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Solid molecular hydrogen has been predicted to be metallic and high-
temperature superconducting at ultrahigh hydrostatic pressures that
push current experimental limits. Meanwhile, little is known about the
influence of non-hydrostatic conditions on its electronic properties at
extreme pressures where anisotropic stresses are inevitably present
and may also be intentionally introduced. Here we show by first-
principles calculations that solid molecular hydrogen compressed to
multimegabar pressures can sustain large anisotropic compressive
or shear stresses which, in turn, cause major crystal symmetry reduc-
tion and charge redistribution that accelerate bandgap closure and
promote superconductivity relative to pure hydrostatic compression.
Our findings highlight a hitherto largely unexplored mechanism for
creating superconducting dense hydrogen, with implications for ex-
ploring similar phenomena in hydrogen-rich compounds and other
molecular crystals.

high pressure | anisotropic stresses | metallic hydrogen | superconduc-

tivity | first-principles calculations

S ince Wigner and Huntington’s pioneering work (1),
pressure-induced metallization of hydrogen has attracted
immense interest and impelled advances of theoretical and com-
putational methods, ultrahigh-pressure devices, and related
measurement and characterization techniques (2, 3). The pre-
diction (4) that metallic hydrogen may be a high-temperature
superconductor driven by the BCS-type phonon-mediated
mechanism further invigorated the study of this fascinating
material and its enigmatic properties. As a prominent thermo-
dynamic quantity, pressure, which is defined as hydrostatic,
drives the formation of new material phases through structural
transitions and electronic bandgap closure (5). Two main av-
enues have been pursued for producing metallic hydrogen at
high pressure: (i) closure of the electronic bandgap of solid
molecular hydrogen and (ii) dissociation of hydrogen molecules
to form monatomic metal. These mechanisms have been ex-
plored through optical and electrical conductivity techniques
over the years (6-16). In addition, at least five molecular
phases, labeled I-V, have been documented experimentally
to pressures up to 400 GPa and temperatures 300 K (17—
21). These very high static pressures can significantly limit,
constrain, and challenge full experimental characterization of
materials, especially above 300 GPa, leading to ambiguities
and controversies in the interpretation of reported results.

Theoretical studies (22-27) of the metallization of solid
hydrogen have focused on its formation under hydrostatic pres-
sure. However, conditions inside diamond anvil cells (DACs) at
the required pressures (e.g., >300 GPa) can introduce nonuni-
form deformations and anisotropic stresses in the vicinity of
the sample as revealed by direct x-ray imaging study above

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

300 GPa (28). More recent studies have further explored these
effects (29, 30) and have also unveiled unprecedented struc-
tural ductility in diamond under large multiaxial deformation
modes (31, 32), underscoring complex strain conditions in-
side DACs under extreme loading conditions. It is therefore
instructive to establish the influence of anisotropic stresses
on the evolution of structural and electronic properties of
molecular hydrogen under nonhydrostatic pressure conditions
[More discussion of non-hydrostatic stress states in DACs can
be found in the Supporting Information (SI)]. Although gases
that are solidified under pressure are often assumed to be
hydrostatic over a range of pressures, direct measurements
indicate the development of anisotropic strains even well below
100 GPa (33). Moreover, significant pressure gradients were
documented even in the earliest optical studies of closing of
the bandgap above 200 GPa (2, 7).

Here we report an exploratory study of metallization and su-
perconductivity of solid molecular hydrogen under anisotropic
stresses, i.e., at non-hydrostatic pressures. Our first-principles
stress-strain calculations establish that despite being a soft
and plastic crystal at low pressures (and temperatures) solid
hydrogen at megabar pressures can sustain considerable uni-
axial compressive and shear stresses, and such anisotropic
stresses can have major impact on physical properties. Promi-
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Fig. 1. Structure and stress and bandgap responses of solid molecular hydrogen to anisotropic stresses. (A) Top and (B) polyhedral view of the C'2/c phase. The thick solid
lines represent the intramolecular covalent bonds of Hz and the thin dash lines are intermolecular links. The light grey lines outline the unit cell. (C) First-principles determined
stable stress responses to shear strains along the (010)[001] direction (the loading path with the steepest descent of E ) at hydrostatic pressures of 200, 300, and 350 GPa
and along the (001)[010] direction (the loading path with the easiest metallization of £,) at 250 GPa. (D) First-principles determined stable stress responses to compressive
strains in the [100] direction at 200, 250, 300, and 350 GPa. (E and F) Shear and compressive strain-modified £, along the above selected loading paths.

