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Abstract Coppersmith’s method for finding small solutions of multivariable congruences uses lattice techniques to

find sufficiently many algebraically independent polynomials that must vanish on such solutions. We apply adelic

capacity theory in the case of two variable linear congruences to determine when there is a second such auxiliary

polynomial given one such polynomial. We show that in a positive proportion of cases, no such second polynomial

exists, while in a different positive proportion one does exist. This has applications to learning with errors and to

bounding the number of small solutions.

Keywords: Congruence, Lattice, Capacity

2010 Mathematics Subject Classification: 11Y16, 11G30, 11H06

1 INTRODUCTION

Coppersmith’s method [8] uses lattice basis reduction to find small solutions of polynomial congruences. This

method and its variants have been used to solve a number of problems across cryptography, including attacks

against low public exponent RSA [8], demonstrating the insecurity of small private exponent RSA [2], factoring

with partial knowledge [8], and the approximate integer common divisor problem [11, 15, 7].

This paper is the second in a series relating Coppersmith’s method to adelic capacity theory. In the most

common approach to Coppersmith’s method, which is the perspective we adopt in this paper, one constructs an

auxiliary polynomial that is guaranteed by construction to have the desired solutions as roots. Using adelic capacity

theory, we showed in our first paper that in the univariate case, Coppersmith’s constructive bounds are tight: Above

the bound, no auxiliary polynomial of the form constructed in the algorithm can exist.

Coppersmith’s method can also be applied to find solutions to multivariate polynomials or systems of polyno-

mials. Unlike the univariate case, which is a fully rigorous method, the method used in the existing cryptanalytic

literature to address the multivariate case is heuristic. In order to solve an 𝑚-variable system, one searches for 𝑚

(or more) suitable auxiliary polynomials in an explicitly constructed lattice, and then solves the system of auxiliary

polynomials to find the possible roots. In order for this method to work, one needs to find 𝑚 suitable algebraically

independent polynomials constructed through the lattice. The existing constructions are unable to guarantee the

algebraic independence of multiple auxiliary polynomials, and thus the applications of this method all rely on a

heuristic assumption of algebraic independence.

In this paper, we apply adelic capacity theory to two-variable linear polynomial congruences. This is the

simplest case involving multivariate polynomials, and it includes the hidden number problem and ring learning

with errors as special cases. The analysis turns out to already be quite involved, and we cannot apply existing

results from adelic capacity theory in a black-box way.

It is always possible to find at least one auxiliary function that is linear from the construction in Coppersmith’s

method. We show that this function can be used to determine rigorously whether Coppersmith’s method can

succeed. That is, we show that one can use capacity theory to determine from the first auxiliary function whether

there will be a second function that is algebraically independent of the first. This is because the zero locus of the

first function is an affine line, to which one can apply the work on capacity theory by Cantor [4] and Rumely [14].

As a consequence of this approach, we will show that the heuristic assumption of algebraic independence does not
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hold in general for all problem instances. In particular, we give an infinite family of examples for which there can

be no pair of algebraically independent functions of any degree in Coppersmith’s method. However, we have a

method for determining rigorously whether such a pair exists in a given case. We also give an infinite family of

examples for which such a pair does exist.

If one is looking for small integral solutions of linear polynomial congruences in a particular number field, one

can apply lattice techniques directly, without constructing auxiliary functions. Coppersmith’s method pertains to

finding all such solutions in all number fields, i.e. in the ring of all algebraic integers. In the case of homogenous

congruences, one solution produces infinitely many by multiplying all the variables by an arbitrary root of unity.

Thus in this case, there are either infinitely many solutions in the ring of all algebraic integers, or no solutions at all.

For this reason, if one can use capacity theoretic arguments to show that there are only finitely many solutions, one

knows that in fact there are no solutions at all. This leads in §1.2 and §4 to strong bounds on the number of solutions

of inhomogeneous congruences as well. In particular, we show in §4 how this approach leads to a computable

sufficient criterion for there to exist at most one solution in any number field to a hidden number problem involving

two linear congruences.

Our methods amount to giving effective upper and lower bounds to various finite morphism capacities in

multivariable capacity theory (see [6]). This is the first time to our knowledge that multivariable capacity theory

has been applied to cryptography. For a discussion of how one variable capacity theory pertains to Coppersmith’s

method, see [5].

1.1 THE HIDDEN NUMBER PROBLEM AND RING LEARNING WITH ERRORS

In cryptographic applications, the hidden number problem is defined over the integers as follows. In the usual

formulation, there is a public integer modulus 𝑛 and a secret integer 𝑠. For a given non-negative integer 𝑐𝑖 less than

𝑛, one can compute the remainder 𝑏𝑖 = 𝑐𝑖𝑠 mod 𝑛 as a positive integer less than 𝑛. Let 𝑑𝑖 be the integer defined by

the ℓ most significant bits of 𝑏𝑖 , and let 𝑥𝑖 = 𝑏𝑖 − 𝑑𝑖 . In the hidden number problem, one is given many samples

{(𝑐𝑖 , 𝑑𝑖)}𝑚𝑖=0
and the problem is to compute the secret integer 𝑠 mod 𝑛 from these samples.

To put this problem into the framework we consider in this paper, note that each sample satisfies the linear

relation

𝑥𝑖 − 𝑐𝑖𝑠 + 𝑑𝑖 ≡ 0 mod 𝑛

For each relation, the 𝑥𝑖 are unknown and small, and the value 𝑠 is unknown. Suppose 𝑐0 is relatively prime to 𝑛,

so that 𝑐0𝑐
′
0
≡ 1 mod 𝑛 for a readily computable integer 𝑐′

0
. The above congruence for 𝑖 = 0 then gives

𝑠 ≡ 𝑐′0 (𝑥0 + 𝑑0) mod 𝑛 (1.1)

Substituting this into the congruences for 𝑖 = 1, . . . , 𝑚 then gives a new system of congruences

𝑥𝑖 + 𝑡𝑖𝑥0 + 𝑎𝑖 ≡ 0 mod 𝑛 for 1 ≤ 𝑖 ≤ 𝑚 (1.2)

in small unknowns 𝑥𝑖 and 𝑥0, where 𝑡𝑖 = −𝑐𝑖𝑐′0 and 𝑎𝑖 = 𝑑𝑖−𝑐𝑖𝑐′0𝑑0 are computable from the given data. Because of

(1.1), we can reformulate the problem of finding 𝑠 mod 𝑛 as finding a solution {𝑥𝑖}𝑚𝑖=0
to the system of congruences

(1.2) with appropriate size bounds on all of the 𝑥𝑖 .

The “usual” method used to solve this problem comes from Boneh and Venkatesan [3], and consists of solving a

closest vector problem where the solution vector corresponds to the desired solution to the problem. In this paper we

consider a dual construction, corresponding to Howgrave-Graham’s reformulation of Coppersmith’s method [10, 9]:

Using lattice methods, we try to construct polynomials in the variables {𝑥𝑖}𝑚𝑖=0
which must vanish on all solutions,

and whose common zero locus is finite.

Boneh and Venkatesan give bounds for which with high probability there is a unique solution when the 𝑡𝑖
are generated uniformly at random modulo 𝑛. In practical applications of this method, one is dealing with fixed

parameters. In these cases one can empirically measure the probability of success [1], but a rigorous analysis of

the number of possible solutions has not been done in the literature.

In the ring learning with errors problem [13], one has a public commutative ring 𝑅, typically an order in the ring

of integers 𝑂𝐹 of a number field 𝐹, and a secret 𝑠 ∈ 𝑅. The input to the problem is a set of samples {(𝑎𝑖 , 𝑏𝑖)}𝑛𝑖=1

of pairs of elements of 𝑅 for which 𝑏𝑖 is congruent to 𝑎𝑖 · 𝑠 + 𝑒𝑖 modulo a given ideal I ⊂ 𝑅, where 𝑒𝑖 ∈ 𝑅 is an

unknown error that is small in some sense. Typically the 𝑒𝑖 must be “short" relative to the complex embeddings of

𝑅.

1.2 SOLUTION COUNTING AND CAPACITY THEORY

The problem that we consider in this paper unifies both of the above problems, but we limit ourselves to the

case of two samples. As noted above, one can eliminate the unknown secret 𝑠 and obtain a single two-variable
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linear polynomial where the desired solution for both variables is “small”. For a given solution, one can then use

the original polynomials to solve for a unique 𝑠 determined by that solution.

One basic question is: How unique is 𝑠? When 𝑛 = 2, will show in §4 that there is at most one 𝑠 when the

capacity associated to an adelic set arising from the lattice construction is less than 1.

A peculiarity of this approach is that in the ring-LWE case, we can actually bound the number of solutions in

all number fields, and not just in a particular 𝐹.

We will now describe the three related problems we will study. Let 𝑂𝐹 be the ring of integers of a number field

𝐹. Let J be a non-zero ideal of 𝑂𝐹 . We will suppose 𝑎 and 𝑡 are elements of 𝑂𝐹 such that J + 𝑡𝑂𝐹 = 𝑂𝐹 , so

that 𝑡 projects to a unit of 𝑂𝐹/J if J ≠ 𝑂𝐹 . Let Z be the integral closure of 𝑂𝐹 in an algebraic closure Q of Q.

Problem 1.1. For which real numbers 𝑋,𝑌 > 0 is there a finite time algorithm for listing all 𝑥, 𝑦 ∈ Z such that

1. 𝑥 + 𝑡𝑦 + 𝑎 ≡ 0 mod JZ and

2. For every ring embedding 𝜆 : Z→ C, the images 𝑥 ′ and 𝑦′ of 𝑥 and 𝑦 satisfy |𝑥 ′ | ≤ 𝑋 and |𝑦′ | ≤ 𝑌 .

Problem 1.2. For which real 𝑋,𝑌 > 0 are there only finitely many algebraic integers 𝑥, 𝑦 ∈ Z having the properties

in Problem 1.1?

Problem 1.3. Construct non-zero polynomials 𝑔(𝑥, 𝑦) ∈ 𝐹 [𝑥, 𝑦] with the following properties:

1. For all 𝑥, 𝑦 ∈ Z such that 𝑥 + 𝑡𝑦 + 𝑎 ≡ 0 mod JZ the value 𝑔(𝑥, 𝑦) lies in Z.

2. Suppose 𝑥 ′, 𝑦′ ∈ C and that |𝑥 ′ | ≤ 𝑋 and |𝑦′ | ≤ 𝑌 . Then |𝜆(𝑔) (𝑥 ′, 𝑦′) | < 1 for all embeddings 𝜆 : 𝐹 → C,

where 𝜆(𝑔) (𝑥, 𝑦) ∈ C[𝑥, 𝑦] is the image of 𝑔(𝑥, 𝑦) under the homomorphism 𝐹 [𝑥, 𝑦] → C[𝑥, 𝑦] induced by

𝜆.

