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Abstract Coppersmith’s method for finding small solutions of multivariable congruences uses lattice techniques to
find sufficiently many algebraically independent polynomials that must vanish on such solutions. We apply adelic
capacity theory in the case of two variable linear congruences to determine when there is a second such auxiliary
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1 INTRODUCTION

Coppersmith’s method [8] uses lattice basis reduction to find small solutions of polynomial congruences. This
method and its variants have been used to solve a number of problems across cryptography, including attacks
against low public exponent RSA [8], demonstrating the insecurity of small private exponent RSA [2], factoring
with partial knowledge [8], and the approximate integer common divisor problem [11, 15, 7].

This paper is the second in a series relating Coppersmith’s method to adelic capacity theory. In the most
common approach to Coppersmith’s method, which is the perspective we adopt in this paper, one constructs an
auxiliary polynomial that is guaranteed by construction to have the desired solutions as roots. Using adelic capacity
theory, we showed in our first paper that in the univariate case, Coppersmith’s constructive bounds are tight: Above
the bound, no auxiliary polynomial of the form constructed in the algorithm can exist.

Coppersmith’s method can also be applied to find solutions to multivariate polynomials or systems of polyno-
mials. Unlike the univariate case, which is a fully rigorous method, the method used in the existing cryptanalytic
literature to address the multivariate case is heuristic. In order to solve an m-variable system, one searches for m
(or more) suitable auxiliary polynomials in an explicitly constructed lattice, and then solves the system of auxiliary
polynomials to find the possible roots. In order for this method to work, one needs to find m suitable algebraically
independent polynomials constructed through the lattice. The existing constructions are unable to guarantee the
algebraic independence of multiple auxiliary polynomials, and thus the applications of this method all rely on a
heuristic assumption of algebraic independence.

In this paper, we apply adelic capacity theory to two-variable linear polynomial congruences. This is the
simplest case involving multivariate polynomials, and it includes the hidden number problem and ring learning
with errors as special cases. The analysis turns out to already be quite involved, and we cannot apply existing
results from adelic capacity theory in a black-box way.

It is always possible to find at least one auxiliary function that is linear from the construction in Coppersmith’s
method. We show that this function can be used to determine rigorously whether Coppersmith’s method can
succeed. That is, we show that one can use capacity theory to determine from the first auxiliary function whether
there will be a second function that is algebraically independent of the first. This is because the zero locus of the
first function is an affine line, to which one can apply the work on capacity theory by Cantor [4] and Rumely [14].
As a consequence of this approach, we will show that the heuristic assumption of algebraic independence does not
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hold in general for all problem instances. In particular, we give an infinite family of examples for which there can
be no pair of algebraically independent functions of any degree in Coppersmith’s method. However, we have a
method for determining rigorously whether such a pair exists in a given case. We also give an infinite family of
examples for which such a pair does exist.

If one is looking for small integral solutions of linear polynomial congruences in a particular number field, one
can apply lattice techniques directly, without constructing auxiliary functions. Coppersmith’s method pertains to
finding all such solutions in all number fields, i.e. in the ring of all algebraic integers. In the case of homogenous
congruences, one solution produces infinitely many by multiplying all the variables by an arbitrary root of unity.
Thus in this case, there are either infinitely many solutions in the ring of all algebraic integers, or no solutions at all.
For this reason, if one can use capacity theoretic arguments to show that there are only finitely many solutions, one
knows that in fact there are no solutions at all. This leads in §1.2 and §4 to strong bounds on the number of solutions
of inhomogeneous congruences as well. In particular, we show in §4 how this approach leads to a computable
sufficient criterion for there to exist at most one solution in any number field to a hidden number problem involving
two linear congruences.

Our methods amount to giving effective upper and lower bounds to various finite morphism capacities in
multivariable capacity theory (see [6]). This is the first time to our knowledge that multivariable capacity theory
has been applied to cryptography. For a discussion of how one variable capacity theory pertains to Coppersmith’s
method, see [5].

1.1 THE HIDDEN NUMBER PROBLEM AND RING LEARNING WITH ERRORS

In cryptographic applications, the hidden number problem is defined over the integers as follows. In the usual
formulation, there is a public integer modulus » and a secret integer s. For a given non-negative integer c; less than
n, one can compute the remainder b; = ¢;s mod n as a positive integer less than n. Let d; be the integer defined by
the ¢ most significant bits of b;, and let x; = b; — d;. In the hidden number problem, one is given many samples
{(ci, di)}",, and the problem is to compute the secret integer s mod n from these samples.

To put this problem into the framework we consider in this paper, note that each sample satisfies the linear
relation

xi—c;s+d; =0modn

For each relation, the x; are unknown and small, and the value s is unknown. Suppose ¢ is relatively prime to n,
so that cocy = 1 mod n for a readily computable integer c(,. The above congruence for i = 0 then gives

s = cy(xo + do) mod n (1.1

Substituting this into the congruences for i = 1, ..., m then gives a new system of congruences
xi+tixo+a; =0modn for 1<i<m (1.2)
in small unknowns x; and xq, where t; = —cicé anda; = d; — cic(’)do are computable from the given data. Because of

(1.1), we can reformulate the problem of finding s mod 7 as finding a solution {x;}"  to the system of congruences
(1.2) with appropriate size bounds on all of the x;.

The “usual” method used to solve this problem comes from Boneh and Venkatesan [3], and consists of solving a
closest vector problem where the solution vector corresponds to the desired solution to the problem. In this paper we
consider a dual construction, corresponding to Howgrave-Graham’s reformulation of Coppersmith’s method [10, 9]:
Using lattice methods, we try to construct polynomials in the variables {x;}!" ) which must vanish on all solutions,
and whose common zero locus is finite.

Boneh and Venkatesan give bounds for which with high probability there is a unique solution when the #;
are generated uniformly at random modulo n. In practical applications of this method, one is dealing with fixed
parameters. In these cases one can empirically measure the probability of success [1], but a rigorous analysis of
the number of possible solutions has not been done in the literature.

In the ring learning with errors problem [13], one has a public commutative ring R, typically an order in the ring
of integers O of a number field F, and a secret s € R. The input to the problem is a set of samples {(a;, b;)}",
of pairs of elements of R for which b; is congruent to a; - s + ¢; modulo a given ideal 7 C R, where ¢; € R is an
unknown error that is small in some sense. Typically the e; must be “short" relative to the complex embeddings of
R.

