2021 60th IEEE Conference on Decision and Control (CDC) | 978-1-6654-3659-5/21/$31.00 ©2021 IEEE | DOIL: 10.1109/CDC45484.2021.9683353

2021 60th IEEE Conference on Decision and Control (CDC)
December 13-15, 2021. Austin, Texas

Distributed Bayesian Parameter Inference for Physics-Informed Neural Networks

He Bai Kinjal Bhar

Abstract— We consider a distributed Bayesian parameter in-
ference problem where a networked set of agents collaboratively
infer the posterior distribution of unknown parameters in a
partial differential equation (PDE) based on their noisy mea-
surements of the PDE solution. Given the unknown parameters
residing in a known compact set, we assume that a physics-
informed neural network (PINN) has already been trained as
the prior model, which is valid for all possible parameters
within the set. PINNs incorporate PDEs as training constraints
for better generalization even with less training samples. We
introduce a distributed Langevin Markov Chain Monte-Carlo
algorithm that employs the trained PINN model and the agents’
noisy measurements to approximate the posterior distribution
of the unknown parameters. We establish convergence proper-
ties of the algorithm and demonstrate the effectiveness of the
proposed approach through numerical simulations.

Index Terms— Distributed Bayesian learning, Physics-
informed Neural Network, Multi-agent systems

I. INTRODUCTION

Modeling and analysis of complex physical, biological and
chemical systems have been hindered due to the prohibitive
cost of data acquisition. In the small data regime, majority of
state-of-the-art machine learning techniques are not robust,
fail to generalize, and do not provide performance guarantees
when dealing with such complex systems. However, partial
knowledge of physical laws or empirically validated rules
governing the dynamics of such complex systems may be
available. Recent studies show that this prior knowledge can
magnify the information content of limited data when it’s
incorporated into a learning algorithm. This prior information
constrains the admissible solution space to a manageable
size which enables the algorithm to quickly steer toward the
right solution and generalize well when only a few training
examples are available.

Gaussian processes regression (GPR) [1] and physics-
informed neural networks (PINNs) [2] have been proposed
as powerful alternatives to purely data-driven methods. These
approaches model complex systems by encoding the under-
lying physical laws in the form of differential equations and
give relatively accurate predictions for the unknown param-
eters with limited data. Even though GPRs were initially
proposed for linear operators [3], extensions to nonlinear

H. Bai and K. Bhar are with Oklahoma State University, Stillwater, OK
74078, USA. he .bai@okstate.edu, kbhar@okstate.edu

J. George and C. Busart are with the U.S. Army Research Labora-
tory, Adelphi, MD 20783, USA. jemin.george.civ@mail.mil,
carl.e.busart.civ@mail.mil

The work of the first two authors were partly supported by the National
Science Foundation (NSF) under Grant No. 1925147. The computing for
this project was performed at the High Performance Computing Center at
Oklahoma State University supported in part through the National Science
Foundation grant OAC-1531128.

Jemin George

Carl Busart

problems were proposed in subsequent studies [4], [5] in
the context of both inference and systems identification.
However, general applications of GPR for nonlinear partial
differential equations (PDEs) often require local linearization
and restricting assumptions on the prior which renders the
approach brittle [6].

PINNs embed a PDE into the loss of the neural network
using automatic differentiation techniques to approximate
the solution of the PDE via deep learning [2], [7]-[9].
These algorithms can be used to approximate solutions to
both fractional PDEs [10] and stochastic PDEs [11], [12].
Moreover, PINNs can be used to solve inverse problems as
easily as forward problems [13], [14]. In modeling problems
with long-time PDE integration, the time-space domain can
become prohibitively large. Under such circumstances, a
parallel PINN (PPINN) can be used to divide the problem
into many independent short-time problems [15]. By utilizing
parallel implementation, the PPINN framework further en-
hances the computational efficiency and speed of the training
process.

