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Abstract: Compressive spectral X-ray imaging (CSXI) introduces a pixelated spectral modulator
called K-edge coded aperture (KCA) in front of the X-ray source, which enables both, lower dosage
to the subject, as well as the capability of spectral tomography while using low-cost integrating
X-ray detectors. CSXI systems generally use hundreds of different spectral modulators, each with
a distinct pattern to uniquely modulate the illumination at every view angle. In contrast, this paper
introduces the use of a single and static coded aperture placed in a tomosynthesis gantry. The
compressive system thus interrogates the subject with a fixed coded illumination pattern on all
view angles. The advantages of the system are many including reduced cost and the feasibility of
implementation. Given the reduced set of coded measurement and the limited spectral separation
ability in the resulting architecture, the nonlinear inverse reconstruction problem results in a
highly ill-posed problem. An efficient alternating minimization method with three-dimensional
total variation regularization is developed for image reconstruction. Furthermore, rather than
simply using a random pattern, the coded aperture is optimized under a uniform sensing criterion
that shapes the spatial and spectral pattern of the coded aperture so as to minimize the overall
radiation exposure placed on any volumetric area of the patient. This is of particular importance in
medical imaging where patients at risk are recommended to have periodical X-ray tomosynthesis
screenings. The coded aperture optimization is then posed as a binary programming problem
solved by a gradient-based algorithm with equilibrium constraints. Numerical experiments show
that spatial and spectral coding used in the proposed system to interrogate the subject not only
reduces the radiation dose but it also improves the quality of image reconstruction. Gains close
to 5dB in peak signal to noise ratio are observed in simulations. Furthermore, it is shown that the
optimization of the KCA can effectively improve the uniformity of X-ray radiation compared to
random KCA modulation, thus reducing the radiation dose throughout all volumetric sub-areas
of the subject — an objective that is not possible with the use of random KCAs.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Tomosynthesis reconstructs multi-layer images of a three-dimensional (3D) object based on
projection data acquired from a few incident angles, which allows 3D inspection with limited
sensing geometry [1]. Since 2011, tomosynthesis has been applied in the 3D breast imaging
[2]. Compared with traditional two-dimensional (2D) radiography, tomosynthesis avoids the
superpositions of tissues at different depths, and can thus be applied to detect potential lung
cancer nodes and breast cancer lesions [3–7]. A typical tomosynthesis system consists of a
poly-energetic X-ray source and an energy integrating detector, which sums up the attenuation
information of the object over the entire spectrum. The negative logarithm of the measured data
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is then used for the filtered backprojection (FBP) reconstruction [8]. Such a system however
cannot resolve the energy-spectral attenuation information, which can be used to identify the
material components in the object and to reduce the beam hardening artifacts [9–12]. Prototypes
of spectral X-ray tomosynthesis systems typically use photon counting detectors, which can
simultaneously obtain the measurement data with different energy levels [13,14]. However, the
photon counting detector is rarely used in routine clinical examination due to its high cost and
the effect of pulse pile-up at high X-ray-flux rates [15–17].

Recently, a cost-effective approach was proposed to acquire measurements containing the
spectral attenuation information, which employs a set of balanced K-edge filters to reshape the
X-ray spectra in sequential scans [20,21]. For instance, the spectral attenuation coefficient of
silver (Ag) is shown in Fig. 1(a). It includes a sudden jump when the energy of incident X-ray
photon is equal to the K-edge energy of the filtering material. As shown in Fig. 1(b), using two
filters with adjacent atomic numbers and balanced thicknesses, a quasi-monochromatic spectrum
can be obtained by subtracting the filtered intensity from each other. However, the radiation dose
and the inspection time will be multiplied due to the sequential scans applied or a set of K-edge
filters [22,23]. To overcome these limitations, a compressive spectral X-ray imaging model based
on encoded illumination was proposed to collect the spectral attenuation data from a single scan
[24,25]. The X-ray beams in compressive spectral X-ray imaging (CSXI) system are spatially and
spectrally modulated by multiple coding masks consisting of randomly arranged pixelated K-edge
filters, which are referred to as K-edge coded apertures (KCA). Subsequently, a multi-stage
algorithm based on sinogram inpainting was proposed to reconstruct the energy-binned images
[24], it first inpaints the sinograms of filtered intensity based on compressive sensing and
then estimates the energy-binned sinograms that can be used as the inputs to reconstruct the
energy-binned CT images [24]. Furthermore, these images can be decomposed as the images of
given basis materials [25]. More recently, a nonlinear inversion approach based on the material
decomposition model was proposed to directly reconstruct the energy-binned tomographic images
from the CSXI measurements [26]. Despite the advanced reconstruction performance, the coded
aperture used at each view angle in CSXI is different, which significantly increases the system
complexity, cost, and calibration complexity. Recently, the method coined StaticCodeCT was
proposed as a way to overcome the implementation complexity in conventional mono-energetic
compressive tomography by using a single static coding mask for all views. The coding mask
used by StaticCodeCT however is binary, which cannot modulate the spectrum of the X-ray
source [27]. In addition, StaticCodeCT uses randomly patterned coded apertures for the blocking
elements that reduce the radiation dose. Random coding generally leads to large variations
on the radiation dose across the volume of the subject being inspected. This is undesirable as
certain tissue volumes and cells of the patient can be over-exposed, hence suffer more from X-ray
radiation damage, which increases the risk of cancer [28].