nent effects include lattice symmetry reduction and ensuing
changes in the electronic band structure that accelerate the
bandgap closure, leading to metallization, and enhance the
electron-phonon coupling (EPC) giving rise to superconductiv-
ity. In particular, we find that shear deformations are highly
effective in inducing metallic and superconducting states at
much reduced hydrostatic pressures. These phenomena are
driven by robust underpinning mechanisms and are therefore
expected to remain intact when possible corrections by ther-
mal and quantum effects are further considered. The present
findings may explain loading-dependent differences in reported
experimental results (9-16, 34, 35) and show that introducing
controlled non-hydrostatic stresses is a viable route to promote
metallization and superconductivity in hydrogen at readily
accessible static compression conditions (e.g., <300 GPa).

Stress responses and bandgap evolution of solid molecular
hydrogen. To explore the impact of anisotropic stresses on the
transition of solid hydrogen from insulating to metallic and
potentially high-7¢ superconducting states, we focus on phase
III of solid hydrogen, which was discovered in 1988 (2, 6) and
has been predicted and observed to be the stable insulating
phase at temperatures below 200 K in the pressure range of
about 150-400 GPa before potentially turning metallic upon
further compression. The extremely high pressures required
to achieve metallization has been a formidable challenge to
reliable measurements and analysis. Theoretical calculations
(17, 36) for phase III have predicted two nearly degenerate
thus coexisting structures of C'2/c symmetry containing 12
and 24 atoms per unit cell, respectively, which are compatible
with the low-temperature Raman and infrared (IR) spectra
(36). In this work, we focus on the C2/c-12 structure (see
Fig. 1 A and B) as an exemplary case study; our studies show
that this phase is able to sustain large anisotropic stresses and
more easily transform into metallic states. We first performed
extensive first-principles calculations to determine the stress
responses of the C'2/c structure to anisotropic compression

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

and shear strains in the hydrostatic pressure range of 200-350
GPa, and key representative stress responses are summarized
in Fig. 1 C and D (full stress-strain relations are given in S/
Appendiz Figs. S1 and S2 and crystal structure information
of representative deformed molecular hydrogen is listed in ST
Appendiz Table S1). It is seen that the structure can sustain
considerable anisotropic compressive stresses ranging from
30 to 60 GPa that increase with rising hydrostatic pressure
of 200-350 GPa or shear stresses of about 30 GPa that are
insensitive to hydrostatic pressure.

Electronic band-structure calculations show that these non-
hydrostatic stresses that give rise to anisotropic strains lower
the bandgap E, relative to the equivalent isotropic stresses or
hydrostatic pressures (see SI Appendiz Fig. S3) as shown in Fig.
1 F and F), stemming from band shifts and splittings caused by
the symmetry reduction of the deformed crystal. In particular,
we find that shear strains e,, are highly effective in reducing
E; for instance, a shear stress 0.,=20 GPa at €., =0.06 along
the (010)[001] direction reduces Eg4 at hydrostatic pressure of
200 GPa to approximately E4 at 250 GPa. Remarkably, a
shear stress 0., = 33 GPa along the (001)[010] direction causes
a complete bandgap closure at 250 GPa (see Fig. 1F), which
occurs at 370 GPa under hydrostatic conditions. At higher
pressures, bandgap closure occurs at smaller shear strains, as
shown in Fig. 1F for selected cases (see SI Appendiz Fig. S1
for more comprehensive results).

