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Abstract 

Although current exemplar models of category learning are flexible and can capture how 

different features are emphasized for different categories, they still lack in the flexibility to adapt 

to local changes in category learning, such as the effect of different sequences of study. In this 

paper we introduce a new model of category learning, the Sequential Attention Theory Model 

(SAT-M), in which the encoding of each presented item is influenced not only by its category 

assignment (global context) as in other exemplar models, but also by how its properties relate to 

the properties of temporally neighboring items (local context). We demonstrate that SAT-M 

captures the effect of local context and predicts not only learning outcomes but also learners’ 

attentional patterns during training. 

Keywords:  category learning models; sequencing; interleaving; attention; encoding 
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A computational model of context-dependent encodings during category learning 

 

Our categorization decisions are often based on a subset of potential features. For 

example, when at the supermarket trying to pick the perfectly ripe avocado for dinner, we look 

for a softer, darker avocado. Although avocados can differ on many properties, color seems to be 

particularly relevant for ripeness. Not all features are equally important, and humans are 

particularly good at discerning what matters from what does not. Moreover, discerning the 

features that matter is context dependent. For example, when looking for a book among bowls, 

shape is a critical feature.  However, when looking for a particular book among other books that 

is unlikely to be the case. How do we flexibly learn what to attend to and encode? 

Extant theories and models of human and artificial category learning try to answer this 

question by taking the attentional flexibility of human categorization into account (e.g., Bareiss 

et al., 1990; Nosofsky, 1986). One common way to address the variable importance of different 

features is to assume that different properties of to-be-categorized items have different weights 

that modulate their overall impact on categorization decisions (Anderson et al., 1997; Ashby et 

al., 2011; Hintzman, 1984; Kruschke, 1992; Love et al., 2004; Nosofsky, 2011; Thiessen & 

Pavlik, 2013).  

For example, the Generalized Context Model (GCM; Nosofsky, 1986) proposes a set of 

selective-attention weights that represent the learned strategy of attending more to some 

properties than others when making decisions about stimuli represented in a multidimensional 

space. In GCM the attentional weights are either free parameters fit to the data or assigned 

plausible values to approximate human behavior in a categorization task. Although the 
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assumption is that these attentional weights to different dimensions are learned, GCM does not 

include an explicit process for how attention changes over time during learning.  

Other models, however, have addressed this question. For example, the Attention 

Learning COVEring map (ALCOVE) model of categorization (Kruschke, 1992) includes a 

process through which attentional weights are learned during learning. On each learning trial, 

ALCOVE computes the discrepancy between the classification provided and the correct 

classification and adjusts the attention weights to reduce the classification error. Other models 

provide similar mechanisms for learned attentional weights, for example, SUSTAIN (Love et al., 

2004) includes an attentional tuning algorithm whereby attentional weights are updated to 

provide greater salience to relevant feature dimensions and MINERVA 2 (Hintzman, 1984) 

includes an abstraction mechanism through which items are re-encoded emphasizing learning-

relevant information (for a further specification of attentional processes in MINERVA see 

iMINERVA, Thiessen & Pavlik, 2013). 

Global and Local pressures on category learning 

Although taking steps toward a mechanism by which we learn what to attend to and 

flexibly adapt to the properties of the task and the stimuli being learned, these models still fall 

short when considering learning as a process through time. Broadly speaking, even in models 

with a learning process such as ALCOVE and SUSTAIN, attention is updated to change the 

salience of dimensions based on their overall relevance for categorization, that is, taking into 

account the global context of all of items in the same category. 

Current formal and informal models of categorization assign attentional weights during 

learning to facilitate human flexibility in categorization. However, there are two major issues 

with this approach. First, it implies that learners have access to the entire set of previously seen 
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examples when making a local categorization decision and that all items and all their features are 

equally important, which at face value seems unlikely. Indeed, previous research has 

demonstrated a “recency effect” in categorization, whereby more recently studied items have a 

larger impact on categorization decisions than earlier ones (Jones et al., 2006; Jones & Sieck, 

2003). One extrapolation of these findings is that, at the extremes, some previously seen items 

might have a small or negligible effect on categorization decisions. 

Second, it implies that category learning is guided only by overall attention weights that 

might or might not be relevant for the task at hand. That is, when deciding which features to 

attend during learning, existing models optimize for overall categorization decisions: is feature x 

predictive of category X? Although feature x might, overall, predict category X, in the moment-

to-moment context of the other items studied (as in the book/bowl example above), that might 

not be the case: a feature that generally predicts X might not be relevant in the local context of a 

series of items that do not have that feature. Although feature X might be relevant to 

categorization, if that is not the case at the local context level of the recent few items seen, then it 

is unlikely to receive much attention. 

If instead we think of category learning as a process over time in which the learner is 

concerned only in solving the local task of making sense of how a current item and its temporal 

neighbors are grouped and in which every item has local contextual pressures on attention and 

encoding (from other stimuli, variation in task, etc.), we can create more flexible and 

informationally leaner models of learning. In this view, human learning as a process in time is 

the result of pressures at a small timescale. The local context of categorization is not only what 

category an item belongs to, but how that item fits with items recently categorized into one or 

another category. For example, a feature that predicts categorization overall (global context) 
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might be missing from a specific exemplar or be present in an exemplar of the opposite category 

just presented in the previous trial (local context), in which case a different feature might be 

more relevant locally. This is a critical distinction in a world where categorization decisions are 

potentially seldomly based on all the information available about each category but instead only 

a few cases, potentially because of memory or expertise constraints (Elio & Anderson, 1984; 

Jones & Sieck, 2003).  While models like EBRW (Nosofsky & Palmeri, 1997) selectively sample 

a restricted set of previously seen examples according to their similarity to an item to be 

categorized, we are proposing to selectively sample examples according to their temporal 

proximity to the item. 

Consistent with this view, there is evidence that what information is attended to and 

encoded depends not only on its global context (what category it belongs to), which current 

models of categorization focus on, but also on its local context (neighbor items), which most 

current formal and informal models of categorization ignore. For example, Aha and Goldstone 

(1992) demonstrated that humans are able to learn categories that require attributes to be 

weighted differently for different category exemplars. That is, human categorization is sensitive 

to the local context of an exemplar relative to its stimulus space. 

Another example of how human learning is sensitive to not only the global context in 

which category an item belongs to but also the local context of which other items are studied in 

proximity comes from a wealth of studies demonstrating sequencing effects in category learning. 

The sequence of events has been shown to have an impact on what we learn (Goldstone, 1996; 

Schyns & Rodet, 1997) and how well we learn it (Kornell & Bjork, 2008; Wahlheim et al., 

2011). Because different sequences will result in the same item having different local neighbors 
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for each learning event, this is both evidence that human categorization is sensitive to local 

variation and an ideal test situation for the adequacy of our model. 

