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Abstract— We consider a nonlinear estimation problem
where a quadcopter moves in a wind field. We show that the
quadcopter dynamics is invariant under the action of a Lie
group and design an Invariant Extended Kalman Filter (IEKF)
by taking advantage of symmetry in the system dynamics. The
IEKF estimates the quadcopter’s position, velocity, orientation
and wind velocity using measured position, acceleration, mag-
netic field, angular velocity, and control thrust. The resulting
design is implemented and validated in simulations. Through
Monte-Carlo (MC) simulations, we demonstrate that the IEKF
produces improved transient estimation performance over a
conventional Extended Kalman Filter (EKF) for a variety of
wind fields.

I. INTRODUCTION

Wind estimation techniques for small unmanned aerial
vehicles (sUAV) have received increasing attention in the
past few years. There are mainly two motivations. First, wind
estimation can improve navigation performance of sUAV and
further improve their flight performance. Because of sUAV
small sizes and limited propulsion power, they are sensitive
to wind gusts which may cause unstable or even unsafe
flight, especially in the situations requiring sUAV to avoid
obstacles [1]. The second motivation is mainly from envi-
ronmental studies and meteorology, where sUAV are used
for atmospheric measurements (see e.g., [2]). The traditional
and common atmospheric observation platforms, like towers
or tethered balloons, are expensive, labor intensive and hard
to operate [3]. sUAV provide an alternative platform for
atmospheric research and data collection because they are
low cost and easy to operate.

While much prior research has emphasized the develop-
ment of fixed-wing UAV for atmospheric investigations [4],
the use of multi-rotor aircraft is relatively less explored. A
fixed-wing UAV typically flies horizontally for some distance
and it cannot hover at one point in space. By comparison,
a rotary-wing UAV (RUAV) does not have the above limi-
tations and can therefore be used to estimate vertical wind
profiles or temporal variability of the wind at one point.

There are four major approaches for RUAV wind estima-
tion:

1) Mounting sensors on multi-rotors. In [5], [6], the
authors use the RUAV equipped with different types of
anemometers to estimate wind field. However, this approach
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may reduce flight endurance due to the weight and power
requirements of sensors and the platform. Obtaining the
inertial measurement of the wind may be difficult in strong
winds since the motion of quadcopter in this case is not
null [7]. In addition, accurate and reliable wind sensors are
typically expensive compared with an sUAV platform.

2) Static mapping methods. Ross et al. in [3] find a
linear relation between the squared wind speed and the tilt
angle through anemometer-collected wind speed data and
show effectiveness of the wind estimation by using the above
relation. The authors in [8] and [9] explore the relation of
the tilt and the air-relative velocity, and calculate the wind
vector using the air-relative vector and the measured ground
vector using the wind triangle. However, this method has
shown effectiveness only in slight wind fields.

3) Machine learning methods. Reference [10] trains a
long short-term memory neural network (LSTM NN) on
roll and pitch angles and quadcopter positions based on
data generated from a simulated quadcopter in turbulent
wind fields. In [11], two machine learning methods, K-
nearest neighbor (KNN) and LSTM, are used to estimate
the wind velocity and turbulence characterization from real
attitude measurements. The LSTM outperforms the KNN and
the linear model method under variable wind conditions.
Machine learning approaches can learn the wind-attitude
relationship directly from the available data, so it does not
require a mathematical model. However, these approaches
may require high quality training data and estimate the wind
vector without considering uncertainty in the sUAV states.
Machine learning results may be specific to the training data
of a RUAV quadcopter and unable to extend other RUAVs.

4) Model-based methods. Model-based methods have
been proposed to estimate both the vehicle’s states and the
wind field. The study in [12] uses an EKF to estimate the
wind based on a linearized-about-hover dynamic particle
model and shows an improvement compared to methods that
use a static relation between tilt and wind. Reference [13]
improves the above method and uses the EKF to estimate the
wind based on a nonlinear dynamic model. Animesh et al.
in [14] develop a self-calibration framework for the online
state, parameter and wind field estimation based on square-
root unscented Kalman filter. A model-based filter can be
integrated with existing autopilots to improve navigation and
control performance.