This paper introduces several contributions. First, it generalizes the static-code-CT architecture,
from the conventional single-energy setting to the emerging modality of spectral tomography. By
acquiring coded projections at different energy levels, the proposed technique can differentiate
among various elements in the body based on their material density or atomic numbers. This
capability is important in a number of medical and security applications. The coded aperture
used is no longer a simple binary structure that either stops X-rays or allows their path unaltered.
The proposed compressive spectral X-ray tomosynthesis (CSXT) approach uses a coded aperture
made of K-edge materials that can spatially and spectrally modulate the poly-energetic cone-
beam X-ray illumination of the system. The second contribution of the paper is to adopt the
static-code-CT architecture, recently introduced in [27] for monochromatic CT, into spectral
CT scanning where a static KCA is placed in front of the cone-beam X-ray source. The KCA
synchronously rotates with the X-ray tube and detector during the scanning process. Unlike the
case of static-code-CT which operates on a monochromatic energy model, the inverse image
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Fig. 1. Sketch of material’s K-edge attenuation. (a) Spectral attenuation coefficient of
silver (Ag) that includes a sudden jump at 25.49 KeV [18]); (b) spectrum of a 50kV X-ray
tube (black) [19], and the spectra filtered by a balanced K-edge filter pair of Palladium (Pd)
(orange) and Ag (blue).

reconstruction problem in the proposed system becomes significantly more challenging as the
problem is now nonlinear and the number of measurements obtained over a scan is proportionally
much lower in the higher multi-dimensional setting. Consequently, the inverse imaging problem
is severely ill-conditioned for which new reconstruction algorithms are required as is done in
Section 3. The third contribution focuses on reducing the radiation dose in a scan. The goal
is not only to reduce the overall radiation given to the volume of the subject interrogated [28],
but also the minimization of high X-ray dose directed and concentrated at specific areas and
tissues in the body during each scan. Dose reduction in concentrated volumetric areas of the
subject reduces the obvious risks for women undergoing regular screening mammography [29].
Hence, rather than simply using a random pattern for the coded aperture that generally yields a
non-uniform distribution of radiation on different portions of the subject, the coded aperture is
optimized under a uniform sensing criterion that shapes the spatial and spectral pattern of the
coded aperture so as to minimize the overall radiation exposure placed on any volumetric area of
the patient. In order to reduce the overall radiation dose in the scan, opaque elements are also
included in the KCA to block a portion of X-rays (see Fig. 2(b)).

Fig. 2. (a) Sketch of compressive spectral X-ray tomosynthesis based on the static KCA
shown next to it, where different colors indicate different K-edge materials in the coding
mask; (b) down-sampling in spatial domain by blocking a part of X-ray beams, where black
squares indicate the blocked pixels.

Figure 2(a) illustrates the proposed system, where a static KCA is equipped in front of the
cone-beam X-ray source and synchronously rotates with the X-ray tube during the scanning
process. The KCA pixels are made of different K-edge materials, which filter the X-ray beams
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with different transmittance functions to sense the spectral attenuation information of the object.
Similar to the StaticCodeCT proposed in [27], the KCA pattern used in CSXT does not change
with the view angle, which effectively reduces the difficulty to fabricate and calibrate such systems.
The forward projection imaging process of the CSXT system follows a nonlinear compressive
sensing model. According to the theory of basis material decomposition [9,30], it is known
that the spectral attenuation of the object is determined by its elements. The forward model
is thus reformulated as the projection of the basis materials in the object. This reformulation
benefits the spectral tomosynthesis reconstruction since the dimensionality of the variables can
be significantly reduced. A 3D total variation regularization is introduced in the reconstruction
process to preserve the edges and remove noise in the tomographic images [31–33]. To solve
this regularized reconstruction problem, we generalize the alternating projection scheme to the
nonlinear problem using the Gauss-Newton method [34–36].

To attain a uniform distribution of X-rays on the subject, we optimize the KCA using a uniform
sensing criterion, which demands that each object voxel receives equal X-ray illumination in
intensity coming from each type of filtered X-ray beam. We model the KCA optimization problem
as an inequality constrained binary matrix optimization problem, which is then efficiently solved
by a two-stage algorithm. Simulations under 50% dose setting show that the optimized KCA can
improve the uniformity of X-ray radiation by 54.14% compared to the result using random KCA
pattern. In addition, the optimization of KCA can also increase the peak-signal-to-noise-ratio
(PSNR) of reconstructed images by 0.41dB.

The remainder of this paper is organized as follows. Section II describes the forward
projection imaging model of the CSXT system with static KCA. Section III develops the nonlinear
reconstruction algorithm for the proposed CSXT system. Section IV provides the optimization
method of KCA. Section V presents the simulation results for the proposed methods. Conclusions
and discussions are given in Section VI.

