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Abstract: Coded aperture X-ray computed tomography is a computational imaging technique
capable of reconstructing inner structures of an object from a reduced set of X-ray projection
measurements. Coded apertures are placed in front of the X-ray sources from different views
and thus significantly reduce the radiation dose. This paper introduces coded aperture X-ray
computed tomography for robotic X-ray systems which offer positioning flexibility. While single
coded-aperture 3D tomography was recently introduced for standard trajectory CT scanning, it is
shown that significant gains in imaging performance can be attained by simple modifications
in the CT scanning trajectories enabled by emerging dual robotic CT systems. In particular,
the subject is fixed on a plane and the CT system uniformly rotates around the » —axis which is
misaligned with the coordinate axes. A single stationary coded aperture is placed on front of
the robotic X-ray source above the plane and the corresponding X-ray projections are measured
by a two-dimensional detector on the second arm of the robotic system. The compressive
measurements with misalignment enable the reconstruction of high-resolution three-dimensional
volumetric images from the low-resolution coded projections on the detector at a sub-sampling
rate. An efficient algorithm is proposed to generate the rotation matrix with two basic sub-matrices
and thus the forward model is formulated. The stationary coded aperture is designed based
on the Pearson product-moment correlation coefficient analysis and the direct binary search
algorithm is used to obtain the optimized coded aperture. Simulations using simulated datasets
show significant gains in reconstruction performance compared to conventional coded aperture
CT systems.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Computed tomography (CT) is a computational imaging technique used to reconstruct high-
resolution three-dimensional (3D) volumetric images. It has been extensively used in medi-
cal/biological imaging, security inspection, non-destructive testing among others [1-3]. CT
technology has continuously evolved since its introduction several decades ago. Most common
CT systems, in either cone-beam CT or spiral CT architectures, utilize a circular scanning
trajectory of the source-detector gantry around the subject under inspection. More recently,
robotic CT imaging systems have been introduced as a means to improve targeting accuracy
and to reduce radiation exposure to both patient and physician [4,5]. Unlike conventional CT
systems, robotic CT systems can adjust their trajectories to maximize dose reduction and image
reconstruction accuracy. A twin robotic X-ray system for projection and measurement is, for
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instance, shown in Fig. 1, where the source and detector are moved on a coordinated trajectory to
ensure comfortable scan conditions and lower radiation dose. Given the set of projections and
the geometry of the scanning trajectory, algebraic reconstruction techniques (ART) are used to
reconstruct the volumetric images with limited-view projections [6].
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Fig. 1. The schematic diagram of the twin robotic X-ray system with a static coded aperture.
The source-detector pair scans the object with multi degree-of-freedom robotic arms along
the pre-programmed trajectory. The plane of the source is designed parallel to that of the
detector and thus the coded aperture has one-to-one correspondence to the pixels of the 2D
detector.

In order to further reduce the radiation dose, this work explores the use of coded illumination
in robotic CT imaging systems. The use of binary “on-oft” coded apertures placed in front
of the source, blocking a significant portion of the X-rays transmitted to the subject, has been
studied in conventional CT [7-10]. It has been shown that structured illumination in CT imaging
reduces the radiation dose yet maintains the reconstruction image quality. Inspired by the recent
work in [11,12], our work is based on coded illumination where only a single coded aperture
is used in the robotic CT imaging system. The implementation of the proposed system with
static coded projections can be obtained by following similar strategies as well as other feasible
implementation of structured illumination [13,14]. The coded aperture is fixed and is static with
respect to the source as depicted in Fig. 1. We thus explore the concept of coded illumination in
robotic CT and explore novel scanning trajectories in robotic CT that can provide significant
gains in reconstruction image quality. As in [11,12], our work focuses on the use of a single
coded aperture in the robotic CT imaging gantry as depicted in Fig. 1. Our goal is then to
design the scanning trajectory of the source-detector pair in a subject independent manner. The
approach is to constrain the degrees of freedom in the gantry’s motion to only allow rotational
scans with varying angles with respect to a fixed coordinate system. The plane of the source is
designed parallel to that of the detector for maximum use of the X-ray projections, and the robotic
source-detector pair scans the object with a non-zero pitch angle around a fixed axis. The irregular
scanning trajectory driven by the robotic system significantly improves the sampling efficiency in
a tilted orbit which is not possible with standard circular orbits in X-ray tomosynthesis.