In Computational Fluid Dynamics and Computational
Structural Dynamics, PINNs are used as a function ap-
proximator for the solution of the partial differential equa-
tions governing the physics of the problem. For example,
PINNs are used to solve complex fluid—structural interaction
modeling problems such as the aeroelastic blade vibration
in turbomachinery [16]. PINNs have also been used to
predict a spatiotemporal wind field [17] based on LiDAR
measurements.

PINNs are not inherently equipped with uncertainty quan-
tification and their application to noisy data has been largely
limited. However, physics-informed generative adversarial
networks can be used to quantify parametric uncertainty [11].
Additionally, polynomial chaos expansions can be used to
quantify model uncertainty [18]. Bayesian physics-informed
neural networks (B-PINN) can be used to solve both for-
ward and inverse PDE problems with noisy data [19]. B-
PINNs consist of two parts: a Bayesian neural network
(BNN) [20] which uses a PDE prior with unknown terms;
and an algorithm for estimating the posterior distributions of
the parameters. Specifically, [19] employs the Hamiltonian
Monte Carlo [21] and the variational inference [22] to
estimate the posterior distributions.

In this paper, we consider an inverse problem where a
distributed group of agents (e.g., a sensor network) inde-
pendently collect and use noisy measurements to identify
unknown parameters of a PDE. The existing inverse problem
formulations for PINNs, such as [8], [13], [14], [19], esti-
mate the neural network weights, biases, and the unknown

978-1-6654-3659-5/21/$31.00 ©2021 IEEE 2911

Authorized licensed use limited to: He Bai. Downloaded on November 30,2022 at 19:44:36 UTC from |IEEE Xplore. Restrictions apply.

parameters simultaneously based on the measurements. Such
approaches result in a high-dimensional vector which require
a large number of measurements. We explore the following
alternative strategy to reduce the data requirement.

We start with training a PINN offline for a range of the
unknown PDE parameters. We will use the trained PINN
as a prior model when estimating the unknown parameters.
We then formulate the problem in a distributed Bayesian
setting and propose a distributed Langevin Markov Chain
Monte Carlo (MCMC) algorithm. This algorithm employs
the trained PINN, the noisy measurements collected by
the agents, and the samples shared between the agents to
approximate the posterior distribution of the unknown param-
eters. We establish convergence properties of the proposed
distributed Bayesian learning algorithm. We expect that our
proposed approach requires less online measurements since
the PINN weights and biases are fixed during the online
estimation of the unknown parameters. Our simulation results
demonstrate that the proposed approach is effective in the
inference of the unknown parameters.

The rest of this paper is organized as follows. A brief
review of PINN is provided in Section II. We formulate the
centralized and distributed inference problems in Section III.
The proposed distributed Langevin algorithm is presented in
Section IV. In Section V, we provide two numerical simu-
lation examples. Conclusions and future work are discussed
in Section VL.

Notation: Let R™*™ denote the set of n x m real matrices.
For a vector ¢, ¢; is the i'" entry of ¢. An n x n identity
matrix is denoted as I, and 1,, denotes an n-dimensional
vector of all ones. The p-norm of a vector x is denoted as
x|, for p € [1,00]. Given matrices A € R™*" and B €
RP*1 A ® B € R™P*™ denotes their Kronecker product.
For a graph G (V, €) of order n, V = {vy, ..., v, } represents
the agents or nodes and the communication links between
the agents are represented as & = {ej,...,e;} C V x V.
Let A = [a; ;] € R™ " be the adjacency matrix with entries
of a; ; = 1if (v;,v;) € € and zero otherwise. Define A =
diag (A1,) as the in-degree matrix and £ = A — A as the
graph Laplacian. A Gaussian distribution with a mean p €
R™ and a covariance X € RZ;™ is denoted by N (y, X).