In this paper, we take the model-based approach and
explore an invariant extended Kalman filter (IEKF) design to
estimate both the quadcopter states and the wind. Invariant
filters take advantage of symmetry properties inherent in
the system dynamics to appropriately choose the estimation
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error coordinates. Bonnabel et al. [15] introduce invariant
observers that leverages symmetries of nonlinear systems
to improve estimation performance. The authors in [16]
and [17] also illustrate good performance of symmetry-
preserving observers for state estimation.

When the gain matrix in an invariant observer is de-
termined by the EKF approach, the resulting EKF is an
invariant EKF (IEKF) [18], [19]. IEKF has become popular
in localization, navigation and sensor fusion for robotic
systems. A generalized multiplicative EKF and a discrete
EKF on Lie groups are developed in [20] and [21], respec-
tively. Reference [22] shows that the IEKF in a deterministic
context has good local convergence properties for a well
characterized class of systems. The authors in [23] derive
an IKEF on matrix lie groups. Reference [24] designs IEKFs
with additive disturbances and proposes a correction to IEKF
covariances to better represent uncertainties. Recently, the
relation between invariant system, group affine system and
equivariant system is studied and a new filter design using
equivariance of the system is proposed in [25].

Our IEKF is designed to estimate a quadcopter’s position,
velocity, orientation and wind velocity based on measure-
ments from a GPS, an Inertial Measurement Unit (IMU),
a magnetometer and thrust measurements. We first identify
the invariance properties in the dynamics when there is wind.
We then derive an invariant observer and determine its gain
based on the invariant error dynamics. We conduct Monte-
Carlo simulations for hover and non-hover tests in different
wind fields, including a constant wind field, turbulent wind
fields generated from a Large Eddy Simulation (LES) at two
different altitudes and a sinusoidal wind field.

The main contribution of this paper is the design of
an IEKF that fuses thrust, GPS, IMU and magnetometer
measurements to estimate state and wind information for a
quadcopter. We also explore its performance compared with a
conventional EKF and identify where the IEKF outperforms
the EKF in the simulations with various types of wind fields.
Our results show that the IEKF produces faster convergence
and smaller overshoot in the transient performance compared
to an EKF.

The rest of the paper is organized as follows. In Section II,
we introduce our quadcopter system dynamics with the
drag force and measurement equations. In Section III, we
present the invariance property of the system dynamics and
equaivariance of the measurements, and in Section IV, we
derive our IEKF algorithm. Section V provides simulation
results for hover tests and non-hover tests under different
wind fields. Conclusions and future work are presented in
Section VI.

II. PROBLEM FORMULATION

The translational dynamics and attitude kinematics of a
quadcopter subject to a wind disturbance in the north-east-

down (NED) frame can be represented as:

ẋ = Rbv

mv̇ = mv×ω +mRT
b ggg+ fff c + fdrag +mRT

b v̇w

Ṙb = RbS(ω)

(1)

where x ∈ R3 is the inertial position, v ∈ R3 is the ground
velocity in the body frame, vw ∈ R3 is the wind velocity
in the inertial frame, Rb ∈ SO(3) is the orientation of the
quadcopter with respect to the inertial frame, ggg = [0,0,g]T ∈
R3 denotes the gravity acceleration vector in inertial frame,
fff ccc = [0,0,− fc]

T ∈R3 denotes the thrust vector in body frame
where fc is the amplitude of the thrust control input, fdrag
denotes the drag force due to air resistance (described with
more details below) and ω ∈R3 is the angular velocity in the
body frame. The function S(·) : R3→ so(3) satisfies S(a)b =
a×b for a,b ∈ R3.

We assume that the wind velocity vw is the output of a
linear dynamics system

ḋ = Ad, vw =Cd, (2)

where d ∈ Rm×1, A ∈ Rm×m, C ∈ R3×m and the matrices
A and C are assumed known. Such wind dynamics can be
used to model various types of mean wind profiles, such as
sinusoidal and constant wind. In filter implementation, we
add process noise to the d dynamics to mitigate the effect
of the turbulent component in the wind.