The irregular projection structure and trajectories used in the proposed coded aperture robotic
tomography system (CARTS) leads to complex structures for the sensing matrices at different
view angles and positions. We thus introduce an efficient forward model to attain a diversity
of view angles through rotational sensing by fixing the coded aperture to remain static. The
two structures are equivalent and could be converted based on relative motion. As depicted in
Fig. 2, the position and orientation of the X-ray source, the flat detector and the coded aperture
are all fixed and the scans are performed by rotating the object. The object is placed on a plane
rotating around the r—axis which has a pitch angle 6 with the normal vector of the x; — z; plane.
Again, this model is used to simplify the analysis of the robotic scanning system depicted in
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Fig. 1. Note that the proposed method is equivalent to the general cone-beam X-ray CT when
6 = 0° and a single coded aperture is used. The imaging performance in this 6 = 0° case is poor
as documented by Kaganovsky et. al. The proposed geometry has two advantages compared
with the conventional one. First, the effect of source and coded aperture when 6>0° at different
view angles is replaced by the rotation of the object. Furthermore, the generation of multiple
structure matrices at different view angles is replaced by that of the rotation matrix, leading
to more efficient calculation. Second, the object uniformly rotates around the axis which is
misaligned with the coordinate axes leading to more efficient sensing of the inner structure. In
the forward model, the rotation matrix is numerically computed with two basic sub-matrices and
the compressive reconstruction is performed at a sub-sampling rate. Due to the computational
complexity, the existing coded aperture optimization methods cannot be used for large structured
matrices in X-ray CT. This paper develops a more efficient algorithm based on the Pearson
product-moment correlation coefficient (PPMCC) analysis, which can efficiently optimize the
coded aperture associated with the high-dimensional sensing matrix that models the system in
Fig. 1.

X-ray Source Coded Aperture

S, Yﬁ
-

Fig. 2. Equivalent sensing mechanism of the CARTS system shown in Fig. 1. The 3D object
illuminated by a stationary cone-beam X-ray source rotates around the r—axis with pitch
angle 6. The pth coded projection is measured by a stationary 2D detector, p = 1,2,...,P.
A single block-unblock coded aperture is placed in front of the X-ray source and part of the
X-ray radiation is blocked by the blocking elements.

Detector

This paper is organized as follows. Section 2 introduces the forward model in matrix notation.
The methods to generate the rotation matrix and optimize the coded aperture are presented in
Section 3 and Section 4, respectively. The results using 3D simulated datasets and simulated
projections of real datasets at different sampling rates are provided in Section 5. Conclusions and
future work are presented in Section 6.

2. Coded aperture robotic tomography system
2.1. Forward model

As depicted in Fig. 2, a binary coded aperture is placed in front of a stationary X-ray source with
a fixed orientation. The elements on the coded aperture have one-to-one correspondence to the
pixels on a flat 2D detector. The 3D object rotates around the r—axis with pitch angle 6 and part
of the 3D object is illuminated by the coded X-ray patterns. The pth coded X-ray projection
is measured by the 2D detector where p = 1,2,...,P, and P is the number of projections.
Measurements corresponding to the blocking elements on the coded aperture are discarded.
Then the linear attenuation map of the 3D object is reconstructed using the set of tomographic
measurements and the projection geometries.
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According to the Beer-Lambert law, the transmission model of a monochromatic X-ray path /
to a particular pixel on the detector is given by [15]

I'= I exp{- / " a(l)dl}, 1)
0

where I’ is the measurement on the detector, I(l) is the intensity of the monochromatic X-ray
generated by an X-ray source, and « is the linear attenuation coefficient varying in the / path.
Suppose § and 7] represent the location of the X-ray source and the direction of the projection,
respectively, the logarithmic measurement of the detector can be re-written as

. I o .
¥, 60) = 1n1—‘; = /O fG+16)dl, )

where f represent the linear attenuation coefficient map of the 3D object.

Due to the pixelated nature of the 2D detector, the 3D object is gridded into N = Ny X Ny X N,
voxels where Ny, Ny and N, are the dimensions along the x;, y and z; axes in Fig. 2(b), respectively.
The 2D detector is gridded into M = M, x M, pixels where M, and M, are the dimensions along
the x; and y; axes, respectively. Then, the discrete logarithmic measurements in matrix notation
can be formulated as

y = WE, 3

where y € R denotes the vectorized representation of the logarithmic measurement y(xg, yo)
where xq and yq are the spatial coordinates of the 2D detector, respectively. f € RV denotes the
vectorized representation of the 3D object f(x1, y1,z1) where x1, y1, z; represent its spatial coor-
dinates. W € RY*N denotes the structure matrix which represents the X-ray path characteristics
of the ray projections from the source at a particular view angle to the corresponding detector.
The (m, n)th element in the structure matrix W represents the volume portion of the nth voxel
that is irradiated by the X-ray source associated with the mth element on the 2D detector.

