
Research Article Vol. 61, No. 6 / 20 February 2022 / Applied Optics C107

Static coded illumination strategies for low-dose
x-ray material decomposition
Angela P. Cuadros,1 Carlos M. Restrepo,1 Peter Noël,2 AND Gonzalo R. Arce1,*
1Department of Electrical andComputer Engineering, University of Delaware, Newark, Delaware 19716, USA
2Department of Radiology, Perelman School ofMedicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
*Corresponding author: arce@udel.edu

Received 15 October 2021; revised 12 December 2021; accepted 19 December 2021; posted 21 December 2021;
published 20 January 2022

Static coded aperture x-ray tomography was introduced recently where a static illumination pattern is used
to interrogate an object with a low radiation dose, from which an accurate 3D reconstruction of the object
can be attained computationally. Rather than continuously switching the pattern of illumination with each
view angle, as traditionally done, static code computed tomography (CT) places a single pattern for all views.
The advantages are many, including the feasibility of practical implementation. This paper generalizes this pow-
erful framework to develop single-scan dual-energy coded aperture spectral tomography that enables material
characterization at a significantly reduced exposure level. Two sensing strategies are explored: rapid kV switching
with a single-static block/unblock coded aperture, and coded apertures with non-uniform thickness. Both systems
rely on coded illumination with a plurality of x-ray spectra created by kV switching or 3D coded apertures. The
structured x-ray illumination is projected through the objects of interest and measured with standard x-ray energy
integrating detectors. Then, based on the tensor representation of projection data, we develop an algorithm to esti-
mate a full set of synthesized measurements that can be used with standard reconstruction algorithms to accurately
recover the object in each energy channel. Simulation and experimental results demonstrate the effectiveness of the
proposed cost-effective solution to attain material characterization in low-dose dual-energy CT. © 2022 Optica

PublishingGroup

https://doi.org/10.1364/AO.446104

1. INTRODUCTION

Recently, several health problems have been associated with
the high exposure to x-ray radiation. Thus, given the concern
for the rapid increase in radiation dose by the expanded use
of computed tomography (CT), multiple research groups
have led major efforts to develop new approaches to reduce
radiation dosage while maintaining acceptable image quality
[1,2]. Multiple approaches used to attain this goal result in
a set of incomplete measurements compared to the conven-
tional number of sampling points needed for reconstruction
[3]. Incomplete measurements in x-ray transmission CT have
been a topic of study for many years in the context of limited
angle tomography, where the number of views is reduced
considerably [4]. Yet, as demonstrated by multiple research
groups, using structured illumination to subsample the detec-
tors instead of the number of angles results in higher quality
reconstructions [5]. New approaches to further reduce radiation
dose in conventional CT have been considered recently [1].
Dynamic fluence field modulation, for instance, was proposed
to adaptively shape the beam during the CT scan, which can
reduce radiation dosage [6]. Another type of modulation is to
directly obtain sparse data instead of shaping the beam. Multiple

research groups have investigated sparse data acquisition by
reducing the number of view angles at which projections are
taken. However, given that compressive sensing algorithms are
usually used to perform reconstructions, further randomization
is desired across more directions. Chen et al. proposed the use
of a multi-slit collimator placed in front of the x-ray source
that moves axially to attain sparse data across the detector and
introduces randomization across view angles, a system denom-
inated SparseCT [7,8]. More recently, Rezaeian et al. expanded
this idea using a 2D sparse grid structure, denominated Sparse
Blockers, which continuously moves parallel to the detector
allowing sparse data acquisition as well as scattering estimation
and correction [9]. We recently introduced a low-dose CT
system coined “StaticCode CT” that overcomes possible hard-
ware limitations that arise by the continuous movement of the
collimator or filter, by using a single-static coded aperture (CA)
system paired with computational imaging algorithms to reduce
75% of radiation dosage [10]. The generalization of the afore-
mentioned systems for dose reduction in multi-energy CT is of
great interest in many applications. New and innovative ways of
lowering the radiation dose in multi-energy x-ray systems is of
particular interest in the medical diagnosis field.
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To this end, this paper generalizes the StaticCode CT frame-
work to the multi-energy domain. In particular, we aim at
obtaining dual-energy reconstructions using low-dose trans-
formations of currently available systems, thus providing
a cost-effective solution to attain material decomposition.
Figure 1 depicts possible implementations of the proposed cod-
ing solutions. Particularly, Fig. 1(A) depicts a dual-source system
with a static block/un-block CA. In this system, there are two
sources in two different trajectories, each one with a different kV
potential and a different CA pattern. Then, the algorithm devel-
oped in [10] can be used to solve the inverse problem for each
energy independently. Figure 1(B) depicts a rapid kV switching
system with a CA. In this system, a single-static CA is placed
in front of the x-ray source and the tube alternates between
low- and high-energy potentials to attain dual-energy data.
Figure 1(C) depicts a split filter system with a static CA. Each
filter modifies the spectra to attain the energy data, while the CA
is used to lower the radiation dose. Finally, Fig. 1(D) depicts the
implementation of 3D CAs that by varying the thickness of a
filter material attain a lower radiation dose while modifying the
spectra. Without loss of generality, in this paper, we describe the
process to attain dual-energy reconstructions using the systems
shown in Fig. 1(B), rapid kV switching using a single-static CA,
and 1D, 3D CAs.