1.2 SOLUTION COUNTING AND CAPACITY THEORY

The problem that we consider in this paper unifies both of the above problems, but we limit ourselves to the
case of two samples. As noted above, one can eliminate the unknown secret s and obtain a single two-variable
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linear polynomial where the desired solution for both variables is “small”. For a given solution, one can then use
the original polynomials to solve for a unique s determined by that solution.

One basic question is: How unique is s? When n = 2, will show in §4 that there is at most one s when the
capacity associated to an adelic set arising from the lattice construction is less than 1.

A peculiarity of this approach is that in the ring-LWE case, we can actually bound the number of solutions in
all number fields, and not just in a particular F.

We will now describe the three related problems we will study. Let O be the ring of integers of a number field
F. Let J be a non-zero ideal of Or. We will suppose a and ¢ are elements of O such that J + tOf = OF, s0
that ¢ projects to aunit of O/ J if J # OF. Let Z be the integral closure of O in an algebraic closure Q of Q.

Problem 1.1. For which real numbers X,Y > 0 is there a finite time algorithm for listing all x, y € Z such that
I. x+ty+a=0mod JZ and
2. For every ring embedding A : 7. — C, the images x’ and y' of x and y satisfy |x’| < X and |y'| < Y.

Problem 1.2. For which real X,Y > 0 are there only finitely many algebraic integers x, y € Z having the properties
in Problem 1.1?

Problem 1.3. Construct non-zero polynomials g(x,y) € F|[x, y]| with the following properties:
1. Forallx,y € Z such that x + ty + a = 0 mod JZ the value g(x, y) lies in Z.

2. Suppose x',y’ € C and that |x’'| < X and |y’| < Y. Then |A(g)(x",y")| < 1 for all embeddings A : F — C,
where A(g)(x,y) € Clx, y] is the image of g(x, y) under the homomorphism F|[x,y| — C|[x, y] induced by
A

Note that Problem 1.1 is a constrained learning with errors problem with secret s = y € Z = R when one has a
single data point (a1, b;) = (1, —a) , the ideal T is JZ and the error e; is —x.

Coppersmith’s method relates these problems in the following way.

Suppose {g;(x, y)}; is a family of polynomials which each have the properties in Problem 1.3. Let (x, y) be
a solution of Problem 1.2. Then g;(x,y) will be an algebraic integer. Every embedding of g;(x,y) into C lies
in R and has the form A(g;)(x’, y”) for some conjugates x” = A(x) of x and y’ = A(y) of y and some embedding
A:Z — C. Since |A(g;)(x’,y")| < 1 for all such (x’,y’), the product formula (or an easy norm argument) shows
gi(x,y) =0.

Suppose now that the common zero locus of the family {g;(x, y)}; is finite. It follows that there are finitely
many solutions (x,y) to Problem 1.2, and these solutions contain those of Problem 1.1. If one has an algorithm
for producing a family of {g;(x, y)}; with all of these properties, as well as for finding their finite set of common
zeros, one has an algorithm for solving Problem 1.1.

Suppose, to the contrary, that there are infinitely many solutions to Problem 1.2. Then the common zero locus
of any family {g;(x, y)}; of the above kind cannot be finite, and Coppersmith’s method cannot lead to a finite time
algorithm to solve Problem 1.1.

We can now state our main result in qualitative terms; a more quantitative version is given in Theorem 3.4. Let
r1(F) and r,(F) be the number of real and complex places of F, and let D g /g be the disciminant of F.

Theorem 1.4. Suppose X > 0 andY > 1/3 satisfy the inequality
(/2)32E) . 33FC L Do |72 Normp () > (XY) 1@ (1.3)

There exists a non-zero linear function g1(x,y) = tx+7yy + 6 € F|[x, y] with the properties in Problem 1.3. Given
any such gi(x,y), one of the following statements is true, and there is a procedure for determining which of the
following alternatives hold:

1. Suppose we decrease both X and Y by arbitrarily small amounts. Then there is a polynomial g(x,y) € F[x, y]
for which the conditions in Problem 1.3 hold for which the common zero locus of g(x,y) and gi(x,y) is
finite. Such a g(x,y) leads to a solution of Problem 1.1 for the new values of X and Y, and there are only
finitely many solutions to Problem 1.2 for these values.

2. Suppose we increase both X and Y by arbitrarily small amounts. Then for these new values of X and Y, all
polynomials g(x,y) € F[x,y] of any degree having the properties in Problem 1.3 are divisible by g\ (x, y).
There are infinitely many solutions to Problem 1.2 for the new values of X and Y, and thus Coppersmith’s
method in the above form cannot be used to solve Problem 1.1.

One of these alternatives must hold, and they are not mutually exclusive.
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We show in Theorem 3.4 that the case in which both alternatives (1) and (2) occur is when a certain adelic
capacity is exactly equal to 1. We construct in Theorem 3.8 infinitely many examples in which option (1) occurs but
(2) does not, and infinitely many other examples in which option (2) occurs but (1) does not. For these examples,
F =Q, J = pZ for a prime p of increasing size and X =Y = c+/p for a fixed positive constant c. We show that
each of options (1) and (2) occur for a positive proportion (as p — o) of pairs of  and a in Z/p for which ¢ is
prime to p.

In §4, we consider bounds on the number of solutions of Problem 1.3 when case (1) occurs. When a capacity
associated to X and Y is sufficiently small, we show in Theorem 4.1 that there is at most one pair (x, y) with the
properties in Problem 1.1. This relies on the fact that in the special case when a = 0, multiplying both x and y by
a root of unity leads to another solution. Therefore when a = 0, either one has no solutions or an infinite number.
Because of this, if one can show there are only finitely many solutions via capacity theory when a = 0, there in
fact can be no solutions at all. This fact leads to another phenomenon, namely that when a = 0, a small solution to
a linear homogeneous congruence prevents the existence of solutions which have uniformly smaller archimedean
absolute values. We state one example here: a more general result is shown in Theorem 4.3.

Theorem 1.5. Suppose n is is a positive integer, J = nOf, a = 0 and XY < n/2. Suppose (xo, yo) is a pair
of algebraic integers with the properties stated for x and y in Problem 1.1. Assume in addition that xq, yo and n
are coprime in the sense that no pair of these numbers is contained in a proper ideal of Or. Then there is no
non-zero pair (x1,y1) of algebraic integers having the properties in Problem 1.1 for which the following is true:
|A(x)| < |A(x0)| and |A(y1)] < |A(yo)| for all embeddings A : Z — C with strict inequality holding for at least
one of x or y for at least one A.