The binary on-off coded aperture T'(xo, yo), xo = 1,2,..., My, y0 = 1,2, ..., M,, is placed in
front of the cone-beam X-ray source, and the coded aperture pitch is fixed to have one-to-one
correspondence to the pixels of the 2D detector. The equivalent transmission function of the
coded aperture can then be formulated as

T=ToA “

where © represents the element-by-element multiplication, T and A are the transmission function
corresponding to the coded aperture and source orientation, respectively. Thus, the vectorized
representation of the coded logarithmic measurements is given by

y = CWf, o)

where the coded aperture matrix C = diag(vec(T)) is a diagonal matrix with the diagonal vector
equal to the vectorized representation of the equivalent transmission function, T.

Furthermore, sampling in X-ray CT can be considered as cutting the object using X-rays and
thus more irregular voxels can lead to higher sampling efficiency in the absolute coordinate
(3D free space). In our previous work, the number of intersections of X-rays in the object is
theoretically demonstrated to determine the amount of information acquisition [16,17]. Limited
by the projective geometry, the intersections of projections in X-ray CT are finite. However,
misalignment between the voxels and the coordinates during the rotation can lead to more
intersections and thus more details can be resolved. As depicted in Fig. 2, the 3D object rotates
around the fixed r—axis with the pitch-roll angle representation # and w, where 6 is the angle
of r—axis direction and w is the magnitude of the rotation, respectively. Therefore, the coded
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measurements in the proposed CARTS system with the r—axis and the angle representation w

can be written as
y(r,w) = C(r, )WR(r, w)f, (6)

where R(r, w) € RV is the rotation matrix. The (m, n)th element in the rotation matrix R
represents the volume portion of the nth voxel of the 3D object f that is rotated associated with
the mth element of the 3D free space Q(u, v, k) where y, v and « represent its spatial coordinates.

An example of the sensing matrix with pitch angle § = 0 and § = 45° for Ny = N, = N, = 8 and
M, = M, = 32, is depicted in Fig. 3(a) and (b), respectively. The number of unblocking elements
on the coded aperture D is 256 and thus the transmittance is 25%. It is seen that the sensing
matrix with pitch angle 8 = 0 is highly structured and the regions marked in blue are not sensed.
The distribution of elements in the sensing matrix with pitch angle 6 = 45° is more uniform
and the corresponding regions marked in red are sensed. The singular value decomposition
(SVD) analysis which has been reportedly used as a tool to compare the performance of coded
apertures is depicted in Fig. 3(c). The measurement strategy with larger non-zero singular
value components is considered to capture more orthogonal components of the object and thus,
it leads to less ill-conditioned reconstruction. The condition numbers of sensing matrix with
9 =0and @ = 45° are 1.03 x 10* and 4.04 x 10, respectively. It is seen that the misalignment
implementation captures more orthogonal components.

N, xN, xN,
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Fig. 3. (a) Example of a sensing matrix for X-ray CT using rotational coding with pitch angle
0 =0,Ny =Ny =N, =8 and M, = My = 32. The coded aperture has 25% transmittance.
(b) Example of a sensing matrix for X-ray CT using rotational coding with pitch angle
0 = 45°, Ny = Ny = N; = 8 and M, = M, = 32. The coded aperture has 25% transmittance.
(c) The plot of the singular values as a function of component numbers. The highest and
lowest singular values are highlighted in each case.

It is difficult to reconstruct the linear attenuation coefficient map of the volumetric object from
a single measurement. Multiple projections are measured at a series of P rotations, and thus, the
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vectorized representation of the coded logarithmic measurements is given by

Yy diag(c))W| | Ri(r, w1)

diag(cr))W | | Ry(r,
Y2 | _ |diag(c) 2(r, wy) ¢ o

Yp diag(ep)W| [Rp(r, wp)

where ¢; = Vec(i) is the vectorized representation of the equivalent transmission function
in the ith projection, i = 1,2,..., P and Ry(r, w;) is the ith rotation matrix with the ith angle
representation (6, w;), respectively. It is noted that the coded aperture and the source orientation
are fixed in the proposed CARTS system, that is, ¢; = ¢p, i = 1,2,...,P.

For simplicity, Eq. (7) can be re-written in matrix notation as

Y = CWRf, ®)

where Y = [yl yT, ... ,yg]T, W=[WW,... W|"andR = [R,Ro, ...,Rp|”, respectively.
The coded aperture matrix C is defined as

diag(cp) 0 e 0
— 0 diag(c e 0
C= g(co) , ©)
0 0 .-+ diag(eg)

where 0 represents an M X M all zero matrix.