Denote by vr ∈ R3 the relative air velocity in the body
frame. That is, vr = v−RT

b vw. The drag force fdrag is modeled
as a function of vr

fdrag = f (vr) =−
1
2

ρD|vr|vr, D=

 Dx 0 0
0 Dy 0
0 0 Dz

 , (3)

where ρ is the air density and D denotes the drag coefficient
matrix. The Dx and Dy are usually the same but different
from Dz due to the geometry of a quadcopter [7]. Such a
model is adapted from a classic 1-D drag model fdrag =
1/2ρSv2

r [10].
Using the wind dynamics in (2) and the drag force in (3),

we rewrite the dynamics in (1) in terms of x, vr, Rb and d
as

ẋ = Rbvr +Cd

v̇r = vr×ω +RT
b ggg+

1
m

fff c +
1
m

fdrag

Ṙb = RbS(ω)

ḋ = Ad

(4)

We further define the state as X = (x,vr,Rb,d) and the input
as U = (ω, fff c,D). The input U is used to build invariance
of system dynamics in the next section. Therefore, it can
include constant parameters of the system, such as the D
matrix.

We assume that the quadcopter is equipped with a GPS,
a 3-axis accelerometer and gyroscope, and a magnetometer.
We assume that biases of the sensors are calibrated. The
measured angular velocity from the gyroscope and thrust
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control vector ( fff ccc) are used in the system dynamics as inputs.
The measured outputs y = (yT

x ,y
T
a ,y

T
b )

T are

y = h(X ,U) =

 x
a

RT
b B

 ,a =
1
m

(
fff ccc + fdrag

)
(5)

where B ∈ R3 is the earth’s magnetic field expressed in the
inertial frame and a ∈ R3 is the specific acceleration vector
in the body frame.

Given the system dynamics with the drag force (3) and
the measurement model (5), we next investigate symmetry
properties in the dynamics, based on which we can design
invariant filters to estimate both the wind field and the
quadcopter states.

III. INVARIANCE OF THE DYNAMICS AND EQUIVARIANCE
OF THE MEASUREMENTS

The symmetries of the system are associated with the
Euclidean group G = SE(3) which consists of rotations and
translations in dimension 3. Let (xg,Rg) ∈G, where xg ∈R3

and Rg ∈ SO(3). The subscript g in here denotes (xg,Rg) is
the element of the group instead of gravity coefficient. Define
two transformations on the state X and the input U as

ϕg(X) =


x+ xg
Rgvr
RbRT

g
d

 ,ψg(U) =

 Rgω

Rg fff ccc
RgDRT

g

 . (6)

Proposition 1. The system (4) is invariant with respect to
the transformations ϕg(X) and ψg(U). The measurement
equation (5) is G-equivariant.

Proof: According to definition 2 in [15], the system is
said to be invariant for all g,X ,U if

d
dt
(ϕg(X)) = f (ϕg(X),ψg(U)). (7)

By setting ϕg(X) = [x̃, ṽr, R̃b, d̃] and ψg(U) = [ω̃, f̃ff c, D̃], we
verify

˙̃x = ẋ+ ẋg = Rbvr +Cd = RbRT
g Rgvr +Cd̃

= R̃gṽr +Cd̃,

˙̃vr = Rgv̇r = Rg(vr×ω +RT
b ggg+

1
m

fff c +
1
m
(−1

2
ρD|vr|vr))

= Rgvr×Rgω +RgRT
b ggg+

1
m

Rg fff ccc

+
1
m
(−1

2
ρRgDRT

g |Rgvr|Rgvr)

= ṽr× ω̃ + R̃T
b ggg+

1
m

f̃ff c +
1
m

f (ṽr),

˙̃Rb = ṘbRT
g = RbS(ω)RT

g = RbRT
g RgS(ω)RT

g = R̃bS(ω̃),

˙̃d = ḋ = Ad̃.

Since the dynamics of the transformed variables shown above
satisfies (7), (4) is invariant under the transformation (6).

Similarly, the measurement equation is G-equivariant if
there exists a %g (·) such that

%g (h(X ,U)) = h(ϕg(X),ψg(U)). (8)

We define

%g (h(X ,U)) =

 x+ xg
Rga

RgRT
b B

 =

 x+ xg
Rg

1
m ( fff c− 1

2 ρD|vr|vr)
RgRT

b B


(9)

and verify

h(ϕg(X),ψg(U)) =

 x̃
1
m ( f̃ff c− 1

2 ρD̃|ṽr|ṽr)
R̃T

b B


=

 x+ xg
Rg

1
m ( fff c− 1

2 ρD|vr|vr)
RgRT

b B

 . (10)

Since %g (y(X ,U)) = y(ϕg(X),ψg(U)), the measurement
equation (5) is G-equivariant.