2 CONSTRUCTING ONE AUXILIARY FUNCTION

It is well known that the existence of one function of the kind in Problem 1.3 for sufficiently small positive
values of X and Y is a consequence of Minkowski’s theorem:

Theorem 2.1. Suppose X > 0 and Y > 1/3 satisfy the inequality (1.3). There exists a a polynomial g|(x,y) =
bix + byy + b3 € I\ - Op[x,y] with the following properties:

i. For all embeddings A : F — C one has

|4(b1)| < 1/(3X), |A(b2)| < 1/(3Y), and [A(b3)| < 1/3.

ii. g1(x,y) =0 forall pairs algebraic integers (x,y) as in Problem 1.2.

iii. by #0and g\(x,y) =bi(x+ty+a)mod Op|x,y]
All such g1(x,y) have the properties in Problem 1.3.

Proof. LetRrp = R®q F = ®,epm., Fy where M., is the set of archimedean places of F'. Give R the Euclidean
norm resulting from the usual Euclidean norms | |,, on the F,,. (Note that the normalized absolute value on F),, is

| |£FVzR].) Let V = Rpx + Rpy + Rf be the real vector space of all polynomials of degree at most 1 over Rp. We
give V the Euclidean inner product resulting from viewing it as a free Rp-module on {x, y, 1}. Let L C V be the
O r-sublattice

L=9"' (x+ty+a)+O0p -y+Op. (2.4)

Then
covolume(V /L) = 2_3r2(F)|DF/Q|3/21\10rmF/Q(~7)_1

by [12].
For d > 0 define B(0, d) tobe the setof all ¢ = (¢,)yem., € RF = ®yem Fy such that |x,| < d forallv € M.
Consider the convex symmetric subset

S(d],dQ,d3) = {r1x+r2y +r3.r; € B(O,d]),}"z S B(O, dz),l"g S B(O, dg)}

Then
VOl(S(dl,dz,dj,)) = (ZVI(F)n.rz(F))’J’(dldzdS)[F:Q].

Suppose
vol(S) > 231FQ¢olvolume(V/L) (2.5)

Minkowski’s theorem then guarantees that there is a non-zero g;(x,y) = bjx+ by + bz € LN S.
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Suppose (x,y) € Zz has the properties in Problem 1.2, so that x + ty + a € JZ, |A(x)| < X and [A(y)| < Y for
all embeddings A : Z — C. From the definition of L and that fact that g; is a polynomial in L N X, we find that
gi(x,y) € Zand

|4(g1(x, )| < di X + doY + d3

for all A. Thus if we choose d, d», d3 such that
diX+drY+d;=1 (2.6)

we can conclude that g;(x, y) = 0 since the norm of g (x, y) to Z is an integer of absolute value less than 1. The
choice of dy, d,, d3 > 0 for which (2.6) holds and vol(S) is maximized is

(di,d2,d3) = (1/(3X),1/(3Y),1/3)

leading to
vol(S) = (2" (F),Trz(F))3(d1d2d3)[F:Q] — (zrl(F)nrz(F))3 . (3—3/(Xy))[F1Q]_

Combining this with the Minkowski inequality (2.5) leads to the conclusion that if XY satisfies the inequality in
(1.3), then (i) and (ii) of Theorem 2.1 hold.

Finally, suppose b; = 0. The definition of L in (2.4) then shows that g (x, y) = byy + b3 with by, b3 € Op.
However, property (i) of Theorem 2.1 together with our assumption that ¥ > 1/3 forces b, and b3 to have all
conjugates of absolute value less than 1. This forces b, = b3 = 0 as well, contradicting the fact that g (x, y) is a
non-zero polynomial. O

Remark 2.2. There may be more than one g (x, y) with the properties in Theorem 2.1.

3 ADELIC SUBSETS OF THE ZERO LOCUS OF THE FIRST AUXILIARY FUNC-
TION.

The strategy now for studying Problem 1.2 is to use the fact that all solutions must be on the zero locus of
the auxillary function described in Theorem 2.1. This zero locus is an affine line. We will determine the adelic
constraints that the Galois conjugates of a point on this line must satisfy which are equivalent to providing a solution
to Problem 1.2. We then apply adelic capacity theory on the line to determine whether or not there are infinitely
many such solutions, and whether there is a second auxillary polynomial with the right adelic properties which is
not divisible by the first one produced by Theorem 2.1.

Throughout this section, we fix the following notations.

Definition 3.1. Let g1(x,y) = bix + byy + b3 be a polynomial wth the properties in Theorem 2.1. Let Mg =
MFp gn U MF;inf be the set of all absolute values v of F, where MF g, (resp. MF inf) is thiset of finite (resp. infinite)
places. Let F, be an algebraic closure of F,. If v € MF gn, let | |, be an extension to F,, of the usual normalized
absolute value on F\, Let ||, in this case be the value of | |, on any element of J C OF which generates the
completion of J atv. If v € MF iy, identify F,, with C and let | |, be the usual Euclidean absolute value. Define
a subset of E,, of F,, in the following way:

i. If v is non-archimedean, let E, be the set of y € F, such that |y|, < 1, |bay + b3|, < |bi], and

| = (b2y + b3) /by +ty +al, < |T s
ii. Ifvis archimedean, let E,, be the set of y € F, such that lyly <Y and |byy + b3|, < |by|, - X.

Lemma 3.2. Ifv € My s, then E, is either empty or a disk of the form
D(cy,ry) =A{y GFV y—cvly <10}

for some ¢, € F, and 0 < r,, € R. For all but finitely many v € Mp sn one can take c, = 0 and r, = 1, in which
case E,, = D(0,1). If v is archimedean, then E, is either empty or the non-empty intersection of two disks in
F, = C which have centers at 0 and at a point in F,,. The adelic set & = [, E,, has capacity relative the point o
on PIF equal to

y@& =[] »E) 3.7)

veMFp

where v, (E,) is the local capacity of Ey, as a subset of P'(F,) — {0} = AY(F,) = F,. One has y,(E,) =

r‘[,FVZQ”(V’] if v is finite of residue characteristic p(v). If v is infinite, vy, (E,) is computed in Theorem 3.5 below.
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Proof. The description of E,, is clear from Definition 3.1 together with the fact that the intersection of any two
non-archimedean disks in F, forv € M F.fin 18 either empty or equal to a disk. The fact that E,, = D(0, 1) for all
but finitely many v € MF g, follows from the the fact each of the three inequalities defining E,, describes either
D(0, 1) or all of F,, for all but finitely many v. Hence & has a well defined capacity with respect to co, and the
formula (3.7) is shown in [14]. The fact that y,, (E, ) = rEFv:Q”(”] for v € MF gy is shown in [14] on taking account
our normalization of | |,. m

Remark 3.3. The constants ¢, and r, for v € Mp g, are readily computed from the coefficients of g;(x,y) =
b1x+byy+b3. The same is true for the centers and radii of the two disks whose intersection is E,, when v € Mp jnt.
Thus (3.7) is readily computable from g (x, y) using Theorem 3.5.