2.2. Rotation matrix

As shown in Eq. (8), the forward model of the proposed CARTS is determined by the coded
aperture matrix C, the structure matrix W, and the rotation matrix R. The closed-form solution of
the coded aperture matrix C is provided in Eq. (9) and the structure matrix related to the geometric
projections can be numerically calculated by using the open-access ASTRA Tomography Toolbox
(“All Scale Tomographic Reconstruction Antwerp”) [18].

In this section, an approach to obtain the rotation matrix R with the angle representation
(0, w) is proposed. Similar to the generation of the structure matrix, it is also difficult to obtain
the closed-form solution of the volume portion of a rotated voxel associated with a particular
element of the free space. Physically, the (m, n)th element in the rotation matrix R represents
the intersection volume of the nth voxel in the 3D object f and the mth element in the space Q.
Therefore, a numerical approach is proposed to estimate the intersection volume. As shown in
Fig. 4, every voxel in the 3D object f(x1, y1, z1) is divided into Ny X Ny X Ny smaller cubes and the
coordinates of the centroids in the right-handed Cartesian coordinate system can be calculated
as x¢, y. and z.. Then, the number of smaller cubes for the 3D object is NNS’. Given a rotation
axis ¢t = (ttx, py, pz)" where pi + p13 + 2 = 1 and a rotation angle 6, the rotation transformation
Q;(u, 9) in the right-handed Cartesian coordinate system can be given by

Q(S(/J’ 6) =

cosd + p2(1 — cosd) Hxpty(1 — cosd) — pz8ind ety (1 — cosd) + pysing

(10)
Hyptz(1 = cosd) + p sind coso + /Jf(l — c0sd) Hyptz(1 = cosd) — p,sind

Hzpc(1 = cosd) + pysind  pizpuy(1 = cosd) + puysind cosd + ,u?(l — C0s0)
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Fig. 4. (a) Free space and the 3D object before rotation; (b) Free space and the 3D
object after the rotation around the r—axis with angle representation (6, w). Note that the
coordinates are in the right-handed Cartesian coordinate system.

Thus, the coordinates of the centroid x., y. and z. with the rotation axis g and the rotation
angle ¢ can be calculated as

Lyl 2l = Qs 8) + (e, Yer ze) (11)

All of the Ny X Ny X Ny coordinates of the centroids of the smaller cubes in the mth cube can
be calculated and thus the number of smaller cubes in the nth space can be counted, that is the
coefficient of the (m, n)th element in the rotation matrix R(y, 6).

Since the projections are measured at a series of P rotations, it is computationally inefficient to
numerically estimate P rotation matrices, R(r, w;), i = 1,2, ..., P. Here, the rotation represented
by R(r, w) is decomposed as Rg (g1, 0)R,, (12, w) where pq and p are the normalized vectors
along z—axis direction and x— or y—axis direction, respectively. That is, g3 = (0,0, 1), and
p2 =(0,1,0) or pup = (1,0,0). Besides, the (i + 1)th rotation around the r—axis can be formulated
by the ith rotation around the r—axis when the distribution of the angle, w, is uniform. That is,
Ry, (12, wir1) = Ry, (U2, wo)R, (U2, w;), where Ry, (12, w1) = Ry, (12, wp) is the initial rotation
matrix with wg = 27/P. Therefore, the P rotation matrix can be calculated by Rg(p1,0) and
R, (u2, wp). The numerical estimation aims at obtaining the rotation matrix is detailed in
Algorithm 1. It is noted that the rotation matrix in this manuscript is pre-computed and stored
with the CPU implementation. However, step 12 to step 18 in Algorithm 1 is a loop with large
amount of independent computation requiring few memory. Then a GPU workstation with
numerous cores can be used to significantly accelerate the algorithm and make an arbitrary
acquisition scan possible.
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Algorithm 1 Numerical estimation of rotation matrix R(r, w)
Require: N,, Ny, N;, No, 1, 2, P, 0
Require: Initial sparse matrix Rg € RV and R,,, € RV, where all entries in Ry and Ry,
are zero.
wy =2n/P
: Compute the transformation matrix Qy(u1, 6) and Q,, (12, wp) using Eq. 2?
: fori =11to N\N,N, do
for j = 1 to Nj do
(¥ Y0 Z0F = Qo1 6) - (X yes 20
if (x,.,z.)i; belongs to the gth cube of the free space then
Ry(i,q) < Rg(i,q) + 1
end if
end for
Ry (i,:) « Ry(i, :)/NS
end for
for i = 1 to N\N,N, do
for j = 1 to Nj do
(L7 207, = Qo2 wo) - (e e 20)]
if (x.,y.,z.):; belongs to the gth cube of the free space then
Ru)()(i’ 51) — Rwo(i9 CI) + 1
end if
end for
Ry, (i, 1) < Ry, (@, :)/Ng
. end for
: Rtm = Rwo;
cfori=1toP—-1do
R = RyRe,
. end for
: fori=1toPdo
R(r, w;) = RgRy,
: end for
: return R(r,w;),i=1,2,---,P