It is straightforward to use the same transformations and
show the same invariance property for a linear drag of the
form fdrag = Dvr [26]. Similar system dynamics of a flying
rigid body without the drag term has been shown invariant
in [16]. Our work introduces the transformation on D and
extends the existing result to show that the dynamics are
invariant under wind disturbances with arbitrary linear wind
dynamics and quadratic drag model.

IV. IEKF DESIGN

Using the invariance property in Proposition 1, we next
design an invariant estimator based on the unit quaternion
representation of Rb. We employ the design method outlined
in [15].

A. Invariant observer

Let q ∈ R4 be the unit quaternion representing Rb. The
system dynamics (4) becomes

ẋ = q∗ vr ∗q−1 +Cd

v̇r = vr×ω +q−1 ∗ggg∗q+
1
m

fff c +
1
m

f (vr)

q̇ =
1
2

q∗ω

ḋ = Ad

(11)

where ∗ denotes the quaternion multiplication. In a quater-
nion multiplication, any vector in R3 is augmented to a
quaternion with 0 being the scalar part.

1) Invariants and invariant output error: We split ϕg(X)
into ϕa

g (X) and ϕb
g (X) such that ϕa

g (X) is invertible with
respect to g. The implicit function theorem ensures the
existence of the local solution g = γ . The normalization
equation is

ϕ
a
γ (X) =

(
x+ xγ

q∗q−1
γ

)
=

(
0
1

)
(12)

where 1 is the unit quaternion. Hence,

γ(X) =

(
xγ

qγ

)
=

(
−x
q

)
. (13)
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Let X̂ be an estimate of X . We now solve for the invariants
using I = (ϕb

γ(X̂)
(X̂),ψ

γ(X̂)(U)), where

ϕ
b
γ(X̂)

(X̂)=

(
q̂∗ v̂r ∗ q̂−1

d̂

)
,ψ

γ(X̂)(U)=

 q̂∗ω ∗ q̂−1

q̂∗ fff c ∗ q̂−1

R(q̂)DRT (q̂)

 .

(14)
Therefore, the invariants are

I =(Ivr , Id , Iω , I fff c
, ID)

=(q̂∗ v̂r ∗ q̂−1, d̂, q̂∗ω ∗ q̂−1, q̂∗ fff c ∗ q̂−1,R(q̂)DRT (q̂)).
(15)

The invariant output error is given by

E =%
γ(X̂) (y)− %

γ(X̂) (ŷ)

=

 x− x̂
q̂∗ (a− â)∗ q̂−1

q̂∗ (yb− ŷb)∗ q̂−1

= T

 yx− ŷx
ya− ŷa
yb− ŷb

=

 Ex
Ea
Eb

 ,

(16)

where T is given below with ei, i = 1,2,3, forming the
canonical frame of R3:

T =

 ei 0 0
0 q̂∗ ei ∗ q̂−1 0
0 0 q̂∗ ei ∗ q̂−1

 . (17)

2) Invariant frame: The invariant frame is given by

W =(Dϕγ(X)(X))−1 ∂

∂X
=


ei 0 0 0
0 q̂−1 ∗ ei ∗ q̂ 0 0
0 0 ei ∗ q̂ 0
0 0 0 ei

 .

(18)
3) Invariant pre-observer: The invariant pre-observer is

designed as follows
˙̂x = q̂∗ v̂r ∗ q̂−1 +Cd̂ + L̄xE

˙̂vr = v̂r×ω + q̂−1 ∗ggg∗ q̂+
1
m

fff c +
1
m

f (v̂r)

+ q̂−1 ∗ (L̄vr E)∗ q̂

˙̂q =
1
2

q̂∗ω +(L̄qE)∗ q̂

˙̂d = Ad̂ + L̄dE,

(19)

where L̄? is the gain matrix

L̄? ∈ R3×9, ? ∈ {x,vr,q,d}. (20)

4) Dynamics of invariant error: The invariant state error
is given by η = ϕ

γ(X̂)(X)− ϕ
γ(X̂)(X̂) = [ηx ηvr ηq ηd ]

