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ABSTRACT

This paper introduces a single-scan dual-energy coded aper-
ture computed tomography system that enables material char-
acterization at a reduced exposure level. Rapid kVp switch-
ing with a single-static block/unblock coded aperture relies on
coded illumination with a plurality of X-ray spectra created
by the kVp switching. Based on the tensor representation of
the projection data, an algorithm to estimate the missing mea-
surements in the tensor is proposed. This results in a full set of
synthesized measurements that can be used with filtered back-
projection or iterative reconstruction algorithms to accurately
reconstruct the object in each energy channel. Simulation re-
sults validate the effectiveness of the proposed cost-effective
solution to attain material characterization in low-dose dual-
energy CT.

Index Terms— X-ray, Low-Dose, Tensor Completion.

1. INTRODUCTION

Computed tomography (CT) scanners reconstruct the linear
attenuation coefficients of an object. These coefficients are
a function of the material composition, the X-ray source ef-
fective energy, and the materials’ mass density. Thus, materi-
als with a different chemical composition can have the same
linear attenuation coefficient in conventional CT reconstruc-
tions, which makes material characterization unfeasible [1].
To address these limitations, spectral CT uses measurements
acquired at multiple energy spectra to quantify material com-
position. Currently, commercial dual-energy CT systems ob-
tain two energy measurements by using sequential CT scans
with different X-ray tube voltages, rapid kVp switching [2],
a set of sandwiched detectors capable of discriminating be-
tween low and high X-ray energies [3], dual-source X-ray
systems, or split-beam filtration. Then, material decompo-
sition algorithms are used to identify particular materials or
quantify their mass density. Furthermore, photon-counting
detectors are recently being used in research settings to at-
tain projection data at multiple energy channels to increase
the spectral resolution. Yet, while these detectors are consid-
ered one of the future directions of CT technology, they are

prohibitively expensive and are not yet applicable to practical
cone-beam CT in large flat-panel forms [4].

The rapid increase in CT usage worldwide has led to con-
cerns about future public health problems related to the CT
radiation dosage. Thus, reducing radiation doses per CT scan
has motivated major efforts from industry and academia to
develop new approaches for attaining clinically useful images
with the lowest possible radiation dose — methods referred
to as low-dose CT [5]. Automatic tube-current reduction dur-
ing gantry rotation and sparse-ray acquisition are two com-
peting approaches. However, current implementations to at-
tain sparse view sampling, such as switching the X-ray source
on and off rapidly, are difficult to implement in practice [6].
The radiation doses in dual-energy systems are comparable
to those attained in single-energy CT. However, reconstruc-
tion algorithms, as well as hardware that can aid in lower-
ing the patient radiation dose, remain a topic of active re-
search for both CT modalities. In our previous work [7], we
explored a low-dose structured illumination system coined
coded aperture compressive X-ray CT to address the afore-
mentioned limitations in single energy CT. In this system, a
static block/un-block 2D coded aperture is placed in front of
the X-ray source to subsample the measurements at each an-
gle position, effectively modifying the sensing matrix. The
implementation of these strategies in multi-energy systems,
however, is especially challenging since the accuracy of the
material decomposition stage decreases when low-dose sys-
tems are used to obtain the X-ray data. Comparison of the
proposed approach and state of the art inpainting methods can
be found in [7]. In this paper, we apply the structured illumi-
nation concept to low-dose dual energy systems and develop
a reconstruction framework to solve the resulting ill-posed
inverse problem. Namely, we propose the use of a single
static coded aperture together with a rapid kVp switching sys-
tem. Given the set of spectrally multiplexed measurements,
we propose an alternative reconstruction framework in which
we exploit the correlation of the data in the projection space to
estimate the measurements in the incomplete projection data
tensor constructed by stacking the sinogram measurements
obtained at each energy. This results in synthesizing a full
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set of measurements that can be used by conventional recon-
struction algorithms. Then, using the plurality of spectra, ma-
terial differentiation can be attained without sacrificing image
quality.