R e A A o

[NCT ST YT N T NO TN NO TN NG N NG S N S g G Uy G g Sy
X DN E RN T Q0 RN R RO

2.3. Coded aperture optimization

Since the sensing matrix CWR is highly structured, the random coded aperture is not optimal in
the reconstruction of CS. Recently, coded aperture optimization methods have been developed
based on the RIP condition, the mutual coherence and information theory [10,16,17]. However,
these methods cannot be directly used in the optimization of the proposed CARTS system due
to two reasons. First, these methods are developed for the conventional CARTS systems where
the coded apertures and source orientations at different view angles are different. However, the
coded aperture and source orientation are stationary at a series of P rotations in the proposed
model. Second, the requirement of memory to calculate the Gram matrix in [10] or correlation
matrix in [16] and [17] far exceeds the limit of regular computing platforms.

It has been demonstrated that the variables in the structure matrix represent the observations
of the attenuation characteristics of X-ray projections and the coded apertures characterizes
reducing the measurements of the structure matrix. The purpose of coded aperture design is
to obtain the maximal non-overlappling information carried by unblocking X-ray projections.
Thus the coded aperture optimization problem is analogous to the feature selection problem or
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the dimensionality reduction problem [17]. In [16], the PPMCC matrix is used as a metric to
optimize the coded aperture and the cost function is given by

arg minz Bist. Ci=Cj=1 Vij, (12)
i#
and EIH() - 1) (H() - 10)]
By = 1) — i M (13)
gig;j

where Bj; is the (i, j)th coefficient of the PPMCC matrix of H, E[-] is the expected value, y is
the mean, o is the standard deviation, and H(i) and H(j) are the columns of the transpose of the
structure matrix HY = (WR)”, respectively. The nature of the cost function is to minimize the
standardized correlation of the transpose of the structure matrix. It is noted that the PPMCC of all
columns of the transpose of the structure matrix are calculated and the dense large PPMCC matrix
is stored. Cuadros et al. proposed a gradient descent approach based on restricted isometry
property (RIP) principles to obtain state-of-art optimization quality [10]. The computation
and memory complexity are ~ O(oN*) and ~ O(DN?), respectively, where o is the number of
iterations in the gradient approach and D is the number of unblocking elements on the coded
aperture. Mao et al. proposed a more efficient approach based on sparse principle component
analysis with the minimum memory complexity O(N?) [17]. However, the memory requirements
(~ 2TB for a 128 x 128 x 128 cube with a 512 X 512 coded aperture) in [17] far exceed our
computing platform. Inspired by the connection between the mutual coherence and the RIP
condition where a subset of correlation coefficients are used to estimate the entire set of correlation
coefficients, a subset of columns of the transpose of the structure matrix are considered.

Since the system matrix in the proposed architecture is highly structured, the subset of columns
cannot be chosen randomly. In practice, neighboring X-ray projections, with a much higher
probability, illuminate a particular voxel at the same time and thus carry more overlapping
information. Therefore, for a particular pixel on the coded aperture, the neighboring pixels in
the diameter of 9 pixels are chosen as a subset. Then the PPMCC of the rows in the sensing
matrix H that correspond to the X-ray projections are calculated. The PPMCC of all pixels on
the coded aperture with 9 neighboring pixels are calculated, and the average results are depicted
in Fig. 5. Figure 5(a)-(d) illustrate the average coeflicients at w = 0°, w = 90°, w = 180° and
w = 270°, respectively. It is seen that the PPMCC of the pixels with shorter distance to the
neighboring pixel are much larger than that with longer distance. The PPMCC of the pixel pairs
decreases much fast as the radius increases and the coefficients are almost zero at the diameter
of 9 pixel. Therefore, the distance of the unblocking pixel on the coded aperture is used as
the metric and the purpose of the optimization is to make the distance of any two neighboring
unblocking elements as far away as possible. It is equivalent to the design where the unblocking
elements are spread as homogeneously as possible and such distribution of binary pixels are blue
noise coded apertures [19]. The direct binary search (DBS) method in our previous work can be
directly used to efficiently obtain the blue noise coded aperture [20].

