
Concept-Annotated Examples for Library Comparison
Litao Yan Miryung Kim Björn Hartmann

Harvard University UC Los Angeles UC Berkeley
Cambridge, MA, USA Los Angeles, CA, USA Berkeley, CA, USA

litaoyan@g.harvard.edu miryung@cs.ucla.edu bjoern@berkeley.edu

Tianyi Zhang Elena L. Glassman
Purdue University Harvard University

West Lafayette, IN, USA Cambridge, MA, USA
tianyi@purdue.edu glassman@seas.harvard.edu

Figure 1: ParaLib, an interactive interface for comparing and selecting suitable libraries with snippets of code examples labeled
according to a concept hierarchy. ParaLib consists of three main components: (1) a hierarchy of concepts, e.g., interactions and
animations : selection, over which to compare the functionality of each library, (2) the distribution of the number of examples
from each library that contain code labeled with that concept, and (3) a side-by-side view of concept-labeled code examples
from up to three diferent libraries.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9320-1/22/10. . . $15.00
https://doi.org/10.1145/3526113.3545647

ABSTRACT
Programmers often rely on online resources—such as code exam-
ples, documentation, blogs, and Q&A forums—to compare similar
libraries and select the one most suitable for their own tasks and
contexts. However, this comparison task is often done in an ad-hoc
manner, which may result in suboptimal choices. Inspired by Ana-
logical Learning and Variation Theory, we hypothesize that render-
ing many concept-annotated code examples from diferent libraries
side-by-side can help programmers (1) develop a more comprehen-
sive understanding of the libraries’ similarities and distinctions and

https://doi.org/10.1145/3526113.3545647
mailto:permissions@acm.org
mailto:glassman@seas.harvard.edu
mailto:tianyi@purdue.edu

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Litao Yan, Miryung Kim, Björn Hartmann, Tianyi Zhang, and Elena L. Glassman

(2) make more robust, appropriate library selections. We designed a
novel interactive interface, ParaLib, and used it as a technical probe
to explore to what extent many side-by-side concepted-annotated
examples can facilitate the library comparison and selection pro-
cess. A within-subjects user study with 20 programmers shows that,
when using ParaLib, participants made more consistent, suitable
library selections and provided more comprehensive summaries of
libraries’ similarities and diferences.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Interactive systems and tools.

KEYWORDS
Sensemaking; programming support; visualization

ACM Reference Format:
Litao Yan, Miryung Kim, Björn Hartmann, Tianyi Zhang, and Elena L. Glass-
man. 2022. Concept-Annotated Examples for Library Comparison. In The
35th Annual ACM Symposium on User Interface Software and Technology
(UIST ’22), October 29-November 2, 2022, Bend, OR, USA. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3526113.3545647

1 INTRODUCTION
“TensorFlow or PyTorch?” Many beginner students of deep learning
ask this question when they frst start selecting a deep learning
library to build their own neural network models. This type of
selection task is common across many programming domains be-
cause of (1) programmers’ pervasive use of third-party libraries,
packages, frameworks, and APIs to reuse well-tested functionalities
and (2) the increasing number and complexity of these third-party
options. For example, there are now over 1.3 million packages on
NPM, a JavaScript package manager, many of which have alterna-
tive packages with similar functionality [36]. Given many choices,
it can be difcult for programmers to identify the library that is
most appropriate for their own tasks and contexts [32].

The current de facto way programmers compare libraries is to
search online and review documentation, blogs, and Q&A posts [9,
27, 50]. While there are several library selection websites, such as
SaaSHub [43] and LibHunt [7], they do not provide afordances
for direct comparison of libraries’ supported functionalities, learn-
ability, and usability. Liu et al. found that, when navigating online
resources, programmers often go back and forth and compare mul-
tiple information sources, which is tedious [28]. They also found
that this process is often non-linear and can become increasingly
challenging as programmers continue to explore the decision space.

There are a number of specially built systems to support program-
mers’ library comparisons and general software-related decision-
making. Several published techniques have been proposed to sup-
port library comparison [10, 12], but they are limited to non-technical
factors of libraries, e.g., popularity, release frequency, and issue
response rate. Unakite [28] supports programmers in collecting
and organizing information about decision-making trade-ofs in
software development, yet it requires users to manually build a
comparison table with pieces of information from Stack Overfow.

In this work, we propose a novel interface prototype, ParaLib,
that helps programmers compare and select libraries at the level of

concrete code examples. We focus on four key dimensions identi-
fed in Vargas et al.’s need-fnding study [27]: ft for purpose, size,
complexity, and usability. These dimensions are revealed to users
through the display of entire collections of concept-annotated code
examples collected for each library being considered, rendered in
parallel (Figure 1 ③), as well as empirical overviews, such as the
distribution over concepts identifed in the examples collected for
each library (Figure 1 ②).