The paper thus introduces a StaticCode CT approach for
dual-energy architectures. The set of projection measurements
embeds multi-energy attenuation characteristics of the sub-
ject to be used in image reconstruction. The strategy is further
extended where the 2D CA is replaced by a static 3D CA that
is carefully designed to block, unblock, and attenuate x rays to
interrogate the volume of a subject. In this case, only a single-
energy source CT scanner operating at a single kVp is needed
to attain spectral CT measurements. Material decomposition
reconstruction algorithms are presented based on novel tensor
completion algorithms, and the evaluation of these methods in
simulations with a water–iodine phantom are presented.

Fig. 1. Low-dose dual-energy with coded aperture implementa-
tions. (A) Dual-source system with a coded aperture. (B) Rapid kV
switching with a coded aperture. (C) Split filters with a coded aperture.
(D) Multidimensional coded aperture.

2. FORWARD MODEL

The forward model for StaticCode CT in dual-energy architec-
tures is developed for a fan-beam x-ray CT system. However,
the generalization to cone-beam CT and other 3D geometries is
presented in Section 3. Given a line detector with Q elements,
and an x-ray source that follows a circular trajectory around
the object, the post-log data at the j th detector for the effective
energy Ē , defined as the energy of a monoenergetic source that
would produce the same measurements as the poly-energetic
source, are given by [11]

y j = ln
(
I0 j (Ē )/I j

)
=

∫
`

µ(`, (Ē ))d`, (1)

where I0 j (Ē ) is the x-ray photon intensity of the source, and
µ(`, Ē ) is the linear attenuation coefficient of the object at
position ` and energy Ē . After discretizing the system, the
discrete-to-discrete formulation can be written as a finite linear
system of equations of the form y=Hx , where H ∈RQ P×N2

is the system matrix, P is the number of view angles, and the
N × N object has been vectorized, represented by x. Multiple
algorithms such as the FDK can then be used to obtain the effec-
tive linear attenuation coefficients of the object. However, in
single-energy CT, materials having different compositions may
be represented by the same gray-scale value. Hence, material
differentiation can be very challenging.

Spectral CT relies on the energy and material dependence of
x-ray linear attenuation coefficients. Namely, measurements
obtained with different effective energies can be used to dif-
ferentiate among multiple materials. Mathematically, basis
material decomposition can be performed in the image domain
as follows:

xc
i =

M∑
m=1

µmcρ
m
i , (2)

where xc
i is the effective linear attenuation coefficient at pixel

i and energy channel c , µmc is the effective mass attenuation
coefficient of the mth basis material at the c th energy chan-
nel, and ρm

i is the mass density of material m at pixel i [12]. In
dual-energy systems, two sets of data, one corresponding to a
high-energy spectrum and a second one using a low-energy spec-
trum, are acquired. Then, (2) can be solved in a pixel-by-pixel
basis to yield the mass densities for M = 2 materials using the
reconstructions of the linear attenuation coefficients for each
spectrum.