2.4. Reconstruction

The discrete datacube for reconstruction often has a coarse resolution along the z axial direction
in that N, < min(Ny, Ny). With such resolution, the correlations between transverse slices are
small and Discrete Cosine Transform (DCT) basis is used in £; norm to estimate the sparsity.
Then, Kronecker CS reconstruction is often used in these cases [8,21]. In the cases where the
resolution along the z axial direction is equal to that of slices, Total Variation (TV) is often used
as an implicit sparse basis (or dictionary) to minimize the sum of non-zero gradients. Then, the
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Fig. 5. Average PPMCC distribution of a particular element in the coded aperture and the
neighboring elements in the radius of 9 elements at (a) w = 0°, (b)w = 90°, (c) w = 180°
and (d) w = 270° for M, = 256 and My = 256.

cost function for reconstruction is given by

f=arg min |Y - CWRI])? + A|fllzv (14)

where A is the regularization constant and the TV norm ||f||7y is defined by

N. N, Ny

“f”TV = Z Z » |fo1,y1,zl| . (15)
1

xi=lyi=lz1=

3. Simulation results
3.1. Results of simulated datasets

In this section, we present simulations to illustrate the performance of the proposed CARTS
system with an optimal coded aperture. The simulations are performed with a cone-beam X-ray
source and a flat imager with 256 x 256 pixels. The coded aperture with 256 x 256 pixels, having
one-to-one correspondence to the element on the detector, is placed in front of the X-ray source
and the source orientation is disk-shaped in the center of the space Q. The side length of a pixel
on the detector is 0.5 cm and thus the geometric length of the imaging system is 128 cm. The
source-to-object and object-to-detector distances are 80 cm and 55 cm, respectively. The object
rotates around the r—axis with pitch angle 6 and the distribution of angle w is uniform at the range
of 0 ~ 2x. The imaging system captures the coded X-ray projections at a series of 8 rotations
and the 3D object is discretized into 64 X 64 x 64 voxels of dimensions 0.5cm X 0.5cm X 0.5cm.
That is, M = 2562, N = 643 and P = 8. The discrete-to-discrete structure matrix is numerically
obtained using the ASTRA Tomography Toolbox [18] and the discrete-to-discrete rotation matrix
is calculated using the proposed algorithm in Section II-B. The blue noise coded aperture is
generated utilizing the DBS algorithm proposed in [22]. The conventional CARTS where
6 = 0° is used to compared with the proposed geometry. The source-plane-to-object-plane and
object-to-detector distances are 80 cm and 55 cm, respectively. The simulations are performed
in a desktop architecture with an Intel Core i3 3.7GHz processor, 16G RAM, using Matlab
2015b. The object used in the simulations is generated by the 3D Shepp-Logan phantom [8]. To
quantitatively evaluate the reconstructed images, the Peak Signal-to-Noise Ratio (PSNR) is used
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as
fmax )
PSNR = 20 - log ( , (16)
"9\ VMSE
where MSE = M, f and fiax denote the reconstructed cube and its maximum value,

NNy N,
respectively. Note that the PSNR is the average of 10 different realizations in the random coded
aperture cases.

The pitch angle 6 is determined numerically. An optimal first-order method for strongly
convex TV regularization is used to reconstruct the 3D cubes with binary random coding and
blue noise coding, respectively [23]. Since the X-ray projections through the x| — z; plane and
the y; — z; plane are different, the simulations of the two cases are both performed. The results
of the PSNR with 26% transmittance at the range of 0 ~ 90° are shown in Table 1. Therefore,
the average PSNR using optimized coding at 8 = 0°, 15°, 30°, 45°, 60°, 75° and 90° are 29.2dB,
32.8dB, 38.1dB, 44.7dB, 38.1dB, 32.8dB and 29.2dB, respectively. The average PSNR using
random coding at 6 = 0°, 15°, 30°, 45°, 60°, 75° and 90° are 27.6dB, 31.3dB, 38.7dB, 42.7dB,
38.7dB, 31.3dB and 27.6dB, respectively. The strategy referred to as 8 = 45° yields the best
performance. Thus, the pitch angle between the r—axis and the normal vector is 45° in the
following simulations.

Table 1. PSNR as a function of angle 6 using optimized coding and random coding
in the cases of x; — z; plane and y; — z; plane

The angle 0 0° 15° 30° 45° 60° 75° 90°

Optimized(x; —z;) | 12.5dB | 22.3dB | 31.5dB | 44.7dB | 48.6dB | 43.3dB | 46.0dB
Optimized(y; —z;) | 46.0dB | 433dB | 48.6dB | 44.7dB | 31.5dB | 22.3dB | 12.5dB
ot 29.2dB | 32.8dB | 38.1dB | 44.7dB | 38.1dB | 32.8dB | 29.2dB
Random(x; —z;) | 12.5dB | 21.3dB | 30.0dB | 42.7dB | 47.4dB | 41.4dB | 42.7dB
Random(y; —z;) | 427dB | 41.4dB | 474dB | 42.7dB | 30.0dB | 21.3dB | 12.5dB
AVerage, umiom 27.6dB | 31.3dB | 38.7dB | 42.7dB | 38.7dB | 31.3dB | 27.6dB