T .
We next differentiate η with respect to time and obtain the
invariant error dynamics

η̇x = ηq ∗ηvr ∗η
−1
q +ηq ∗ Ivr ∗η

−1
q +Cηd− Ivr − L̄xE

η̇vr = η
−1
q ∗ggg∗ηq−ggg+

1
m
(−1

2
ρID|Ivr +ηvr|(Ivr +ηvr))

− 1
m
(−1

2
ρID|Ivr|Ivr)+(L̄qE)∗ηvr − L̄vr E

η̇q =−ηq ∗ (L̄qE)

η̇d = Aηd− (L̄dE).
(21)

Linearizing above invariant error dynamics and invariant
output E around ηx = 0,ηvr = 0,ηq = [1,0,0,0]T ,ηd = 0
yields the state matrix Ak and output matrix Hk needed for
implementing the IEKF:

Ak =


0 I3 0 −2S(Ivr) C
0 α 0 2S(ggg) 0
0 0 0 0 0
0 0 0 0 A

 , (22)

Hk =

 I3 0 0 0
0 α 0 0
0 0 2S(B) 0

 , (23)

where I3 is the 3 by 3 identity matrix and α =
1
m (−

1
2 ρID)

∂ |Ivr+ηvr |(Ivr+ηvr)
∂ηvr

.

B. IEKF Algorithm

To derive the IEKF algorithm, the process noise w =
[wT

x ,w
T
ω ,w f ,wT

d ]
T is added to the invariant observer (19).

The IEKF algorithm employs (19) with L = 0 and the
linearized matrix Ak in (22) to propagate the estimates
and the covariance between measurement updates. For the
correction step, we select L as the Kalman filter gain based
on Ak and Hk and update X̂ using L and the measurements
ym = (yT

xm ,y
T
am ,y

T
bm
)T . We note that the invariant state error

rotates the conventional estimation error to another frame.
To represent the uncertainty more accurately, the initial
state covariance and process noise and measurement noise
covariance matrices, P0, Q, and R, need to be transformed
to the invariant frame from the original frame [22], [24].
The transformed matrices are given by: P0rot = W T P0W ,
Qrot = NQNT , and Rrot = T RT T where N = ∂ η̇

∂w and η̇ is the
invariant error dynamics (21) with process noise, T and W
are given in (17) and (18), respectively. The IEKF algorithm
is given in Algorithm 1.

Algorithm 1: The proposed IEKF

1 Initialize X0,P0 in the original coordinates.
2 P =W T P0W
3 for k = 1 to n do
4 Prediction: in between measurements (t ∈ [tk−1, tk])

5 Propagate ˙̂X = f (X̂ ,U) according to (19) with
L = 0 to get X̂−k

6 Compute Ak from (22)
7 Compute Qrot = NQNT

8 Propagate Ṗ = AkP+PAT
k +Qrot to get P−k

9 Correction: at the kth sensor measurement (t = tk)
10 Rrot = T RT T

11 Compute Hk from (22)
12 Lk = P−k HT

k (HkP−k HT
k +Rrot)

−1

13 X̂+
k = X̂−k +WLkT (ym,k−h(X̂−k ,U))

14 P+
k = (I−LkHk)P−k

15 end
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V. SIMULATIONS

In this section, we conduct Monte-Carlo simulations and
compare the estimation performance of the EKF and the
designed IEKF under hover and non-hover tests for different
wind fields. The first one is the constant wind equal to
(3,2,0)T m/s. The second and third wind fields are generated
from large eddy simulations (LES) [27] capturing the low-
altitude turbulence effect. In Fig. 1, we show the LES wind
at 8 and 50 meters in altitude at 1Hz, respectively. The fourth
wind is a sinusoidal wind. Due to the page limit, we only
present the simulation results for the LES wind at 8 meters
in the hover test.

We construct a Simulink quadcopter model which consists
of sensor models, a motor model, a rotor model and the
quadcopter rigid body dynamics. Details of the model can
be found in Section II.A of [10]. A feedback linearization
attitude controller and a PID position controller are used for
the quadcopter model. The thrust measurements used in the
filters are calculated from the control inputs obtained form
the attitude controller. The parameters of the quadcopter and
the sensor parameters are given in Table I.