II. REVIEW OF PHYSICS-INFORMED NEURAL NETWORKS

Consider a generic partial differential equation (PDE) with
boundary conditions of the following form

Py(u; &) = F(y;€), yeY (1)
By(u;€) = B(y;€), yeB (2)

where y represents the state variables in the PDE, possibly
including time ¢ as one of its elements, £ € R contains the
parameters in the PDE and in the boundary conditions, u(y)
is the solution to the PDE, P, (u;¢) is a generic differential
operator acting on the entire physical domain Y, B, (u;¢)
is the boundary condition operator acting on the boundary
domain B C Y, and F'(y; &) and B(y; §) represent the forcing
term and the boundary conditions, respectively.

When ¢ is known, a physics-informed neural network
(PINN) is trained to approximate the PDE solution u(y) [7]-
[9]. Denote by 6 all the weight matrices and bias vectors in
the PINN. Then the PINN output, denoted by u(y;0), is a
nonlinear function of the input y and the neural network
parameters 6.

With an explicit form of (1) and (2), the training of the
PINN can be achieved by artificially generating data points
aty; € Y, i =1,---,N and optimizing # in the PINN to
minimize a physics-informed loss function O(#). One such
function can be the minimum square error given by [2]

1 & ’
00) = 5 3 [Putits0):6) = Fluse)|

2
S Byt 0:6) - Bluso)||
y;: €B

where M is the cardinality of B. To obtain derivatives of
@(y; 0), auto-differentiation techniques are used. Stochastic
gradient descent type of algorithms can be used to optimize
6. Once the optimization is complete, the PINN 4(y; 6) can
be used as a surrogate model for (1)-(2). The advantage of
the PINN formulation is that synthetic data can be generated
for training without collecting real data.

ITI. PROBLEM FORMULATION
A. Centralized Bayesian inference

In this paper, we investigate the scenario where the param-
eter £ is unknown. We propose to first train a PINN 4(y, &; 0)
offline to represent the solution to (1)—(2) for a compact set
of £ € = and then infer the true parameter {7 using the
trained PINN model i(y, &; §) and measurements of the PDE
solution. Denote by u(y,£) the true solution to (1)—(2) for
a £ € Z. Then the trained PINN 4(y, &; 0) can be used as a
surrogate model for u(y, &) with y € Y and € € Z.

Suppose that NV noisy measurements at y;’s, i = 1,--- | N,
of an underlying physical process u(y;, &) with & € = are
collected. The measurements are given by [19]

u(yi, §r) = w(yi, &) + €, 4

where € is the additive noise with a distribution p,,(+;vy)
in which -, contains the known parameters of the noise
distribution. It is possible to design inference algorithms
to estimate &p given the trained PINN 4(y,&;6) and the
collected measurements (y;,&r)’s. For example, one can
estimate &r as the solution to the optimization problem

1 N
min —
iy 2

subject to £ € =.

2
2 &)

w(yi, &;0) —ﬂ(yi,ﬁT)H

However, the formulation in (5) does not capture the
uncertainty associated with the final estimate ¢ and may
result in convergence to a local minimum. Therefore, we
adopt a Bayesian approach, where a prior distribution for
the unknown parameters & is assigned and the posterior
distribution of £ is obtained from the Bayes theorem using
the assigned prior and a measurement likelihood function.

2912

Authorized licensed use limited to: He Bai. Downloaded on November 30,2022 at 19:44:36 UTC from |IEEE Xplore. Restrictions apply.

The measurement likelihood function depends on the
distribution of the noise term €' in (4). Specifically, using
(y;, B;€) as a surrogate for u(y;, &), we obtain an approx-
imation of the likelihood function as

~ pu(t(yi, &) — W(Yi, §;0); 7). (1)

For example, when ¢* ~ N(0,0%), pu(;0) =
v (ga(?) and thus pa(u)ld) =
— 5= XD (= gz (i, &7) — u(yi, €))?).