A. Rapid kV Switching Using a Single Coded
Aperture

Figure 1(B) depicts the rapid kV switching CA system, which
generalizes the system in [10] to dual-energy rapid kV switch-
ing. Here, a static block/unblock CA is placed in front of the
x-ray source, and at every view angle, we switch the tube poten-
tial from high to low energy and vice versa to attain dual-energy
data. As shown in [13], the acquired projections are an inter-
leaved coded sinogram, where the linear attenuation coefficients
for each energy channel can be obtained as follows:
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x̂ c
= argmin

xc
‖ yc
−Cc Hxc

‖
2
2 + λ‖ xc

‖p , c = {L,H} ,

(3)
where λ is a regularization constant, c is the energy channel
(L = Low, H =High), ‖ · ‖2 corresponds to the `2 norm, and
‖ · ‖p represents any prior information about the data and the
binary matrix, and Cc accounts for the kV switching as well
as for the CA. As demonstrated in our previous work [14,15],
CAs can be optimized to attain higher reconstruction quality.
Furthermore, since a single CA is used in all view angles, some
pixels in the center of the image are not sensed, and there are
ring patterns in the sensing distribution that can produce arti-
facts in the axial reconstructions [10]. Thus, we use uniform
sensing patterns in the CA and implement a tensor strategy to
estimate the missing data based on the tensor representation of
the measurements. Particularly, we recover the missing entries
in the 3D tensor representation of the measurements using the
ADMM algorithm developed in [16]. Given that a complete set
of measurements is obtained for each energy channel, we can
use conventional reconstruction algorithms to reconstruct the
linear attenuation coefficients for each channel, which in turn
can be used in (2) to attain material composition information
for each pixel [13]. Mathematically, the material decomposition
can be written as follows:(

x H
i

x L
i

)
=

(
µ1H µ2H

µ1L µ2L

)(
ρ1

i
ρ2

i

)
, (4)

where ρm
i corresponds to the concentration of the mth basis

material in the object at the i th pixel, and µm H/L is defined as
the effective mass attenuation coefficient of each base material
(m = 1, 2) measured at the corresponding energy spectrum.
Then, as previously mentioned, the following matrix inversion
can be performed to solve the inverse problem in a pixel-by-pixel
basis:(

ρ1
i
ρ2

i

)
=

1

µ1Hµ2L −µ2Hµ1L

(
µ2L −µ2H

−µ1L µ1H

)(
x H

i
x L

i

)
.

(5)
Alternatively, we can use a constrained least-squares algo-

rithm to solve for ρ1
i and ρ2

i for each pixel independently in (4),
which is the approach taken in this paper.

B. Single Coded Aperture with Non-Uniform
Thickness

In current implementations of fast-kV switching, independent
pre-filtration of the spectrum for each energy is not feasible due
to the short time between acquisitions, which hinders accurate
energy separation. Thus, in this work, a CA with a non-uniform
thickness is proposed as an alternative method to acquire dual-
energy projections. To that end, the CA structure has multiple
levels of thickness distributed across the mask, rather than the
conventional block/unblock distribution used in single-energy
CT. Figure 2 depicts an example of the proposed structure.
In this case, three different thicknesses of tungsten are used to
filter the x-ray beam. The un-filtered x-ray source spectrum
is depicted in black, and the blue, red, and magenta spectra
correspond to filtering 30%, 60%, and 95% of the x-ray flux,
respectively. Note that the unfiltered and 30% x-ray beams gen-
erate relatively low-energy x-ray projection data, while the 60%,
and 95% filtered beams make high-energy projection data.

Fig. 2. Filtered spectra with tungsten (W) at different thicknesses
and an example of the 3D coded aperture structure. The colors on
the coded aperture structure indicate examples of the corresponding
spectra.

Thus, rather than discarding the measurements corresponding
to the filtered x rays, as in single-energy CT [10], the filtered
data are used to attain spectral information from the object.
Mathematically, taking into account the polychromatic nature
of the x-ray beam, the filtered measurements at an integrating
detector when using a filter f in front of the x-ray source are
given by

I f
j =

∫
E

I0(E ) exp
[
−µ f (E )δ j , f

]
exp

(
−

∫
`

µ(`, E )d`
)

dE ,

(6)
where µ f (E ) is the linear attenuation coefficient of the filter
f at energy E , I0(E ) is the x-ray source intensity at energy E ,
and δ j , f is the length of the intersection of the j th x-ray beam
with the filter f . The filter thickness of the CA can be designed
such that the separation between low- and high energy spectra is
maximum, which improves material characterization accuracy.
It should be noted, however, that there is a trade-off between
the separation of the spectra and the signal-to-noise ratio at the
detector since in general heavy filtration will greatly impact the
latter.