2. Forward projection model of CSXT

According to the spectral characterization of the Beer-Lambert law, as a mono-energetic X-
ray beam with initial intensity I0(E) passes through the object, its intensity is attenuated as
I(E) = D(E)I0(E) exp

(︂
−

∫
l(r) µ

(︁
r⃗, E

)︁
dr

)︂
, where D(E) is the spectral response function, µ

(︁
r⃗, E

)︁
denotes the linear attenuation coefficient of the object, and l(r) is the projection path that X-ray
photons take to reach the detector element [37]. As shown in Fig. 2, a static KCA is placed in
front of the X-ray source in CSXT, which plays a role in encoding the spectrum of the X-ray
beam. The transmittance of the pixel in KCA is given by f (E) = exp

(︁
−tf µf (E)/cosψ

)︁
, where

tf and µf (E) are the thickness and linear attenuation coefficient of the K-edge material in this
pixel, ψ is the projection angle [24]. The filtered X-ray intensity acquired by the integrating
detector is then given by I =

∫
f (E)I(E)dE. As previously mentioned, the linear attenuation

coefficient of a K-edge filter has a sudden increase at its K-edge energy Ef . Suppose there are
totally F kinds of K-edge materials used for encoding, the X-ray spectrum can be divided into
K energy bins (K = F + 1): [Emin, E1] , [E1, E2] , . . ., and [EF, Emax], where Emin and Emax are
the minimum and maximum photon energies of the X-ray source, respectively. Given that the
width of each energy bin defined by the K-edge materials with nearly adjacent atomic numbers
is small, the linear attenuation coefficients µ(r⃗, E) and µf (E) at the kth energy bin can thus be
approximated by its effective attenuation coefficients denoted by µ̄(r⃗, Ek) and µ̄f (Ek), respectively.
Subsequently, the measured intensity on detector can be rewritten as

I =
K∑︂

k=1
f (Ek)D(Ek)I0(Ek) exp

(︃
−

∫
µ̄

(︁
r⃗, Ek

)︁
dr

)︃
. (1)
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Material decomposition is an important application of the spectral X-ray tomographic imaging
[38,39]. Suppose the scanned object consists of L known basis materials, the spectral attenuation
of the object thus can be formulated as the weighted sum of the attenuation of the L basis materials
[40,41]:

µ̄
(︁
r⃗, E

)︁
= ρ1

(︁
r⃗
)︁
τ̄1 (E) + · · · + ρL

(︁
r⃗
)︁
τ̄L (E) , (2)

where τ(E) is the linear attenuation coefficient of the basis material, ρ
(︁
r⃗
)︁

denotes its weight at
point r⃗. To formulate the inverse imaging problem of basis material decomposition, we discretize
the object into N voxels and substitute Eq. (2) into Eq. (1). The measured intensity I along the
jth projection path in the pth view angle is thus rewritten as

Ip
j =

K∑︂
k=1

fj (Ek)D (Ek) I0 (Ek) exp

(︄
−

N∑︂
i=1

L∑︂
l=1

Hp
j,iρi,lτ̄l (Ek)

)︄
, (3)

where Hp is the projection matrix for the pth view angle, the element Hp
j,i denotes the intersection

length of the jth projection path with the ith object voxel, ρi,l denotes the weight of the lth basis
material at the ith voxel, and τ̄l (Ek) denotes the attenuation of lth basis material at the kth energy
bin. For simplicity, we further rewrite Eq. (3) in matrix form as

yp = (W ⊙ exp (−HpXT)) · 1K , (4)

where yp ∈ RMxMy×1 denotes the measurement data acquired from the detector with size
Mx × My, W ∈ RMxMy×K denotes the energy-binned blank intensity in which the element
Wj,k = fj (Ek)D (Ek) I0 (Ek), X ∈ RN×L with the column vector X(:,l) denotes the weight of the lth
basis material, T ∈ RM×K represents the attenuation coefficients of the L basis materials at all of
the K energy bins, ⊙ denotes the element-wise product, and 1K is a one-valued vector of length
K. Note that the expression in Eq. (4) is compatible with the spatial down-sampling shown in
Fig. 2(b), which can be formulated by setting the rows in W corresponding to the blocking pixels
to 0. Finally, the entire CSXT data acquired from a total of P view angles can be formulated as

y = F (X) = ((1P ⊗ W) ⊙ exp (−HXT)) · 1K , (5)

where y =
[︁
y⊤1 , . . . , y⊤P

]︁⊤, H =
[︁
H⊤

1 , . . . , H⊤
P
]︁⊤, 1P is a one-valued vector of length P, and ⊗

denotes the Kronecker product. We denote it as F (X) for simplicity.

3. Nonlinear reconstruction for CSXT

According to the forward mapping described in Eq. (5), the estimation of the tomographic
images of the basis materials can be formulated as minimizing the unconstrained objective
function 1

2 ∥y − F (X)∥2
2 . Considering the similarity of multi-layer tomographic images, this

paper introduces the 3D total variation (TV) regularization per basis material to simultaneously
preserve the edges and remove the noise in the images [31–33]. For a volumetric image denoted
by the 3D tensor X ∈ RNx×Ny×Nz , the 3D TV norm is defined as [31]

TV3D =

Nz−1∑︂
k=1

Ny−1∑︂
j=1

Nx−1∑︂
i=1

|Xi+1,j,k − Xi,j,k | + |Xi,j+1,k − Xi,j,k | + γ |Xi,j,k+1 − Xi,j,k |, (6)

where γ is set to Nz/
√︁

NxNy to suit the resolution of X in different orders. Using Eq. (6) into
the reconstruction as the regularization term, we obtain the regularized optimization problem
expressed as

X∗ = argmin
X

1
2
∥y − F (X)∥2

2 + λ

L∑︂
l=1

TV3D
(︁
T

(︁
X(:,l)

)︁ )︁
, (7)

where T
(︁
X(:,l)

)︁
∈ RNx×Ny×Nz is used to transform X(:,l) into the tensor form, λ is a weight

parameter to keep trade-off between the data fidelity term and the regularization term. We solve
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Eq. (7) as a series of alternating projection minimization steps [35](︂
X(t), Z(t)

)︂
= argmin

X,Z

1
2
∥X − Z∥2

2 + λ

L∑︂
l=1

TV3D
(︁
T

(︁
Z(:,l)

)︁ )︁
, s.t. F (X) = y, (8)

where Z is an intermediate variable for iteration, and t denotes the iteration number. Equation 8
is solved by alternating the updates on X and Z [35].