Average,

The reconstructed tomographic images using random coding and optimized coding with 26%
transmittance are depicted in Fig. 6. The execution time for the optimization of coded aperture
with 26% transmittance is ~198 seconds. That is, the sub-sampling rate in the CS reconstruction
is 52%. As described in Section II-C, the proposed optimization method is not based on the
structure matrix W which is the computational burden of the other methods, the runtime of the
optimization method is reduced by four orders of magnitude compared with the gradient approach
utilized in [10] and one order of magnitude compared with the method based on information
acquisition utilized in [16]. Note that the number of the elements in the structure matrix of
the proposed method is more than 10!" while that of the methods in [10] and [16] are ~ 10°.
Furthermore, the memory requirements in the cases for the methods in [10] and [16] are more
than 1TB. The convergence curves of 64 X 64 x 64 reconstructed images using random coding
and optimized coding are depicted in Fig. 7 (a) and (b), respectively.

The reconstructed images of the 12th layer, 22th layer, 32th layer, 42th layer and 52th layer,
based on the conventional CARTS are shown in Fig. 6 (al) - (a5), respectively. The corresponding
PSNR are 17.3dB, 22.3dB, 19.4dB, 14.2dB and 8.6dB, respectively. It is seen that the structures of
the upper layers (12th and 22th layers) are basically reconstructed and the details are drowned out
by artifacts. The structures of the lower layers (42th and 52th layers) are not even reconstructed.
The reconstructed images of the 12th layer, 22th layer, 32th layer, 42th layer and 52th layer,
using stationary random coded aperture are shown in Fig. 6 (bl) - (b5), respectively. The
corresponding PSNR are 35.2dB, 48.7dB, 52.0dB, 50.6dB and 49.8dB, respectively. Compared
with the conventional system, the intensity distributions of the 3D Shepp-Logan phantom varying
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0.15

Fig. 6. (al) - (a5) are the reconstructed images with 26% transmittance of the 12th layer,
22th layer, 32th layer, 42th layer and 52th layer using the conventional system. (b1l) - (b5)
are the reconstructed images with 26% transmittance of the corresponding layers using
random coding, respectively at pitch angle § = 45°. (c1) - (c5) are the reconstructed images
with 26% transmittance of the corresponding layers using optimized coding at pitch angle
0 = 45°, (d1) - (d5) are the absolute error maps of (bl) - (b5) and (el) - (e5) are the absolute
error maps of (c1) - (c5), respectively.
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Fig. 7. The convergence curves of 64 x 64 x 64 reconstructed images using (a) random
coding and (b) optimized coding.

along the slices are reconstructed without many artifacts at both upper layers and lower layers.
The PSNR gain is ~30.9dB. Besides, the reconstructed images of the 12th layer, 22th layer, 32th



Research Article Vol. 30, No. 5/28 Feb 2022/ Optics Express 7689 |

Optics EXPRESS , NN

layer, 42th layer and 52th layer, using stationary optimized coded aperture are shown in Fig. 6 (c1)
- (¢5), respectively. The corresponding PSNR are 37.3dB, 49.4dB, 53.4dB, 52.0dB and 50.6dB,
respectively. Compared with random coding, the PSNR gains of using optimized coding are
2.1dB, 0.7dB, 1.4dB, 1.4dB and 0.8dB, respectively. The absolute error maps of using random
coding and optimized coding are depicted in Fig. 6 (d1) - (d5) and (el) - (e5), respectively. Note
that the maximum value of the colorbar for a tomographic image is the maximum value of the
reconstructed cubes which is 0.15 and the minimum value is 0. The red squares in the absolute
error maps are used to highlight the difference in the reconstructed images using random coding
and optimized coding. It is seen that the optimized coded aperture leads to fewer artifacts in the
absolute error maps and the intensity of artifacts using optimized coding is less than that using
random coding.

Furthermore, the plot of average PSNR of a 64 x 64 x 64 3D phantom as a function of
transmittance for optimized coding and random coding is depicted in Fig. 8. It is seen that the
proposed method performs much better than the conventional coded aperture X-ray tomosynthesis
system. The 64 x 64 x 64 3D Shepp-Logan phantom cube can be reconstructed at high quality
(>30dB) at only 16% transmittance. Besides, the reconstruction quality is improved by using the
optimized coded aperture compared with that of random coded aperture. Note that the results of
random coding are the average of 10 realizations in the simulations. The PSNR gain is up to 3dB
at the range of 14% - 32% transmittance.
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Transmittance

Fig. 8. The plot of average PSNR as a function of transmittance for optimized and random
coding for the 3D Shepp-Logan phantom cube with 64 x 64 X 64 voxels.