3. DUAL-ENERGY RECONSTRUCTION USING
TENSOR COMPLETION

Here, we used the tensor completion framework developed
in [10,13] to obtain a 3D tensor representation of the spectral
projection data for both systems using a fan-beam architecture.
In contrast to the monoenergetic case, the third dimension of
the tensor corresponds to the number of available channels C .
Namely, the projections’ tensor is defined as Y ∈RQ×P×C .
Figure 3(A) depicts the 3D tensor for a rapid kV switching dual-
energy system using a single CA, obtained by stacking the C = 2
tiled subsampled sinograms corresponding to low and high
energies, which correspond to the frontal slices of the tensor.
Figure 3(B) depicts the 3D tensor for a conventional fan-beam
CT system using a CA with multiple thicknesses. The frontal
slices of the tensor, in the latter case, correspond to sinograms
containing the measurements associated with a particular thick-
ness. Thus, the CA pattern differs between channels, producing
an alternating pattern. The fan-beam sinograms that make the
frontal slices in both cases are gray-scale images with missing
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Fig. 3. Tensor representation of phantom projection data obtained
(A) using a static coded aperture and kV switching and (B) using a
static coded aperture with random thickness and a single kV.

patches that can be considered low rank. Furthermore, there is
high correlation between the different energy channels since the
spatial information remains largely unchanged. Therefore, we
can exploit the multidimensional structure of the projections’
tensor by estimating the missing measurements using the tensor
completion framework developed in [10,17].

Namely, the measurement estimation problem is formulated
as the following low-rank tensor completion model:

Ŝ = argmin
S
||S||TNN + λ8(S) s.t. P�(S)=P�(Y) , (7)

where Ŝ is the estimate of the projection data tensor, Y is
the observed incomplete tensor, P�(Y)=Y(i, j , k) for
(i, j , k) ∈�, otherwise P�(Y)= 0, and� is the set of indices
associated with the unblocking CA elements. In the 3D CA
case, � is constructed such that each of the frontal slices con-
tains “missing measurements” in the positions where a different
thickness is used. The data-driven regularization term 8(S)
is added to capture fine details in the reconstructed tensor that
may not be well captured by the low-rank regularizer. Here,
the ADMM framework developed in [16] is used to solve (7)
and obtain an estimation of the measurement tensor. We used
the simultaneous iterative reconstruction technique (SIRT)
and FDK algorithms to reconstruct effective linear attenuation
coefficients at each energy c using the corresponding estimated
sinogram Ŝ c , which is the c th frontal slice of the estimated
measurement tensor. Nonetheless, other iterative or analytic
reconstruction algorithms can be used as well.

A. Generalization to 3D Geometries

The material decomposition reconstruction algorithm remains
unchanged for cone-beam CT. However, in the measurements’
estimation process, an extra-dimension needs to be added to the

projection data tensor to account for the 2D detector. Consider
a cone-beam CT scan of an object using a Q1 × Q2 detector.
Then, the set of measurements is arranged as a 4D tensor that
can be represented as a vector of cubes for the multiple thickness
CA system. Each cube represents a 3D tensor constructed by
stacking the C subsampled FPD measurements at each view
angle. The resulting tensor is represented mathematically as
Y ∈RQ1×Q2×C×P .

The low-rank tensor completion framework used to solve the
inverse problem for the single-static CA system developed in
[10], which integrates low rankness and the deep image prior,
can be extended for higher-order tensors, as the one in multi-
energy CT, by replacing the tensor nuclear norm (TNN) with
its high-order extension, the weighted sum of TNN (WSTNN)
[16]. The WSTNN is defined as

||Y||WSTNN =
∑

1≤k1≤k2≤4

αk1k2 ||Y(k1k2)||, (8)

where αk1k2 > 0,
∑
αk1k2 = 1, and Y(k1k2) is the mode-k1k2

tensor unfolding for k1 < k2. The mode-n matricization of a
tensorY(I1×I2×···×IN) is denoted byY(n) and arranges the mode-
n fibers to be the columns of the resulting matrix. Recall that
fibers are the higher-order analog of matrix rows and columns
and are obtained by fixing every index of the tensor but one.