We also examine the evolution of E,; with excess uniaxial
compressive strain (£,.) added to compressive strains induced
by hydrostatic pressure. The results show a reduction of Fy at
the rate of about 20 meV/GPa (AE,/Ao.. = 0.9 eV /45 GPa),
which is greater than 16 meV/GPa (AE;/AP = 2.4 eV/150
GPa) of E; reduction under hydrostatic pressure (see Fig. 1
D and F). The metallization can be realized at 350 GPa by
introducing an additional normal compressive stress of about
23 GPa. Additional results on the compressive stress-strain
and corresponding E4-strain relations presented in ST Appendiz
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Fig. 2. Electronic properties of shear deformed C'2/c hydrogen. (A and B) QTAIM analysis of charge states in the (001) plane of shear deformed C'2/c-based structure at 250
GPa and 300 GPa. The large (small) black (red) spheres represent hydrogen atoms and bond critical points (BCPs), respectively. The change of charge density for BCPs is
given in the atom unit. (C and D) Electronic band structures at the hydrostatic pressure of 250 GPa and 300 GPa. The inset shows the Brillouin zone path for calculating the
band structures. (E and F) Electronic band structures of shear deformed C2/c-based structure at o .,=35 GPa (e .,=0.149) in the (001)[010] direction at 250 GPa and at
0 ,2=34 GPa (¢.,=0.094) in the (010)[001] direction at 300 GPa. The black dashed lines mark the Fermi energy. The bands are colored to exhibit band shifts and splits.

Fig. S2 indicate that anisotropic compressive stresses can also
play a role but are less effective compared with shear stresses
in inducing the metallization.

Shear-induced metallization of molecular hydrogen. To further
elucidate the appreciable modifications of electronic properties
in non-hydrostatic environments, we performed a quantum
theory of atoms in molecules (QTAIM) analysis of changes of
charge states in response to stress-induced structural variations.
We examine the bonding structures and charge density at bond
critical points (BCPs) to evaluate the bonding strength and
charge transfer. When hydrostatic pressure increases from 250
GPa to 300 GPa, the charge density values at the BCPs of the
hydrogen molecules remain unchanged (2.07 to 2.07 and 2.12 to
2.12) and the values between hydrogen molecules rise by about
0.08 a.u. (0.62 to 0.70, 0.61 to 0.69, and 0.59 to 0.67) (see SI
Appendiz Fig. S4 for more details), implying almost constant
bond length of Hy molecules and increased intermolecular inter-
actions, producing pressure-induced energy-band broadening
and F, decrease (see Fig. 2 C and D). Shear deformation
drives intramolecular charge delocalization and differential
evolution of hydrogen atomic distance (see SI Appendiz Fig.
S5 a and b) while enhancing intermolecular interactions and
breaks the degeneracy of electronic states due to symmetry
reduction. The change of charge density at BCPs of the C2/c
structure under combined hydrostatic pressure of 250 GPa and
shear stress of 0., = 35 GPa (e., = 0.149) in the (001)[010]
direction (see Fig. 2A4) shows an in-plane charge transfer from
intramolecular to intermolecular regions (the distance of H7-
HS from 1.190 A to 1.134 A, H3-H5 from 1.190 A to 1.171 A),
weakening the intramolecular bonds, elongating the H2 units,
and resulting in hole-type bands (see Fig. 2F). Meanwhile,
shear deformation causes the growth of charge distribution
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in the interlayer region under shear strains in the (010)[001]
direction at 300 GPa (see Fig. 2B) with decreasing interlayer
spacing (the distance of H3-H5 from 1.145 A to 1.260 A). The
antibonding states of Hy molecules start to be filled, lowering
the conduction band minimum, producing the electron-type
band crossing at the Fermi energy, and mediating an indirect
band gap closure (see Fig. 2F).