Note that Problem 1.1 is a constrained learning with errors problem with secret 𝑠 = 𝑦 ∈ Z = 𝑅 when one has a

single data point (𝑎1, 𝑏1) = (𝑡,−𝑎) , the ideal I is JZ and the error 𝑒1 is −𝑥.

Coppersmith’s method relates these problems in the following way.

Suppose {𝑔𝑖 (𝑥, 𝑦)}𝑖 is a family of polynomials which each have the properties in Problem 1.3. Let (𝑥, 𝑦) be

a solution of Problem 1.2. Then 𝑔𝑖 (𝑥, 𝑦) will be an algebraic integer. Every embedding of 𝑔𝑖 (𝑥, 𝑦) into C lies

in R and has the form 𝜆(𝑔𝑖) (𝑥 ′, 𝑦′) for some conjugates 𝑥 ′ = 𝜆(𝑥) of 𝑥 and 𝑦′ = 𝜆(𝑦) of 𝑦 and some embedding

𝜆 : Z → C. Since |𝜆(𝑔𝑖) (𝑥 ′, 𝑦′) | < 1 for all such (𝑥 ′, 𝑦′), the product formula (or an easy norm argument) shows

𝑔𝑖 (𝑥, 𝑦) = 0.

Suppose now that the common zero locus of the family {𝑔𝑖 (𝑥, 𝑦)}𝑖 is finite. It follows that there are finitely

many solutions (𝑥, 𝑦) to Problem 1.2, and these solutions contain those of Problem 1.1. If one has an algorithm

for producing a family of {𝑔𝑖 (𝑥, 𝑦)}𝑖 with all of these properties, as well as for finding their finite set of common

zeros, one has an algorithm for solving Problem 1.1.

Suppose, to the contrary, that there are infinitely many solutions to Problem 1.2. Then the common zero locus

of any family {𝑔𝑖 (𝑥, 𝑦)}𝑖 of the above kind cannot be finite, and Coppersmith’s method cannot lead to a finite time

algorithm to solve Problem 1.1.

We can now state our main result in qualitative terms; a more quantitative version is given in Theorem 3.4. Let

𝑟1 (𝐹) and 𝑟2 (𝐹) be the number of real and complex places of 𝐹, and let 𝐷𝐹/Q be the disciminant of 𝐹.

Theorem 1.4. Suppose 𝑋 > 0 and 𝑌 > 1/3 satisfy the inequality

(𝜋/2)3𝑟2 (𝐹 ) · 3−3[𝐹 :Q] · |𝐷𝐹/Q |−3/2 · Norm𝐹/Q (J) > (𝑋𝑌 ) [𝐹 :Q] (1.3)

There exists a non-zero linear function 𝑔1 (𝑥, 𝑦) = 𝜏𝑥 + 𝛾𝑦 + 𝛿 ∈ 𝐹 [𝑥, 𝑦] with the properties in Problem 1.3. Given

any such 𝑔1 (𝑥, 𝑦), one of the following statements is true, and there is a procedure for determining which of the

following alternatives hold:

1. Suppose we decrease both 𝑋 and𝑌 by arbitrarily small amounts. Then there is a polynomial 𝑔(𝑥, 𝑦) ∈ 𝐹 [𝑥, 𝑦]
for which the conditions in Problem 1.3 hold for which the common zero locus of 𝑔(𝑥, 𝑦) and 𝑔1 (𝑥, 𝑦) is

finite. Such a 𝑔(𝑥, 𝑦) leads to a solution of Problem 1.1 for the new values of 𝑋 and 𝑌 , and there are only

finitely many solutions to Problem 1.2 for these values.

2. Suppose we increase both 𝑋 and 𝑌 by arbitrarily small amounts. Then for these new values of 𝑋 and 𝑌 , all

polynomials 𝑔(𝑥, 𝑦) ∈ 𝐹 [𝑥, 𝑦] of any degree having the properties in Problem 1.3 are divisible by 𝑔1 (𝑥, 𝑦).
There are infinitely many solutions to Problem 1.2 for the new values of 𝑋 and 𝑌 , and thus Coppersmith’s

method in the above form cannot be used to solve Problem 1.1.

One of these alternatives must hold, and they are not mutually exclusive.
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We show in Theorem 3.4 that the case in which both alternatives (1) and (2) occur is when a certain adelic

capacity is exactly equal to 1. We construct in Theorem 3.8 infinitely many examples in which option (1) occurs but

(2) does not, and infinitely many other examples in which option (2) occurs but (1) does not. For these examples,

𝐹 = Q, J = 𝑝Z for a prime 𝑝 of increasing size and 𝑋 = 𝑌 = 𝑐
√
𝑝 for a fixed positive constant 𝑐. We show that

each of options (1) and (2) occur for a positive proportion (as 𝑝 → ∞) of pairs of 𝑡 and 𝑎 in Z/𝑝 for which 𝑡 is

prime to 𝑝.

In §4, we consider bounds on the number of solutions of Problem 1.3 when case (1) occurs. When a capacity

associated to 𝑋 and 𝑌 is sufficiently small, we show in Theorem 4.1 that there is at most one pair (𝑥, 𝑦) with the

properties in Problem 1.1. This relies on the fact that in the special case when 𝑎 = 0, multiplying both 𝑥 and 𝑦 by

a root of unity leads to another solution. Therefore when 𝑎 = 0, either one has no solutions or an infinite number.

Because of this, if one can show there are only finitely many solutions via capacity theory when 𝑎 = 0, there in

fact can be no solutions at all. This fact leads to another phenomenon, namely that when 𝑎 = 0, a small solution to

a linear homogeneous congruence prevents the existence of solutions which have uniformly smaller archimedean

absolute values. We state one example here: a more general result is shown in Theorem 4.3.

Theorem 1.5. Suppose 𝑛 is is a positive integer, J = 𝑛𝑂𝐹 , 𝑎 = 0 and 𝑋𝑌 ≤ 𝑛/2. Suppose (𝑥0, 𝑦0) is a pair

of algebraic integers with the properties stated for 𝑥 and 𝑦 in Problem 1.1. Assume in addition that 𝑥0, 𝑦0 and 𝑛

are coprime in the sense that no pair of these numbers is contained in a proper ideal of 𝑂𝐹 . Then there is no

non-zero pair (𝑥1, 𝑦1) of algebraic integers having the properties in Problem 1.1 for which the following is true:

|𝜆(𝑥1) | ≤ |𝜆(𝑥0) | and |𝜆(𝑦1) | ≤ |𝜆(𝑦0) | for all embeddings 𝜆 : Z → C with strict inequality holding for at least

one of 𝑥 or 𝑦 for at least one 𝜆.

2 CONSTRUCTING ONE AUXILIARY FUNCTION

It is well known that the existence of one function of the kind in Problem 1.3 for sufficiently small positive

values of 𝑋 and 𝑌 is a consequence of Minkowski’s theorem:

Theorem 2.1. Suppose 𝑋 > 0 and 𝑌 > 1/3 satisfy the inequality (1.3). There exists a a polynomial 𝑔1 (𝑥, 𝑦) =
𝑏1𝑥 + 𝑏2𝑦 + 𝑏3 ∈ J−1 · 𝑂𝐹 [𝑥, 𝑦] with the following properties:

i. For all embeddings 𝜆 : 𝐹 → C one has

|𝜆(𝑏1) | < 1/(3𝑋), |𝜆(𝑏2) | < 1/(3𝑌 ), and |𝜆(𝑏3) | < 1/3.

ii. 𝑔1 (𝑥, 𝑦) = 0 for all pairs algebraic integers (𝑥, 𝑦) as in Problem 1.2.

iii. 𝑏1 ≠ 0 and 𝑔1 (𝑥, 𝑦) ≡ 𝑏1 (𝑥 + 𝑡𝑦 + 𝑎) mod 𝑂𝐹 [𝑥, 𝑦]
All such 𝑔1 (𝑥, 𝑦) have the properties in Problem 1.3.

Proof. Let R𝐹 = R ⊗Q 𝐹 = ⊕𝑣∈𝑀∞𝐹𝑣 where 𝑀∞ is the set of archimedean places of 𝐹 . Give R𝐹 the Euclidean

norm resulting from the usual Euclidean norms | |𝑣 on the 𝐹𝑣 . (Note that the normalized absolute value on 𝐹𝑣 is

| | [𝐹𝑣 :R]
𝑣 .) Let 𝑉 = R𝐹𝑥 + R𝐹 𝑦 + R𝐹 be the real vector space of all polynomials of degree at most 1 over R𝐹 . We

give 𝑉 the Euclidean inner product resulting from viewing it as a free R𝐹 -module on {𝑥, 𝑦, 1}. Let 𝐿 ⊂ 𝑉 be the

𝑂𝐹 -sublattice

𝐿 = J−1 · (𝑥 + 𝑡𝑦 + 𝑎) +𝑂𝐹 · 𝑦 +𝑂𝐹 . (2.4)

Then

covolume(𝑉/𝐿) = 2−3𝑟2 (𝐹 ) |𝐷𝐹/Q |3/2Norm𝐹/Q (J)−1

by [12].

For 𝑑 > 0 define 𝐵(0, 𝑑) to be the set of all 𝜉 = (𝜉𝑣 )𝑣∈𝑀∞ ∈ 𝑅𝐹 = ⊕𝑣∈𝑀∞𝐹𝑣 such that |𝑥𝑣 | < 𝑑 for all 𝑣 ∈ 𝑀∞.

Consider the convex symmetric subset

𝑆(𝑑1, 𝑑2, 𝑑3) = {𝑟1𝑥 + 𝑟2𝑦 + 𝑟3 : 𝑟1 ∈ 𝐵(0, 𝑑1), 𝑟2 ∈ 𝐵(0, 𝑑2), 𝑟3 ∈ 𝐵(0, 𝑑3)}.

Then

vol(𝑆(𝑑1, 𝑑2, 𝑑3)) = (2𝑟1 (𝐹 )𝜋𝑟2 (𝐹 ) )3 (𝑑1𝑑2𝑑3) [𝐹 :Q] .