Then, the measurement estimation problem is formulated as
follows:

S = argmin
S
||S||WSTNN + λ8(S) s.t. P�(S)=P� (Y) .

(9)
Then the ADMM algorithm developed in [16] is used to

solve the inverse problem. Note that the methods used to solve
the inpainting are well suited for parallel computation on a
GPU. Thus, the runtime is dominated by the algorithm used to
solve the minimization of the WSTNN, which has complexity
O(N3 log N) [16].

4. SIMULATION RESULTS

The proposed approaches are tested to determine their capabil-
ity of decomposing water and iodine using a 256× 256 iodine
sensitivity phantom, depicted in Figs. 4(A) and 4(B), with side
length of 20 cm; it is composed of a water cylinder and a set of
eight vials with varying iodine concentrations, namely, 4, 3, 2,
1, 0.75, 0.5, 0.25, and 0.1 mg/ml. The ASTRA tomography
toolbox [18] is used to simulate a fan-beam x-ray CT configu-
ration with a flat 1D detector strip composed of Q = 1024
elements of length 40 cm, and distances from the source to
the center of rotation and the detector of 40 cm and 80 cm,
respectively. The mass attenuation coefficients, for water and
iodine, were obtained from the National Institute of Standards
and Technology (NIST) x-ray attenuation databases available
in [19], and the x-ray spectra were calculated using the Spektr
software [20]. Figure 4(C) depicts the energy spectra simulated
for low- and high-kVp tube potentials of the rapid kV switching
system. The peaks were set to 80 and 140 kV and were modified
by filtration with 2.0 mm of aluminum and 0.2 mm of copper.
Peak kV was switched every projection. Figure 4(D) depicts
the energy spectra simulated for a 140 kV peak x-ray source
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Fig. 4. (A) Water concentration, (B) iodine concentration, (C) dual
kV switching spectra, and (D) tungsten filtered spectra.

modified by placing tungsten filters of different thicknesses to
emulate the effect of the proposed 3D CA architecture. For this
simulation scenario, we designed a CA with only two different
thicknesses, namely, 50.8 µm and 254 µm. These two thick-
nesses were chosen taking into account the values of tungsten
sheet thicknesses that can be acquired for implementation. To
do a fair comparison of the systems, the energy of each spectrum
was calculated, and the number of view angles was adjusted for
three different scenarios: (I) rapid kV switching with a single
CA of 37.7% transmittance, (II) multiple thickness CAs with
50% elements of each thickness, and (III) rapid kV switching
with sparse view angles. In all scenarios, the radiation dosage was
equivalent.

The multiple thickness CA was designed to alternate between
the two thicknesses. In both systems, the CA mask was static
with respect to the gantry. To attain equivalent energy, the rapid
kV switching system was simulated to have a CA with a Bayer
structure ([21]) with 37.5% transmittance, and it was used in
a system with P = 368 view angles, while the 3D CA system
had P = 512 view angles. Finally, the sparse view angle system
with rapid kV switching had P = 138 view angles. Figures 5(A)
and 5(B) depict the material decomposition results for the rapid
kV switching with 37.5% transmittance CA, Figs. 5(C) and
5(D) depict the material decomposition results for the multiple
thicknesses CA, and Figs. 5(E) and 5(F) depict the results for
the sparse view angle system with rapid kV switching. Note that
the rapid kV switching with sparse view angle reconstructions
contains more noise than the proposed system’s reconstructions.
Furthermore, low concentrations of iodine are more discernible
in the proposed method. In the three systems, SIRT is used to
reconstruct the effective energy linear attenuation coefficients in
each energy channel, then a constrained least-squares algorithm
is used to solve the material decomposition problem for each
pixel independently. Additionally, Fig. 6 depicts the concentra-
tion values for each system and for circular regions of interest
(ROIs) centered in each of the iodine vials and with a radius

Fig. 5. Water–iodine material decomposition using SIRT recon-
structions with 500 iterations for (A), (B) rapid kV switching with
37.5% transmittance coded aperture; (C), (D) multiple thicknesses
coded aperture; and (E), (F) sparse angles and kV switching. Water
concentration display is [0,1000] mg/ml, and iodine concentration
display is [0,4] mg/ml.