There is a wide array of evidence that the sequence in which information is presented 

influences how we perceive, represent and learn new information (Bloom & Shuell, 1981; Brady, 

2008; Clapper, 2014; Corcoran, Epstude, Damisch, & Mussweiler, 2011; Elio & Anderson, 1984; 

Helsdingen, van Gog, & van Merriënboer, 2011; Jones & Sieck, 2003; Li, Cohen, & Koedinger, 

2013; Lipsitt, 1961; Mack & Palmeri, 2015; McDaniel, Fadler, & Pashler, 2013; Qian & Aslin, 

2014; Samuels, 1969; Sandhofer & Doumas, 2008; Zeithamova & Maddox, 2009; Zotov, Jones, 

& Mewhort, 2011).  

To account for some of these findings, Carvalho and Goldstone (Carvalho & Goldstone, 

2014b, 2015a, 2015b, 2017), have proposed the Sequential Attention Theory (SAT; Carvalho and 

Goldstone, 2017). According to SAT, one of the ways in which the sequence of learning 

influences learning is by creating pressures on what information is attended and encoded. 

Specifically, Carvalho and Goldstone, proposed – and empirically demonstrated (Carvalho & 

Goldstone, 2014b, 2014a, 2015a) – that studying items of the same category consecutively 

(blocked study) makes similarities between temporally neighboring items more salient and more 

likely to be used for categorization, whereas studying items of different categories consecutively 

(interleaved study) makes their differences more salient and more likely to be used for 

categorization. This proposal is able to capture many findings in the literature showing, for 

example, that interleaved study of categories improves learning of similar categories (for which 

detecting differences are particularly important), whereas blocked study of categories improves 

learning of dissimilar categories (for which detecting similarities within each category is 

important; for a metaanalysis see Brunmair & Richter, in press). 
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In sum, one of the critical pressures affecting where attention will be directed during 

category learning is likely to be the local context of the other items experienced in proximity 

(temporal, physical, etc.).  Local influences go beyond the global context of whether a dimension 

or property has been relevant for categorization overall. The effect of both global and local 

influences on categorization is likely to be exerted through selective attending and encoding 

different properties with different experience, resulting in different properties being attended 

such as in the avocado example in the start of this paper. However, previous models 

implementing learning mechanisms that capture this phenomenon have focused only on the 

global context. In this paper we present a new model that considers the local context of 

categorization as critical, focusing on the local temporal context. 

A new model of category learning: SAT-M 

We propose the Sequential Attention Theory Model (SAT-M), which computationally 

specifies and extends the SAT framework proposed by Carvalho and Goldstone (2017). SAT-M is 

a new exemplar model of human categorization based on GCM in which how items are encoded 

depends not only on global attentional weights that maximize correct categorization, but also on 

the immediate context during learning (i.e., the other stimuli studied in close proximity). If 

humans are, in fact, sensitive to local context in how they encode information, then SAT-M 

should provide a better characterization of learning behavior and category generalization, 

especially in situations where local context is particularly variable. One such situation is when 

one varies the sequence of exemplars during learning.  

Overview of SAT-M 

In SAT-M, as in other exemplar models of categorization, each experienced item is 

represented by its value properties. During learning, each stimulus is stored along with its 
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category assignment and encoding weights for each of its features. Later classification of test 

items, both trained and novel, depends on their similarity to the aggregate properties of the 

previously trained items, where similarity is based on how distant these test items are from the 

previously studied items in the categorization space. A test item will tend to be placed into a 

category to the extent that it is more similar to items in that category than other categories. 

Unlike other exemplar models of categorization, however, in SAT-M, the representation 

of studied items is influenced not only by its properties and the relative relevance of each 

property for categorization, but also by how those properties and the category assignment vary 

from prior items seen before it. Thus, unlike other exemplar models, the stored representation is 

biased towards features that were relevant for its categorization in the context of the other item 

studied in temporal proximity. This is achieved by storing for each item feature an encoding 

weight that modulates the impact that that feature will have to determine the item’s similarity to 

new items at test. For example, if two similar items of the same category are seen in close 

temporal proximity, their similarities will be more strongly encoded and these stimuli will be 

seen as more similar than if they had been studied further apart in time.  

Our proposal is that by differentially encoding different properties of the stimuli from 

trial to trial, we are creating different attentional pressures and the history of categorization will 

result in different features playing a larger or smaller role during learning and future 

categorization. In the next section we discuss how the model works in more detail, its individual 

components, and principles. 

SAT-M principles and implementation 

As mentioned above, SAT-M builds on previous exemplar models. Specifically, SAT-M 

shares many of its principles and assumptions from the General Context Model (Nosofsky, 
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1986). As such, we will describe the general mechanisms of GCM and note how SAT-M deviates 

from it. 

The principles of GCM and SAT-M can be divided into three main parts: item encoding, 

item similarity, and decision process. We will describe the model starting from its observable 

behavior, how it makes a categorization decision, and work backwards to the stimulus encoding 

that is used as a basis for the categorization decision. To foreshadow, categorization decisions are 

based on the perceived similarity of the to-be-categorized stimuli to all previously categorized 

stimuli and their respective category assignments. The similarity between stimuli is, in turn, 

inversely related to distance between their integrated distance along all of their component 

features. Finally, in SAT-M, unlikely GCM, the distance between stimuli is a function of each 

stimulus’s properties as influenced by their temporal context (i.e., the properties of adjacent 

neighboring stimuli). 

Categorization decision. To decide how to categorize a given item y, GCM takes into 

account how similar item y is to all other items encoded. Item y will tend to be categorized as 

belonging to the category containing the greatest number of items similar to y. The categorization 

probability uses a ratio rule, and is an application of Luce’s choice rule (Luce, 1963; Shepard, 

1965). The probability of categorizing an item y as belonging to a given category A is given by 

the summed similarity of that item to all the x exemplars of category A, divided by the summed 

similarity of y to all the k exemplars of all the categories, K: 

 

 𝒑(𝑨	|	𝒚) = 	
!!"∑ 𝒔𝒙𝒚𝒙 %

𝜸

∑ !%% "∑ 	𝒔𝒌𝒚𝒌 %
𝜸 ( 1 ) 
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where Sxy denotes the similarity between item y and item x. bA > 0 represents the bias towards 

responding with category A. A response-scaling parameter, g. When g=1 the model responds 

more probabilistically by “probability matching”, with greater values of g, the model’s behavior 

is more deterministic towards the category with greater summed similarity (Nosofsky & Zaki, 

2002). 

 

Item similarity. To determine how similar two items are, the model uses an 

exponentially decaying function of distance. The similarity between items x and y is given by: 

 

 	𝒔𝒙𝒚 = 𝒆)𝒄	𝒅(𝒙,𝒚)
𝝆
 ( 2 ) 

 

where d(x,y) is the attention-weighted distance between the two items. This calculation includes 

a freely estimated sensitivity parameter, c, that defines the rate by which similarity decays with 

distance, i.e., the gradient of the similarity function. As c increases, categorization decisions are 

disproportionately influenced by trained items that are very close to the test item.  As c 

decreases, then categorization is more equitably determined by all trained items, close or far, 

from the test item. Finally, the shape of the function relating distance and similarity is defined by 

a parameter r. When r = 1, there is an exponential relation between similarity and distance, 

while when r = 2, there is a Gaussian relation between the two. This parameter is often set in 

advance, and values greater than 1 are often used for highly confusable stimuli (Nosofsky, 2011). 