Suppose

vol(𝑆) > 23[𝐹 :Q]colvolume(𝑉/𝐿) (2.5)

Minkowski’s theorem then guarantees that there is a non-zero 𝑔1 (𝑥, 𝑦) = 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3 ∈ 𝐿 ∩ 𝑆.
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Suppose (𝑥, 𝑦) ∈ Z2
has the properties in Problem 1.2, so that 𝑥 + 𝑡𝑦 + 𝑎 ∈ JZ, |𝜆(𝑥) | < 𝑋 and |𝜆(𝑦) | < 𝑌 for

all embeddings 𝜆 : Z → C. From the definition of 𝐿 and that fact that 𝑔1 is a polynomial in 𝐿 ∩ 𝑋 , we find that

𝑔1 (𝑥, 𝑦) ∈ Z and

|𝜆(𝑔1 (𝑥, 𝑦)) | < 𝑑1𝑋 + 𝑑2𝑌 + 𝑑3

for all 𝜆. Thus if we choose 𝑑1, 𝑑2, 𝑑3 such that

𝑑1𝑋 + 𝑑2𝑌 + 𝑑3 = 1 (2.6)

we can conclude that 𝑔1 (𝑥, 𝑦) = 0 since the norm of 𝑔1 (𝑥, 𝑦) to Z is an integer of absolute value less than 1. The

choice of 𝑑1, 𝑑2, 𝑑3 > 0 for which (2.6) holds and vol(𝑆) is maximized is

(𝑑1, 𝑑2, 𝑑3) = (1/(3𝑋), 1/(3𝑌 ), 1/3)

leading to

vol(𝑆) = (2𝑟1 (𝐹 )𝜋𝑟2 (𝐹 ) )3 (𝑑1𝑑2𝑑3) [𝐹 :Q]
= (2𝑟1 (𝐹 )𝜋𝑟2 (𝐹 ) )3 · (3−3/(𝑋𝑌 )) [𝐹 :Q] .

Combining this with the Minkowski inequality (2.5) leads to the conclusion that if 𝑋𝑌 satisfies the inequality in

(1.3), then (i) and (ii) of Theorem 2.1 hold.

Finally, suppose 𝑏1 = 0. The definition of 𝐿 in (2.4) then shows that 𝑔1 (𝑥, 𝑦) = 𝑏2𝑦 + 𝑏3 with 𝑏2, 𝑏3 ∈ 𝑂𝐹 .

However, property (i) of Theorem 2.1 together with our assumption that 𝑌 > 1/3 forces 𝑏2 and 𝑏3 to have all

conjugates of absolute value less than 1. This forces 𝑏2 = 𝑏3 = 0 as well, contradicting the fact that 𝑔1 (𝑥, 𝑦) is a

non-zero polynomial. �

Remark 2.2. There may be more than one 𝑔1 (𝑥, 𝑦) with the properties in Theorem 2.1.

3 ADELIC SUBSETS OF THE ZERO LOCUS OF THE FIRST AUXILIARY FUNC-

TION.

The strategy now for studying Problem 1.2 is to use the fact that all solutions must be on the zero locus of

the auxillary function described in Theorem 2.1. This zero locus is an affine line. We will determine the adelic

constraints that the Galois conjugates of a point on this line must satisfy which are equivalent to providing a solution

to Problem 1.2. We then apply adelic capacity theory on the line to determine whether or not there are infinitely

many such solutions, and whether there is a second auxillary polynomial with the right adelic properties which is

not divisible by the first one produced by Theorem 2.1.

Throughout this section, we fix the following notations.

Definition 3.1. Let 𝑔1 (𝑥, 𝑦) = 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3 be a polynomial wth the properties in Theorem 2.1. Let 𝑀𝐹 =

𝑀𝐹,fin ∪𝑀𝐹,inf be the set of all absolute values 𝑣 of 𝐹, where 𝑀𝐹,fin (resp. 𝑀𝐹,inf) is the set of finite (resp. infinite)

places. Let 𝐹𝑣 be an algebraic closure of 𝐹𝑣 . If 𝑣 ∈ 𝑀𝐹,fin, let | |𝑣 be an extension to 𝐹𝑣 of the usual normalized

absolute value on 𝐹𝑣 , Let |J |𝑣 in this case be the value of | |𝑣 on any element of J ⊂ 𝑂𝐹 which generates the

completion of J at 𝑣. If 𝑣 ∈ 𝑀𝐹,inf , identify 𝐹𝑣 with C and let | |𝑣 be the usual Euclidean absolute value. Define

a subset of 𝐸𝑣 of 𝐹𝑣 in the following way:

i. If 𝑣 is non-archimedean, let 𝐸𝑣 be the set of 𝑦 ∈ 𝐹𝑣 such that |𝑦 |𝑣 ≤ 1, |𝑏2𝑦 + 𝑏3 |𝑣 ≤ |𝑏1 |𝑣 and

| − (𝑏2𝑦 + 𝑏3)/𝑏1 + 𝑡𝑦 + 𝑎 |𝑣 ≤ |J |𝑣 .
ii. If 𝑣 is archimedean, let 𝐸𝑣 be the set of 𝑦 ∈ 𝐹𝑣 such that |𝑦 |𝑣 ≤ 𝑌 and |𝑏2𝑦 + 𝑏3 |𝑣 ≤ |𝑏1 |𝑣 · 𝑋 .

Lemma 3.2. If 𝑣 ∈ 𝑀𝐹,fin then 𝐸𝑣 is either empty or a disk of the form

𝐷 (𝑐𝑣 , 𝑟𝑣 ) = {𝑦 ∈ 𝐹𝑣 : |𝑦 − 𝑐𝑣 |𝑣 ≤ 𝑟𝑣 }

for some 𝑐𝑣 ∈ 𝐹𝑣 and 0 ≤ 𝑟𝑣 ∈ R. For all but finitely many 𝑣 ∈ 𝑀𝐹,fin one can take 𝑐𝑣 = 0 and 𝑟𝑣 = 1, in which

case 𝐸𝑣 = 𝐷 (0, 1). If 𝑣 is archimedean, then 𝐸𝑣 is either empty or the non-empty intersection of two disks in

𝐹𝑣 = C which have centers at 0 and at a point in 𝐹𝑣 . The adelic set E =
∏

𝑣 𝐸𝑣 has capacity relative the point ∞
on P1

𝐹
equal to

𝛾(E) =
∏

𝑣∈𝑀𝐹

𝛾𝑣 (𝐸𝑣 ) (3.7)

where 𝛾𝑣 (𝐸𝑣 ) is the local capacity of 𝐸𝑣 as a subset of P1 (𝐹𝑣 ) − {∞} = A1 (𝐹𝑣 ) = 𝐹𝑣 . One has 𝛾𝑣 (𝐸𝑣 ) =

𝑟
[𝐹𝑣 :Q𝑝 (𝑣 ) ]
𝑣 if 𝑣 is finite of residue characteristic 𝑝(𝑣). If 𝑣 is infinite, 𝛾𝑣 (𝐸𝑣 ) is computed in Theorem 3.5 below.
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Proof. The description of 𝐸𝑣 is clear from Definition 3.1 together with the fact that the intersection of any two

non-archimedean disks in 𝐹𝑣 for 𝑣 ∈ 𝑀𝐹,fin is either empty or equal to a disk. The fact that 𝐸𝑣 = 𝐷 (0, 1) for all

but finitely many 𝑣 ∈ 𝑀𝐹,fin follows from the the fact each of the three inequalities defining 𝐸𝑣 describes either

𝐷 (0, 1) or all of 𝐹𝑣 for all but finitely many 𝑣. Hence E has a well defined capacity with respect to ∞, and the

formula (3.7) is shown in [14]. The fact that 𝛾𝑣 (𝐸𝑣 ) = 𝑟
[𝐹𝑣 :Q𝑝 (𝑣 ) ]
𝑣 for 𝑣 ∈ 𝑀𝐹,fin is shown in [14] on taking account

our normalization of | |𝑣 . �

Remark 3.3. The constants 𝑐𝑣 and 𝑟𝑣 for 𝑣 ∈ 𝑀𝐹,fin are readily computed from the coefficients of 𝑔1 (𝑥, 𝑦) =

𝑏1𝑥 + 𝑏2𝑦+ 𝑏3. The same is true for the centers and radii of the two disks whose intersection is 𝐸𝑣 when 𝑣 ∈ 𝑀𝐹,inf .

Thus (3.7) is readily computable from 𝑔1 (𝑥, 𝑦) using Theorem 3.5.

Theorem 3.4. Let 𝛾(E) be as in (3.7).

1. If 𝛾(E) > 1 then there are infinitely many solutions (𝑥, 𝑦) to Problem 1.2. In this case, any polynomial

𝑔𝑖 (𝑥, 𝑦) ∈ 𝐹 [𝑥, 𝑦] with the properties in Problem 1.3 must be divisible by 𝑔1 (𝑥, 𝑦) in 𝐹 [𝑥, 𝑦]. In particular,

the intersection of the zero loci of all polynomials 𝑔𝑖 (𝑥, 𝑦) with the properties in Problem 1.3 is the zero locus

of 𝑔1 (𝑥, 𝑦), which is infinite.

2. If 𝛾(E) < 1 then there are only finitely many solutions (𝑥, 𝑦) to Problem 1.2. The common zero locus of the

polynomials in Problem 1.3 is finite.

3. Suppose 𝛾(E) ≠ 0. As a function of 𝑋 > 0 and 𝑌 > 1/3, the value of 𝛾(E) strictly increases when both 𝑋

and 𝑌 are increased. In particular, suppose 𝛾(E) = 1 for particular values of 𝑋 and 𝑌 . Any increase of both

𝑋 and 𝑌 leads to the conclusions of part (1), while any decrease of both 𝑋 and 𝑌 leads to the conclusions of

part (2). This establishes parts (1) and (2) of Theorem 1.4.

Proof. Recall that a solution (𝑥, 𝑦) to Problem 1.2 is a pair of 𝑥, 𝑦 ∈ Z such that 𝑥 + 𝑡𝑦 + 𝑎 ≡ 0 mod JZ and all

archimedean conjugates 𝑥 ′ and 𝑦′ of 𝑥 and 𝑦′ satisfy |𝑥 ′ | ≤ 𝑋 and |𝑦′ | ≤ 𝑌 . We know that

𝑔1 (𝑥, 𝑦) = 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3 = 0

for all such (𝑥, 𝑦), where 𝑏1 ≠ 0. So we have

𝑥 =
−𝑏2𝑦 − 𝑏3

𝑏1

(3.8)

Because of (3.8), these conditions on 𝑥 and 𝑦 translate into the condition that all conjugates over 𝐹 of the element

𝑦 ∈ 𝐹 lie in the set 𝐸𝑣 ⊂ 𝐹𝑣 described in Definition 3.1 for each 𝑣 ∈ 𝑀𝐹 . Parts (1) and (2) of the Theorem are

now consequences of 4’s results concerning Fekete-Szegö theorems for the projective line (see [4] and [14]).