equivalent to each vial. Note that the proposed method with
the kV switching architecture gives the closest concentration
values to the ground truth since the spectra are better suited for
decomposition than those obtained with 3D CAs. Additionally,
for comparison, Fig. 6 presents results obtained with the SIRT
algorithm using only the observed rays rather than the proposed
method for tensor completion to obtain a full set of rays. As can
be seen, using the SIRT algorithm with the observed measure-
ments compared to the proposed reconstruction method results
in a greater error of concentration values for the kV switching
architecture, and in the 3D CAs, the results are comparable. In
our future research, we will look into improving the calibration
method for the 3D CA method, since it shows great potential in
preserving the proportionality of the concentration values.

A cone-beam CT configuration with a flat panel detector
(FPD) with 660× 660 elements with a 0.3880 mm pixel pitch
and 360 projections in 1◦ increments was used in the subsequent
simulations. The object consisted of multiple slices of the phan-
tom used in Fig. 6 and simulates having vials of each material
in a cylindrical phantom. After discretization, we obtain a
256× 256× 256 data cube with 0.5 mm× 0.5 mm× 0.5 mm
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Fig. 6. Iodine concentration (mg/ml) for the proposed systems in
each ROI. The black vertical lines denote the ground truth value in
each ROI.

voxels. The distance from source to center was set to 60 cm,
and the source to detector distance was set to 120 cm. The
spectra used for this experiment are equivalent to those shown
in Fig. 4(C); however, the bare-beam intensity was set to 106

photons per detector pixel. Last, Poisson noise and electronic
noise (with 3.31 variance) were added to the projection data. A
blue noise distribution was used to determine the position of
the unblocking elements in the 35% transmittance CA, given
that it has been demonstrated that using uniform sensing results
in higher reconstruction quality [17,22,23]. To perform the
reconstructions, we used the 4D tensor completion framework
in (9) to estimate the missing measurements in the detector, and
then we obtained the effective linear attenuation coefficients for

Fig. 7. (A), (B) Central axial slice of the water–iodine material
decomposition reconstruction using SIRT with 500 iterations for
rapid kV switching with a coded aperture with 37.5% transmittance
for cone-beam projections. Water concentration display is [0,1000]
mg/ml, and iodine concentration display is [0,4] mg/ml. (C) Iodine
ROI concentration measure; black lines denote the ground truth.

high and low energies using the SIRT algorithm. Subsequently,
we used a constrained least squares algorithm independently for
each pixel in the volume to obtain the basis material decompo-
sition. Figures 7(A) and 7(B) depict the material decomposition
results for the central axial slice, and Fig. 7(C) depicts the iodine
concentration in the ROIs. Note in the concentration figure
that the reconstruction matches the expected concentrations
for most of the vials, which demonstrates the effectiveness of
the proposed approach to lower the radiation dosage while
maintaining high accuracy in decomposition. Furthermore, it
should be noted that the visual quality of the reconstructions
can be improved by using iterative algorithms with a smoothing
regularization if needed.

5. EXPERIMENTAL RESULTS

A Rigaku GX 130 CT Scanner located in the AMCL at the
University of Delaware was used to experimentally demon-
strate the results; Table 1 contains the hardware settings for
the microCT scanner. The distances from the x-ray source to
the center of rotation and the FPD were set to 120 mm and
224 mm, respectively, and the sample remained stationary
while the gantry rotated around it in a circular trajectory. Due
to hardware constraints, the mounting hardware for the CAs
is located on the detector side as shown in Fig. 8. However, we
have previously demonstrated that the system does not change
if the CA is placed after the object and before the detector [24].
To determine the material differentiation capabilities of the
proposed systems, the linearity plate of the X-ray micro-CT

Table 1. Hardware Settings Used for Rigaku GX 130
CT

Setting Value

X-ray focus (min) 5µm
X-ray source to center of rotation 120 mm
FPD to center of rotation 224 mm
X-ray tube potential 130 kV
X-ray tube current 61µA
FPD size 2352× 2944 pixels
FPD detector element size 49.5µm
Averaged frames 4
Total scanning time 2 min
Total number of frames 3308