Denote the prior for £ by pe(-). Let D be the set containing
the measurements %(y;,&r), ¢ = 1,--- , N. The posterior of
& given D is given by

N
p(EID) o pe(§)p(DIE) = pe(§) Hp(ﬂ(yi, &r)l§))

N
3) Hpu(ﬂ(yi7fT) -

i= 1

Hpu

Itis pos31ble to condition the measurement data D on both
& and 6, which leads to simultaneous training of the PINN
and estimation of £&7. We will examine this option in future
work. Note that in this case, the inference problem has a
much higher dimension due to the size of 6.

w(Yi, €);Yu))

(i, &) — (i, 5 0); Yu)- (10

B. Distributed Bayesian inference

Suppose that the N measurements are collected by n
agents distributed within Y. Denote by D? the measurement
data set collected by agent ¢, ¢ = 1, .-+ ,n. We assume that
D =D'U---UD" and that D’ N D? = (), Vi # j. Then the
target posterior p(¢|D) can be written as

n
pE[D) o [] p(D'1€)pe ()™

i=1
Our objective is for the agents to collaboratively infer the
posterior distribution p(£|D) by exchanging their samples of
£. We assume that the agents can communicate information
between them and that the communication topology G is

bidirectional and connected.

(1)

IV. A DISTRIBUTED LANGEVIN ALGORITHM

To achieve our objective, we construct a distributed
Markov Chain Monte-Carlo (MCMC) algorithm to approxi-
mately sample from the posterior. It follows from (11) that

= "logp(D'[¢) +logpe(§) + C
i=1

for some constant C. Following [23]-[26], we further define

energy-like functions U*(¢, D*) > 0 and V/(£) > 0 such that

p(D'[€) o exp(~U"(¢, D)) and pe(€) o exp(=V(£)).
(13)
Note that U*(&, D?) can be computed based on the collected
data D' and £ Let Yi(£,D%) = Ui, DY) + LV(¢). It

log p(¢|D) 12)

follows from (13) that there exists a constant C; such that

—log p(D'|€) — %bgpg(f)

The Unadjusted Langevin Algorithm (ULA) [23]-[26] has
been proposed as a first-order, gradient based Monte Carlo
sampling technique to approximate the posterior as

aZV@/

where o > 0 is the step-size and v(k) ~ N(0,Iq4,).
For a sufficiently small «, (15) guarantees that the Kull-
back-Leibler (KL) divergence of the distribution of £(k) with
respect to p(£|D) converges to a small bias proportional to
av. Substituting Y(¢, DY) = U(&, DY) + LV (€) yields

—~ aZV5U’

=YUEDY+ 0O (14)

Ek+1) = k), D) +v2av(k), (15)

§(k+1) = D) — aVeV(E(R))

+V2au(k)

—aVeV(E(k)) + V2au(k),

a7

where g’ (£(k), D?) is the approximation of V¢ U*({(k), DY)
in which the PINN 4(-,&;0) is used in the likelihood
computation as in (7). Specifically,

(16)

—azg

D

-3 {Vg log pu (ﬂ(yj> &r)

j=1

— a(y;, §(k); 07).

A. Distributed Langevin algorithm

We choose the prior pe(§) ~ N(,u,s’lldg) for any u €
R% and s > 0. According to (13), we set

V() = SllE— ull®

Let &'(k) € R% denote the k-th posterior sample of ¢ for
agent i, « = 1,--- ,n. We propose the following distributed
Langevin algorithm

19)

Ek+1) = Bzau — & (k)

—aVeV(€'(k) — ang’ (E (), D) + V200! (k),
where a;; denotes the entries of the adjacency matrix
corresponding to the communication network G (V, &), 3 is
the consensus step-size and v*(k) ~ N (0,nlg,).

The proposed algorithm (20) is distributed since each
agent employs information only from itself and its neighbors.
The agents share a common PINN 4(-,&;6) and a common
prior pe(-). To collect samples from the posterior distribution
p(&|D), multiple Markov chains can be run in parallel for
each agent and the final sample from each chain can be
retained as an approximation of p(£|D). Another approach
is to collect samples from a single Markov chain after a
transient period. The algorithm is generic and can be applied

(20)

2913

Authorized licensed use limited to: He Bai. Downloaded on November 30,2022 at 19:44:36 UTC from |IEEE Xplore. Restrictions apply.

to other distributed inference problems. The psuedo code of
the proposed algorithm is given in Algorithm 1.