Updating X: Given Z, the variable X can be updated using the Gauss-Newton (GN)
method, which is a classical iterative method for nonlinear optimization [36]. It updates X by
X(t+1) = Z(t) + αD(t), where D(t) is the GN direction in the tth iteration, and α is the step length.
Let us denote F (t) = F

(︁
X(t))︁ and the residual r(t) = y − F (t) for simplicity. Then, the GN

direction can be calculated by solving the following least square estimate problem:

D(t) = argmin
D

1
2
∥r(t) +

L∑︂
l=1

J(t)l D(:,l)∥
2
2 , (9)

where J(t)l is the Jacobian matrix of F (t) with respect to X(t)
(:,l). It is calculated by

J(t)l = − diag
(︂
I(t)l

)︂
H, I(t)l =

(︂
(1P ⊗ W) ⊙ exp

(︂
−HX(t)T

)︂)︂
T⊤
(l,:), (10)

where diag(x) denotes a diagonal matrix whose diagonal elements are the entries of vector x.
Substituting Eq. (10) into Eq. (9), we have

D(t) = argmin
D

1
2
∥r(t) −

L∑︂
l=1

diag
(︂
I(t)l

)︂
HD(:,l)∥

2
2 . (11)

Equation (11) is a high-dimensional linear problem, and thus cannot be efficiently solved by
direct inversion. Here it is iteratively solved using the conjugate gradient (CG) method [36]. In
the τth CG iteration, the gradient of cost function Eq. (11) with respect to D(τ)

(:,l) is given by

G(τ)
(:,l) = −H⊤ diag

(︂
I(t)l

)︂ (︄
r(t) −

L∑︂
l=1

diag
(︂
I(t)l

)︂
HD(τ)

(:,l)

)︄
. (12)

Then, the descent direction P in the τth iteration is determined by P(τ) = −G(τ) + β(τ)P(τ−1),
where β(τ) in the Flecther-Reeves formula is calculated by β(τ)FR = ∥G(τ)∥2

2/∥G(τ−1)∥2
2 [42]. The

step size α(τ)
CG of CG iteration can be obtained by a line-searching method along the descent

direction, which is expressed as

α
(τ)
CG =

⟨Λ
(τ)
P , r(t) − Λ(τ)

D ⟩

⟨Λ
(τ)
P ,Λ(τ)

P ⟩
, (13)

where Λ(τ)
P =

∑︁L
l=1 diag

(︂
I(t)l

)︂
HP(:,l), Λ(τ)

D =
∑︁L

l=1 diag
(︂
I(t)l

)︂
HD(:,i), and ⟨·, ·⟩ denotes the inner

product of two vectors or matrices. Using the descent direction and step length, D is then updated
by D(τ+1) = D(τ) + α

(τ)
CGP(τ).

Updating Z: Given X, the update of Z can be formulated as the following 3D TV denoising
problem

Z(t) = argmin
Z

1
2
∥Z − X∥2

2 + λ

L∑︂
l=1

TV3D
(︁
T

(︁
Z(:,l)

)︁ )︁
. (14)

This problem can be solved by applying the iterative clipping algorithm for each material in X
[43].
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4. KCA optimization for CSXT

As shown in Fig. 2(b), the proposed system includes opaque elements to block a partion of X-ray
beam thereby reducing the overall X-ray dose in a scan. However, a random coded aperture
generally yields nonuniform radiation dose on different portions of object. Some voxels are thus
over-exposed and suffer more X-ray damage, which increases the risk for women undergoing
regular screening mammography [28,29]. To avoid this, we propose to optimize the KCA based
on the criterion of uniform sensing to minimize the overall radiation exposure placed on any
volumetric area of the patient, i.e., every voxel is equally illuminated by each type of filtered
X-ray beams. Other optimization criteria could be used but are left for future research [44,45].
The details of the optimization are presented as follows. As shown in Fig. 3, a KCA with F
types of K-edge materials can be formulated as a binary matrix C of size F × MxMy, where
the element Cf ,j = 1 indicates that the jth pixel in KCA is made of the f th K-edge material.
Evidently, the column-sum of C should be no more than 1 since only one type of K-edge material
can be used in a specific KCA pixel. If all of the elements in one column of C are zero, the
associated KCA pixel is blocked. Then, the radiation dose that different voxels in the object
receive from the filtered X-ray beams can be measured by

∑︁P
P=1 CHp. The average dose per

voxel is µ̄ = D
∑︁P

p=1 1⊤MHp1N/FNM when the total number of non-opaque pixels is limited to D,
where M = MxMy. According to the criterion of uniform sensing, the optimization of KCA can
be formulated as minimizing the variance of