For part (3), note that if 𝛾(E) ≠ 0 then 𝛾𝑣 (𝐸𝑣 ) ≠ 0 for all 𝑣. In particular, 𝐸𝑣 cannot be empty or a single

point. Supose now that 𝑣 ∈ 𝑀𝐹,inf . Then 𝐸𝑣 is intersection of two closed disks, and 𝐸𝑣 has non-empty interior.

Increasing 𝑋 and 𝑌 to some 𝑋 ′ > 𝑋 and 𝑌 ′ > 𝑌 then expands both disks. This puts the set 𝐸𝑣 for 𝑋 and 𝑌 into

𝜆 · 𝐸 ′
𝑣 for some positive real 𝜆 < 1 when 𝐸 ′

𝑣 is the corresponding intersection of disks for 𝑋 ′ and 𝑌 ′. We thus have

𝛾∞ (𝐸𝑣 ) ≤ 𝛾∞ (𝜆𝐸 ′
𝑣 ) = 𝜆 · 𝛾∞ (𝐸 ′

𝑣 ) < 𝛾∞ (𝐸 ′
𝑣 ). This proves that 𝛾∞ (𝐸𝑣 ) strictly increases when we increase both

𝑋 and 𝑌 , which implies part (3) of the Theorem. �

We now give the formula for the capacity 𝛾𝑣 (𝐸𝑣 ) for archimedean 𝑣 which was referred to at the end of the

statement of Lemma 3.2. Let 𝐷 (𝑎, 𝑡) the closed disk in C with center 𝑎 ∈ C and radius 𝑟 ≥ 0.

Theorem 3.5. Suppose 𝐸𝑣 is the intersection in 𝐹𝑣 = C of two closed disks, one of which is centered at the origin.

Then there is non-zero complex number 𝜉 such that 𝐸𝑣 = 𝜉 ·𝑉 where 𝑉 = 𝐷 (0, 𝑟) ∩𝐷 (1, 𝑠) for some 𝑟, 𝑠 ≥ 0. One

has 𝛾𝑣 (𝐸𝑣 ) = ( |𝜉 | · 𝛾∞ (𝑉)) [𝐾𝑣 :R] where 𝛾∞ (𝑉) is the classical transfinite diameter of 𝑉 , which may computed in

the following way. If 𝑉 = ∅ or 𝑟 + 𝑠 = 1 then 𝛾∞ (𝑉) = 0. If 𝑟 ≥ 1 + 𝑠 then 𝑉 = 𝐷 (1, 𝑠) and 𝛾∞ (𝑉) = 𝑠. If 𝑠 ≥ 1 + 𝑟
then 𝑉 = 𝐷 (0, 𝑟) and 𝛾∞ (𝑉) = 𝑟 . Otherwise, the boundaries of 𝐷 (0, 𝑟) and 𝐷 (1, 𝑠) intersect at two points 𝑢 and

𝑢 with 𝑢 in the upper half plane. Let 𝛼 ∈ (0, 𝜋) be the angle between the boundary of 𝐷 (0, 𝑟) and the boundary of

𝐷 (1, 𝑠) at the intersection point 𝑎. There is a unique point 𝜁 in the upper half plane such that

𝜁 =

(

𝑢 − 𝑟

𝑢 − 𝑟

) 𝜋/(2𝜋−𝛼)
(3.9)

when we compute the complex exponential using the branch of log with imaginary part lying in [0, 2𝜋]. One has

𝛾∞ (𝑉) = 1

2Im(𝜁) ·
𝜋

2𝜋 − 𝛼
· |𝑢 − 𝑢 | (3.10)
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To prove this result we will need the following fact from [14] .

Lemma 3.6. (Rumely) Suppose 𝐸 is a connect subset of C. Let 𝐸𝑐 be the complement of 𝐸 in P1 (C) = C ∪ {∞}.
Suppose 𝑓 (𝑧) is a conformal map which takes 𝐸𝑐 to the complement of the closed disc 𝐷 (0, 𝑅) of radius 𝑅 > 0.

Suppose further that lim𝑧→∞ 𝑓 (𝑧)/𝑧 = 1. Then 𝛾∞ (𝐸) = 𝑅. The Green’s function 𝐺 (𝑧,∞ : 𝐸) equals log| 𝑓 (𝑧)/𝑅) |
for 𝑧 ∈ 𝐸𝑐 and 𝐺 (𝑧,∞; 𝐸) = 0 for 𝑧 ∈ 𝐸 .

Proof of Theorem 3.5

The first statement is clear on rotating and dilating𝐸𝑣 appropriately, and the formula 𝛾∞ (𝐸∞) = ( |𝜉 |𝛾∞ (𝑉)) [𝐾𝑣 :R]

is shown in [14]. Since the transfinite diameter of a disk or radius 𝑅 is 𝑅, it will suffice to construct an 𝑓 (𝑧) for

the 𝐸 = 𝑉 of Theorem 3.5 on the assumption that the boundaries of 𝐷 (0, 𝑟) and 𝐷 (1, 𝑠) intersect at the distinct

points 𝑢 and 𝑢. The cross ratio 𝑤(𝑧) =
(𝑢−𝑧) (𝑢−𝑟 )
(𝑢−𝑟 ) (𝑢−𝑧) has 𝑤(𝑢) = 0, 𝑤(𝑟) = 1 and 𝑤(𝑢) = ∞. Since fractional

linear transformations send circles to either lines or circles, we find that 𝑧 → 𝑤(𝑧) sends the arc formed by the

boundary of 𝐷 (0, 𝑟) between 𝑢 and 𝑢 to the union of the non-negative real axis with ∞. Since fractional linear

transformations also preserve angles, 𝑧 → 𝑤(𝑧) sends the arc formed by the boundary of 𝐷 (1, 𝑠) between 𝑢 and 𝑢

to the union of {∞} with the ray 𝐿 outward from 𝑤(𝑢) = 0 which makes an angle of 𝛼 from the positive real axis

and lies in the lower half plane. Thus the image of 𝑉 under 𝑧 → 𝑤(𝑧) is the union of {∞} with an angular sector

in C bounded by the non-negative real axis and 𝐿. The complement 𝑉𝑐 is sent to set 𝑤(𝑉𝑐) of non-zero complex

numbers 𝜏 = |𝜏 |𝑒2𝜋𝑖𝜃 for which 0 < 𝜃 < 2𝜋 − 𝛼.

On choosing the branch of the complex logarithm with imaginary part in [0, 2𝜋), we have a conformal map 𝜈

taking 𝑤(𝑉𝑐) to the upper half plane 𝐻 defined by 𝜈(𝑤) = 𝑤𝜋/(2𝜋−𝛼) . This map sends 𝑤(∞) = 𝑢−𝑟
𝑢−𝑟 ∈ 𝑤(𝑉𝑐) to

the point 𝜁 in (3.9). We can now use the conformal automorphism ℎ of P1 (C) defined by 𝜈 → ℎ(𝜈) = 1
𝜈−𝜁 to send

𝜁 to ℎ(𝜁) = ∞ and 𝐻 = (𝜈 ◦ 𝑤) (𝑉𝑐) to the complement in P1 (C) of a closed disk 𝐷 which has a diameter going

from 0 = ℎ(∞) to 𝑖
Im(𝜁 ) = ℎ(Re(𝜁)).

Consider now the composition 𝑓 (𝑧) = 𝑐 · (ℎ ◦ 𝜈 ◦ 𝑤), where 𝑐 is a non-zero constant we will choose so that

lim𝑧∞ 𝑓 (𝑧)/𝑧 = 1. This 𝑓 gives a conformal map from𝑉𝑐 to the complement of the image 𝑐𝐷 of 𝐷 by multiplication

by 𝑐. Therefore Lemma 3.6 gives

𝛾∞ (𝑉) = 𝛾∞ (𝐷) = |𝑐 |
2Im(𝜁) (3.11)

It just remains to find 𝑐. Here

1/ℎ(𝜈(𝑤(𝑧))) = 𝜈(𝑤(𝑧)) − 𝜈(𝑤(∞)) =
(

(𝑢 − 𝑧) (𝑢 − 𝑟)
(𝑢 − 𝑟) (𝑢 − 𝑧)

) 𝜋/(2𝜋−𝛼)
−

(

(𝑢 − 𝑟)
(𝑢 − 𝑟)

) 𝜋/(2𝜋−𝛼)

Thus

𝑧/ℎ(𝜈(𝑤(𝑧))) = 𝜁 · 𝑧 ·
(

(

(1 − 𝑧−1𝑢)
(1 − 𝑧−1𝑢)

) 𝜋/(2𝜋−𝛼)
− 1

)

since 𝜁 =

(

(𝑢−𝑟 )
(𝑢−𝑟 )

) 𝜋/(2𝜋−𝛼)
. Using that

(1 − 𝑧−1𝑢)/(1 − 𝑧−1𝑢) = 1 + (𝑢 − 𝑢)𝑧−1 + higher order terms

we find that on setting

𝑐 = lim
𝑧→∞

𝑧/ℎ(𝜈(𝑤(𝑧))) = 𝜁 · 𝜋

2𝜋 − 𝛼
· (𝑢 − 𝑢)

we will have lim𝑧→∞ 𝑓 (𝑧)/𝑧 = lim𝑧→∞ 𝑐 · ℎ(𝜈(𝑤(𝑧)))/𝑧 = 1, as required. Now (3.11) gives

𝛾∞ (𝑉) = 1

2Im(𝜁) ·
𝜋

2𝜋 − 𝛼
· |𝑢 − 𝑢 |

as claimed in Theorem 3.5 since |𝜁 | = 1.

Remark 3.7. As a check on Theorem 3.5, consider the case in which 𝑠 tends toward 1 + 𝑟 from below. Then 𝑉

becomes closer and closer to being all of 𝐷 (0, 𝑟), and some straightforward estimates show that the formula 𝛾∞ (𝑉)
in Theorem 3.5 tends toward 𝛾∞ (𝐷 (0, 𝑟)) = 𝑟 as 𝑠 → (1 + 𝑟) from below.