Fig. 8. X-ray setup for kV switching with the CC576 coded
aperture.
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Phantom mCTP 610 was used [25]. The linearity plate con-
sists of vials of varying iodine concentrations, namely, 0.9375,
1.875, 3.75, 7.5, 15, and 30 mg/ml. The 30 mg/ml solution was
prepared by diluting 1.0 ml of full-strength nonionic iohexol
contrast material (Omnipaque 300, GE Healthcare, Oakville,
ON) with 9.0 ml of distilled water. Two additional vials of water
and air were included, to facilitate calibration in HU. These
eight vials were arranged in a concentric circle (44 mm diameter)
and inserted into three polycarbonate plastic plates; each vial
has an approximate diameter of 12.70 mm at the top. Binning is
performed directly during the acquisition, therefore obtaining
FPD measurements of 1136× 1472 with a detector element
size of 0.099 mm. For the kV switching experiment, the x-ray
tube was operated at 130 kV and 100 µA for the high-energy
scan, and 70 kV and 100 µA for the low-energy scan. In both
cases, filters of aluminum and copper of 0.5 mm and 0.06 mm
thicknesses, respectively, were used. Additionally, we designed
a 3D printed plastic CA with pixel pitch 576 µm, hereinafter
referred to as CC576. Cold casting was used to cast a tungsten
epoxy resin composite (Technon Poly Kits [26]) onto the 3D
printed structure to obtain a block/unblock blue noise pat-
tern. The CC576 CA was placed in the Rigaku CT laboratory,
and the previous cone-beam configuration was used to attain
P = 827 projection measurements of the linearity plate of the
microCT phantom. The setup is depicted in Fig. 8.

The kV switching data are obtained by selecting the even
angles from the set of projections of the high-energy setup and
the odd projections from the low-energy setup, and a calibration
procedure to obtain the matrix of the mass attenuation coeffi-
cients of the base materials is performed prior to reconstruction.

Fig. 9. kV switching with coded aperture cone-beam experimental
reconstructions. (A), (B) FDK reconstructions of the 256th slice
for 70 kV and 130 kV channels obtained from the estimated set of
measurements. (C), (D) Water–iodine material decomposition for
the 256th slice. Water concentration display is [0,1000] mg/ml,
and iodine concentration display is [0,30] mg/ml. Iodine ROI con-
centration measures indicated in the center of each vial are given in
mg/ml.

The coded projections are first inpainted using a matrix com-
pletion algorithm to attain a suitable initialization. Then, the
estimated FPD measurements are stacked vertically for each
energy channel, and the 4D tensor completion framework is
used to obtain the complete tensor of dual-energy cone-beam
measurements. Figures 9(A) and 9(B) depict the reconstruc-
tions for each energy channel, and the material decomposition
corresponding to the 256th axial slice of the phantom obtained
using the proposed measurement’s estimation approach with
the FDK algorithm is depicted in Figs. 9(C) and 9(D). The
concentrations obtained for each vial are depicted in Fig. 9(D).
As can be seen, the vials with the highest concentrations are

Fig. 10. kV switching with coded aperture fan-beam emulation.
(A), (B) FBP reconstructions for 70 kV and 130 kV channels obtained
from the estimated set of measurements. (C), (D) Water–iodine
material decomposition. Water concentration display is [0,1000]
mg/ml, and iodine concentration display is [0,30] mg/ml. Iodine ROI
concentration measures indicated in the center of each vial are given in
mg/ml. (E)–(H) Same results when using the SIRT algorithm.
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accurately reconstructed with the proposed low-dose method.
For this experiment, we do not include SIRT reconstructions, as
the computational complexity of computing the reconstruction
cannot be handled by the hardware resources available in the
laboratory at the moment for a 512× 512× 512 object.