Distance in multidimensional space. The absolute difference between two items is 

determined for each dimension in the multidimensional space. This difference is weighted by an 

attention parameter (𝝎𝒊 > 0) that characterizes the global salience or relevance of dimension i, 
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similar to previous exemplar models. The attention-weighted sum of the differences for all 

dimensions is the total distance between the two stimuli. Thus, the distance between stimuli x 

and y is computed by: 

 

 𝒅	(𝒙, 𝒚) = 	 /∑ 𝝎𝒊	𝜺0
1	|𝒙𝒊 − 𝒚𝒊|𝒊

𝒓3
𝟏

𝒓 ( 3 ) 

 

where 𝝎𝒊 is the attention allocated to Dimension i and xi and yi are the feature values of stimuli x 

and y on dimension i. Notice that when 𝝎 is high, that dimension will have a greater influence in 

the distance calculations, whereas smaller values of 𝝎 will render any differences along that 

dimension less influential. This parameter can reflect learned information about which 

dimensions are relevant for categorization and which are not. A scaling parameter r is used to 

define the form of the distance metric. Whereas 𝜌 defines the relation between distance and 

similarity in calculating items’ similarities (with 𝜌=1 implementing an exponential relation while 

𝜌=2 implements a Gaussian relation), r defines the form of the distance metric when calculating 

the items’ distance in psychological space. When r = 1 a city-block metric is used while when r = 

2, a Euclidean distance metric is used. While 𝝎 is often a free parameter fit to subject data, r is 

often defined by the type of stimuli used. When stimuli are highly discriminable and 

psychologically separable, a city-block metric is often used, while a Euclidian metric is used for 

integral dimensions that are not easily separable (Nosofsky, 2011).  

Influence of temporal context.  SAT-M includes an encoding strength (so named to 

differentiate them from the attention weight 𝝎 defined above). The critical parameter 𝜺0
1 > 0 in 

Equation 3 is the encoding strength of Feature i in Exemplar x,  which depends on the sequence 

of study. SAT-M encodes items by comparing them to previously presented items. Differences 
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and similarities between features from successive items and their category assignment define the 

strength of encoding of each feature 𝜺𝒊, i.e., the encoding weight given to that feature.  

Thus, for each dimension, the difference between x and the preceding item y is modulated by 𝜺0
1 

and its value depends on the match between the feature value in dimension i between x and y and 

their category assignments. The four possibilities are formally represented by four different 

encoding weights (εdifferent feature, same category, εdifferent feature, different category, εsame feature, same category, εsame 

feature, different category). Because the encoding weights depend on the properties of the current and 

previous stimuli and their category assignments, the same feature might (in fact, is likely to) 

receive different encoding weights from trial to trial and from participant to participant. Feature 

i’s encoding weight is stored along with x during learning and modulates the influence that 

feature i has on the overall similarity metric and thus categorization. 

The encoding weight assigned to a given feature is the result of the relation of that feature 

with those of the immediately preceding item and works to increase or decrease the importance 

of that feature for a stimulus as a function of sequence of study. Note that although we separate 

these four encoding weights, because there are four 𝜀0 free parameters fit to the data, it is 

possible that the value is the same for all four possibilities. This means that the differences in 

encoding between these four possibilities are not hard coded into the model, and the best fitting 

solution becomes an indicator for how important different features are as a function of their 

encoding context. 

Applications 

We start by describing the target phenomenon we will use to demonstrate the role of local 

context in category learning and apply SAT-M. We will then show evidence that previous models 

cannot account for human behavior in such situations and demonstrate that SAT-M provides a 
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good fit to the data, suggesting that local context – in addition to global context captured by other 

models – has an important influence on category learning. Finally, we will probe SAT-M’s 

assumption that attention shifts on a local context, trial-by-trial, basis by using eye-tracking data 

to test whether the local attentional/encoding behavior of the model matches those of learners. 

 

Target phenomenon: The effect of sequence on category learning 

In our application, we will focus on the behavioral results of one of the early studies on 

the impact that different sequences of study have on category acquisition: the results from 

Carvalho and Goldstone (2014). As described above, this phenomenon allows us to demonstrate 

the impact that local context changes have on category learning and how SAT-M captures this 

effect whereas models that do not include such a process of local attention changes do not 

closely match the results. 

Carvalho and Goldstone (2014b) investigated whether different sequences of study would 

improve learning for different types of categories. Their main proposal was that different 

sequences of study lead to encoding different properties because learners’ encoding of each of 

the items is dependent on what they have experienced before. Thus, if study involves repetition 

of the same category close in time, the encoding would emphasize what is similar among those 

items, whereas if study involves alternation between categories close in time, encoding would 

instead emphasize what is different among those items. This effect would be most salient when 

comparing learning of different types of categories. If the categories studied are highly 

dissimilar, noticing small similarities among items of the same categories – and by hypothesis 

blocked study -- should improve learning outcomes. Conversely, if the different categories 
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studied are highly similar, noticing the small differences between items of different categories – 

and by hypothesis interleaved study – should improve learning outcomes. 

To test these predictions, Carvalho and Goldstone (2014b) used two different sequences 

of study: blocked practice where items of a category are often followed by other items of the 

same category, and interleaved practice where items of one category are often followed by items 

of one of the other categories. They also manipulated the type of category being learned: either 

low similarity categories where items in the same category differed from each other and from 

items of other categories on most of their features, or high similarity categories where items of 

different categories differed from items of the same and different categories on only a small 

number of features.  

 

Figure 1: Example stimuli used in Carvalho & Goldstone (2014b). Stimuli in the high similarity 

set (top panel) differed on only two features between any two categories and only one feature 

among items of the same category. Stimuli in the low similarity set (bottom panel) differed in 
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many features between categories and among items of the same category. Grey boxes (not 

presented to participants) highlight the category-defining features). For details of the structure of 

the categories used see: https://osf.io/s87tf/. 

 

The categories used were blob shapes composed of multiple curvilinear segments (see 

Figure 1 for examples). The structure of the categories is shown in Appendix A. Each dimension 

corresponds to a segment location in the blob whereas each feature value corresponds to a 

particular curvilinear segment. High and low similarity categories varied on how many 

differences existed between and within categories and thus on how many feature-values there 

were for each dimension (but not on the number of dimensions). All categories were defined by 

the presence of a particular curvilinear segment in a particular location of the space. 

Participants started by studying three categories in one of the sequences and then being 

tested on those followed by another study phase in the other sequence and a new test phase. Each 

study phase was composed of 4 blocks of 72 trials each. During study 8 items of each category 

were presented 3 times each. The test phase included 48 trials, each a presentation of one of the 

16 items of each category studied (half studied and half novel). 