Theorem 3.4. Let y(E) be as in (3.7).

1. If y(8) > 1 then there are infinitely many solutions (x,y) to Problem 1.2. In this case, any polynomial
gi(x,y) € F[x, y] with the properties in Problem 1.3 must be divisible by gi(x, y) in F[x, y]. In particular,
the intersection of the zero loci of all polynomials g;(x, y) with the properties in Problem 1.3 is the zero locus
of g1(x,y), which is infinite.

2. If y(&) < 1 then there are only finitely many solutions (x, y) to Problem 1.2. The common zero locus of the
polynomials in Problem 1.3 is finite.

3. Suppose y(E) # 0. As a function of X > Q0 and Y > 1/3, the value of y(&) strictly increases when both X
andY are increased. In particular, suppose y(E) = 1 for particular values of X and Y. Any increase of both
X andY leads to the conclusions of part (1), while any decrease of both X and Y leads to the conclusions of
part (2). This establishes parts (1) and (2) of Theorem 1.4.

Proof. Recall that a solution (x, y) to Problem 1.2 is a pair of x,y € Z such that x + 1y + @ = 0 mod JZ and all
archimedean conjugates x” and y’ of x and y’ satisfy |x’| < X and |y’| < Y. We know that

g1(x,y)=bix+byy+b3=0
for all such (x, y), where b; # 0. So we have

—byy — b3
X = b1 (3.8)
Because of (3.8), these conditions on x and y translate into the condition that all conjugates over F of the element
y € F lie in the set E,, C F,, described in Definition 3.1 for each v € M. Parts (1) and (2) of the Theorem are
now consequences of 4’s results concerning Fekete-Szego theorems for the projective line (see [4] and [14]).

For part (3), note that if y(&) # 0 then vy, (E,) # 0 for all v. In particular, E, cannot be empty or a single
point. Supose now that v € MF jyr. Then E, is intersection of two closed disks, and E,, has non-empty interior.
Increasing X and Y to some X’ > X and Y’ > Y then expands both disks. This puts the set E,, for X and Y into
A - E, for some positive real 1 < 1 when E7, is the corresponding intersection of disks for X’ and Y”’. We thus have
Yoo Ey) € Yeo(AE]) = A Yoo (EL) < Yoo(E}). This proves that yo (E, ) strictly increases when we increase both
X and Y, which implies part (3) of the Theorem. O

We now give the formula for the capacity y, (E,) for archimedean v which was referred to at the end of the
statement of Lemma 3.2. Let D(a,t) the closed disk in C with center ¢ € C and radius r > 0.

Theorem 3.5. Suppose E, is the intersection in F,, = C of two closed disks, one of which is centered at the origin.
Then there is non-zero complex number & such that E,, = ¢ -V where V = D(0,r) N D(1,s) for some r,s > 0. One
has v, (Ey) = (J€] - Yoo (V) KR where yoo (V) is the classical transfinite diameter of V, which may computed in
the following way. If V.=0orr+s=1then yo(V) =0. Ifr > 1 +sthenV = D(1,s) and yoo (V) =s. If s = 1 +r
then V = D(0,r) and vy (V) = r. Otherwise, the boundaries of D(0,r) and D(1, s) intersect at two points u and
u with u in the upper half plane. Let a € (0, 1) be the angle between the boundary of D(0, r) and the boundary of
D(1, s) at the intersection point a. There is a unique point { in the upper half plane such that

T—r n/(2rn-a)
=(2=2) o5
u-—r
when we compute the complex exponential using the branch of log with imaginary part lying in [0, 2x]. One has
1 m
oV)=— — - u - 3.10
VeolV) = i g = (3.10)
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To prove this result we will need the following fact from [14] .

Lemma 3.6. (Rumely) Suppose E is a connect subset of C. Let E€ be the complement of E in P'(C) = C U {co}.
Suppose f(z) is a conformal map which takes E€ to the complement of the closed disc D(0, R) of radius R > 0.
Suppose further that lim,_,«, f(z)/z = 1. Then y(E) = R. The Green’s function G(z, : E) equals log| f(z)/R)|
forz € E€ and G(z,00;E) =0 forz € E.

Proof of Theorem 3.5

The first statement is clear on rotating and dilating E,, appropriately, and the formula ye, (E) = (|€|ye0 (V) KviE]
is shown in [14]. Since the transfinite diameter of a disk or radius R is R, it will suffice to construct an f(z) for
the E = V of Theorem 3.5 on the assumption that the boundaries of D(0,r) and D(1, s) intersect at the distinct
points u and u. The cross ratio w(z) = % has w(u) = 0, w(r) = 1 and w(u) = oo. Since fractional
linear transformations send circles to either lines or circles, we find that z — w(z) sends the arc formed by the
boundary of D (0, r) between u and u to the union of the non-negative real axis with co. Since fractional linear
transformations also preserve angles, z — w(z) sends the arc formed by the boundary of D (1, s) between u and u
to the union of {co} with the ray L outward from w(u) = 0 which makes an angle of a from the positive real axis
and lies in the lower half plane. Thus the image of V under z — w(z) is the union of {co} with an angular sector
in C bounded by the non-negative real axis and L. The complement V¢ is sent to set w(V¢) of non-zero complex
numbers 7 = |7|e27? for which 0 < 6 < 27 — a.

On choosing the branch of the complex logarithm with imaginary part in [0, 27r), we have a conformal map v
taking w(V¢) to the upper half plane H defined by v(w) = w’™/ 27~ This map sends w(co) = Z%: e w(V°) to

the point £ in (3.9). We can now use the conformal automorphism % of P!(C) defined by v — h(v) = ﬁ to send

to h({) =coand H = (v o w)(VC) to the complement in P! (C) of a closed disk D which has a diameter going
from 0 = h(c0) to m = h(Re(?)).