As shown in Fig. 9, the reconstruction contains multiple ring
artifacts that can be explained by the geometric magnification
of CA elements on the FPD. To verify this statement, we per-
form an emulation of having one-to-one correspondence of
CA elements with FPD elements, and we use the central rows
of the FPD to attain a fan beam of the central axial slice using
a 30% transmittance CA. Figures 10(A)–10(D) depict the
reconstructions for each channel as well as the material decom-
position using the FDK algorithm. Note that the artifacts are
reduced in this experiment, and evidence that improving the CA
manufacturing and correspondence with the FPD will result
in improvements in the results. Figures 10(E)–10(H) depict
reconstructions using the SIRT algorithm; as can be seen, both

Fig. 11. 3D coded aperture fan-beam emulation. (A), (B) FBP
reconstructions using a tungsten filter of 0.0254 mm and without
a filter. Obtained from the estimated set of measurements. (C),
(D) Water–iodine material decomposition. The concentrations are
given in mg/ml. (E), (F) Possible manufacturing method for 3D
coded apertures: (E) plastic mold and (F) radiograph after filling with
tungsten/epoxy mixture. Water concentration display is [0,1000]
mg/ml, and iodine concentration display is [0,30] mg/ml. Iodine ROI
concentration measures indicated in the center of each vial are given in
mg/ml.

algorithms perform similarly and are able to attain good mate-
rial decomposition performance. Furthermore, as future work,
the research group will experiment with varying the current as
well as the integration time as means to reduce the noise in the
proposed approaches while still attaining a lower radiation dose.

The final experiment aimed to emulate the performance
of a 3D CA. In this case, the source was set to 130 kV and 120
µa. Additionally, two different tungsten thicknesses were used
as filters in front of the x-ray source, namely, 0.0254 mm and
0.635 mm. The latter scan resulted in almost complete block-
age of the source. To attain dual-energy data, an emulated
CA consisted of unblocking elements, and elements with the
aforementioned thicknesses. The number of elements for the
unblocking elements and the 0.0254 mm thickness was the
same, while the number of elements for the 0.635 mm thickness
was set such that an equivalent amount of energy was attained
when compared to the previous experiment. Figures 11(A)–
11(D) depict the results for this experiment. As can be seen, the
number of artifacts increases since the number of unblocking
elements is very low. However, as previously mentioned, the
optimization of the number of elements, as well as their dis-
tribution, is still an open problem that can improve the results
greatly.

6. DISCUSSION AND CONCLUSION

Two low-dose x-ray dual-energy architectures based on
StaticCode CT hardware principles are proposed and validated
using a microCT scanner. The proposed systems enable imaging
of an object with fewer measurements than most conventional
systems and/or at a reduced exposure level, and they have the
potential to provide a cost-effective alternative to photon count-
ing spectral CT techniques and a faster scanning solution with
a reduced x-ray radiation dose compared to traditional spectral
CT imaging systems. Both systems rely on coded illumination
with a plurality of x-ray spectra created by CAs. In the second
system, the thicknesses and/or the materials used across the
elements of the CA mask vary across the structure. In addition,
as both systems use conventional integrating detectors, the
spatial resolution that can be achieved is higher compared with
photon counting detector systems in general. The methods
developed in this paper can be directly applied to obtain material
decomposition using other dual-energy scanners with CAs
such as systems with a dual-source, dual-layer detector, and/or
split-beam filtering.

As shown in Fig. 9, the reconstruction contains multiple ring
artifacts that can be explained by the geometric magnification
of CA elements on the FPD, which can be evidenced by the
experiment results shown in Fig. 10 in which there is one to
one correspondence of CA elements with detector elements.
Furthermore, we plan to improve the calibration method for
the material decomposition so that we can attain weights that
correspond to the behavior of the materials under the scanner in
use. Nonetheless, the ROI concentrations obtained are similar
and in some cases outperform state-of-the-art systems for low-
dose material decomposition [27]. Note that in this paper, we
obtained object-free projections using the CA mask to obtain
a mask array indicating the location of the measurements via
thresholding segmentation [17]. However, advanced methods
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to account for the “geometric” penumbra effect governed by the
size and shape of the x-ray focal spot as well as the position of the
CA are a topic of current research. Finally, Fig. 11 depicts a pos-
sible manufacturing method for the 3D CAs in future research.
As can be seen, a 3D plastic mold with different thicknesses
can be designed (Fig. 11(E)) such that when filled with the
tungsten epoxy mixture, different energy profiles can be attained
to perform material decomposition. Figure 11(F) depicts a
radiograph obtained for a section of the 3D printed code after it
was filled with the tungsten epoxy mixture. The calibration and
implementation of this CA are topics of current work.
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