged to produce optimal codes with a blue-noise
structure; further, their higher performance was demonstrated
through simulations using real projection data.

Note that the reconstructions obtained using the emulated
CAs present higher PSNR and SSIM than those that were
attained using the real CAs. These can be explained by several
factors: (I) the tensor completion framework is affected when
the blocking elements do not correspond with the elements
on the FPD because this would correspond as having clusters
of unknowns in the tensor; (II) the CAs were designed to have
a particular transmittance, but due to the correction for the
geometric aberrations and the penumbra effect the resulting
transmittance of the codes in the experimental section is much
lower; (III) using the coded masks in front of the X-ray source
presents a potential advantage because an efficient scatter esti-
mation and correction can be applied and calculated with the
prior information known of the mask [30].

The performance of the proposed reconstruction framework
and the optimal codes was compared with state-of-the-art
algorithms and alternative low-dose tomography systems
using quantitative and qualitative measures. The proposed
method was found to produce higher-quality reconstructions.
Additionally, reconstruction results using real CAs show that the
proposed algorithm leads to reconstructions with higher PSNR
than the ones obtained using compressed sensing reconstruction
algorithms when a single CA is used for all view angles. Note
that, given hardware constraints in the micro-CT scanner, the
mounting hardware for CAs on the testbed is located on the
detector. As a result, the reconstructions presented in this paper
suffer less from the penumbra effect compared with having the
masks on the source side. However, the blocking effect is equiva-
lent for testing the proposed single CA approach; the procedure
described to account for the penumbra effect can be applied in
these cases as well.
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