Consider now the composition f(z) = ¢ - (h o v o w), where ¢ is a non-zero constant we will choose so that
lim,o f(z)/z = 1. This f gives a conformal map from V¢ to the complement of the image ¢ D of D by multiplication
by c. Therefore Lemma 3.6 gives

lc]
2Im(¢)

Yoo (V) = ¥ (D) = (3.11)

It just remains to find c¢. Here

(u=-2)(@-r) )”/(2”“’) B ((ﬁ —r) )”“2”—‘”

1/h(v(w(z))) = v(w(z)) — v(w(e0)) = ((u — (I -2) (w—-r)

Thus

-1 n/2Qr-a)
Ihvw(@D) = -2 ((M) _ 1)

1-z"1)

() ) n/(2n—-a)

since { = ((ufr) . Using that

(1-z'wy/(A-z"o)=1+@-wz" + higher order terms

we find that on setting
bis

2r —«a
we will have lim,_,o, f(z)/z = lim;e ¢ - h(v(W(2)))/z = 1, as required. Now (3.11) gives

¢ = lim /h(v(w(2) = ¢ - -2— - (@i = )

T

Y=V =300 -«

Ju—ul

as claimed in Theorem 3.5 since |£]| = 1.

Remark 3.7. As a check on Theorem 3.5, consider the case in which s tends toward 1 + » from below. Then V
becomes closer and closer to being all of D (0, r), and some straightforward estimates show that the formula y (V)
in Theorem 3.5 tends toward y. (D (0,r)) = r as s — (1 +r) from below.

We end this section by showing the claim made in the last sentence of the introduction that there are infinitely
many examples of each of cases 1 and 2 of Theorem 1.4. We prove a more quantitative result under some additional
hypotheses.



Chinburg, T. & Hemenway Falk, B.& Heninger, N. & Scherr, Z.

Theorem 3.8. Suppose F = Q, so that O = Z. Suppose J = pZ for some prime p, and that X =Y = c/p > 1/3
for some fixed constant ¢ for which2/3 > ¢ > 0.

i. For sufficiently large primes p there is a positive proportion of pairs (t,a) € (Z/p)* X (Z/p) for which the
Jollowing is true. There is a unique polynomial g|(x,y) = bix + byy + bz = (d\x + dpy + d3) [ p with the
properties in Theorem 2.1 for which d; € Z fori =1,2,3 and g.c.d.(dy,dy) = 1 and dy > 0. Alternative (1)
of Theorem 3.4 holds for this g (x, y) while alternative (2) of the Theorem does not.

ii. For sufficiently large primes p there is a positive proportion of pairs (t,a) € (Z/p)* X (Z/p), all the
statements in (i) up to the last one are true, but now alternative (2) of Theorem 3.4 holds while alternative
(1) does not.

We will first describe the strategy of the proof. Rather than begin by choosing (¢, a), we instead choose
polynomials bix + by + b3 = (d1x + dpy + d3)/p that will have the properties in Lemma 3.9 for some pair of
residue classes ¢ and a mod pZ. In Lemma 3.9 we specify conditions on the d; which ensure the uniqueness of the
associated pair (¢, a) mod pZ. In Lemma 3.10 we show that for the  and a which arise from the construction in
Lemma 3.9, any polynomial with the properties in Theorem 2.1 for  and a must arise from an integer multiple of
the polynomial in Lemma 3.9 that gives rise to t and a. These steps are needed because in the end we will count the
polynomials produced in Lemma 3.9 which lead to the capacity y(E) associated to the triple {b1x + by + b3, t, a}
in Definition 3.1 and Lemma 3.2 being greater than 1 (respectively less than 1). We compute these capacities
in Lemma 3.11. To complete the proof of Theorem 3.8 we then produce ranges for d;, d> and d3 which lead to
v(&) > 1 (respectively y(E) < 1). We show that these ranges lead to positive proportion of the possible residue
classes of (¢, a) mod p satisfying conditions (i) (resp. (ii)) of Theorem 3.8.

Lemma 3.9. Recall that 2/3 > ¢ > 0, so 0 < 3¢/2 < 1. Let w, z be real numbers such that 0 < w < 2 and
0 < z < 1. Consider the set S(w, z) of all triples (dy, da, d3) of integers such that

w3cyp/4 <di <3c\p/2 <+p; 1<da<3c\p/2<+p; 0<d3<zp and gecd(d;,d2)=1. (3.12)

There is an injective map A : S(w, z) — Z/p XZ]p which sends (dy, d3, d3) to the class inZ] p X Z/ p of (t, a) when
t and a are the smallest non-negative integers for which dy - (1,t,a) = (dy,d,d3) mod p. One hast # 0 # d;
mod p.

Proof. Suppose (dy,dz,d3) € S(w,z). Since 0 < w3c¢/2 < w we have di # 0 £ d; mod p. Hence ¢ and
a are uniquely determined by (d;, d>,d3) and t £ 0 mod p. Suppose A(d;,ds,d3) = /l(d’,dé,dé) for some
(d’,dé,dg) € S(w,z). Then dp = td| mod p and dé = tdi mod p, so dzdi - dédl = tdld{ - td{dl = 0 mod
p. But di,d>,dj,d; all lie in the interval (0,3c+/p/2) C (0,4/p), we have 0 < drd] < p and 0 < djd; < p.
So dyd| = d}dy mod p forces drd] = djd,. Now since the d; are positive and g.c.d(d, d>) = g.c.d(d],d}), we
conclude (d, dz) = (d},d}). Now d3 = dya = dja = dj mod p, so z < 1 forces d3 = dj. Hence A is injective. O

Lemma 3.10. With the notations and assumptions of Lemma 3.9, suppose A(d1,d>,d3) = (1,t,a) and 7 < 3w,
Suppose g1(x,y) = bix + byy + by € Q[x,y] has the properties in Theorem 2.1 for t and a. Then e; = pby,
ey = pbyand ez = pby are inZ. Let g = g.c.d.(ey, e2,e3). Then by # 0 and

g1(x,y) =sign(by) - q - (dix + day +d3)/p.
Furthermore, (d\x + dyy + d3) [ p also has all the properties in Theorem 2.1 for t and a.