Overall, Carvalho and Goldstone (2014b) found that for high similarity categories, 

interleaved study improved classification of novel items at test, whereas for low similarity 

categories blocked study improved classification of novel items at test. This is the critical pattern 

of results that we will model in this paper. 

Of course, one way to capture Carvalho and Goldstone’s proposal and results described 

above would be to stipulate that the attentional weights for similarities and differences are 

different for blocked and interleaved sequences, for example, by fitting the two sequences 
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separately. However, such an approach brings us back to the issue stated at the start of this paper. 

In so doing, one would be assuming that even though the sequence is a local change in context, it 

would be explained solely by global context, that is, by what category the item belongs to and 

the pressures that exerts on attention and encoding. Instead, we propose that SAT-M can 

parsimoniously account for the effect of different sequences on category learning and, moreover, 

better-characterize the flexibility of human learning.  

 

ALCOVE and SUSTAIN and categorization performance following different sequences 

Our main proposal is that attention changes that occur over the course of category 

learning are the result not only of global context pressures arising from category classification, 

but also local context pressures arising from what other items were studied in closed temporal 

proximity. Importantly, previous models and theories of category learning fail to capture the 

effect of local context, focusing only on the global context. 

To confirm this assertion, we fit two models that include an attention learning process 

during category learning: ALCOVE and SUSTAIN. Our point with these fits is to demonstrate 

that without considering the importance of local temporal context, these models cannot easily 

account for our previously presented category learning results, as we argued is the case when 

comparing the effect of different sequences of learning. 

We fit both models to the target phenomenon described above. We used the 

implementations of ALCOVE and SUSTAIN available in Catlearn (Wills et al., 2017), an open 

archive of formal psychological models implemented in R (R Core Team, 2019). We trained the 

models with the study sequences from each participant and compared the model performance in 

the test phase with that of the participant trained with that sequence. In both models, category 
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learning feedback was presented during training but not during test. We used sum of squared 

errors, implemented as part of the Catlearn package, as the objective function to determine best 

fitting parameters. The category representation described in Appendix A was adapted – 

maintaining its main characteristics -- to match how ALCOVE and SUSTAIN define category 

spaces.  

ALCOVE has a total of 6 parameters. From these we defined the distance metric as 

Euclidian distance (r = 2) and used a Gaussian similarity gradient (q = 2). The remaining 

parameters were fit to the data. These parameters include the specificity constant (c), the decision 

constant (∅) and the associative (𝜆3) and attentional (𝜆4) learning rates. The best fitting values 

of these parameters are presented in Table 2.  

SUSTAIN has a total of 5 parameters. From these, we defined the threshold to create a 

new cluster (𝜏) as 0 because the study includes only supervised trials. We fit the following 

parameters: attentional focus (r), cluster competition (𝛽), decision constancy (d), and learning 

rate (𝜂). The best fitting parameter values are presented in Table 1. We defined the initial 

attentional weights and associative strengths as the same to all dimensions. Moreover, we 

defined the initial receptive fields as equally tuned and the network was always started with a 

single cluster with zero-strength weights.  

 

Table 1: Best-fit parameter values for ALCOVE and SUSTAIN fits to Carvalho & Goldstone 

(2014b). Models were simulated using the implementation provided in the R package Catlearn.  

 ALCOVE SUSTAIN 

Parameter c 	∅		 𝜆3 𝜆4 𝑟 𝛽 d 𝜂 

Best-fitting value 15.85 1	 0.718 0.99 11.99 0.99 1.13 0.49 
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The results of our simulations with best fitting parameters are shown in Figure 2. As can 

be seen in Figure 2, both models provide an overall poor fit to the data (𝑟5 = .005; SSE = 25.85, 

and 𝑟5 = .001, SSE=31.54, for ALCOVE and SUSTAIN, respectively). Critically, both models 

also fail to show an interaction between category structure and sequence of study for novel items 

presented at test, a hallmark of the effect that local context has on category learning. The results 

of these simulations are consistent with our proposal that part of what is happening during 

category learning is learning to attend to information that is or is not relevant in the context of 

the other items studied in close temporal proximity (local context) and not only the global 

context of all the items belonging to either category. Although their specific mechanisms differ, 

attention in both ALCOVE and SUSTAIN changes during category learning as a result of the 

dimensions’ general relevance for categorization.  While both models are process models that 

take as input a specific sequence of trials, their dimension learning mechanisms are designed to 

work over long time courses, rather than the short trial-to-trial fluctuations of encoding that is 

implemented in SAT-M. One could argue that the poor fit of ALCOVE and SUSTAIN are in part 

the result of trying to fit both the high and low similarity categories simultaneously. One reason 

to fit each category structure separately would be to assume that each category structure 

constitutes a different global context where different information needs to be attended to and 

ignored. However, doing so would also assume that the cognitive system is “reset” to learn 

different structures in different ways and that it has a special way to tell which context it is while 

not specifying what that is. Similarly, one could argue that both ALCOVE and SUSTAIN could 

capture the results of Carvalho and Goldstone if fit separately to each sequence and category 

structure. Although that might be case, those fits do not answer the question of where learned 
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SAT-M and categorization performance following different sequences 

In the previous section we demonstrated that extant models that include a learning process and a 

mechanism for attentional changes during learning cannot account for the empirical results 

reported by Carvalho and Goldstone (2014b). In this section, we explore whether the mechanism 

of sequential encoding of similarities and differences among successive items, when paired with 

different sequences of stimuli, can yield these results.  To that end, we fit SAT-M to the results 

from Carvalho and Goldstone (2014, Experiment 1). We fit SAT-M using maximum likelihood 

estimation with the four encoding weights (𝜀 same feature, same category, 𝜀 same feature, different category, 𝜀 different 

feature, same category, 𝜀 different feature, different category), g, and c as free parameters fit to the data. We set r = 

2, because stimuli were relatively confusable and r = 2. We set 𝜔 = 1  because the stimuli used 

were designed such that all dimensions were equally salient.  

We fit the model using sequences generated in the same way as those shown to 

participants. For each run, the model was trained with a sequence similar to that of a human 

participant and then performance in a test phase including old and novel items was tested. In our 

simulations, each stimulus was represented as an 8-dimensional array. In the low similarity set, 

each dimension could assume a value 1-48 representing the many different components of that 

set of stimuli. For the high similarity set, each dimension could assume a value 1-4, representing 

the few differing components among stimuli. This representation matches how the stimuli were 

initially created (see Carvalho and Goldstone, 2014b, Appendix A, and materials stored in OSF: 

https://osf.io/s87tf/). The best-fitting c and g parameters are shown in Table 2. 