∑︁P
P=1 CHp. The problem is described as

C∗ = argmin
C

1
2
∥

P∑︂
P=1

CHp − µ̄∥2
F, s.t. C ∈ {0, 1}F×M and C⊤1F ≤ 1, (15)

where ∥ · ∥F denotes the Frobenius norm. Note that the inequality constraint in Eq. (15) aims
to avoid more than one K-edge material being used in a pixel. However, it makes the objective
with the binary constraint difficult to converge. To alleviate this dilemma, we propose to split
the original problem into two subproblems which aim to sequentially optimize the spatial coded
aperture distribution CΛ and the spectral coded aperture distribution CΠ . The spatial coded
aperture optimization aims to obtain the optimal set of pixels Λ for uniform sensing in the spatial
domain. Subsequently, through the optimization of spectral coded aperture distribution, the F
types of K-edge materials are arranged at the selected KCA pixels to achieve uniform sensing in
the spectral domain. The details of this two-stage algorithm are presented next.

Fig. 3. Matrix representation of KCA in CSXT.

Spatial coded aperture optimization: The subproblem of spatial coded aperture optimization
can be derived from Eq. (15) by setting F = 1, such that

CΛ = argmin
C

1
2
∥

P∑︂
P=1

CHp − µ̄Λ∥
2
2 , s.t. C⊤ ∈ {0, 1}M , (16)

where µ̄Λ = F µ̄. Note that the inequality constraint in Eq. (15) collapses to a binary constraint
after setting F = 1. To solve Eq. (16), we introduce a variational reformulation to transform the
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binary constraint into a bilinear equality constraint [46]. It is expressed as

C⊤ ∈ {0, 1}M ⇐⇒ {C|0 ≤ C ≤ 1, ⟨2C − 1, 2V − 1⟩ = M, 0 ≤ V ≤ 1,∀V⊤ ∈ RM}. (17)

Subsequently, Eq. (16) can be rewritten as

CΛ = argmin
0≤C≤1,0≤V≤1

1
2
∥

P∑︂
P=1

CHp − µ̄Λ∥
2
2 , s.t. ⟨2C − 1, 2V − 1⟩ = M. (18)

We solve Eq. (18) using the the Lagrangian multiplier algorithm [36]. The Lagrangian function
for Eq. (18) is expressed as

LΛ(C, V) =
1
2
∥

P∑︂
P=1

CHp− µ̄Λ∥
2
2 − ρΛ(⟨2C−1, 2V−1⟩ −M), s.t. 0 ≤ C ≤ 1, 0 ≤ V ≤ 1, (19)

where ρΛ is the Lagrange multiplier. It can be minimized by alternately updating the variables C
and V. The details are presented in Algorithm 4, in which the gradient projection method is used
to update C, and the close-form solution for updating V is given in [46].

Algorithm 1: Optimization for spatial coded aperture CΛ
Input: Hp=1,· · · ,P, M, µ̄Λ, σ>1.
Initialize: C(0) = V(0) = 0, ρΛ>0.
for t = 0 to tmax do

for τ = 0 to τmax do
g(τ) =

(︂∑︁P
P=1 C(τ)Hp − µ̄Λ

)︂ ∑︁P
p=1 Hp − 2ρΛ(2V(t) − 1).

λ(τ) =
−ρΛ ⟨2g(τ),2V(t)−1⟩+⟨

∑︁P
p=1 g(τ)Hp,

∑︁P
p=1 C(τ)Hp−µ̄Λ ⟩

∥
∑︁P

p=1 g(τ)Hp ∥2
2

.

C(τ+1) = C(τ) − λ(τ)g(τ).
Set the element greater than 1 in C(τ+1) to 1 and the element less than 0 to 0.

end
V(t+1) =

√
M

(︁
C(τmax) − 1/2

)︁
∥2C(τmax) − 1∥2 + 1/2.

ρΛ := ρΛ × σ.
end
Output: The non-opaque pixels in spatial coded aperture CΛ is determined by the indices
of the biggest D elements in C(tmax).

Spectral coded aperture optimization: Substituting the optimal spatial coded aperture CΛ
into Eq. (15), we obtain the problem for spectral coded aperture optimization, which is expressed
as

CΠ = argmin
C

1
2
∥

P∑︂
P=1

CHp − µ̄∥2
2 , s.t. C⊤ ∈ {0, 1}F×M and 1⊤F C = CΛ. (20)

Using Eq. (17) again to transform the binary constraint, the equivalent form of Eq. (20) is then
given by

CΠ = argmin
0≤C≤1,0≤V≤1

1
2
∥

P∑︂
P=1

CHp − µ̄Λ∥
2
2 , s.t. ⟨2C − 1, 2V − 1⟩ = FM and 1⊤F C = CΛ. (21)



Research Article Vol. 29, No. 25 / 6 Dec 2021 / Optics Express 41056

Fig. 4. (a) Projection image of the patient’s breast CT phantom on 0◦ angular view; (b)
original 30kV X-ray source spectrum, and the spectrum filtered with the material of Se, Sr,
Nb, Ru, Ag, and In, respectively [18]

Similarly, this equality-constrained problem can be solved using the Lagrangian multiplier
algorithm [36]. The Lagrangian function for Eq. (21) is given by

LΠ(C, V) =
1
2
∥

P∑︂
P=1

CHp − µ̄∥2
2−ρ(⟨2C − 1, 2V − 1⟩ − FM) − ⟨Γ, 1⊤F C − CΛ⟩,

s.t. 0 ≤ C ≤ 1, 0 ≤ V ≤ 1,

(22)

where ρ and Γ ∈ R1×M are the Lagrange multipliers. Equation 22 can be solved by alternately
updating C, V, ρ, and Γ. The details are presented in Algorithm 5, where the close-form solution
for updating V is given in [46]. Since the optimal spatial coded aperture CΛ is included in the
optimization problem, the solution for Eq. (22) also provides the final optimization result of
KCA.