Superconductivity in shear-deformed molecular hydrogen.
There have been extensive theoretical studies of potentially
very high-T. superconductivity in molecular hydrogen induced
by hydrostatic compression (37-39). The present work ex-
pands such studies by introducing additional tuning mecha-
nisms via anisotropic stresses, which drives metallization of
the molecular solid at considerably reduced pressures. We
further examine superconductivity of solid molecular hydrogen
under shear strains along the easiest metallization paths in
the (001)[010] direction at 250 GPa and the (010)[001] direc-
tion at 300 GPa. We find enhanced electron-phonon coupling
under shear strains. To expose the underlying mechanism,
we have calculated the phonon dispersion relations and the
Eliashberg spectral function (see Fig. 3). Major contributions
to the electron-phonon coupling parameter A come from the
low-frequency branches (acoustic phonons and librons) around
10—20 THz corresponding to the translational and rotational
motions of the H2 molecules. The phonons characterize the
centers-of-mass molecular motions and the librons correspond
to coupled restricted rotations (40). The distinguishable high-
frequency vibrons are coupled stretchy vibrations of the Ho
molecules; notably these give rise to large peaks in the Eliash-
berg spectral function a2F(w) at some ¢ points but the high
phonon frequency w limits their contributions to the electron-
phonon coupling parameter. For the (001)[010] shear loading
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Fig. 3. Shear-induced superconductivity in C'2/c hydrogen. (A) Phonon dispersion
relations w(k) and Eliashberg spectral function o.? F(w)/w and A(w) at o, =33 GPa
(£22=0.127) and o, =35 GPa (£,,=0.149) and (B) the anisotropic superconducting
gap (A) and superconducting critical temperatures (7) at shear strain €,,=0.149
in the (001)[010] direction at 250 GPa. (C) Phonon dispersion relations w(k) and
Eliashberg spectral function a®F(w)/w and A(w) at o, ;=25 GPa (¢ ,,=0.062) and
0 ,2=34 GPa (£ ,=0.094) and (D) the anisotropic superconducting gap (A) and T
at shear strain £,,=0.094 in the (010)[001] direction at 300 GPa.

path at 250 GPa, the in-plane charge transfers from the in-
tramolecular to intermolecular regions, which weakens the
covalent diatomic molecular bonds and softening the vibrons,
reducing the intermolecular repulsion, and softening the li-
brons (see Fig. 34). Meanwhile, the hole-type band crosses
the Fermi energy along the Brillouin zone path C—V (see SI
Appendiz Fig. S6 a and b), producing superconducting critical
temperatures (7¢) of 132 K (u*=0.13) to 140 K (¢*=0.10)
at shear strain 0.,=0.149 (see Fig. 3B). For the (010)[001]
shear loading path at 300 GPa, the incremental accumula-
tion of interlayer electrons with rising strains contributes to
the electron-phonon coupling at £,,=0.094 by initiating new
topologies of the Fermi surface (see SI Appendiz Fig. S6 ¢
and d) and softening phonons (see Fig. 3C). The change
produces a two-gap superconducting state stemming from the
anisotropic and varied Fermi surface structures with a T, of
72 K (*=0.13) to 93 K (©*=0.10) (see Fig. 3D).

Molecular hydrogen under anisotropic compressive strains.
We also examined C2/c hydrogen under anisotropic compres-
sive strains at 350 GPa (see Fig. 4). The degeneracy of the
conduction band remains intact, but the conduction band min-
imum drops as in the shear-deformed cases (see Fig. 4 A and
B). In contrast to the hydrostatic and shear-strain cases, the
bond lengths of the hydrogen molecules increase here (see SI
Appendiz Fig. S5¢), indicating more intramolecular electron
transfer to the intermolecular (in-plane and interlayer) regions,
in agreement with the charge density analysis of BCPs from
QTAIM (see Fig. 4C'). These new charge states produce com-
plex band characteristics and Fermi surfaces (see SI Appendiz
Fig. S6 e and f), resulting in a multigap superconducting
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corresponding superconducting gap (A) and 7.

state with T, of 138 K (u*=0.13) to 145 K (p*=0.10) at
€--=0.051 under the anisotropic compressive stress conditions
Oez= 0yy=350 GPa and 0..=411 GPa (see Fig. 4D).

Discussion

First-principles calculations of stress-strain relations indicate
that phase III of solid hydrogen can sustain large anisotropic
stresses at megabar pressures, and the accompanying reversible
deformations in the elastic region notably alter the crystal
symmetry, charge distributions, and bonding behavior. The
resulting band shifts, splittings, and enhanced electron-phonon
coupling of the phase can dramatically exceed those induced
by pure isotropic compression. The effects lead to band gap
closure and ensuing superconductivity at significantly reduced
compressive stresses compared to hydrostatic conditions. Most
notable is shear deformation causing hydrogen to become
metallic and superconducting at 250 GPa, which is about 120
GPa (i.e., >30%) lower than that obtained under hydrostatic
conditions predicted at the same level of calculation. These
results provide specific predictions that could be tested on
hydrogen under extreme compression by additional stress con-
ditions that are achievable in the laboratory. Since such stress
anisotropy is in general highly sample and P-T path dependent,
the present results may help to explain apparent discrepan-
cies in previously reported experimental results, including
variations in rate of bandgap closure and onset of electrical
conductivity in solid molecular hydrogen (7, 8, 10-12). Fur-
thermore, stress anisotropy in such compressed materials can
be both controlled (e.g, by varying the geometry of thin sam-
ples and thermal annealing) and can be measured with various
spectroscopic, diffraction, and imaging techniques (28, 29, 33).