Table 2: Average best-fitting c and g parameters for SAT-M fits and average best-fitting c, g, and 	

ε parameters SAT-M-R to results from Carvalho and Goldstone (2014, Experiment 1). Standard 

deviation in parenthesis. 
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 c g ε 
SAT-M 1.01 (0.46) 4.12 (0.18) -- 

SAT-M-R 1.00 (0) 1.32 (0.00001) 0.9 (0.00001) 

 

The results of the model are displayed as dots over the bars representing Carvalho and 

Goldstone’s (2014b) results in the top panel of Figure 3. As it can be seen, the model provides a 

good fit to the data (BIC = 7053.60), suggesting that the effect of different sequences on category 

learning and generalization can be captured by a process of sequential comparison between 

successive items. For comparison, we constructed a restricted version of the model where the 

sequence of study does not influence the encoding weights of each stimulus property (Sequential 

Attention Theory Model Restricted; SAT-M-R). In SAT-M-R there is a single encoding weight 𝜺 

that is a function of the feature’s category relevance and does not vary depending on sequential 

variation among items (note that 𝜔 = 1 as in SAT-M such that all dimensions are equally 

relevant for categorization). SAT-M-R embodies the plausible alternative proposal that the effect 

of different sequences – and local variation during study – can be well-accounted by global 

weighting based only on category assignment information. Best-fitting parameters are presented 

in Table 2.  

As it can be seen in the bottom panel of Figure 3, SAT-M-R provides a poor fit to the data 

(BIC = 7319.03). Interestingly, although SAT-M-R displays the often-shown effect of stimulus 

similarity on categorization (better categorization of old items for low similarity categories, but 

better categorization of novel items for high similarity categories e.g., Palmeri & Nosofsky, 

1995), it is not sensitive to the sequence of learning and cannot capture the interaction pattern 

evident in the human data. The Bayes factor comparing the two models directly suggests that 

SAT-M-R is much less likely to have generated the data than SAT-M (B < 0.001). 
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data and therefore the best fitting solution could be one where the encoding parameters, like is 

the case in SAT-M-R, are equivalent or vary in any number of ways. Table 1 shows the best 

fitting parameter values. 

Table 3: Average best-fitting encoding parameters 𝜀 when fitting SAT-M to results from Carvalho 

and Goldstone (2014, Experiment 1). Standard deviation in parenthesis. 

 Different Category Same Category 

Different Feature 0.96 (0.08) 0.0015 (0.01) 

Same Feature 0.11 (0.03) 0.79 (0.22) 

 

As can be seen in Table 3, encoding strengths are stronger for differences between items 

of different categories and similarities among items of different categories. This result confirms 

that the SAT-M solution that best fits the data does so by varying encodings depending on local 

context (i.e., the match on category and feature properties between current and previous items). 

Moreover, these results are consistent with the theoretical explanation of the phenomenon 

offered by Carvalho and Goldstone (2014b): if interleaved study improves learning of high 

similarity categories because it emphasizes encoding of differences between categories whereas 

blocked study improves learning of low similarity categories because it emphasizes encoding of 

similarities among items of the same category, then we should see that the best fitting parameters 

should be higher for differences among different categories and similarities among items of the 

same category. Because different sequences include a disproportionate number of transitions 

across the same category (blocked study), or different categories (interleaved study), whether 

differences or similarities are better encoded depends on the sequence of study.  
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Encoding weights and attention 

The main novelty introduced by SAT-M is the sensitivity to local temporal context during 

category learning through differential encoding of each feature of a stimulus depending on how it 

compares to immediately preceding items and their category assignment. To this end, SAT-M 

introduces in the context of GCM the 𝛆 parameters that modulate encoding of a feature and vary 

depending on whether the feature and category assignment change relative to the previous item. 

Theoretically, we have argued that the inclusion of these parameters are sensible because learners 

are sensitive to local context in addition to global information about which dimensions are 

overall most relevant for category learning. Furthermore, we proposed that this sensitivity can be 

thought of as a modulation in how each stimulus experience is encoded and stored. The same 

item studied after a different previous item would be encoded differently.  

In the previous section we showed that to fit data from an experiment showing how 

learners are sensitive to local context the 𝛆 parameters varied in their best-fitting values 

depending on whether the feature was the same or not and whether the category assignment was 

the same or not across two stimuli. If in fact local sensitivity can be captured by differential 

encoding patterns as in SAT-M, then we should see that looking patterns (often taken as a 

measure of overt attention), should be correlated to best-fit ε values.  

Carvalho and Goldstone tested whether different sequences of study would lead learners 

to attend to different properties of the stimuli during different sequences of study. In their study 

participants studied the same two categories of Aliens either blocked or interleaved (see left 

panel of Figure 4 for examples of the stimuli used during study). The two categories studied had 

a structure such that multiple feature-values and dimensions could predict category assignment 

(discriminative features), and some features, despite being common in a category, did not predict 
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category assignment (as they were also common in the other category – characteristic features; 

see Appendix B and stimuli available in https://osf.io/2n8gy/). After study, participants 

completed a test phase where participants classified novel items at test. The novel items could 

vary on the frequent but not discriminative (characteristic) feature or on other features (see right 

panel of Figure 4 for examples). Importantly, during learning participants eye movements were 

recorded using eye-tracking and how long learners spent looking at each of the items’ features 

was analyzed. 

 

 

Figure 4.  Example of stimuli from one of the families used by Carvalho and Goldstone (2017).  

Left Panel includes an example of each of the categories studied.  Right panel includes an 

example of each of the novel items presented during the transfer task (both transfer items belong 

to Category A; equivalent items existed for category B). For details of the structure of the 

categories used see: https://osf.io/2n8gy/ 

 

Overall, the authors found that during interleaved study learners looked longer at 

properties that differed from those of the preceding item, whereas during blocked study learners 

attended to both differences and similarities equally (see left panel of Figure 5). The authors 
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argued that the interaction is overall consistent with SAT in that following blocked study there is 

no bias towards looking at differences, even though those might be more salient because people 

often orient towards novelty or task-relevance (Rehder & Hoffman, 2005; Wang & Mitchell, 

2011). Instead participants attend to repeated similarities to the same extent. During interleaved 

study, on the other hand, participants’ attention is heavily biased towards differences between 

successive items, which are likely to be properties that differentiate between the categories. 

Can these different attentional patterns be captured by SAT-M? If the encoding weights in 

SAT-M correspond to differential looking times as proposed, then the best-fitting parameters 

when we fit SAT-M to the categorization data should match the looking times observed in 

Carvalho and Goldstone (2017). To test these predictions, we fit SAT-M to the results of the 

testing phase of Experiment 3 of Carvalho and Goldstone (2017). Each stimulus used in the 

experiment was defined as a 5-dimensional array, with each dimension taking a value between 1 

and 5. After fitting the model using the same parameters as described in the previous section, we 

extracted the best fitting encoding weight parameters for each feature of the studied items. The 

average best-fitting c parameter was 1.07 and the average best-fitting g parameter was 0.89. As 

described above, in SAT-M for each event the stimulus along with encoding parameters 𝛆 for 

each of its features are stored. As in the previous applications, SAT-M had four encoding 

parameters depending on the match of the properties and category assignment among the 

currently encoded item and the previous one – εdifferent feature, same category, εdifferent feature, different category, 

εsame feature, same category, εsame feature, different category.After fitting SAT-M to the behavioral results of the 

transfer task, we calculated, separately for the blocked and interleaved sequences, the sum across 

trials and features of the encoding parameters values for features that differed across successive 

items and features that were the same among successive items. Conceptually, summing up the 
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encoding parameters is similar to summing up total looking time for each feature based on 

sequential differences and similarities, as done by Carvalho and Goldstone (2017). 