To analyze the algorithm, we define

€(&'(k), D) = g' (¢'(k), D') = VeU'(£'(K), D), (21)
where
‘ D’
VeU' (€' (k), D) = =3 [Velogpu(uly;, &r)
= (22)

— u(y; €'())i)]

The €(&°(k), D7) represents the error induced by the PINN
approximation. We rewrite (20) using VY* = LVV 4 VU*
and (21) as
g(k+1) = — B ai; (€' (k) - € (k)
j=1
— anVeY ('(k). D) + anc(€! (k). D) + V20 (k).
(23)

If (&' (k),D') = 0, (23) is similar to the distributed
unadjusted Langevin algorithm with time-varying step-sizes
in [27]. Due to the page limit, we omit the convergence anal-
ysis of (23) and provide a brief summary of the convergence
results. Consensus between the agents is established with the
expected second moment of the consensus error bounded
by a vanishing term and a constant offset proportional to
«. The offset accounts for the added noise vy, the second
moment of the gradient difference, and the PINN’s gradient
approximation error. Convergence of the averaged sample’s
distribution to the target distribution p(£|D) is proved by
showing that its KL divergence is upper bounded by the sum
of an exponentlally decaying term and a constant offset C'r,
proportional to . This upper bound can be improved to
O(«) if « is chosen sufficiently small. Assumptions follow
from distributed nonconvex optimization, including bounded
gradients, Lipschitz smoothness of the likelihood function,
and conditions on the step-sizes « and and on the target
distribution p(¢|D).

Algorithm 1 Decentralized Bayesian Inferencing for PINNs
€"(0), k=0

1. Initialization: £'(0), - - -
2: Input: K >0, a and
3: while k < K do
4. for ¢+ =1 to n (in parallel) do
5: Sample v'(k) ~ N(0,nlg,)
6: Compute g' (¢'(k), D?) as in (18)
7

Compute & AZ(k) + E 1 Qi (k) — ()
8: Update €' (k‘ + 1)_ — 5() — é(k) —
aVeV (g (k) — ang' (€'(k), DY) + V2av' (k)

9: end for
k+—k+1
10: end while

V. SIMULATION EXAMPLES

We present two examples. In the first example, we il-
lustrate the uncertainty produced by the centralized algo-
rithm (17) and compare it with a gradient descent (GD) algo-
rithm. In the second example, we demonstrate the distributed
algorithm (20). All the neural networks used in the examples
have 8 layers with 20 neurons in each layer. The activation
function is tanh. We use the SCIANN wrapper in [8] for
PINN training. The priors for the unknown parameters are
the standard normal random distribution truncated to =. Each
agent discards final samples that are outside of =.

A. Burger’s equation

We consider the 1-D Burger’s equation

ou ou € 0%u
Tt o2 020, te0,1, yel[-1,1, (24
L P 0.1, yel-11, 4
with the boundary conditions
u(t,y==+1)=0, wu(t=0,y)=—sinny. (25)
We train a PINN 4(t,y,€) for £ € = = [0.01,0.2] with
uniform grid points of 100 x 100 x 10 in [0,1] x [—1,1] x

[0.01,0.2]. We use a batch size of 2048 with 10000 epochs.
Similarly, we train a PINN u(¢,y) for the PDE with the
true parameter & = 0.15. This is used as the ground truth.
Shown in Fig. 1, three sensors are deployed to measure
u(t,y,&r) with a zero-mean Gaussian sensor noise of a
standard deviation of 0.05.

10 7
08

06

04 025

—=0.50
02

-0.75

o0 -1.00
-1.00 -0.75 -0.50 -0.25 000 025 050 075 100
®

Fig. 1: Three sensors (indicated by stars) are located in the field to
measure the true physics.

We run 100 Markov chains in parallel for each agent
and collect the final samples. We compare the mean and
standard deviation of estimates between the Bayesian infer-
ence algorithm (17) and a GD algorithm that maximizes the
measurement likelihood. The GD algorithm is initialized with
100 initial estimates that are the same as the initial samples
of the 100 Markov chains.