Proof. By Theorem2.1,0 # pg(x,y) = ejx+eyy+e3 € Z[x,ylhasejx+ey+e3 = ej(x+ty+a) mod pZ[x, y],
so (ey,en,e3) = e1(1,t,a) mod p. Furthermore,

0<leil <p/(3X) =+p/(3c); leal < p/(3Y) =+/p/(3c); and les| < p/3. (3.13)

These properties are preserved if we divide g1 (x, y) by the g.c.d. of e, e; and e3 or if we multiply g;(x, y) by —1.
We will assume in what follows that this has been done, so that g.c.d(e1, e3,e3) = 1 and e > 0.

Since A(dy,d, d3) = (t,a), we have d|(1,¢,a) = (dy, d»,d3) mod p. Since (e, ez,e3) = e(1,t,a) mod p we
conclude e dy — dje; = 0 mod p. However,

lerdr —dies| < p

since |e;| < +/p/(3c) and |d;| < 3c+fp/2fori = 1,2. Hence e|d, — dyep = 0. Since gcd(d;, d>) = 1, this forces
(e1,e2) = e(dy,d) for some e € Z. Now w3c/2+/p < dj so |e|lw3c/p/2 < |ed;| = |e1| < 4/p/(3c) because of
(3.13). So

le| (3.14)

< (3¢)?w’
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Since d # 0 mod p, did] = 1 mod p for some integer d{. Therefore
(edy,edr, e3) = (e1,e2,e3) = ei(1,1,a) = e1d{(di,d»,d3) mod p.

So e = ejd] mod p and e3 = e1d{d; = ed; mod p. Thus (ey, ez, e3) — e(dy,da,d3) = (0,0,0) mod p, where
e = edj and ey = ed,>. We conclude that

pgi(x,y) =eix+ery+ey=e(dix+doy+ds)+h
when h = e3 — ed3 = 0 mod p. Here

2zp
(3¢)?w

leds| = le| - |d3] < <2p/3

because of (3.14), |d3| < zp and the assumption that z < w3c?. Since |e3| < p/3 we get |h| = |es — eds| <
p/3+2p/3 < p, which forces & = 0 since 7 = 0 mod p. Thus pgi(x,y) = ejx + ey + e3 = e(dx + dry + d3).
Since g.c.d(ej, ez, e3) =1 and e and d; are positive, we must have e = 1 and g;(x,y) = (dix + doy +d3)/p. O
Lemma 3.11. Let & =[], E, be the adelic set associated by Definition 3.1 to gi(x,y) = %(dlx +dry + d3) for
some (dy,dy,ds) € S(w, z) under the assumption that 7 < 3wc? in Lemma 3.10. Define

—dlc d3 d]C d3

01 = max(—-c, —— — and 0, = min(¢c, — — (3.15)
N % 2= g s
Suppose d| and dy are relatively prime. The capacity y(E) of E is 0 if §1 > 6,. Otherwise,
_ VP (62 - 61)
= v(Ey)=d ! w(bs) 2 ———— 3.16
r@® =] [nE)=daiyeEe 2 7 (3.16)

where E is the component of & at the archimedean place of Q.

Proof. From Definition 3.1, the intersection of the real line with E, is trivial if 6; > 5, in which case E, is empty
and Yo (Ew) =0 =1y(E). If 61 < 6> then E, intersects the real line in the interval [4/pd1, 4/po2]. In this case, we
have

VM(EOO) 2 'Ym([‘/ﬁéls\/ﬁéﬂ) = g(52 - 61)- (3-17)

Suppose now that v is a finite place of Q. From Definition 3.1 and the equality b1 x+byy+b3 = p~ U (dix+dyx+d3),
we see that E,, is the set of y € Q,, satisfying these conditions:
iyl <1
ii. |(dyy+ds3)/d|, <1and

iii. |- (day+d3)/di+ty+aly <|Tl
where | J|, = 1if v # p and |J|, = p~'. Let us first show (i) and (ii) imply (iii). If v # p, this is clear from
t,a € Z. Suppose now that v = p. We know d is prime to p, and that (d;, d», d3) = d;(1,t,a) mod p. So d, = dt
mod p and d3 = dja mod p. Thus

[(=da/dy +1)yly = |di ;" - | = da+tdi]y - [yl < p7' if |yl <1

and
|—ds/di+aly =|di|”" | = ds+adil, < p™' if |yly <1
so (iii) is implied by (i) when v = p. Thus E,, is the setof y € @v satisfying (i) and (ii).

Recall now that dy, d», d3 are non-zero integers and that by assumption g.c.d.(dy,dy) = 1. Thus if |d|, < 1
then |dz|, = 1, and otherwise |d;|, = 1. If |dy|, = 1, then (i) implies |(d2y + d3)/d1|y = |d2y + d3], < 1, so
(i) holds. If |d;|, < 1, then |ds|, = 1 so (ii) is equivalent to |y — (=d3/d>)|, < |di/d>|, = |di|, < 1. Since
| = ds/d>|, = | —dsly < 1, condition (ii) implies (i) if |d{|,, < 1. We thus find that for all finite v, E,, is a v-adic
disc of radius r,, = |d||, around point of Q.

We can now calculate the capacity of & =[], E,. The product of the local capacities at finite places is

[1»@E)=]]r=T]]1dh=4d
v finite v finite v finite
by the product formula since d; is a positive integer. We thus find as in Lemma 3.2 and (3.17) that

y(8) = E[yv(m = 4"y (Ew) > ¥ dl
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Proof of Theorem 3.8

Letdy =3cx1p/2, d> =3cx2+/p/2 and d3 = y3p be as in Lemma 3.10, so that w < y1 < 1,0 < y» < 1 and
0 < x3 < z. We have supposed 0 < w, 0 <3¢c/2 < 1,0 <z < 1and z < 3wc?. Fori=1,2]let

1 (-D'xic 2x3 . (=D'c X3
Zi(x1, X2, X3) = ( - -

6cx1 X2 3cxn 6cx2  9xix2
Then
Vp 62 . C . 1 1 X3
—5 = = min s L X2, =mn(—, — — ———— 3.18
24, 6er, i (60/\(1 2(x1, X2, x3)) = mi (6X1 60 962/\/1)(2) (3.18)
VP 01 c -1 -1 X3
N5~ = max(———, X2, =max(—, — - ———— 3.19
4d,°" 6ex x( 6cx1 a1 x2:x3)) X(6)(1 6x2 902)(1)(2) G-19