3.2. Simulated results of simulated projections from real datasets

In this section, we present simulations using simulated projections of real datasets obtained in [21].
Experimental data was obtained at Chesapeake Testing Inc., with a Nikon metrology 225/450kV
Vault CT scanning system with a 450kV micro-focus X-ray source capable of producing a
spot-size down to 80um. Multiple X-ray projections over 360 degrees around an object, in this
particular case a vivofit watch, were acquired. These projection images were then reconstructed
into a full 3D volumetric data set. The 3D data cube was re-sampled to the a cube of size
128 x 128 x 128. The simulations are performed with a cone-beam X-ray source and a flat imager
with 512 x 512 pixels. The coded aperture with 512 x 512 pixels is placed in front of the X-ray
source. Note that the elements on the coded aperture have one-to-one correspondence to that on
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Fig. 9. The reconstructed tomographic images of the “watch” with 128 x 128 x 128 voxels.
The number “4”, “25”, “48”, “76”, “93” and “110” represent the 4th, 25th, 48th, 76th, 93th
and 110th slices of the data cube, respectively.

the detector and the source orientation is disk-shaped in the center of the space Q. The side length
of a pixel on the detector is 0.5 cm and thus the geometric length of the imaging system is 256
cm. The source-to-object and object-to-detector distances are 160 cm and 110 cm, respectively.
The object rotates around the r—axis with pitch angle 8 = 45° and the distribution of angle w is
uniform at the range of 0 ~ 2x. The imaging system captures the coded X-ray projections at a
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series of 16 rotations and the 3D object is discretized into 128 x 128 x 128 voxels of dimensions
0.5cm x 0.5cm x 0.5cm. That is, M = 5122, N = 1283, P = 16 and the dimension of the sensing
matrix is 4194304 x 2097152 (more than 8.8 x 10'? elements in the matrix). It is noted that the
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Fig. 10. The convergence curves of 128 x 128 x 128 reconstructed images using (a) random
coding and (b) optimized coding.
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Fig. 11. The plot of average PSNR as a function of slices for optimized coding and random
coding with 128 x 128 x 128 voxels. Conventional CARTS is shown at § = 0°.

content of the object out of the region of interest is truncated to avoid truncation artifacts. The
simulations are performed in a desktop architecture with an Intel Core i3 3.7GHz processor, 64G
RAM, using Matlab 2019b.

The reconstructed images using random coding and optimized coding with 12% transmittance
are depicted in Fig. 9. The execution time for the coded aperture optimization with 12%
transmittance is ~ 5.5 X 10 seconds. That is, the sub-sampling rate in the CS reconstruction is
24%. The convergence curves of 128 x 128 x 128 reconstructed images using random coding
and optimized coding are depicted in Fig. 10 (a) and (b), respectively. On the contrast, only two
basic sub-matrices and a large structure matrix are required to be numerically calculated in the
proposed method. It is seen that the intensity distributions of the 3D data cube varying along the
slices are reconstructed without many artifacts using both random coding and optimized coding.
The plot of average PSNR as a function of slices for optimized coding and random coding with
128 x 128 x 128 voxels is depicted in Fig. 11. The PSNR gain is up to 4.8dB and the average
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PSNR gain for optimized coding is 1.5dB. It is seen that the proposed method outperforms the
general CARTS system where 8 = 0° by using both optimized coding and random coding.

4. Conclusion

Coded aperture robotic tomography system is introduced to obtain both flexible scanning and
lower radiation dose. A static binary “on-off”” coded aperture is placed in front of the X-ray
source and the robotic source-detector pair scans the object with a pitch angle around a fixed
axis. The degrees of freedom in the gantry’s motion are constrained to only rotational scans
with respect to a fixed coordinate system. Therefore, the complex structured matrices of the
robotic CT systems are simplified using an efficient rotational sensing model based on two basic
sub-matrices. The stationary coded aperture is designed based on the PPMCC analysis and
the DBS algorithm is used to obtain the optimized coding with one order of magnitude faster
computation than state-of-the-art optimization algorithms. Computational experiments using
simulated datasets show that the proposed method can reconstruct high-quality tomographic
images (>30dB) at only 16% transmittance while that of conventional X-ray tomosynthesis is
less than 15dB. Furthermore, the optimized coded aperture leads up to ~3dB PSNR gains in the
reconstruction quality compared with that attained by a random coded aperture.
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