When only one measurement for each sensor is collected at
t = 0.1 second, as shown in Fig. 2, the GD result converges
to a wrong estimate with zero variance, meaning that all
100 initial conditions lead to the same result. However,
the Bayesian inference result indicates that there is a large
uncertainty in the estimates. When we increase the number
of measurements to 10 between ¢ = 0.1 and ¢ = 0.5, both
algorithms produce estimates close to &7 = 0.15, as shown in
Fig. 3. However, the GD results have no uncertain measure.

2914

Authorized licensed use limited to: He Bai. Downloaded on November 30,2022 at 19:44:36 UTC from |IEEE Xplore. Restrictions apply.

The uncertainty produced by the Bayesian inference re-
sults clearly indicates reduced variance due to the increase
of the number of measurements whereas the GD result only
produces one estimate without a variance measure.

= Bayesian estimate
GD estimate

010
0.08 W

o 250 500 750 1000 1250 1500 1750 2000

time steps
Fig. 2: Comparison of the Bayesian inference performance (variance
and mean estimates) with a GD algorithm that maximizes the
measurement likelihood using 1 measurement per agent at ¢ = 0.1
seconds for each of the three sensors. The spread plot indicates 1
standard deviation.

014 . -
LIPSV e VISV Ty

012

0.10

0.08

— Bayesian estimate
004 GD estimate

o 250 500 750 1000 1250 1500 1750 2000

time steps
Fig. 3: Comparison of the Bayesian inference performance (stan-
dard deviation and mean estimates) with a GD algorithm that
maximizes the measurement likelihood using 10 measurements per
agent between ¢t = 0.1 and ¢t = 0.5 seconds for each of the three
sensors. The spread plot indicates 1 standard deviation.

B. Transport equation

We consider a two-dimensional transport equation

ou

ot +& -Vu=0,
where &, = (&:,&,) " € R? s a fixed unknown velocity. The
initial condition is given by u(z,y,0) = exp(— a5 ((z —
0.05)% + (y — 0.05)?)).

We assume that three sensors are deployed to measure
&+ ulx;,yi,t), i = 1,2,3, where £, represents a common
unknown bias in the measurements. Fig. 4 shows the location
of the sensors. The communication topology is a string graph
where agent 2 (located at the top left among the three agents)
communicates with agent 1 and agent 3.

The objective is to estimate £ = (&, &,,&,) | given spatial-
temporal measurements of &.+u(x;, y;, t). A neural network
was trained offline for (z,y,t,&,, &) € [0, 1] %[0, 1]x [0, 1] x
[—1,1] x [-1,1]. 2.5 million points were uniformly sampled
from the domain and used to train a PINN for 3000 epochs.

Each agent collects 5 measurements between ¢ = 0.1
and ¢ = 0.3 seconds at its location. The measurements are
generated from the truth u(z,y,t) = & + exp(— g5z ((z —
0.05—&,t)%+(y—0.05—&,¢)?)) and corrupted by a Gaussian

(26)

10 10
08 08 08 08
06 0.6 0.6 06
- =
0.4 04 04 04
02 02 02 0z
0.0 0.0 0.0 0o
oo 02 04 06 08 10 00 02 04 06 08 10
x x

Fig. 4: Three sensors (indicated by squares) are located in the field
to measure the field. Left: ¢ = 0 second. Right: ¢ = 0.3 seconds.

noise N (0,0.01%). We set & =1, £, = —0.5 and &, = 0.5
as the truth.

Fig. 5 shows the estimation performance of the three
agents. We observe very similar performance across the
agents and convergence to the true values with small un-
certainty. As a comparison, Fig. 6 shows the centralized
estimation performance, where the measurements of the
agents are aggregated and processed at a central location.
If the agents do not communicate and use only their own
measurements, they produce very uncertain estimates, as
shown in Fig. 7 for agent 2. In this case, agent 1 and 3
perform worse.