 

 

Figure 5: Results from total looking time during study in Carvalho and Goldstone’s (2017) 

Experiment 3 (Left Panel) and summed best-fit values for encoding weights (ε) when SAT-M is 

fit to the categorization results of Carvalho and Goldstone’s Experiment 3 (Right Panel). 

 

As it can be seen in the right panel of Figure 5, for blocked study, the summed best-fitting 

encoding weight parameters are similar for differences and similarities across successive items. 

For interleaved study, on the other hand, the summed encoding weights are higher for differences 

than similarities across successive items. This pattern of results is similar to the empirical results 

found in the eye-tracking study (see left panel of Figure 5; Carvalho & Goldstone, 2017). It is 

also consistent with evidence from other eye-tracking studies investigating the influence of study 

sequence on category learning (Zaki & Salmi, 2019). 

Overall, the results from these simulations suggest that the encoding weights in the SAT-

M can be directly related to encoding differences in behavioral data. Importantly, we did not fit 
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the encoding weights to the looking data in Carvalho and Goldstone (2017). Instead, we fit the 

model to the categorization test results and used the resulting best-fitting encoding parameter 

values as a measure of the model’s encoding or looking time. Finding that when fit to the test 

data the model converges on encoding weights with a similar pattern to that of human looking 

time in the same paradigm is striking and speaks to the adequacy of the model’s processes to 

those of human cognition. 

Implications 

The flexibility of current models of categorization lies in large part on their ability to 

selectively weight some features more than others during learning. This procedure – although 

often successful at capturing how different features are differently relevant for different 

categories – fails to account for the full flexibility of human categorization. Beyond considering 

global variables such as the relevance of a property for correct classification, humans are 

sensitive to the local context of categorization and the same feature can become more or less 

relevant depending on the other items studied in close proximity. We developed a more flexible 

model of categorization – the Sequential Attention Theory Model (SAT-M), based on Carvalho 

and Goldstone’s Sequential Attention Theory of category learning (Carvalho & Goldstone, 

2017). The main assumption of our model is that how each item is encoded during category 

learning is not only the result of the global context of the categorization task, but also the local 

context of the temporally immediately preceding item. This assumption makes SAT-M not only 

flexible but also computationally efficient: in order to selectively encode properties that will tend 

to be useful for categorization SAT-M takes only the preceding item during learning. Thus, SAT-

M requires very few items that need to be stored while relying mostly on the item that is 

expected to be the most accessible due to its recency. 
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To test SAT-M we compared its predictions with human behavior in a situation where 

local context strongly affects performance – the effect that difference sequences of items have on 

category learning. We have proposed that during category learning people engage in a process of 

sequential comparison to decide what is relevant and should therefore be encoded and what is 

not relevant and can be ignored. Engaging in this process, we proposed, is the reason why the 

sequence of study changes what is learned – different sequences create different sequential 

statistics that create attentional patterns towards encoding different types of features. The model 

introduced in this paper instantiated this proposal by including an initial sequential encoding 

process during which different features are assigned encoding weights depending on their 

relation to the features in the item encoded immediately before and whether both items belong to 

the same category or not. These encoding weights represent the likelihood of encoding a 

particular feature during a particular presentation of the item. 

Importantly, these weights do not reflect the overall relevance of the feature for 

categorization as do the attention parameters in models such as GCM, ALCOVE, or SUSTAIN. 

A similarity shared by two successive items of the same category does not necessarily mean that 

it is diagnostic of categorization. Similarly, a difference between two successive items of 

different categories does not guarantee its diagnosticity for categorization. In this way, the 

sequence of study is biasing local encoding on a trial-by-trial level, as opposed to global 

attention to relevant vs. irrelevant properties at a task level. By strongly encoding locally relevant 

similarities that are not globally relevant (e.g., irrelevant within-category similarities in the high 

similarity category set), study in a blocked sequence might, at times, deter learning. Similarly, by 

encoding locally relevant differences that are not globally relevant (e.g., irrelevant between-

category differences in the low similarity category set), interleaved study might, at times, deter 
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learning. The opposite is equally important – encoding locally relevant similarities or differences 

that are relevant for categorization might boost performance because it does not depend on 

having experience with the full set of items and therefore knowing what has been relevant so far. 

Locally determined encodings could be seen as a catalyst for learning when a learner has not yet 

collected a lot of information yet as to the global relevance of different dimensions. 

Notwithstanding the significance of attending to and encoding locally relevant features, 

the importance of global allocation of attention to category-relevant dimensions and away from 

category-irrelevant ones should not be ignored. There is widespread behavioral and eye tracking 

evidence that people learn to attend to certain dimensions while ignoring others, depending on 

their global predictive power for correct categorization (e.g., Blair et al., 2009; Chen et al., 2012; 

Rehder & Hoffman, 2005). In the current modeling we have focused only on local allocation of 

attention and encoding for simplicity. However, this means that because each item is encoded 

relative to only the previous item, dimensions that do not offer any predictive value continue to 

be attended. How could our model be extended to account for both local and global attention 

modulation? One possibility is to use the global attention parameter from GCM (𝜔) to model 

how attention is modulated by the relevance of each dimension or feature in the context of all 

category items. However, this approach sidesteps understanding how global context affects 

attentional patterns during categorization. Another possibility would be to include global 

attention as a learned aspect of categorization and have a process of attention accumulation for 

each feature starting at the beginning of encoding, based on the geometric average of the 

encoding weights assigned for that dimension up to that point. In essence, high global attention 

to a dimension would be the result of continued high local attention and would reflect an 

inference of “If this dimension keeps being relevant locally, it must be important globally.” With 



CONTEXT-DEPENDENT ENCODINGS IN CATEGORY LEARNING  32 

sufficient exposure, this global attention accumulator could then be used to modulate future local 

encoding decisions: A locally relevant difference between two categories on a seldom-predictive 

dimension might not be attended or encoded, while a locally irrelevant similarity between two 

categories on a frequently predictive dimension might be encoded. One potential advantage of 

this process compared to current models of categorization is that attention modulation would be a 

learned process at both the local (trial-by-trial) as well as the global (task) level. 

In future extensions of this modeling work it would be important to include both local 

and global attention processes, and also to fit the data to individual participants’ data by feeding 

the model with the sequence that a particular participant saw, using maximum-likelihood 

estimation of the best-fitting parameters for each participants’ data. This would allow for a more 

finely tuned analyses of the differences between the encoding weights for different types of local 

changes and how this process affects global attention. Another possibility would be to allow 

earlier trials (beyond N-1 as used here) to affect the encoding weights. Although our decision to 

choose only the immediately preceding item is consistent with empirical evidence showing that 

people use the information from the previous trial heavily when making a new categorization 

decision (Jones & Sieck, 2003; Stewart et al., 2002), influences of preceding items could also be 

modeled by a function that decays more gradually (Stewart & Brown, 2004), perhaps varying 

with several factors such as how easy it is to encode different items (i.e., how confusable the 

exemplars are). 