2. FORWARD MODEL

For simplicity, a fan-beam X-ray CT system is considered.
However, the generalization to cone-beam CT and other 3D
geometries is straightforward. The X-ray source travels in a
circular trajectory around the object, and X-ray projections
are measured at different angles using a line detector with
Q detector elements. At each detector position j, the mea-
surements are given by Beer-Lambert’s law of attenuation
Ij =

∫
E
I0j(E) exp

(
−
∫
`
µ(`, E)d`

)
dE, where I0j(E) is

the impinging X-ray photon intensity at energy E, µ(`, E)
is the linear attenuation coefficient of the object at position `
and energy E, and j = 1, · · · , QP where P is the number of
angles at which projections are taken. For simplification, in
single energy CT, the measured intensity is written in terms
of the effective energy Ē, i.e., the energy of a monoenergetic
source that would produce the same measurements as the
poly-energetic source. Mathematically, the post-log data is
then given by yj = ln

(
I0j(Ē)/Ij

)
=
∫
`
µ(`, (Ē))d`. In

real systems, only a discrete number of measurements are
available, thus the imaging model needs to be discretized.
For an object of dimensions N × N , the line integral pro-
jections are attenuated by the object as described by the ray
path Hj , that is, yj = Hjx, where x ∈ RN2

is a vectorized
representation of the linear attenuation coefficients of the ob-
ject. Thus, the discrete-to-discrete formulation can be written
as a finite linear system of equations of the form y = Hx,
where H ∈ RQP×N2

is the system matrix, with Hij equal
to the intersection length of the jth ray with the ith voxel
for i = 1, · · · , N2, and y ∈ RQP×1 is a vector containing
all the measurements. Multiple algorithms such as filtered
back-projection (FBP) can then be used to obtain the effec-
tive linear attenuation coefficients of the object.

In single energy CT, however, materials having differ-
ent compositions may be represented by the same gray-scale
value. Hence, material differentiation can be very challeng-
ing. Spectral CT relies on the energy and material dependence
of X-ray linear attenuation coefficients. Namely, measure-
ments obtained with different effective energies can be used
to differentiate between multiple materials. In dual-energy
systems, two sets of data, one corresponding to a high energy
spectrum and a second one using a low-energy spectrum, are
acquired. Mathematically, let the reconstructed linear atten-
uation coefficients at pixel i be denoted as xLi and xHi , for
the low and high energies respectively. Then the material
decomposition can be formulated as follows:(

xHi
xLi

)
=

(
µ1H µ2H

µ1L µ2L

)(
ρ1
i

ρ2
i

)
, (1)

Fig. 1. Rapid kVp switching using a single coded aperture:
(A) system schematic and (B) interleaved sinogram.

where ρmi represents the concentration of the mth basis
material in the object at the ith pixel and µmH/L is de-
fined as the effective mass attenuation coefficient of each
base material m = 1, 2 measured at the corresponding en-
ergy spectrum. The latter is obtained as follows µmc =∑K

k Sc(Ek)µm(Ek)/
∑K

k Sc(Ek), where Sc(Ek) is the
system spectral response to the energy channel c at energy
Ek for k = 1, . . . ,K , and K is the number of energy bins.
Then, using the basis materials and the reconstructed pixel
values at both high and low kVp, the material decomposition
can be performed using the straightforward matrix inversion
of (1) for each pixel independently.

2.1. Rapid kVp Switching Using a Single Coded Aperture

Figure 1(A) depicts the rapid kVp switching coded aperture
system for a fan beam geometry. Similar to the work pre-
sented in [7], a static block/unblock coded aperture is placed
in front of the X-ray source. However, in this case, the tube
potential alternates between consecutive views between high
and low energy to attain the dual-energy-data. The acquired
projection dataset is thus an interleaved coded sinogram, and
since the coded aperture is static, entire columns of the sino-
gram, corresponding to the blocking coded aperture elements,
are not observed as depicted in Fig. 1(B). Mathematically, the
inverse problem can be formulated independently for each X-
ray tube potential as follows:

x̂c = argmin
xc
‖yc − CcHxc‖22 + λ‖xc‖p, c = {L,H} (2)