Suppose we let w = 1/24 and z = 9¢?/(24)% < 9(2/3)?/(24)? < 1. Then z < 3wc? = ¢?/8, so all conditions
on ¢, w and z are satisfied. Suppose yi, y» are in the interval [1/24,1/12] and yj3 is in the interval [0, z]. Then

1 1
£62 min(— —)>m1n(22—1)>1
4d; 6x1” 6x2  92x1x2
Since (61 < 0, we will then have
p(62—61)
y((Ey 2 Y2200
4d,

Suppose I} and I, are intervals on the non-negative real axis of lengths g1, g, > 0. By a sieving argument, as
r — +00, the number of coprime integers (d, d2) in a product r1; xr I, is asymptotically r2q1q> [1, prime (1 —7%) =
r2q1q,6/7*. Applying this to I, = [w3cy/P/2,3c+/p/2] and I, = [0, 3c+/p/2] for w = 1/12 as above, we see that
as p — oo, the number of triples (dy, d»,d3) € S(w,z) that have d| and d, coprime and y(&) > 1 is bounded
below by a positive constant times \/]_72 - p = p*. Since the number of elements of S(w,z) grows as a positive
constant times p?, Lemmas 3.9 and 3.10 show that a positive fraction of all pairs (¢, a) € (Z/p)* x (Z/p)* lead to
v(&) > 1.

To prove that there are a positive proportion of pairs (¢, a) such that y(&) = 0, note that (3.18) and (3.19) give

X _xi o xs X1X201 X2

<=—--2=% and —F/— >-=

T 6c 6 92 6¢ 6

SO
X1X2 Xl X3 X2

02— 0 = + =,
(2 D < "9z "6

The constraints on yi, y2 and y3 are that w < y1 <1, O <y <land 0 < y3 <z, where 0 < w < 1,

O<3c/2<10<z<1andz<3wc WenowassumeO<w<1/2 Let y» — 0%, xy1 —» w*, x3 — z~ and

z=3wc? <3c%/2 <c <2/3. Then & — &% + &2 has limit

w 3¢? w
— +0= -— < 0.
6 9 92 oM (6 9’ = %
Thus taking xi, y2 and y3 near these limits leads (via the same seiving argument used before) to a positive
proportion of (¢,a) € (Z/p)* x (Z/p)* for which 6, < §1. Lemma 3.11 shows y(&) = 0 for such (¢, a).

Theorem 3.4, together with the above constructions of a positive proportion of (¢, a) with y(&) > 1 and of a
positive proportion of (z, a) for which y(&) = 0 now proves Theorem 3.8.

4 BOUNDS ON THE NUMBER OF SOLUTIONS OF PROBLEM 1.1.

We will be concerned with finding upper bounds on the number N(z,a, J, X,Y) of pairs (x,y) of algebraic
integers having the properties in Problem 1.1, where N(¢,a, J, X,Y) may be infinite. This is relevant to the
following case of the hidden number problem.

Suppose we are given two pairs (ay, b1) and (ay, by) of elements of O ¢ such that for an unknown secret s € Op,
one has b; = sa; + e; mod J for a small error ¢; € Op. Then ey = by — say = by — (b — el)ajlaz mod J . Thus
ifweletx = ey, y=ey,1=a;'amod J and a = —b, + bya;'a; mod J, we wil have x +ty +a = 0 mod J with
x and y small. Therefore N(z,a, J,X,Y) gives a bound on the number of secrets s which can solve this case of the
hidden number problem.

To bound N(t,a,J,X,Y), it is simplest to deal with the case a = 0. This gives an upper bound for arbitrary a
at the cost of halving the allowed sizes of archimedean conjugates.

10
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Theorem 4.1. The following is true for all t, J, X and Y.
1. When a = 0, there are either no (x,y) with the properties in Problem 1.1 or there are infinitely many such
(x, y).

2. Suppose a = 0 and y(E) < 1 in Theorem 3.4. Then there are no (x,y) satisfying the conditions in Problem
1.1, i.e. N(¢,0,7,X,Y) =0.

3. For all a one has N(t,a,9,X/2,Y/2) < 1+ N(t,0,9,X,Y). Thus either N(t,0,9,X,Y) = oo or
N(,0,79,X,Y)=0and N(t,a,J,X/2,Y/2) < 1.

Proof. For part (1), observe that if (x,y) € Z x Z has the properties in Problem 1.1 when a = 0, then so does
(¢x, y) for any root of unity £. To prove (2), note that Theorem 3.4 shows N(z,0, T, X, Y) is finite if y(&) < 1.
Then part (1) forces N(¢,0, 7, X,Y) = 0. Part (3) follows from the fact that the difference of two solutions (x, y)
and (x’,y’) to Problem 1.1 for given ¢, a, J, X /2 and Y /2 is a solution (x”',y”’) = (x’ —x,y’ — y) to Problem 1.1
fort,0, 9, X and?. m|

Remark 4.2. The proof of parts (1) and (2) illustrates the advantages of working over the ring Z of all algebraic
integers, rather than in the integers of a particular number field. This makes it possible to promote a finiteness
result coming from capacity theory to a proof that a homogenous linear congruence has no small solutions at all.
We illustrate this result with a concrete application to the hidden number problem. Suppose as in §1.1 that we
are given an ideal J of the integers O of a number field F' and a real number X. For a secret integer s € O we
are given samples (¢;,d;) € O X O fori = 0, 1 for which ¢ is prime to J and the following is true. There is an

(unknown) element x; € O such that
cis—d;=x; mod 9T 4.20)

and |A(x;)| < X/2 for all embeddings A : F — C. We would like to determine s mod J from this information.
Theorem 4.1 leads in the following way to a computable criterion for there to exist at most one solution s mod 7.
Asin §1.1, we find cé € OF such that c0c6 = 1 mod J. Then (4.20) for i = 0 gives

s=cy(xo+dyp) mod J.
Substituting this into (4.20) when i = 1 gives
X1 +tixo+a; =0 mod g “4.21)

where t; = —c1c6 anda; =d;—d +clc(’)d0. Thus the problem of finding all s mod 7 satsifying the above conditions
is converted to finding all solutions (xg,x;) € Of X O of the congruence (4.21) such that |A(x;)| < X /2 for
i =0, 1 and all embeddings 1 : F — C.