Algorithm 2: Optimization for spectral coded aperture CΠ
Input: Hp=1,· · · ,P, M, F, µ̄, σ>1.
Initialize: C(0) = V(0) = 0, ρ>0 , Γ = 0.
for t = 0 to tmax do

for τ = 0 to τmax do
g(τ) =

(︂∑︁P
P=1 C(τ)Hp − µ̄

)︂ ∑︁P
p=1 Hp − 2ρ(2V(t) − 1) − 1FΓ.

λ(τ) =
−ρ ⟨2g(τ),2V(t)−1⟩−⟨Γ,1⊤F g(τ) ⟩+⟨

∑︁P
p=1 g(τ)Hp,

∑︁P
p=1 C(τ)Hp−µ̄⟩

∥
∑︁P

p=1 g(τ)Hp ∥2
2

.

C(τ+1) = C(τ) − λ(τ)g(τ).
Set the element greater than 1 in C(τ+1) to 1 and the element less than 0 to 0.

end
V(t+1) =

√
FM

(︁
C(τmax) − 1/2

)︁
∥2C(τmax) − 1∥F + 1/2.

ρ := ρ × σ, Γ := Γ − 1⊤F C(τmax) + CΛ.
end
Output: For each column in C(tmax) corresponding to the non-opaque pixel in CΛ, sign the
index of the largest element as the type of K-edge material used for this pixel.
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Fig. 5. Comparison of the material decomposition reconstruction for breast phantom. The
first and fourth rows are the ground truth of adipose and the glandular in the tomographic
images; the second and fifth rows are the proposed KCA-CSXT reconstruction results; the
third and sixth rows are the conventional tomosynthesis reconstruction results using the
proposed nonlinear algorithm. Columns from left to right correspond to the images at even
layers.

5. Simulation results

This section will first studies the performance of the proposed CSXT imaging system. Since
it is based on a single KCA, we also abbreviate it as KCA-CSXT. Then, we present the results
of KCA optimization for uniform sensing. In the simulations, we use an X-ray tomosynthesis
configuration with a flat 2D detector containing Mx × My = 220 × 180 pixels. The pitch size
of each detector pixel is 1mm × mm. 11 projection images are taken from the angular range of
[−30◦, 30◦] at 6◦ intervals. The X-ray source rotates with the center of detector plane, and the
distance from the X-ray source to the rotation center is 350mm. The distance from the object to
the rotation center is 67.5mm. According to these parameters, we generate the system matrix H
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using the ASTRA software [47]. To evaluate the quality of the reconstructed images, we use
the PSNR and the relative error (RE) as the metrics [37,48]. Given the reconstructed image
X̂ ∈ RN×N and the ground truth X, they are respectively defined as PSNR = 20 log10

X̂max
∥X−X̂∥F/N2

and RE = ∥X−X̂∥F
∥X∥F

.

5.1. Simulations on nonlinear reconstruction for CSXT

We illustrate the feasibility of the proposed KCA-CSXT method by applying it to mammographic
imaging. Part of head Shepp-Logan phantom is extracted as the breast CT phantom used in our
simulations [40], which is composed of the adipose and glandular (soft tissue), has a size of
128mm× 128mm× 50mm, and is divided into Nx ×Ny ×Nz = 128× 128× 10 voxels. Despite the
nonsimilarity of the head phantom with the desired breast phantom in structure, the use of it is
only to demonstrate the separation of those two materials in the reconstructed tomographic images.
The projection image acquired at 0◦ angular view is presented in Fig. 6(a). The tube voltage of the
X-ray source is set to 30kV, whose spectrum is generated with the Spektr software [19]. To obtain
the optimal reconstruction performance, a full sampling scheme shown in Fig. 2(a) is adopted
in this simulation. Each pixel in KCA is randomly assigned to one of the six K-edge materials,
including Selenium (Se), Strontium (Sr), Niobium (Nb), Ruthenium (Ru), Silver (Ag) and Indium
(In). The corresponding K-edge energies are 12.66keV, 16.10keV, 18.99keV, 22.12keV, 25.51keV
and 27.94keV. This choice of the K-edge materials allows the spectrum of the X-ray source to be
divided into seven energy bins with approximately equal bandwidth of 2.5keV, which facilitates
the uniform sensing of the spectral attenuation information throughout the entire spectrum. The
thicknesses of the K-edge materials are respectively set as 20um, 20um, 10um, 10um, 10um
and 10um to release approximately equal filtered X-ray intensity. Figure 6(b) shows the original
and the filtered spectra, where the linear attenuation coefficients of the K-edge materials come
from the National Institute of the Standards and Technology (NIST) X-ray attenuation database
[18]. These spectra are discretized into seven energy bins determined by the materials’ K-edge
energies. To obtain the spectral phantom, for each voxel in the breast CT phantom, we assign the
spectral attenuation data according to its components. By substituting the discretized spectral
attenuation of KCA and the spectral data cube of breast phantom into Eq. (5), we generate the
KCA-CSXT measurement data used for simulation.