100
075
050
025 —— bias estimation error
000 = velocity estimation error
v velocity estimation error
—0.25
—0.50
-0.75
o 250 500 750 1000 1250 1500 1750 2000
time steps
100 et —_— — —
075 1}
!
0.50 | g — —— -
I/
025 I —-= bias estimation error
000 1 x velocity estimation error
y velocity estimation error
-0.25
—0.50
—0.75
o 250 500 750 1000 1250 1500 1750 2000
time steps
100 gt —]
/
075 1
i
0.50 1z -- - ———
e
[
025 i(=== bias estimation error
000 { = velocity estimation error
¥ welocity estimation error
—0.25
—0.50
—0.75

o 250 500 750 1000 1250 1500 1750 2000

time steps
Fig. 5: Distributed estimation performance of &., &, and &, for
agent 1-3. The spread plots are for 1 standard deviation.

2915

Authorized licensed use limited to: He Bai. Downloaded on November 30,2022 at 19:44:36 UTC from |IEEE Xplore. Restrictions apply.

10 [8]
05
00 [9]
-0.5
_1.0 4 — bias estimation error [10]
= velocity estimation error
¥ welocity estimation error
-15
o 250 500 750 1000 1250 1500 1750 2000 [11]
time steps
Fig. 6: Centralized inference performance where all the measure-
ments are aggregated. [12]
100
075 !-""'j'— ''''' (13]
050
B e e o e s i
000 [14]
—0.25
~0.50 7 —-- bias estimation errar [15]
_075 # velocity estimation error
y velocity estimation error
o 250 500 750 1000 1250 1500 1750 2000
time steps 16]
Fig. 7: Without communication, the estimation performance of :
agent 2 has large uncertainties.
[17]
VI. CONCLUSIONS AND FUTURE WORK
In this paper, we investigate a distributed inference prob- [ig]
lem for a PDE with unknown parameters. We consider that
a group of agents measure the PDE solution at distinct
locations. We train a physics-informed neural network for [j9)
a range of the unknown parameters and design a distributed
Langevin Markov Chain Monte Carlo algorithm to approx-
imate the posterior distribution of the unknown parameters. [20]
We establish convergence properties of the algorithm. Our
preliminary simulation results demonstrate the effectiveness [21]
of the proposed approach. Our future work involves investi- 27
gation of different priors and testing on complex PDEs.
[23]
REFERENCES

[1] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Inferring solutions (24]
of differential equations using noisy multi-fidelity data,” Journal of
Computational Physics, vol. 335, pp. 736746, 2017. [25]

[2] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,” Journal [26]
of Computational Physics, vol. 378, pp. 686-707, 2019.

[3] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Machine learning
of linear differential equations using gaussian processes,” Journal of
Computational Physics, vol. 348, pp. 683-693, 2017. [27]

[4] ——, “Numerical gaussian processes for time-dependent and nonlinear
partial differential equations,” SIAM Journal on Scientific Computing,
vol. 40, no. 1, pp. A172-A198, 2018.

[5] M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine
learning of nonlinear partial differential equations,” Journal of Com-
putational Physics, vol. 357, pp. 125-141, 2018.

[6] H. Owhadi, C. Scovel, and T. Sullivan, “Brittleness of Bayesian
inference under finite information in a continuous world,” Electronic
Journal of Statistics, vol. 9, no. 1, pp. 1 — 79, 2015.

[71 Z. Mao, A. D. Jagtap, and G. E. Karniadakis, “Physics-informed
neural networks for high-speed flows,” Computer Methods in Applied
Mechanics and Engineering, vol. 360, p. 112789, 2020.

2916

E. Haghighat and R. Juanes, “Sciann: A keras/tensorflow wrapper
for scientific computations and physics-informed deep learning using
artificial neural networks,” Computer Methods in Applied Mechanics
and Engineering, vol. 373, p. 113552, 2021.

X. Meng and G. E. Karniadakis, “A composite neural network that
learns from multi-fidelity data: Application to function approximation
and inverse pde problems,” Journal of Computational Physics, vol.
401, p. 109020, 2020.