The results of the modeling work presented here have direct implications for theories of 

how the sequence of study influences learning by providing further evidence that a sequential 

comparison mechanism is plausible and can account for the results presented. We showed that 

there is no “best sequence” shortcut to learning. Instead, each sequence of study and the local 
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attentional patterns it creates will shape what is learned. To understand whether a sequence is 

optimal or not one needs to understand what is encoded during learning and what is required 

during later training or transfer. A match will result in optimal learning. This proposal casts doubt 

over alternative proposals that focus on differentiation as the only basis for category learning and 

advocate for processes that maximize it (Kang & Pashler, 2012), or proposals arguing that the 

relative benefit of interleaved practice lies on the increased temporal spacing between items of 

the same category (Birnbaum et al., 2013; Kornell & Bjork, 2008) because it demonstrates that 

blocked study can result in best encoding of features repeated close in time and improved 

learning in situations that do not require discrimination. 

More broadly, our work has implications for theories of category learning. Our model 

goes beyond conceptualizing attentional changes in category learning as the result of processing  

statistics over the entire course of study, that is, how the properties of a given item compare to 

the properties of all items of all categories. This is a powerful conceptual change from taking 

categorization as a broad learning process to a temporally local process, where each encoding 

moment is influenced by what just happened. Here we demonstrated that such a model can 

capture the effect of different sequences, but it might also capture other effects. Although 

typically described in the context of memory tasks, the spacing effect has also been shown in the 

context of category learning (e.g, Birnbaum et al., 2013). One way to conceptualize this effect in 

terms of changes in local context is to consider that encoding an item (or category of items) 

among many varied items increases encoding of different features because different features will 

be more relevant in pairwise comparisons, leading to a more robust encoding of the category and 

promoting later transfer.  
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More broadly, SAT-M and the importance of local context for attention modulation and 

encoding might also account for well-known effects in categorization. For example,  local 

attention changes can provide a mechanism through which category structure modulates category 

learning (Gureckis & Goldstone, 2008; Livingston & Andrews, 1995). By modulating attention 

on a trial-by-trial basis, it is likely that category boundaries would be emphasized even if they 

are not overall relevant for categorization. Similarly, the effect of local context can help explain 

the transfer of category learning across tasks (Gauthier et al., 2003), and the effect of different 

tasks (Trippas & Pachur, 2019) on category learning. These effects can be conceptualized in 

terms of changes in local context: when an item is learned among a certain type of items or 

semantic contexts, different properties will be emphasized that matter for that local context 

which can promote transfer (or hurt it). 
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Appendix A 

Table 1: Representation of the category structure used in Carvalho & Goldstone (2014b) 

D1 D2 D3 D4 D5 D6 D7 D8 Category Similarity Structure Item 

1 2 2 2 2 2 1 1 1 Low Similarity LS_101 

1 3 4 3 3 3 2 2 1 Low Similarity LS_102 

1 4 5 4 4 4 3 3 1 Low Similarity LS_103 

1 5 6 5 5 5 4 4 1 Low Similarity LS_104 

1 6 7 6 6 6 5 5 1 Low Similarity LS_105 

1 7 8 7 7 7 6 6 1 Low Similarity LS_106 

1 8 9 8 8 8 7 7 1 Low Similarity LS_107 

1 9 10 9 9 9 8 8 1 Low Similarity LS_108 

1 10 11 10 10 10 9 9 1 Low Similarity LS_109 

1 11 12 11 11 11 10 10 1 Low Similarity LS_110 

1 12 13 12 12 12 11 11 1 Low Similarity LS_111 

1 13 14 13 13 13 12 12 1 Low Similarity LS_112 

1 14 15 14 14 14 13 13 1 Low Similarity LS_113 

1 15 16 15 15 15 14 14 1 Low Similarity LS_114 

1 16 17 16 16 16 15 15 1 Low Similarity LS_115 

1 17 18 17 17 17 16 16 1 Low Similarity LS_116 

2 1 19 18 18 18 17 17 2 Low Similarity LS_201 

3 1 20 19 19 19 18 18 2 Low Similarity LS_202 

4 1 21 20 20 20 19 19 2 Low Similarity LS_203 

5 1 22 21 21 21 20 20 2 Low Similarity LS_204 

6 1 23 22 22 22 21 21 2 Low Similarity LS_205 

7 1 24 23 23 23 22 22 2 Low Similarity LS_206 

8 1 25 24 24 24 23 23 2 Low Similarity LS_207 

9 1 26 25 25 25 24 24 2 Low Similarity LS_208 

10 1 27 26 26 26 25 25 2 Low Similarity LS_209 

11 1 28 27 27 27 26 26 2 Low Similarity LS_210 

12 1 29 28 28 28 27 27 2 Low Similarity LS_211 

13 1 30 29 29 29 28 28 2 Low Similarity LS_212 

14 1 31 30 30 30 29 29 2 Low Similarity LS_213 

15 1 32 31 31 31 30 30 2 Low Similarity LS_214 

16 1 33 32 32 32 31 31 2 Low Similarity LS_215 

17 1 34 33 33 33 32 32 2 Low Similarity LS_216 

18 18 1 34 34 34 33 33 3 Low Similarity LS_301 

19 19 1 35 35 35 34 34 3 Low Similarity LS_302 

20 20 1 36 36 36 35 35 3 Low Similarity LS_303 
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21 21 1 37 37 37 36 36 3 Low Similarity LS_304 