where x̂c are the effective linear attenuation coefficients in the
energy channel c ( L = Low, H = High), λ is a regulariza-
tion constant, ‖ · ‖2 corresponds to the `2 norm, and ‖ · ‖p
represents any prior information about the data. The binary
matrix, Cc = [cc1, cc2, · · · , ccQP ] accounts for the kVp switch-
ing as well as for the coded aperture. To that end, the column
vector ccj ∈ RDc×1 is a zero vector if the jth detector ele-
ment is associated with a blocking coded aperture element or
the angle associated with j does not correspond to the energy
channel c; otherwise ccj belongs to the natural basis in RDc×1,
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where Dc is the number of unblocked elements in the cth en-
ergy channel. Since the measurements are not multiplexed
in the detector array, the vectors ccj are disjoint. The the-
ory of compressed sensing (CS) indicates that the best results
make use of completely random measurements [8]. However,
since a single coded aperture is used in all the view angles the
sampling density distribution of the proposed system presents
multiple rings of high and low sensing density, and some pix-
els in the center of the image are not sensed [7], which pro-
duces artifacts in the reconstructions. Thus, rather than us-
ing iterative CS reconstruction algorithms directly on the ob-
served measurements to solve (2), the approach taken in this
work is to formulate the sensing problem in a tensorial form
and estimate the missing projection data based on the tensor
representation of the measurements. Namely, the missing en-
tries in the 3D tensor representation of the projection data are
estimated using a tensor completion algorithm. Then conven-
tional algorithms can be used for fast image reconstruction
in each channel, given that a complete set of measurements
is available. Finally, using (1) on a pixel-by-pixel basis, im-
age domain material decomposition can be performed or since
the complete projection data is available, projection data ap-
proaches can be applied as well.

3. IMAGE RECONSTRUCTION USING TENSOR
COMPLETION

Based on the low-rank tensor completion minimization de-
veloped in [7], a 3D tensor representation of the spectral pro-
jection data can be obtained for the proposed system. For a
fan-beam CT system using a Q × 1 line detector and a full
circle scan with P view angles, the measurements’ tensor is
defined as Y ∈ RP×Q×C , where C is the number of avail-
able energy channels. Figure 2 depicts the 3D tensor for a
rapid kVp switching dual-energy system using a single coded
aperture, obtained by stacking the C = 2 tiled subsampled
sinograms corresponding to the low and high energies which
correspond to the frontal slices of the tensor. Note, when us-
ing a single-static coded aperture the rows of the sinograms
will exhibit the same blocking pattern, which results in ver-
tical lines of missing data in the frontal slices of the tensor
at the locations corresponding to the coded aperture blocking
elements. Furthermore, the kVp switching between angles re-
sults in interleaved missing rows between the measured pro-
jections. The fan-beam sinograms that make the frontal slices
are gray-scale images that can be considered low-rank when a
large number of angles are used. Furthermore, when a coded
aperture is placed in front of the X-ray source, the sinograms
can be seen as a set of images with missing patches. Thus,
the missing measurements can be estimated using image in-
painting techniques such as matrix completion for each en-
ergy channel:

Ŷ
c

= argmin
Yc

||Yc||∗ s.t. Yc
ij = Oc

ij (i, j) ∈ Ω, (3)

Fig. 2. Tensor representation of phantom projection data ob-
tained using a static coded aperture and kVp switching.

where Ŷ c is the estimated sinogram at energy channel c, ||·||∗
is the nuclear norm, Oc are the partially observed measure-
ments, and Ω is the set of indices of the observed entries.
This matrix formulation, however, ignores the multidimen-
sional structure of the measurements. Furthermore, the sino-
grams obtained in both systems have entire columns of miss-
ing data making the measurement estimation extremely chal-
lenging using matrix completion [9]. Considering the tensor
across all dimensions, on the other hand, provides a more nat-
ural and compact representation of the data and allows the
usage of the tensor completion framework to estimate the un-
observed measurements. Thus, the measurement estimation
is formulated as a low-rank tensor completion problem:

Ŝ = argmin
S
||S||TNN + λΦ (S) s.t. PΩ (S) = PΩ (Y) , (4)

where Ŝ is the estimate of the projection data tensor, Y is
the observed incomplete tensor, PΩ (Y) = Y(i, j, k) for
(i, j, k) ∈ Ω, otherwise PΩ (Y) = 0, || · ||TNN is the tensor
nuclear norm, and Ω is the set of indices of the observed
entries. The data-driven regularization term Φ (S) is added to
capture fine details in the reconstructed tensor that may not
be well-captured by the low-rank regularizer. In this work,
the ADMM framework developed in [10] is used to solve (4)
and obtain an estimation of the measurements’ tensor. At this
point, any analytical reconstruction algorithm may be used
to reconstruct the object given that a complete set of fan-
beam CT measurements is available. In this work, the FBP
algorithm is used to reconstruct the effective linear attenu-
ation coefficients at each energy c using the corresponding
estimated sinogram Ŝc, that is the cth frontal slice of the
estimated measurement tensor.

4. SIMULATION STUDY

Figure 3 depicts the X-ray spectra simulated using Spektr
[11], for the low and high kVp tube potentials of a rapid kVp
switching system with inherent filtration of 1.6 mm of alu-
minum. The peaks were set to 80 and 140 kV and were mod-
ified by filtration with 2.0 mm of aluminum and 0.2 mm of
copper. The proposed approach is tested to determine its ca-
pability of decomposing water and iodine using a 256 × 256
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Fig. 3. kVp switching spectra

iodine sensitivity phantom of 20 cm side length, composed
of a water cylinder and a set of 8 vials with varying iodine
concentration, see Table 1 and Figs. 4 (A-B). The ASTRA to-
mography toolbox [12] is used to simulate a fan beam X-ray
CT configuration with a flat 1D, 40 cm detector strip com-
posed of Q = 1024 elements, and distances from the source
to the center of rotation and the detector of 40 cm and 80
cm respectively. The hardware settings of the experiment are
calculated based on [13]. The mass attenuation coefficients
for iodine and water, were obtained from the National Insti-
tute of Standards and Technology (NIST) X-ray attenuation
databases [14]. Peak kV was switched every projection. The
same coded aperture was used in P = 1372 view angles uni-
formly spread over 360 degrees. The coded aperture had a
Bayer structure with 37.5% transmittance, that is, 384 of its
elements let the X-rays pass. For comparison, a sparse view
angle system with rapid kVp switching and P = 514 view
angles for equivalent radiation dosage was simulated as well.
Figures 4 (C-D) depict the material decomposition results for
the proposed approach, and Figs. 4(E-F) depict the material
decomposition results for the sparse view angle system with
rapid kVp switching. Note, the latter reconstructions contain
more noise than the proposed system’s reconstructions. Fur-
thermore, low concentrations of iodine are closer to the orig-
inal value in the proposed method as shown in Table 1. In
both systems, FBP is used to reconstruct the effective energy
linear attenuation coefficients in each energy channel, then a
constrained least-squares algorithm is used to solve the mate-
rial decomposition problem for each pixel independently.

Table 1. Average concentration in the phantom vials.
Fig. Iodine concentration (mg/ml)
4 (B) 4 3 2 1 0.75 0.5 0.25 0.1
4 (D) 3.5 2.6 1.7 0.7 0.5 0.3 0.2 0.2
4 (F) 3.6 2.8 1.9 1.2 0.9 0.8 0.7 0.7

Fig. 4. Water-iodine material decomposition: (A-B) Refer-
ence. FBP reconstructions for rapid kVp switching and (C-D)
37.5% transmittance coded apertures, (E-F) sparse angles.

5. CONCLUSIONS AND FUTURE WORK

The proposed coded aperture architecture represents a radi-
cal departure from conventional methods used in dual-energy
X-ray CT to reduce the radiation dose levels. The structured
X-ray illumination is projected through the objects of interest
and measured with standard X-ray energy integrating detec-
tors. Then, we used tensor completion algorithms to estimate
the missing measurements in each energy channel, which re-
sults in a synthesized full set of measurements that can be
used with conventional CT reconstruction algorithms. Thus,
providing a cost-effective solution for low-dose dual-energy
systems. The methods developed in this paper can be directly
applied to obtain material decomposition using other dual en-
ergy architectures and system geometries by adapting the pro-
posed measurement’s tensor. The latter is a topic of current
research.
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