G. Pang, L. Lu, and G. E. Karniadakis, “FPINNS: Fractional physics-
informed neural networks,” SIAM Journal on Scientific Computing,
vol. 41, no. 4, pp. A2603-A2626, 2019.

L. Yang, D. Zhang, and G. E. Karniadakis, “Physics-informed gener-
ative adversarial networks for stochastic differential equations,” SIAM
Journal on Scientific Computing, vol. 42, no. 1, pp. A292-A317, 2020.
D. Zhang, L. Guo, and G. E. Karniadakis, “Learning in modal space:
Solving time-dependent stochastic pdes using physics-informed neural
networks,” SIAM Journal on Scientific Computing, vol. 42, no. 2, pp.
A639-A665, 2020.

Y. Chen, L. Lu, G. E. Karniadakis, and L. D. Negro, “Physics-
informed neural networks for inverse problems in nano-optics and
metamaterials,” Opt. Express, vol. 28, no. 8, pp. 11618-11633, Apr
2020.

M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechan-
ics: Learning velocity and pressure fields from flow visualizations,”
Science, vol. 367, no. 6481, pp. 1026-1030, 2020.

X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis, “PPINN: Parallel
physics-informed neural network for time-dependent pdes,” Computer
Methods in Applied Mechanics and Engineering, vol. 370, p. 113250,
2020.

E. Ang and B. F. Ng, “Physics-Informed Neural Networks for the
Modelling of Fluid-Structure Interactions,” in APS Division of Fluid
Dynamics Meeting Abstracts, ser. APS Meeting Abstracts, Jan. 2020,
p. Q02.004.

J. Zhang and X. Zhao, “Spatiotemporal wind field prediction based
on physics-informed deep learning and lidar measurements,” Applied
Energy, vol. 288, p. 116641, 2021.

D. Zhang, L. Lu, L. Guo, and G. E. Karniadakis, “Quantifying total
uncertainty in physics-informed neural networks for solving forward
and inverse stochastic problems,” Journal of Computational Physics,
vol. 397, p. 108850, 2019.

L. Yang, X. Meng, and G. E. Karniadakis, “B-PINNs: Bayesian
physics-informed neural networks for forward and inverse pde prob-
lems with noisy data,” Journal of Computational Physics, vol. 425, p.
109913, 2021.

R. M. Neal, Bayesian Learning for Neural Networks.
York, 1996.

R. M. Neal, “MCMC using Hamiltonian dynamics,” arXiv e-prints,
arXiv:1206.1901, 2012.

A. Graves, “Practical variational inference for neural networks,” in
Advances in Neural Information Processing Systems, vol. 24, 2011.
Y.-A. Ma, Y. Chen, C. Jin, N. Flammarion, and M. 1. Jordan, “Sam-
pling can be faster than optimization,” Proceedings of the National
Academy of Sciences, vol. 116, no. 42, pp. 20 881-20 885, 2019.

X. Cheng and P. L. Bartlett, “Convergence of Langevin MCMC in
KL-divergence,” Proceedings of Machine Learning Research, no. 83,
pp. 186-211, 2018.

S. Vempala and A. Wibisono, “Rapid convergence of the unadjusted
Langevin algorithm: Isoperimetry suffices,” in Advances in Neural
Information Processing Systems, 2019, pp. 8094-8106.

M. Raginsky, A. Rakhlin, and M. Telgarsky, “Non-convex learning via
stochastic gradient Langevin dynamics: a nonasymptotic analysis,” in
Proceedings of the 2017 Conference on Learning Theory, vol. 65.
PMLR, 07-10 Jul 2017, pp. 1674-1703.

A. Parayil, H. Bai, J. George, and P. Gurram, “Decentralized Langevin
dynamics for Bayesian learning,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

Springer New

Authorized licensed use limited to: He Bai. Downloaded on November 30,2022 at 19:44:36 UTC from |IEEE Xplore. Restrictions apply.