We end this section by showing the claim made in the last sentence of the introduction that there are infinitely

many examples of each of cases 1 and 2 of Theorem 1.4. We prove a more quantitative result under some additional

hypotheses.
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Theorem 3.8. Suppose 𝐹 = Q, so that 𝑂𝐹 = Z. Suppose J = 𝑝Z for some prime 𝑝, and that 𝑋 = 𝑌 = 𝑐
√
𝑝 > 1/3

for some fixed constant 𝑐 for which 2/3 > 𝑐 > 0.

i. For sufficiently large primes 𝑝 there is a positive proportion of pairs (𝑡, 𝑎) ∈ (Z/𝑝)∗ × (Z/𝑝) for which the

following is true. There is a unique polynomial 𝑔1 (𝑥, 𝑦) = 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3 = (𝑑1𝑥 + 𝑑2𝑦 + 𝑑3)/𝑝 with the

properties in Theorem 2.1 for which 𝑑𝑖 ∈ Z for 𝑖 = 1, 2, 3 and 𝑔.𝑐.𝑑.(𝑑1, 𝑑2) = 1 and 𝑑1 > 0. Alternative (1)

of Theorem 3.4 holds for this 𝑔1 (𝑥, 𝑦) while alternative (2) of the Theorem does not.

ii. For sufficiently large primes 𝑝 there is a positive proportion of pairs (𝑡, 𝑎) ∈ (Z/𝑝)∗ × (Z/𝑝), all the

statements in (i) up to the last one are true, but now alternative (2) of Theorem 3.4 holds while alternative

(1) does not.

We will first describe the strategy of the proof. Rather than begin by choosing (𝑡, 𝑎), we instead choose

polynomials 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3 = (𝑑1𝑥 + 𝑑2𝑦 + 𝑑3)/𝑝 that will have the properties in Lemma 3.9 for some pair of

residue classes 𝑡 and 𝑎 mod 𝑝Z. In Lemma 3.9 we specify conditions on the 𝑑𝑖 which ensure the uniqueness of the

associated pair (𝑡, 𝑎) mod 𝑝Z. In Lemma 3.10 we show that for the 𝑡 and 𝑎 which arise from the construction in

Lemma 3.9, any polynomial with the properties in Theorem 2.1 for 𝑡 and 𝑎 must arise from an integer multiple of

the polynomial in Lemma 3.9 that gives rise to 𝑡 and 𝑎. These steps are needed because in the end we will count the

polynomials produced in Lemma 3.9 which lead to the capacity 𝛾(E) associated to the triple {𝑏1𝑥 + 𝑏2𝑦 + 𝑏3, 𝑡, 𝑎}
in Definition 3.1 and Lemma 3.2 being greater than 1 (respectively less than 1). We compute these capacities

in Lemma 3.11. To complete the proof of Theorem 3.8 we then produce ranges for 𝑑1, 𝑑2 and 𝑑3 which lead to

𝛾(E) > 1 (respectively 𝛾(E) < 1). We show that these ranges lead to positive proportion of the possible residue

classes of (𝑡, 𝑎) mod 𝑝 satisfying conditions (i) (resp. (ii)) of Theorem 3.8.

Lemma 3.9. Recall that 2/3 > 𝑐 > 0, so 0 < 3𝑐/2 < 1. Let 𝑤, 𝑧 be real numbers such that 0 < 𝑤 ≤ 2 and

0 ≤ 𝑧 < 1. Consider the set 𝑆(𝑤, 𝑧) of all triples (𝑑1, 𝑑2, 𝑑3) of integers such that

𝑤3𝑐
√
𝑝/4 ≤ 𝑑1 ≤ 3𝑐

√
𝑝/2 <

√
𝑝; 1 ≤ 𝑑2 ≤ 3𝑐

√
𝑝/2 <

√
𝑝; 0 ≤ 𝑑3 < 𝑧𝑝 and gcd(𝑑1, 𝑑2) = 1. (3.12)

There is an injective map 𝜆 : 𝑆(𝑤, 𝑧) → Z/𝑝×Z/𝑝 which sends (𝑑1, 𝑑2, 𝑑3) to the class in Z/𝑝×Z/𝑝 of (𝑡, 𝑎) when

𝑡 and 𝑎 are the smallest non-negative integers for which 𝑑1 · (1, 𝑡, 𝑎) ≡ (𝑑1, 𝑑2, 𝑑3) mod 𝑝. One has 𝑡 . 0 . 𝑑1

mod 𝑝.

Proof. Suppose (𝑑1, 𝑑2, 𝑑3) ∈ 𝑆(𝑤, 𝑧). Since 0 < 𝑤3𝑐/2 < 𝑤 we have 𝑑1 . 0 . 𝑑2 mod 𝑝. Hence 𝑡 and

𝑎 are uniquely determined by (𝑑1, 𝑑2, 𝑑3) and 𝑡 . 0 mod 𝑝. Suppose 𝜆(𝑑1, 𝑑2, 𝑑3) = 𝜆(𝑑 ′
1
, 𝑑 ′

2
, 𝑑 ′

3
) for some

(𝑑 ′
1
, 𝑑 ′

2
, 𝑑 ′

3
) ∈ 𝑆(𝑤, 𝑧). Then 𝑑2 ≡ 𝑡𝑑1 mod 𝑝 and 𝑑 ′

2
≡ 𝑡𝑑 ′

1
mod 𝑝, so 𝑑2𝑑

′
1
− 𝑑 ′

2
𝑑1 ≡ 𝑡𝑑1𝑑

′
1
− 𝑡𝑑 ′

1
𝑑1 ≡ 0 mod

𝑝. But 𝑑1, 𝑑2, 𝑑
′
1
, 𝑑 ′

2
all lie in the interval (0, 3𝑐√𝑝/2) ⊂ (0,√𝑝), we have 0 < 𝑑2𝑑

′
1
< 𝑝 and 0 < 𝑑 ′

2
𝑑1 < 𝑝.

So 𝑑2𝑑
′
1
≡ 𝑑 ′

2
𝑑1 mod 𝑝 forces 𝑑2𝑑

′
1
= 𝑑 ′

2
𝑑1. Now since the 𝑑𝑖 are positive and g.c.d(𝑑1, 𝑑2) = g.c.d(𝑑 ′

1
, 𝑑 ′

2
), we

conclude (𝑑1, 𝑑2) = (𝑑 ′
1
, 𝑑 ′

2
). Now 𝑑3 ≡ 𝑑1𝑎 ≡ 𝑑 ′

1
𝑎 ≡ 𝑑 ′

3
mod 𝑝, so 𝑧 < 1 forces 𝑑3 = 𝑑 ′

3
. Hence 𝜆 is injective. �

Lemma 3.10. With the notations and assumptions of Lemma 3.9, suppose 𝜆(𝑑1, 𝑑2, 𝑑3) = (1, 𝑡, 𝑎) and 𝑧 ≤ 3𝑤𝑐2.

Suppose 𝑔1 (𝑥, 𝑦) = 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3 ∈ Q[𝑥, 𝑦] has the properties in Theorem 2.1 for 𝑡 and 𝑎. Then 𝑒1 = 𝑝𝑏1,

𝑒2 = 𝑝𝑏2 and 𝑒3 = 𝑝𝑏3 are in Z. Let 𝑞 = g.c.d.(𝑒1, 𝑒2, 𝑒3). Then 𝑏1 ≠ 0 and

𝑔1 (𝑥, 𝑦) = sign(𝑏1) · 𝑞 · (𝑑1𝑥 + 𝑑2𝑦 + 𝑑3)/𝑝.

Furthermore, (𝑑1𝑥 + 𝑑2𝑦 + 𝑑3)/𝑝 also has all the properties in Theorem 2.1 for 𝑡 and 𝑎.

Proof. By Theorem 2.1, 0 ≠ 𝑝𝑔1 (𝑥, 𝑦) = 𝑒1𝑥 + 𝑒2𝑦+ 𝑒3 ∈ Z[𝑥, 𝑦] has 𝑒1𝑥 + 𝑒2𝑦+ 𝑒3 ≡ 𝑒1 (𝑥 + 𝑡𝑦+𝑎) mod 𝑝𝑍 [𝑥, 𝑦],
so (𝑒1, 𝑒2, 𝑒3) ≡ 𝑒1 (1, 𝑡, 𝑎) mod 𝑝. Furthermore,

0 < |𝑒1 | < 𝑝/(3𝑋) = √
𝑝/(3𝑐); |𝑒2 | < 𝑝/(3𝑌 ) = √

𝑝/(3𝑐); and |𝑒3 | < 𝑝/3. (3.13)

These properties are preserved if we divide 𝑔1 (𝑥, 𝑦) by the g.c.d. of 𝑒1, 𝑒2 and 𝑒3 or if we multiply 𝑔1 (𝑥, 𝑦) by −1.

We will assume in what follows that this has been done, so that g.c.d(𝑒1, 𝑒2, 𝑒3) = 1 and 𝑒1 > 0.

Since 𝜆(𝑑1, 𝑑2, 𝑑3) = (𝑡, 𝑎), we have 𝑑1 (1, 𝑡, 𝑎) ≡ (𝑑1, 𝑑2, 𝑑3) mod 𝑝. Since (𝑒1, 𝑒2, 𝑒3) ≡ 𝑒1 (1, 𝑡, 𝑎) mod 𝑝 we

conclude 𝑒1𝑑2 − 𝑑1𝑒2 ≡ 0 mod 𝑝. However,

|𝑒1𝑑2 − 𝑑1𝑒2 | < 𝑝

since |𝑒𝑖 | <
√
𝑝/(3𝑐) and |𝑑𝑖 | ≤ 3𝑐

√
𝑝/2 for 𝑖 = 1, 2. Hence 𝑒1𝑑2 − 𝑑1𝑒2 = 0. Since gcd(𝑑1, 𝑑2) = 1, this forces

(𝑒1, 𝑒2) = 𝑒(𝑑1, 𝑑2) for some 𝑒 ∈ Z. Now 𝑤3𝑐/2√𝑝 ≤ 𝑑1 so |𝑒 |𝑤3𝑐
√
𝑝/2 ≤ |𝑒𝑑1 | = |𝑒1 | <

√
𝑝/(3𝑐) because of

(3.13). So

|𝑒 | < 2

(3𝑐)2𝑤
. (3.14)

8



Two variable polynomial congruences and capacity theory

Since 𝑑1 . 0 mod 𝑝, 𝑑1𝑑
′
1
≡ 1 mod 𝑝 for some integer 𝑑 ′

1
. Therefore

(𝑒𝑑1, 𝑒𝑑2, 𝑒3) = (𝑒1, 𝑒2, 𝑒3) ≡ 𝑒1 (1, 𝑡, 𝑎) ≡ 𝑒1𝑑
′
1 (𝑑1, 𝑑2, 𝑑3) mod 𝑝.