Figure 7 presents the reconstructed tomographic images of the two basis materials in the
phantom. For comparison, we also present the reconstruction results by applying the nonlinear
algorithm for the conventional tomosynthesis system without KCA, which is referred to as
nonlinear tomosynthesis for simplicity. It should be pointed out that, different from KCA-CSXT,
the blank intensity W in 4 for conventional tomosynthesis is only determined by the spectral
response of the X-ray source and the detectors. The reconstruction results shown in Fig. 7 indicate
that the KCA-CSXT system enables the separation of adipose and glandular tissue components in
the reconstructed images. Meanwhile, in the reconstructed images for conventional tomosynthesis
system, the component of adipose is reduced and misidentified as the glandular (soft tissue).
Quantitative comparison on the average PSNR and RE values at all layers corresponding to
these images are presented in Table 1. It is found that the material images reconstructed for
KCA-CSXT have significantly lower reconstruction error when compared with the reconstruction
results of conventional tomosynthesis.

The tomographic images of linear attenuation coefficients corresponding to the material images
shown in Fig. 7 are presented in the second and third rows of Fig. 8. They are extracted from the
6th energy bin in the spectral phantom data cube. It is found that the high-quality tomographic
images can be obtained from the proposed KCA-CSXT system. In addition, benefiting from the
nonlinear reconstruction algorithm, the conventional tomosynthesis system also reconstructs the
artifact-free CT images. However, it fails to separate the basis materials. Figure 9 presents the
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Fig. 6. Comparison of the reconstructed tomographic images for breast phantom. The first
row is the ground truth of energy-binned tomographic images at the 6th energy bins; the
second row is the KCA-CSXT reconstruction results using the proposed algorithm; the third
row is the conventional tomosynthesis reconstruction results using the proposed nonlinear
algorithm.

Fig. 7. Quantitative comparison of nonlinear reconstruction for KCA-CSXT and conven-
tional tomosynthesis. (a) The PSNR values of reconstructed tomographic images in all
layers and all energy bins; (b) the RE values of reconstructed tomographic images in all
layers and all energy bins.

Table 1. The average PSNR and RE values of the reconstructed basis material
images.

Metrics
Adipose Glandular (soft tissue)

KCA-CSXT Nonlinear tomosynthesis KCA-CSXT Nonlinear tomosynthesis

PSNR: dB 14.26 6.07 18.02 9.93

RE: % 26.52 67.92 46.56 117.71



Research Article Vol. 29, No. 25 / 6 Dec 2021 / Optics Express 41060

PSNR and RE values of the reconstructed tomographic images at all layers and energy bins in
3D surface form. It is found that the energy-binned tomographic images of KCA-CSXT have
higher quality and lower error at most energy bins when compared with the results obtained from
conventional tomosynthesis. The average PSNR value of reconstructed images at all layers and
all energy bins is 38.48dB, which is 5.45dB higher when compared with the reconstruction results
for conventional tomosynthesis system. The average RE value of these images is 1.60%, which
is 1.76% lower when compared with the reconstruction results for conventional tomosynthesis
system.

Fig. 8. Comparison of reconstruction with different settings for pixel binning in KCA.
These images come from the sixth layer of the reconstructed 3D data cube.

Fig. 9. The reconstructed images for CSXT system using fewer types K-edge materials.

Assume that the KCA is fixed in front of the X-ray source and the pixels of KCA are a
one-by-one matching with the pixels on the detectors, the pixel sizes in KCA are then very small
due to the projection amplification of the tomosynthesis system. To improve the manufacturability
of KCA, we propose to bin the adjacent pixels together such that the binned pixels can be made
of the same K-edge material. Simulations with different pixel binning areas of 2 × 2, 4 × 4,
8 × 8 and 16 × 16 are implemented to demonstrate the feasibility. Table 2 presents the average
PSNR and RE values of the reconstructed images at all layers. The corresponding images are
shown in Fig. 10, which come from the sixth layer of the reconstructed data cube. It is found
that the quality of reconstructed images gradually degrades as more pixels in KCA are binned
together. Nevertheless, this degradation is acceptable since the pixel binning method facilitates
the manufacturing of KCA.
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Fig. 10. Frontal slice from the digital breast phantom. Each voxel in the phantom has been
classified into one out four basis materials: adipose tissue, glandular tissue, skin, and air.

Table 2. The average PSNR and RE values of the reconstructed basis material images with
different pixel binning settings.

Pixel binning setting 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16

Adipose
PSNR: dB 14.26 13.93 13.80 13.54 13.05

RE: % 26.52 27.57 27.95 28.81 30.48

Glandular
PSNR: dB 18.02 17.70 17.57 17.32 16.85

RE: % 46.56 48.35 49.02 50.44 53.24

The difficulty of manufacturing the KCA is also related to the required number of K-edge
materials, We validate the performance of the proposed reconstruction method for the CSXT
system with fewer types of K-edge materials. Additional two KCAs respectively made of [Sr, Nb,
Ru, Ag] and [Nb, Ag] are used for simulations. Figure 11 presents the images that come from
the sixth layer of the reconstructed 3D material data cube. Some images shown in Fig. 7 are
presented again for comparison. Obviously, the CSXT system with zero type of K-edge material
is equivalent to the conventional tomosynthesis system. It is found that the capability of material
separation gradually declines as fewer types of K-edge materials are used in CSXT. We thus
conclude that KCA should be made of as many types of materials as possible to obtain better
reconstruction accuracy.