22 22 1 38 38 38 37 37 3 Low Similarity LS_305 

23 23 1 39 39 39 38 38 3 Low Similarity LS_306 

24 24 1 40 40 40 39 39 3 Low Similarity LS_307 

25 25 1 41 41 41 40 40 3 Low Similarity LS_308 

26 26 1 42 42 42 41 41 3 Low Similarity LS_309 

27 27 1 43 43 43 42 42 3 Low Similarity LS_310 

28 28 1 44 44 44 43 43 3 Low Similarity LS_311 

29 29 1 45 45 45 44 44 3 Low Similarity LS_312 

30 30 1 46 46 46 45 45 3 Low Similarity LS_313 

31 31 1 47 47 47 46 46 3 Low Similarity LS_314 

32 32 1 48 48 48 47 47 3 Low Similarity LS_315 

33 33 1 49 49 49 48 48 3 Low Similarity LS_316 

1 2 2 2 4 3 2 2 1 High Similarity HS_101 

1 2 3 2 3 3 2 2 1 High Similarity HS_102 

1 2 4 3 2 4 2 2 1 High Similarity HS_103 

1 2 2 3 4 4 3 3 1 High Similarity HS_104 

1 3 3 4 3 2 3 3 1 High Similarity HS_105 

1 3 4 4 2 2 3 3 1 High Similarity HS_106 

1 3 2 2 4 4 4 4 1 High Similarity HS_107 

1 3 3 2 3 4 4 4 1 High Similarity HS_108 

1 4 4 3 2 3 4 4 1 High Similarity HS_109 

1 4 2 3 4 3 4 4 1 High Similarity HS_110 

1 4 3 4 3 3 4 4 1 High Similarity HS_111 

1 4 4 4 2 3 4 3 1 High Similarity HS_112 

1 4 2 2 4 2 2 2 1 High Similarity HS_113 

1 4 3 2 3 2 2 3 1 High Similarity HS_114 

1 4 4 3 2 2 2 2 1 High Similarity HS_115 

1 4 2 3 3 2 2 3 1 High Similarity HS_116 

2 1 2 2 4 3 2 2 2 High Similarity HS_201 

2 1 3 2 3 3 2 2 2 High Similarity HS_202 

2 1 4 3 2 4 2 2 2 High Similarity HS_203 

2 1 2 3 4 4 3 3 2 High Similarity HS_204 

3 1 3 4 3 2 3 3 2 High Similarity HS_205 

3 1 4 4 2 2 3 3 2 High Similarity HS_206 

3 1 2 2 4 4 4 4 2 High Similarity HS_207 

3 1 3 2 3 4 4 4 2 High Similarity HS_208 

4 1 4 3 2 3 4 4 2 High Similarity HS_209 

4 1 2 3 4 3 4 4 2 High Similarity HS_210 

4 1 3 4 3 3 4 4 2 High Similarity HS_211 
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4 1 4 4 2 3 4 3 2 High Similarity HS_212 

4 1 2 2 4 2 2 2 2 High Similarity HS_213 

4 1 3 2 3 2 2 3 2 High Similarity HS_214 

4 1 4 3 2 2 2 2 2 High Similarity HS_215 

4 1 2 3 3 2 2 3 2 High Similarity HS_216 

2 2 1 2 4 3 2 2 3 High Similarity HS_301 

2 3 1 2 3 3 2 2 3 High Similarity HS_302 

2 4 1 3 2 4 2 2 3 High Similarity HS_303 

2 2 1 3 4 4 3 3 3 High Similarity HS_304 

3 3 1 4 3 2 3 3 3 High Similarity HS_305 

3 4 1 4 2 2 3 3 3 High Similarity HS_306 

3 2 1 2 4 4 4 4 3 High Similarity HS_307 

3 3 1 2 3 4 4 4 3 High Similarity HS_308 

4 4 1 3 2 3 4 4 3 High Similarity HS_309 

4 2 1 3 4 3 4 4 3 High Similarity HS_310 

4 3 1 4 3 3 4 4 3 High Similarity HS_311 

4 4 1 4 2 3 4 3 3 High Similarity HS_312 

4 2 1 2 4 2 2 2 3 High Similarity HS_313 

4 3 1 2 3 2 2 3 3 High Similarity HS_314 

4 4 1 3 2 2 2 2 3 High Similarity HS_315 

4 2 1 3 3 2 2 3 3 High Similarity HS_316 

 

Note: Numbers represent a specific feature value on each dimension.  They represent 

independent feature values across Dimensions (i.e., a 2 on Dimension 1 is unrelated to a 2 on 

Dimension 2).  Each line represents a unique item.  
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Appendix B 

Category structure for the stimuli used in Experiment 3 of Carvalho and Goldstone (2017). 

Category Item Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5 

A 1 2 (1, 0.3) 1 (0.5, 0.7) 1 (0.5, 0.7) 1 (0.5, 0.7) 4 (0.5, 0.3) 

A 2 2 (1, 0.3) 1 (0.5, 0.7) 1 (0.5, 0.7) 1 (0.5, 0.7) 5 (0.5, 0.3) 

A 3 2 (1, 0.3) 2 (1, 0.3) 1 (0.5, 0.7) 1 (0.5, 0.7) 3 (0.5, 0.3) 
A 4 1 (0.5, 0.7) 2 (1, 0.3) 1 (0.5, 0.7) 1 (0.5, 0.7) 3 (0.5, 0.3) 

A 5 1 (0.5, 0.7) 2 (1, 0.3) 2 (1, 0.3) 1 (0.5, 0.7) 5 (0.5, 0.3) 

A 6 1 (0.5, 0.7) 1 (0.5, 0.7) 2 (1, 0.3) 1 (0.5, 0.7) 4 (0.5, 0.3) 

A 7 1 (0.5, 0.7) 1 (0.5, 0.7) 2 (1, 0.3) 2 (1, 0.3) 4 (0.5, 0.3) 

A 8 1 (0.5, 0.7) 1 (0.5, 0.7) 1 (0.5, 0.7) 2 (1, 0.3) 3 (0.5, 0.3) 

A 9 1 (0.5, 0.7) 1 (0.5, 0.7) 1 (0.5, 0.7) 2 (1, 0.3) 5 (0.5, 0.3) 

B 1 3 (1, 0.3) 1 (0.5, 0.7) 1 (0.5, 0.7) 1 (0.5, 0.7) 4 (0.5, 0.3) 

B 2 3 (1, 0.3) 1 (0.5, 0.7) 1 (0.5, 0.7) 1 (0.5, 0.7) 5 (0.5, 0.3) 

B 3 3 (1, 0.3) 3 (1, 0.3) 1 (0.5, 0.7) 1 (0.5, 0.7) 3 (0.5, 0.3) 

B 4 1 (0.5, 0.7) 3 (1, 0.3) 1 (0.5, 0.7) 1 (0.5, 0.7) 3 (0.5, 0.3) 

B 5 1 (0.5, 0.7) 3 (1, 0.3) 3 (1, 0.3) 1 (0.5, 0.7) 5 (0.5, 0.3) 
B 6 1 (0.5, 0.7) 1 (0.5, 0.7) 3 (1, 0.3) 1 (0.5, 0.7) 4 (0.5, 0.3) 

B 7 1 (0.5, 0.7) 1 (0.5, 0.7) 3 (1, 0.3) 3 (1, 0.3) 4 (0.5, 0.3) 

B 8 1 (0.5, 0.7) 1 (0.5, 0.7) 1 (0.5, 0.7) 3 (1, 0.3) 3 (0.5, 0.3) 

B 9 1 (0.5, 0.7) 1 (0.5, 0.7) 1 (0.5, 0.7) 3 (1, 0.3) 5 (0.5, 0.3) 

 

Note: Numbers represent a specific feature value on each dimension.  They represent 

independent feature values across Dimensions (i.e., a 2 on Dimension 1 is unrelated to a 2 on 

Dimension 2).  A value of 2 or 3 is always a discriminative feature, whereas a value of 1 is a 

characteristic feature.  Which part (eyes, legs, arms, antenna, mouth) corresponded to each 

dimension was counterbalanced across participants. Cue and Category validity values for each 

feature value are presented in parentheses (Cue Validity, Category Validity). 
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