So 𝑒 ≡ 𝑒1𝑑
′
1

mod 𝑝 and 𝑒3 ≡ 𝑒1𝑑
′
1
𝑑3 ≡ 𝑒𝑑3 mod 𝑝. Thus (𝑒1, 𝑒2, 𝑒3) − 𝑒(𝑑1, 𝑑2, 𝑑3) ≡ (0, 0, 0) mod 𝑝, where

𝑒1 = 𝑒𝑑1 and 𝑒2 = 𝑒𝑑2. We conclude that

𝑝𝑔1 (𝑥, 𝑦) = 𝑒1𝑥 + 𝑒2𝑦 + 𝑒3 = 𝑒(𝑑1𝑥 + 𝑑2𝑦 + 𝑑3) + ℎ

when ℎ = 𝑒3 − 𝑒𝑑3 ≡ 0 mod 𝑝. Here

|𝑒𝑑3 | = |𝑒 | · |𝑑3 | <
2𝑧𝑝

(3𝑐)2𝑤
≤ 2𝑝/3

because of (3.14), |𝑑3 | < 𝑧𝑝 and the assumption that 𝑧 ≤ 𝑤3𝑐2. Since |𝑒3 | < 𝑝/3 we get |ℎ| = |𝑒3 − 𝑒𝑑3 | <
𝑝/3 + 2𝑝/3 < 𝑝, which forces ℎ = 0 since ℎ ≡ 0 mod 𝑝. Thus 𝑝𝑔1 (𝑥, 𝑦) = 𝑒1𝑥 + 𝑒2𝑦 + 𝑒3 = 𝑒(𝑑1𝑥 + 𝑑2𝑦 + 𝑑3).
Since g.c.d(𝑒1, 𝑒2, 𝑒3) = 1 and 𝑒1 and 𝑑1 are positive, we must have 𝑒 = 1 and 𝑔1 (𝑥, 𝑦) = (𝑑1𝑥 + 𝑑2𝑦 + 𝑑3)/𝑝. �

Lemma 3.11. Let E =
∏

𝑣 𝐸𝑣 be the adelic set associated by Definition 3.1 to 𝑔1 (𝑥, 𝑦) = 1
𝑝
(𝑑1𝑥 + 𝑑2𝑦 + 𝑑3) for

some (𝑑1, 𝑑2, 𝑑3) ∈ 𝑆(𝑤, 𝑧) under the assumption that 𝑧 ≤ 3𝑤𝑐2 in Lemma 3.10. Define

𝛿1 = max(−𝑐, −𝑑1𝑐

𝑑2

− 𝑑3√
𝑝𝑑2

) and 𝛿2 = min(𝑐, 𝑑1𝑐

𝑑2

− 𝑑3√
𝑝𝑑2

) (3.15)

Suppose 𝑑1 and 𝑑2 are relatively prime. The capacity 𝛾(E) of E is 0 if 𝛿1 > 𝛿2. Otherwise,

𝛾(E) =
∏

𝑣

𝛾𝑣 (𝐸𝑣 ) = 𝑑−1
1 𝛾∞ (𝐸∞) ≥

√
𝑝(𝛿2 − 𝛿1)

4𝑑1

(3.16)

where 𝐸∞ is the component of E at the archimedean place of Q.

Proof. From Definition 3.1, the intersection of the real line with 𝐸∞ is trivial if 𝛿1 > 𝛿2, in which case 𝐸∞ is empty

and 𝛾∞ (𝐸∞) = 0 = 𝛾(E). If 𝛿1 ≤ 𝛿2 then 𝐸∞ intersects the real line in the interval [√𝑝𝛿1,
√
𝑝𝛿2]. In this case, we

have

𝛾∞ (𝐸∞) ≥ 𝛾∞ ( [√𝑝𝛿1,
√
𝑝𝛿2]) =

√
𝑝

4
(𝛿2 − 𝛿1). (3.17)

Suppose now that 𝑣 is a finite place ofQ. From Definition 3.1 and the equality 𝑏1𝑥+𝑏2𝑦+𝑏3 = 𝑝−1 (𝑑1𝑥+𝑑2𝑥+𝑑3),
we see that 𝐸𝑣 is the set of 𝑦 ∈ Q𝑣 satisfying these conditions:

i. |𝑦 |𝑣 ≤ 1

ii. | (𝑑2𝑦 + 𝑑3)/𝑑1 |𝑣 ≤ 1 and

iii. | − (𝑑2𝑦 + 𝑑3)/𝑑1 + 𝑡𝑦 + 𝑎 |𝑣 ≤ |J |𝑣
where |J |𝑣 = 1 if 𝑣 ≠ 𝑝 and |J |𝑝 = 𝑝−1. Let us first show (i) and (ii) imply (iii). If 𝑣 ≠ 𝑝, this is clear from

𝑡, 𝑎 ∈ Z. Suppose now that 𝑣 = 𝑝. We know 𝑑1 is prime to 𝑝, and that (𝑑1, 𝑑2, 𝑑3) ≡ 𝑑1 (1, 𝑡, 𝑎) mod 𝑝. So 𝑑2 ≡ 𝑑1𝑡

mod 𝑝 and 𝑑3 ≡ 𝑑1𝑎 mod 𝑝. Thus

| (−𝑑2/𝑑1 + 𝑡)𝑦 |𝑣 = |𝑑1 |−1
𝑣 · | − 𝑑2 + 𝑡𝑑1 |𝑣 · |𝑦 |𝑣 ≤ 𝑝−1 if |𝑦 |𝑣 ≤ 1

and

| − 𝑑3/𝑑1 + 𝑎 |𝑣 = |𝑑1 |−1 · | − 𝑑3 + 𝑎𝑑1 |𝑣 ≤ 𝑝−1 if |𝑦 |𝑣 ≤ 1

so (iii) is implied by (i) when 𝑣 = 𝑝. Thus 𝐸𝑣 is the set of 𝑦 ∈ Q𝑣 satisfying (i) and (ii).

Recall now that 𝑑1, 𝑑2, 𝑑3 are non-zero integers and that by assumption 𝑔.𝑐.𝑑.(𝑑1, 𝑑2) = 1. Thus if |𝑑1 |𝑣 < 1

then |𝑑2 |𝑣 = 1, and otherwise |𝑑1 |𝑣 = 1. If |𝑑1 |𝑣 = 1, then (i) implies | (𝑑2𝑦 + 𝑑3)/𝑑1 |𝑣 = |𝑑2𝑦 + 𝑑3 |𝑣 ≤ 1, so

(ii) holds. If |𝑑1 |𝑣 < 1, then |𝑑2 |𝑣 = 1 so (ii) is equivalent to |𝑦 − (−𝑑3/𝑑2) |𝑣 ≤ |𝑑1/𝑑2 |𝑣 = |𝑑1 |𝑣 < 1. Since

| − 𝑑3/𝑑2 |𝑣 = | − 𝑑3 |𝑣 ≤ 1, condition (ii) implies (i) if |𝑑1 |𝑣 < 1. We thus find that for all finite 𝑣, 𝐸𝑣 is a 𝑣-adic

disc of radius 𝑟𝑣 = |𝑑1 |𝑣 around point of Q.

We can now calculate the capacity of E =
∏

𝑣 𝐸𝑣 . The product of the local capacities at finite places is
∏

𝑣 finite

𝛾𝑣 (𝐸𝑣 ) =
∏

𝑣 finite

𝑟𝑣 =
∏

𝑣 finite

|𝑑1 |𝑣 = 𝑑−1
1

by the product formula since 𝑑1 is a positive integer. We thus find as in Lemma 3.2 and (3.17) that

𝛾(E) =
∏

𝑣

𝛾𝑣 (𝐸𝑣 ) = 𝑑−1
1 𝛾∞ (𝐸∞) ≥

√
𝑝(𝛿2 − 𝛿1)

4𝑑1

.

�
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Proof of Theorem 3.8

Let 𝑑1 = 3𝑐𝜒1
√
𝑝/2, 𝑑2 = 3𝑐𝜒2

√
𝑝/2 and 𝑑3 = 𝜒3𝑝 be as in Lemma 3.10, so that 𝑤 ≤ 𝜒1 ≤ 1, 0 < 𝜒2 ≤ 1 and

0 ≤ 𝜒3 ≤ 𝑧. We have supposed 0 < 𝑤, 0 < 3𝑐/2 < 1, 0 ≤ 𝑧 < 1 and 𝑧 ≤ 3𝑤𝑐2. For 𝑖 = 1, 2 let

𝑧𝑖 (𝜒1, 𝜒2, 𝜒3) =
1

6𝑐𝜒1

· ( (−1)𝑖𝜒1𝑐

𝜒2

− 2𝜒3

3𝑐𝜒2

) = (−1)𝑖𝑐
6𝑐𝜒2

− 𝜒3

9𝑐2𝜒1𝜒2

.

Then √
𝑝

4𝑑1

𝛿2 =
𝛿2

6𝑐𝜒1

= min( 𝑐

6𝑐𝜒1

, 𝑧2 (𝜒1, 𝜒2, 𝜒3)) = min( 1

6𝜒1

,
1

6𝜒2

− 𝜒3

9𝑐2𝜒1𝜒2

) (3.18)

√
𝑝

4𝑑1

𝛿1 =
𝛿1

6𝑐𝜒1

= max(− 𝑐

6𝑐𝜒1

, 𝑧1 (𝜒1, 𝜒2, 𝜒3)) = max( −1

6𝜒1

,
−1

6𝜒2

− 𝜒3

9𝑐2𝜒1𝜒2

) (3.19)

Suppose we let 𝑤 = 1/24 and 𝑧 = 9𝑐2/(24)2 < 9(2/3)2/(24)2 < 1. Then 𝑧 ≤ 3𝑤𝑐2
= 𝑐2/8, so all conditions

on 𝑐, 𝑤 and 𝑧 are satisfied. Suppose 𝜒1, 𝜒2 are in the interval [1/24, 1/12] and 𝜒3 is in the interval [0, 𝑧]. Then

√
𝑝

4𝑑1

𝛿2 = min( 1

6𝜒1

,
1

6𝜒2

− 𝜒3

9𝑐2𝜒1𝜒2

) ≥ min(2, 2 − 1) ≥ 1.