An additional digital breast phantom is derived from high-resolution clinical 3D breast images
[49], which has been cropped and resized to adapt to the simulation setting. As shown in
Fig. 12, each voxel in the phantom is classified into one of four main materials: glandular
tissue, adipose tissue, skin, and air. Based on this segmentation, we generate the spectral
phantom using the aforementioned method and then simulate the measurement data using the
projection model. Figure 13 depicts the reconstructed tomographic images of the two basis
material in the phantom. The images reconstructed from tomosynthesis system without KCA
are also presented from comparison. It is found that the basis materials in KCA-CSXT images
are with higher separation comparing with the conventional tomosynthesis images. Note that
the region of skin in the phantom is reconstructed as glandular tissue since both of them are
with the spectral attenuation characteristics similar to the soft tissue. Quantitative comparison
presented in Table 3 also indicates that the material images reconstructed for KCA-CSXT
have significantly lower reconstruction error when compared with the reconstruction results of
conventional tomosynthesis.

5.2. Simulations on optimization for KCA

In this subsection, we illustrate the performance of the proposed algorithm for optimizing the
KCA in CSXT. The K-edge material set including Se, Sr, Nb, Ru, Ag and In is reused in this
simulation. The transmittance of KCA is constrained within 50% to reduce the X-ray radiation
dose. Fig. 12 presents both the optimized spatial coded aperture and the resultant KCA, which
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Fig. 11. Comparison of the material decomposition reconstruction for breast phantom
derived from clinical breast images. The first and fourth rows are the ground truth of
adipose and the glandular in the tomographic images; the second and fifth rows are the
proposed KCA-CSXT reconstruction results; the third and sixth rows are the conventional
tomosynthesis reconstruction results using the proposed nonlinear algorithm. Columns from
left to right correspond to the images at even layers.

Table 3. The average PSNR and RE values of the reconstructed basis material
images for breast 3D phantom.

Metrics
Adipose Glandular (soft tissue)

KCA-CSXT Nonlinear tomosynthesis KCA-CSXT Nonlinear tomosynthesis

PSNR: dB 14.59 7.12 18.29 10.97

RE: % 27.68 65.35 48.99 113.44

are respectively obtained at two stages of the proposed optimization algorithm. The zoomed
images of the part indicated by the red squares in the coded apertures are also presented in
Fig. 12. The black pixels in the spatial coded aperture represent the opaque pixels, while the
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Fig. 12. (a) The optimized spatial coded aperture obtained at the first stage of the proposed
algorithm; (b) the optimized KCA using the proposed algorithm; (c) zoomed version of the
part indicated by the red square in spatial coded aperture; (d) zoomed version of the part
indicated by the red square in KCA.

Fig. 13. (a) X-ray radiation dose distribution in the fifth layer of the object when a random
KCA is used; (b) X-ray radiation dose distribution in the fifth layer of the object when the
optimized KCA is used.

white pixels represent the transparent pixels. The colorful pixels in KCA indicate that they are
made of different K-edge materials shown in the legend. Given the optimized KCA Copt, we use
the variance of

∑︁P
p=1 CoptHp to measure the uniformity of radiation dose. For the six types of

K-edge materials in the optimized KCA, the variances are 2.54, 2.54, 2.51, 2.50, 2.63 and 2.50
respectively. For comparison, we generate 10 different random KCAs and calculate the variances
for the six types of K-edge materials again. The average variances for the random KCAs are 5.43,
5.68, 5.14, 5.52, 5.83 and 5.55 respectively, which means that the average uniformity is improved
by 54.14% after optimization. Figure 13 shows the radiation dose distribution measured by the
path length of X-ray beams in the fifth layer of the object, which comes from the X-ray beams
filtered by the third type of K-edge material, i.e., the map of

(︂
T(

∑︁P
p=1 C(3,:)Hp)

)︂
(:,:,5)

. It is found
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that the optimized KCA provides a more uniform dose distribution in the object. In addition,
using the CSXT with optimized KCA for 50% dose mammographic imaging, the average PSNR
value of the reconstructed images is increased by 0.41dB compared to the use of a random KCA.

6. Conclusion and discussions

This paper develops a cost-effective spectral X-ray tomosynthesis system, which enables basis
material decomposition in mammographic imaging by encoding the spectrum of X-ray beams
with a static KCA. To reconstruct the tomographic images, a nonlinear alternating projection
algorithm is proposed to solve the TV-regularized inverse imaging problem. Subsequently, an
optimization algorithm of KCA is proposed to enable uniform distribution of X-ray radiation
dose in the object. Simulations with two phantoms show that the proposed system enables the
reconstruction of artifact-free tomographic images of both basis materials and linear attenuation
coefficients of the object. In comparison, conventional tomosynthesis fails to identify the basis
materials and merely reconstructs the attenuation images with inferior accuracy. Simulations
also show that the uniformity of radiation dose is effectively improved when the optimized KCA
is used. Besides, the image quality is slightly improved with the use of an optimized KCA.
Future research will focus on developing novel criteria for KCA optimization, which enables
high-efficiency sensing of the structural and spectral information in the object, thereby improves
the nonlinear reconstruction accuracy of compressive spectral tomosynthesis.
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