TABLE I
SYSTEM PARAMETERS

Name Symbol Value Units
mass m 1.5 kg

x moment of inertia Jx 0.0348 kg ·m2

y moment of inertia Jy 0.0459 kg ·m2

z moment of inertia Jz 0.0977 kg ·m2

x body drag coeff. Dx 0.3265 kg/m
y body drag coeff. Dy 0.3265 kg/m
z body drag coeff. Dz 0.3265*2 kg/m

air density ρ 1.225 kg/m3

GPS noise SD σgps 1 m
accel noise SD σaccel 0.0025g m/s2

gyro noise SD σgyro 0.0023 rad/s
mag noise SD σmag 1 mG
GPS frequency fgps 1 Hz
accel frequency faccel 100 Hz
gyro frequency fgyro 100 Hz
mag frequency fmag 100 Hz

true magnetic field [200,−40,480] mG

We conduct Monte Carlo simulations of 50 runs. For the
hover test, the quadcopter flies from a random starting point
which is around the origin to a goal point and then hovers at
that point. For non-hover tests, the quadcopter flies a square
trajectory. Each simulation lasts for 100 seconds.

The following parameters are used in all the
simulations: µ0 = [0,0,0,0,0,0,1,0,0,0,0,0,0]T ,
P0 = diag(1,1,1,1,1,1,0,0.0042,0.0052,0.0442,1,1,0.1),
X0 ∼ N(µ0,P0) and X̂0 = µ0. where X0 represents the true
initial states used in quadcopter model and X̂0 represents
the initial states for the EKF and the IEKF. The process
noise and measurement noise covariance matrices under the
constant wind are

Q = diag(0,0,0,0.00232,0.00232,0.00232,0,0,0,0)

R = diag(1,1,1,0.0252,0.0252,0.0252,1,1,1).
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Fig. 1. LES wind fields at 8 and 50 meters in altitude, respectively. The
wind data is generated at 1Hz.

where Q corresponds to the process noise w. Because the
LES wind at 8 meters and 50 meters contains turbulence,
the last three diagonal elements of the Q matrix are adjusted
to [0.012,0.012,0.012] and [0.12,0.12,0.12], respectively. For
hover and LES wind case, the A and C matrices used in the
filter are A = 03×3 and C = diag(1,1,1).

The wind estimation results from one run of the MC
simulations under the four different wind fields all show
IEKF outperform EKF at transient part. For example, as
shown in Fig. 2 for LES wind (8m) test, the estimated wind
of the IEKF has a much smaller error at the beginning and
converges more quickly compared to the wind estimation of
the EKF.
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EKF IEKF true
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v w
z(m

/s
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Fig. 2. Comparison of the IEKF and the EKF wind estimation for a single
run using LES wind at 8 meters in the hover test.

The RMSEs of the IEKF and the EKF show a similar
trend for the four different wind fields under hover and
non-hover tests. In Fig. 3, we show the RMSEs of the
estimation performance of position x, vr,x, yaw angle and vw,x
between the EKF and the IEKF for the first 30 seconds. Since
the RMSE of the EKF has a large spike at the beginning
compared to that of the IEKF, we choose reasonable ranges
for the y axis of four plots in Fig. 3. RMSEs of the EKF
have large errors and converge more slowly, especially for
position and wind.
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Fig. 3. RMSE comparison of the EKF and the IEKF under LES wind
at 8 meters in the hover test. (a): RMSE of the position x estimate. (b):
RMSE of vrx estimate. (c): RMSE of yaw angle estimate. (d): RMSE of
vwx estimate.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate simultaneous state and wind
estimation for a quadcopter dynamics under wind distur-
bances. We establish the invariance of the system dynamics
augmented with linear wind dynamics and the equivariance
of the measurement equation under the proposed Lie group
actions. We design an IEKF estimator and conduct simula-
tions to validate its performance. Our results demonstrate that
the IEKF produces better transient estimation performance
compared to a conventional EKF for various wind fields.

The designed IEKF relies on knowledge of the drag model.
Future work includes examining robustness of the IEKF
against uncertainties in the drag models, addressing biases
in IMU measurements, and experimental validation on a
quadcopter platform.
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