Since
√
𝑝

4𝑑1
𝛿1 < 0, we will then have

𝛾((𝐸)) ≥
√
𝑝(𝛿2 − 𝛿1)

4𝑑1

> 1.

Suppose 𝐼1 and 𝐼2 are intervals on the non-negative real axis of lengths 𝑞1, 𝑞2 > 0. By a sieving argument, as

𝑟 → +∞, the number of coprime integers (𝑑1, 𝑑2) in a product 𝑟 𝐼1×𝑟 𝐼2 is asymptotically 𝑟2𝑞1𝑞2

∏

ℓ prime (1−ℓ−2) =
𝑟2𝑞1𝑞26/𝜋2. Applying this to 𝐼1 = [𝑤3𝑐

√
𝑝/2, 3𝑐√𝑝/2] and 𝐼2 = [0, 3𝑐√𝑝/2] for 𝑤 = 1/12 as above, we see that

as 𝑝 → ∞, the number of triples (𝑑1, 𝑑2, 𝑑3) ∈ 𝑆(𝑤, 𝑧) that have 𝑑1 and 𝑑2 coprime and 𝛾(E) > 1 is bounded

below by a positive constant times
√
𝑝

2 · 𝑝 = 𝑝2. Since the number of elements of 𝑆(𝑤, 𝑧) grows as a positive

constant times 𝑝2, Lemmas 3.9 and 3.10 show that a positive fraction of all pairs (𝑡, 𝑎) ∈ (Z/𝑝)∗ × (Z/𝑝)∗ lead to

𝛾(E) > 1.

To prove that there are a positive proportion of pairs (𝑡, 𝑎) such that 𝛾(E) = 0, note that (3.18) and (3.19) give

𝜒1𝜒2𝛿2

6𝑐
≤ 𝜒1

6
− 𝜒3

9𝑐2
and

𝜒1𝜒2𝛿1

6𝑐
≥ − 𝜒2

6

so
𝜒1𝜒2

6𝑐
(𝛿2 − 𝛿1) <

𝜒1

6
− 𝜒3

9𝑐2
+ 𝜒2

6
.

The constraints on 𝜒1, 𝜒2 and 𝜒3 are that 𝑤 ≤ 𝜒1 ≤ 1, 0 < 𝜒2 ≤ 1 and 0 ≤ 𝜒3 ≤ 𝑧, where 0 < 𝑤 < 1,

0 < 3𝑐/2 < 1, 0 ≤ 𝑧 < 1 and 𝑧 ≤ 3𝑤𝑐2. We now assume 0 < 𝑤 < 1/2. Let 𝜒2 → 0+, 𝜒1 → 𝑤+, 𝜒3 → 𝑧− and

𝑧 = 3𝑤𝑐2 < 3𝑐2/2 < 𝑐 < 2/3. Then
𝜒1

6
− 𝜒3

9𝑐2 + 𝜒2

6
has limit

𝑤

6
− 𝑧

9𝑐2
+ 0 = 𝑤 · ( 1

6
− 3𝑐2

9𝑐2
) = −𝑤

6
< 0.

Thus taking 𝜒1, 𝜒2 and 𝜒3 near these limits leads (via the same seiving argument used before) to a positive

proportion of (𝑡, 𝑎) ∈ (Z/𝑝)∗ × (Z/𝑝)∗ for which 𝛿2 < 𝛿1. Lemma 3.11 shows 𝛾(E) = 0 for such (𝑡, 𝑎).
Theorem 3.4, together with the above constructions of a positive proportion of (𝑡, 𝑎) with 𝛾(E) > 1 and of a

positive proportion of (𝑡, 𝑎) for which 𝛾(E) = 0 now proves Theorem 3.8.

4 BOUNDS ON THE NUMBER OF SOLUTIONS OF PROBLEM 1.1.

We will be concerned with finding upper bounds on the number 𝑁 (𝑡, 𝑎,J , 𝑋,𝑌 ) of pairs (𝑥, 𝑦) of algebraic

integers having the properties in Problem 1.1, where 𝑁 (𝑡, 𝑎,J , 𝑋,𝑌 ) may be infinite. This is relevant to the

following case of the hidden number problem.

Suppose we are given two pairs (𝑎1, 𝑏1) and (𝑎2, 𝑏2) of elements of𝑂𝐹 such that for an unknown secret 𝑠 ∈ 𝑂𝐹 ,

one has 𝑏𝑖 = 𝑠𝑎𝑖 + 𝑒𝑖 mod J for a small error 𝑒𝑖 ∈ 𝑂𝐹 . Then 𝑒2 = 𝑏2 − 𝑠𝑎2 = 𝑏2 − (𝑏1 − 𝑒1)𝑎−1
1
𝑎2 mod J . Thus

if we let 𝑥 = 𝑒2, 𝑦 = 𝑒1, 𝑡 = 𝑎−1
1
𝑎2 mod J and 𝑎 = −𝑏2 + 𝑏1𝑎

−1
1
𝑎2 mod J , we wil have 𝑥 + 𝑡𝑦 + 𝑎 ≡ 0 mod J with

𝑥 and 𝑦 small. Therefore 𝑁 (𝑡, 𝑎,J , 𝑋,𝑌 ) gives a bound on the number of secrets 𝑠 which can solve this case of the

hidden number problem.

To bound 𝑁 (𝑡, 𝑎,J , 𝑋,𝑌 ), it is simplest to deal with the case 𝑎 = 0. This gives an upper bound for arbitrary 𝑎

at the cost of halving the allowed sizes of archimedean conjugates.
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Theorem 4.1. The following is true for all 𝑡, J , 𝑋 and 𝑌 .

1. When 𝑎 = 0, there are either no (𝑥, 𝑦) with the properties in Problem 1.1 or there are infinitely many such

(𝑥, 𝑦).
2. Suppose 𝑎 = 0 and 𝛾(E) < 1 in Theorem 3.4. Then there are no (𝑥, 𝑦) satisfying the conditions in Problem

1.1, i.e. 𝑁 (𝑡, 0,J , 𝑋,𝑌 ) = 0.

3. For all 𝑎 one has 𝑁 (𝑡, 𝑎,J , 𝑋/2, 𝑌/2) ≤ 1 + 𝑁 (𝑡, 0,J , 𝑋,𝑌 ). Thus either 𝑁 (𝑡, 0,J , 𝑋,𝑌 ) = ∞ or

𝑁 (𝑡, 0,J , 𝑋,𝑌 ) = 0 and 𝑁 (𝑡, 𝑎,J , 𝑋/2, 𝑌/2) ≤ 1.

Proof. For part (1), observe that if (𝑥, 𝑦) ∈ Z × Z has the properties in Problem 1.1 when 𝑎 = 0, then so does

(𝜁𝑥, 𝜁 𝑦) for any root of unity 𝜁 . To prove (2), note that Theorem 3.4 shows 𝑁 (𝑡, 0,J , 𝑋,𝑌 ) is finite if 𝛾(E) < 1.

Then part (1) forces 𝑁 (𝑡, 0,J , 𝑋,𝑌 ) = 0. Part (3) follows from the fact that the difference of two solutions (𝑥, 𝑦)
and (𝑥 ′, 𝑦′) to Problem 1.1 for given 𝑡, 𝑎, J , 𝑋/2 and 𝑌/2 is a solution (𝑥 ′′, 𝑦′′) = (𝑥 ′ − 𝑥, 𝑦′ − 𝑦) to Problem 1.1

for 𝑡, 0, J , 𝑋 and 𝑌 . �

Remark 4.2. The proof of parts (1) and (2) illustrates the advantages of working over the ring Z of all algebraic

integers, rather than in the integers of a particular number field. This makes it possible to promote a finiteness

result coming from capacity theory to a proof that a homogenous linear congruence has no small solutions at all.

We illustrate this result with a concrete application to the hidden number problem. Suppose as in §1.1 that we

are given an ideal J of the integers 𝑂𝐹 of a number field 𝐹 and a real number 𝑋 . For a secret integer 𝑠 ∈ 𝑂𝐹 we

are given samples (𝑐𝑖 , 𝑑𝑖) ∈ 𝑂𝐹 ×𝑂𝐹 for 𝑖 = 0, 1 for which 𝑐0 is prime to J and the following is true. There is an

(unknown) element 𝑥𝑖 ∈ 𝑂𝐹 such that

𝑐𝑖𝑠 − 𝑑𝑖 ≡ 𝑥𝑖 mod J (4.20)

and |𝜆(𝑥𝑖) | ≤ 𝑋/2 for all embeddings 𝜆 : 𝐹 → C. We would like to determine 𝑠 mod J from this information.

Theorem 4.1 leads in the following way to a computable criterion for there to exist at most one solution 𝑠 mod J .

As in §1.1, we find 𝑐′
0
∈ 𝑂𝐹 such that 𝑐0𝑐

′
0
≡ 1 mod J . Then (4.20) for 𝑖 = 0 gives

𝑠 ≡ 𝑐′0 (𝑥0 + 𝑑0) mod J .

Substituting this into (4.20) when 𝑖 = 1 gives

𝑥1 + 𝑡𝑖𝑥0 + 𝑎1 ≡ 0 mod J (4.21)

where 𝑡1 = −𝑐1𝑐
′
0

and 𝑎1 = 𝑑1−𝑑+𝑐1𝑐
′
0
𝑑0. Thus the problem of finding all 𝑠 mod J satsifying the above conditions

is converted to finding all solutions (𝑥0, 𝑥1) ∈ 𝑂𝐹 × 𝑂𝐹 of the congruence (4.21) such that |𝜆(𝑥𝑖) | < 𝑋/2 for

𝑖 = 0, 1 and all embeddings 𝜆 : 𝐹 → C.

We bound the number of solutions 𝑠 mod J in the following way. Using lattice basis reduction, find a

polynomial 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3 ∈ J−1𝑂𝐹 [𝑥, 𝑦] with the properties in Theorem 2.1 for 𝑌 = 𝑋 , 𝑡 = −𝑐1𝑐
′
0

and 𝑎 = 0.

Calculate the capacity 𝛾(E) of the adelic set E associated to this adelic set in Definition 3.1, using Lemma 3.2 and

Theorem 3.5. If 𝛾(E) < 1, then parts (2) and (3) of Theorem 4.1 show 𝑁 (𝑡, 𝑎,J , 𝑋/2, 𝑋/2) ≤ 1. Thus there is at

most one pair (𝑥0, 𝑥1) as above, and at most one integer 𝑠 mod J which solves the above case of the hidden number

problem.