We now comment on possible impact of quantum and ther-
mal effects on the present findings. It has been proposed
that the prototypical quantum crystal, low-density solid *He,
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may develop giant nonclassical plasticity (41), but it was also
pointed out that the observed phenomenon may be primarily
rooted in thermal rather than quantum effects (42), and a later
study showed (43) that the stress responses are well described
by classical mechanical theory. Moreover, strength enhance-
ment of solid helium under pressure has been documented
(44), and analogous results were observed in hydrogen (45).
Experimental studies of other low Z systems, such as Li, LiH
and LiF, document significant contributions of both thermal
(e.g., Debye-Waller) effects and quantum zero-point effects on
their lattice dynamics (46, 47). For phase III of hydrogen,
anharmonic finite-temperature effects have been shown to re-
duce the electronic band gaps (48). The quantum nature of
the protons and anharmonicity are also predicted to increase
the intramolecular distance and enhance superconductivity
in molecular hydrogen (49). Thermal effects tend to soften
crystals and reduce compressive and shear strengths (50), but
probably do not have a large influence on the structural and
mechanical behavior at the pressure-temperature regimes of
interest here (>200 GPa and <300 K).

In conclusion, this study opens a new avenue and perspec-
tive on the metallization and potential high-T. superconduc-
tivity in dense hydrogen under stress conditions possible in
high-pressure experiments, most notably static compression
studies using diamond anvil cells. The results provide an
instructive comparison to many benchmark theoretical studies
of molecular hydrogen, i.e., as a classical crystal at the same
level of theory under hydrostatic pressures (13, 21-25, 27, 37—
39) versus the nonhydrostatic conditions considered in this
work. While quantum and thermal effects may modify some
predicted quantitative aspects, these effects are not expected
to change the trends and alter our principal conclusions about
the impact of anisotropic stresses on the electronic proper-
ties of hydrogen under pressure. Moreover, the findings have
implications for other molecular solids and related systems,
which are likely to sustain even higher shear stresses than
dense solid hydrogen. These materials include hydride high Tc
superconductors (34, 35, 51-54), whose stability ranges and
properties may be significantly altered by anisotropic stresses.

Materials and Methods

We have performed the structural relaxation and stress-strain re-
lation calculations using the Vienna Ab-initio Simulation Package
(VASP) code, adopting the projector-augmented wave method and
the GGA-PBE exchange-correlation functional (XC) with 900 eV
cutoff energy and 8 x 9 x 10 Monkhorst-Pack k-mesh. The stress-
strain relations are determined with a strain increment of 0.01,
where at each step the applied the shear or compressive strain is
fixed to determine the shear stress o4, or compressive stress o,
respectively, while the other five independent components of the
strain tensors and all atomic positions are simultaneously relaxed.
The vdW-DF2 XC has been used to calculate the bandgap Eg,
electronic band structure, and Fermi surface of molecular hydrogen
implemented in VASP code. We have used the quantum theory
of atoms in molecules (QTAIM) analysis implemented in AIM-UC
software. The lattice dynamics and electron-phonon coupling cal-
culations were performed using the QUANTUM ESPRESSO code,
adopting an energy cutoff of 80 Ry and an 8 x 8 x 8 k mesh and 4
X 4 x 4 g mesh (see SI Appendiz Fig. ST for the convergence test).
The anisotropic superconducting gap and T, are calculated using the
open-source electron-phonon Wannier code. More computational
details can be found in the Supporting Information.

Data Availability. All study data are included in this article and/or
SI Appendix.
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