We bound the number of solutions s mod J in the following way. Using lattice basis reduction, find a
polynomial byx + byy + b3 € J'or [x, y] with the properties in Theorem 2.1 for Y = X, ¢t = —6‘166 and a = 0.
Calculate the capacity y(E) of the adelic set & associated to this adelic set in Definition 3.1, using Lemma 3.2 and
Theorem 3.5. If y(&) < 1, then parts (2) and (3) of Theorem 4.1 show N(t,a, J, X/2,X/2) < 1. Thus there is at
most one pair (xg, x| ) as above, and at most one integer s mod J which solves the above case of the hidden number
problem.

We conclude this paper with another example illustrating Theorem 4.1. Suppose a = 0, t € OFf and that
J = Ora is anon-zero principal ideal of Or. Suppose (xo, yo) € O satisfy the congruence

x0+tyo=0 mod J 4.22)

and that
|xo - yolv < |a|,/2 forall v e Mg . (4.23)

Suppose as before that ¢ is prime to J = Ofa, and that xg, yo and «@ are pairwise relatively prime, in the sense that
the ideal generated by any two of them is OF.

Theorem 4.3. With the above hypotheses, there are no non-zero pairs (x,y) € Z x Z with the following properties:

I. x+ty=0mod J -Z, and
2. For all embeddings A : 7 — C, one has

[1(0)] < |A(x0)| and [A(y)] < [A(yo)]

with at least one of these inequalities being strict for at least one A.

11
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Thus in a small non-zero solution of the homogenous congruence resulting from setting a = 0 prevents
the existence of non-trivial solutions with smaller archimedean absolute values. Concerning the relation of the
inequality (4.23) to Problem 1.1, note that if 0 < @ € Z, then (4.23) follows from requiring |xo|, < X and |yg| < Y
for some real X,Y such that | XY| < a/2.

Proof of Theorem 4.3

Define a polynomial in the variables x and y by
bix + bay = (yox — xoy)/a. (4.24)
Hypothesis (4.22) shows xg + tyg = azo for some zg € Of. Therefore
bix+byy=yo(x+ty)/a—zoy € T - (x +1y) + OF - y. (4.25)

We now substitute for the variables x and y a pair of elements of Z satisfying conditions (1) and (2) of Theorem
4.3. The inequalities in condition (2) of Theorem 4.3 show that for each embedding A : Z — C we have

|[A(b1x + bay)| = |A( (4.26)

Yox —XOy)l < |/1(yo)/1(x) I+ |/1(x0)/1(y) ]
a a a

Now (4.23) gives
A 1 A 1
| (y0)|S and |4 (x0)] < .
@ 2[A(x0)| @ 2|A(yo)

Substituting this into (4.26) gives

|4(x)] 1)
|[4(b1x + bay)| < +
2|a(xo)l  2|A(yo)l
Hypothesis (2) of Theorem 4.3 now implies |1(bjx+byy)| < 1 with strict equality for at least one A. Since b1x+byy
is an algebraic integer, we conclude that

bix+byy=0 when b|=yy/a and by =—xp/a. 4.27)

We enlarge F so that it includes x and y. There is then an archimedean place v, of F at which either |x|,_ < |xo]y.
or [y, < |yolv., - For simplicity we will suppose that r,,, = |y|,_|/|yolv. < 1, the other case being similar. Define
ry =11ifve #v € MF jnf.

We now define an adelic set & = [, ¢p,. £y associated to bix + bay in the following way. Set b3 = 0 in
Definition 3.1. If v € MF g, is finite, let E,, be as in part (i) of Definition (3.1). If v € MF jiyr is an infinite place,
define

E,={yeFy:Iylv <rvlyolv and |x|, =|b2y/bily =[—=x0y/yolv < I|xolv} ={y € Fy : |ylv <rvlyolv}
(4.28)
where we have used r,, < 1.

As in the proof of part (2) of Theorem 3.4, if y(&) < 1, then there will be only finitely many pairs (x, y) € ZXxZ
satisfying the conditions in Theorem 4.3 and for which |y|,, < r,|yo|,. Then Theorem 4.1 shows that in fact there
are no such pairs, contradicting the hypothesis above that such a pair exists. We conclude that to prove Theorem
4.3 if will suffice to show y(&) < 1.

We first need to describe explicitly the set E,, when v € MF g,. From Definition 3.1 and (4.24) we see that E,,
is the set of y € F,, satisfying

ifyly <1

ii. |—x0y/yoly <1and

iii. [xoy/yo+tyly < |T1|y = laly.
Let us first show (i) and (ii) imply (iii). If |@|, = 1, this is clear from # € Of. Suppose now that |a|, < 1. We
know yy is prime to @, so |yo|, = 1. We have (yg, —x0) = yo(1,¢) mod J by multiplying the first equality in (4.25)
by a, so |xo +tyol, < [J|v. Thus

|(xo/yo +D¥lv = yoly" - xo +tvoly - Iyly < 1T 1w if [yly < 1.

Therefore (iii) is implied by (i) when |a/|,,. Thus E,, is the setof y € fv satisfying (i) and (ii).
Recall now that yy and —x( are coprime elements of O by assumption. Thus if |yg|, < 1 then | — xo|, = 1,
and otherwise |yg|, = 1. If |yo|, = 1, then (i) implies | —xoy/yolv, = | —xoy|v < 1, so (ii) holds. If |yg|, < 1, then

12
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| — xoly = 1 so (ii) is equivalent to |y|,, < |yo/(=x0)|v = |yolv < 1. Hence condition (ii) implies (i) if |yol, < 1.
We thus find that for all finite v, E, is a v-adic disc of radius r,, = |yg|,, around O € F,,. The local capacity of E, is
therefore

F,: o (v
Yo(Ey) = [yols ) = [lyolly for v e My g (4.29)

where p(v) is the residue characteristic of v and || ||, is the normalized valuation at v.
We now consider archimedean v € M jor. From (4.28) we see that E,, is the closed disc around O in F', = C
of radius r, |yo|,. Thus the local capacity is

Yo (Ey) = (rylyol ) PR = b ® 011, for v e My . (4.30)

Now (4.29) and (4.30) together with the product formula give the global capacity of & as

(&) = nyV(EV) = 1—[ e l_[ [lyolly = 1—[ rIVEL
14

VGMF’inf V€MF VEMF,inf

which completes the proof of Theorem 4.3.
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