We conclude this paper with another example illustrating Theorem 4.1. Suppose 𝑎 = 0, 𝑡 ∈ 𝑂𝐹 and that

J = 𝑂𝐹𝛼 is a non-zero principal ideal of 𝑂𝐹 . Suppose (𝑥0, 𝑦0) ∈ 𝑂𝐹 satisfy the congruence

𝑥0 + 𝑡𝑦0 ≡ 0 mod J (4.22)

and that

|𝑥0 · 𝑦0 |𝑣 ≤ |𝛼 |𝑣/2 for all 𝑣 ∈ 𝑀𝐹,inf . (4.23)

Suppose as before that 𝑡 is prime to J = 𝑂𝐹𝛼, and that 𝑥0, 𝑦0 and 𝛼 are pairwise relatively prime, in the sense that

the ideal generated by any two of them is 𝑂𝐹 .

Theorem 4.3. With the above hypotheses, there are no non-zero pairs (𝑥, 𝑦) ∈ Z×Z with the following properties:

1. 𝑥 + 𝑡𝑦 ≡ 0 mod J · Z, and

2. For all embeddings 𝜆 : Z→ C, one has

|𝜆(𝑥) | ≤ |𝜆(𝑥0) | and |𝜆(𝑦) | ≤ |𝜆(𝑦0) |

with at least one of these inequalities being strict for at least one 𝜆.
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Thus in a small non-zero solution of the homogenous congruence resulting from setting 𝑎 = 0 prevents

the existence of non-trivial solutions with smaller archimedean absolute values. Concerning the relation of the

inequality (4.23) to Problem 1.1, note that if 0 < 𝛼 ∈ Z, then (4.23) follows from requiring |𝑥0 |𝑣 ≤ 𝑋 and |𝑦0 | ≤ 𝑌

for some real 𝑋,𝑌 such that |𝑋𝑌 | ≤ 𝛼/2.

Proof of Theorem 4.3

Define a polynomial in the variables 𝑥 and 𝑦 by

𝑏1𝑥 + 𝑏2𝑦 = (𝑦0𝑥 − 𝑥0𝑦)/𝛼. (4.24)

Hypothesis (4.22) shows 𝑥0 + 𝑡𝑦0 = 𝛼𝑧0 for some 𝑧0 ∈ 𝑂𝐹 . Therefore

𝑏1𝑥 + 𝑏2𝑦 = 𝑦0 (𝑥 + 𝑡𝑦)/𝛼 − 𝑧0𝑦 ∈ J−1 · (𝑥 + 𝑡𝑦) +𝑂𝐹 · 𝑦. (4.25)

We now substitute for the variables 𝑥 and 𝑦 a pair of elements of Z satisfying conditions (1) and (2) of Theorem

4.3. The inequalities in condition (2) of Theorem 4.3 show that for each embedding 𝜆 : Z→ C we have

|𝜆(𝑏1𝑥 + 𝑏2𝑦) | = |𝜆( 𝑦0𝑥 − 𝑥0𝑦

𝛼
) | ≤ |𝜆(𝑦0)𝜆(𝑥)

𝛼
| + |𝜆(𝑥0)𝜆(𝑦)

𝛼
|. (4.26)

Now (4.23) gives

|𝜆(𝑦0)
𝛼

| ≤ 1

2|𝜆(𝑥0) |
and

|𝜆(𝑥0) |
𝛼

≤ 1

2|𝜆(𝑦0) |
.

Substituting this into (4.26) gives

|𝜆(𝑏1𝑥 + 𝑏2𝑦) | ≤
|𝜆(𝑥) |

2|𝜆(𝑥0) |
+ |𝜆(𝑦) |

2|𝜆(𝑦0) |

Hypothesis (2) of Theorem 4.3 now implies |𝜆(𝑏1𝑥+𝑏2𝑦) | ≤ 1 with strict equality for at least one 𝜆. Since 𝑏1𝑥+𝑏2𝑦

is an algebraic integer, we conclude that

𝑏1𝑥 + 𝑏2𝑦 = 0 when 𝑏1 = 𝑦0/𝛼 and 𝑏2 = −𝑥0/𝛼. (4.27)

We enlarge 𝐹 so that it includes 𝑥 and 𝑦. There is then an archimedean place 𝑣∞ of 𝐹 at which either |𝑥 |𝑣∞ < |𝑥0 |𝑣∞
or |𝑦 |𝑣∞ < |𝑦0 |𝑣∞ . For simplicity we will suppose that 𝑟𝑣∞ = |𝑦 |𝑣∞ |/|𝑦0 |𝑣∞ < 1, the other case being similar. Define

𝑟𝑣 = 1 if 𝑣∞ ≠ 𝑣 ∈ 𝑀𝐹,inf .

We now define an adelic set E =
∏

𝑣∈𝑀𝐹
𝐸𝑣 associated to 𝑏1𝑥 + 𝑏2𝑦 in the following way. Set 𝑏3 = 0 in

Definition 3.1. If 𝑣 ∈ 𝑀𝐹,fin is finite, let 𝐸𝑣 be as in part (i) of Definition (3.1). If 𝑣 ∈ 𝑀𝐹,inf is an infinite place,

define

𝐸𝑣 = {𝑦 ∈ 𝐹𝑣 : |𝑦 |𝑣 ≤ 𝑟𝑣 |𝑦0 |𝑣 and |𝑥 |𝑣 = |𝑏2𝑦/𝑏1 |𝑣 = | − 𝑥0𝑦/𝑦0 |𝑣 ≤ |𝑥0 |𝑣 } = {𝑦 ∈ 𝐹𝑣 : |𝑦 |𝑣 ≤ 𝑟𝑣 |𝑦0 |𝑣 }
(4.28)

where we have used 𝑟𝑣 ≤ 1.

As in the proof of part (2) of Theorem 3.4, if 𝛾(E) < 1, then there will be only finitely many pairs (𝑥, 𝑦) ∈ Z×Z
satisfying the conditions in Theorem 4.3 and for which |𝑦 |𝑣 ≤ 𝑟𝑣 |𝑦0 |𝑣 . Then Theorem 4.1 shows that in fact there

are no such pairs, contradicting the hypothesis above that such a pair exists. We conclude that to prove Theorem

4.3 if will suffice to show 𝛾(E) < 1.

We first need to describe explicitly the set 𝐸𝑣 when 𝑣 ∈ 𝑀𝐹,fin. From Definition 3.1 and (4.24) we see that 𝐸𝑣
is the set of 𝑦 ∈ 𝐹𝑣 satisfying

i. |𝑦 |𝑣 ≤ 1

ii. | − 𝑥0𝑦/𝑦0 |𝑣 ≤ 1 and

iii. |𝑥0𝑦/𝑦0 + 𝑡𝑦 |𝑣 ≤ |J |𝑣 = |𝛼 |𝑣 .
Let us first show (i) and (ii) imply (iii). If |𝛼 |𝑣 = 1, this is clear from 𝑡 ∈ 𝑂𝐹 . Suppose now that |𝛼 |𝑣 < 1. We

know 𝑦0 is prime to 𝛼, so |𝑦0 |𝑣 = 1. We have (𝑦0,−𝑥0) ≡ 𝑦0 (1, 𝑡) mod J by multiplying the first equality in (4.25)

by 𝛼, so |𝑥0 + 𝑡𝑦0 |𝑣 ≤ |J |𝑣 . Thus

| (𝑥0/𝑦0 + 𝑡)𝑦 |𝑣 = |𝑦0 |−1
𝑣 · |𝑥0 + 𝑡𝑦0 |𝑣 · |𝑦 |𝑣 ≤ |J |𝑣 if |𝑦 |𝑣 ≤ 1.

Therefore (iii) is implied by (i) when |𝛼 |𝑣 . Thus 𝐸𝑣 is the set of 𝑦 ∈ 𝐹𝑣 satisfying (i) and (ii).

Recall now that 𝑦0 and −𝑥0 are coprime elements of 𝑂𝐹 by assumption. Thus if |𝑦0 |𝑣 < 1 then | − 𝑥0 |𝑣 = 1,

and otherwise |𝑦0 |𝑣 = 1. If |𝑦0 |𝑣 = 1, then (i) implies | − 𝑥0𝑦/𝑦0 |𝑣 = | − 𝑥0𝑦 |𝑣 ≤ 1, so (ii) holds. If |𝑦0 |𝑣 < 1, then
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| − 𝑥0 |𝑣 = 1 so (ii) is equivalent to |𝑦 |𝑣 ≤ |𝑦0/(−𝑥0) |𝑣 = |𝑦0 |𝑣 < 1. Hence condition (ii) implies (i) if |𝑦0 |𝑣 < 1.

We thus find that for all finite 𝑣, 𝐸𝑣 is a 𝑣-adic disc of radius 𝑟𝑣 = |𝑦0 |𝑣 around 0 ∈ 𝐹𝑣 . The local capacity of 𝐸𝑣 is

therefore

𝛾𝑣 (𝐸𝑣 ) = |𝑦0 |
[𝐹𝑣 :Q𝑝 (𝑣 ) ]
𝑣 = | |𝑦0 | |𝑣 for 𝑣 ∈ 𝑀𝐹,fin (4.29)

where 𝑝(𝑣) is the residue characteristic of 𝑣 and | | | |𝑣 is the normalized valuation at 𝑣.

We now consider archimedean 𝑣 ∈ 𝑀𝐹,inf . From (4.28) we see that 𝐸𝑣 is the closed disc around 0 in 𝐹𝑣 = C

of radius 𝑟𝑣 |𝑦0 |𝑣 . Thus the local capacity is

𝛾𝑣 (𝐸𝑣 ) = (𝑟𝑣 |𝑦0 |𝑣 ) [𝐹𝑣 :R]
= 𝑟

[𝐹𝑣 :R]
𝑣 | |𝑦0 | |𝑣 for 𝑣 ∈ 𝑀𝐹,inf . (4.30)

Now (4.29) and (4.30) together with the product formula give the global capacity of E as

𝛾(E) =
∏

𝑣

𝛾𝑣 (𝐸𝑣 ) =
∏

𝑣∈𝑀𝐹,inf

𝑟
[𝐹𝑣 :R]
𝑣 ·

∏

𝑣∈𝑀𝐹

| |𝑦0 | |𝑣 =
∏

𝑣∈𝑀𝐹,inf

𝑟
[𝐹𝑣 :R]
𝑣 < 1

which completes the proof of Theorem 4.3.
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