Key interface design choices were derived from the design im-
plications of two theories of human concept learning: Variation
Theory (VT) [34] and Analogical Learning Theory (ALT) [13]. VT
suggests that many varying examples shown in parallel may help
programmers form more robust conceptualizations of the libraries’
similarities and diferences in syntax and functionality, and re-
quire less working memory during a decision-making task than
the sequential review of examples. ALT suggests that highlighting
analogical concepts, i.e., functional correspondences, across all ex-
amples from all libraries will help the programmer appreciate—and
see past—superfcial diferences.

Additional interactive features support sensemaking. For ex-
ample, selecting concepts at any level of the functional concept
hierarchy (Figure 1 ①) allows users to toggle the highlighting of
individual concepts in each example and flter the collection down
to a subset of examples that contain that concept. Collectively, these
features support many of the tasks in Shneiderman’s type by task
taxonomy (TTT) of information visualizations [45], i.e., overview,
flter, relate, and extract.

We designed and implemented ParaLib as a technical probe and
evaluated it in a within-subjects user study (N=20) to measure the
utility and usability of these theory-backed design choices. The
results show that, compared to participants using online search,
participants using ParaLib made more consistent, suitable library
selections, provided more comprehensive summaries of libraries’
similarities and diferences, and reported more confdence in their
choices. Since the example collections—nearly 50 examples per
library—were hand-curated and annotated by the authors, the con-
tribution of this paper is the interface design and the study of its
efectiveness. Reaping the benefts of a ParaLib-like interface in a
scalable way will require future investments in appropriate auto-
matic or crowdsourced concept labeling, which we hope this paper
motivates. In summary, our main contributions include:

• A theory-backed conceptualization of how large collections
of concept-annotated code examples presented in parallel
can support library comparison and assessment.

• The design and implementation of ParaLib, a novel interface
that concretizes this conceptualization.

• A within-subjects user study that demonstrates the value
of concept-annotated code examples, and motivates future
work that assists in curating and annotating these collec-
tions.

2 BACKGROUND
Modern theories of human concept learning, like Variation The-
ory [34] and Analogical Learning Theory [13], describe the condi-
tions under which humans form more accurate, robust conceptual-
izations. Variation Theory prescribes showing the human learner

https://doi.org/10.1145/3526113.3545647

Concept-Annotated Examples for Library Comparison UIST ’22, October 29-November 2, 2022, Bend, OR, USA

sets of many examples, presented simultaneously, in parallel, that
vary in certain ways, and are constant in others. This presentation
of variation is designed to, and has been empirically validated to,
help humans form more accurate conceptualizations of the object
of learning that the examples do (or do not) represent. Analogi-
cal Learning Theory, meanwhile, prescribes identifying analogous
structures or concepts across superfcially diferent examples, ide-
ally presented in parallel and aligned, so that the human viewer can
more easily perceive the underlying shared characteristics, schemas,
or mechanisms. The design of ParaLib is in part derived from these
theories, in that it simultaneously shows multiple examples from
each of the objects of learning (libraries under consideration) side-
by-side and highlights analogical correspondences.

3 RELATED WORK

3.1 Empirical Studies on Library Selection
Selecting the right library or API is a critical step before writing
code. Several studies have investigated factors to be considered
when selecting libraries [1, 10, 20, 35, 37]. Vargas et al. [27] sur-
veyed 115 developers and discovered 26 factors that infuence the
software libraries’ selection. They found the size and complexity, ft
for purpose, usability, and quality of match between a set of func-
tionalities and the desired features are crucial to decision making.
This motivates us to focus on four dimensions—ft for purpose, size,
complexity, and usability, which are not yet supported by prior
work for library selection.

Our focus on supporting library comparison at the level of con-
cepts corresponding to key functionalities is motivated by previous
studies on library and API learning [24, 33, 41, 42, 49]. Ko et al. [24]
found that lacking code examples and the difculty of determining
the supported functionality are two of the six major learning barri-
ers for programming interfaces. The API learning theory by Thayer
et al. [49] also highlighted the importance of domain concepts in
addition to code examples and usage patterns.

3.2 Tool Support for Library Comparison
Online library comparison websites such as StackShare [23] and
LibHunt [7] provide high-level summaries of libraries’ community
support, e.g., number of GitHub stars and forks, crowdsourced
pros and cons, the popularity of the libraries in helping developers
complete various tasks, and online reviews written by library users.
These online resources rarely include concrete code examples, or
may only include a couple of examples that may not address the
readers’ informational needs.

The research community has also proposed several automated
tools for library comparison [10, 12, 22]. LibComp is an IntelliJ plu-
gin that supports library comparison based on quantifable metrics
such as popularity, release frequency, and performance [12]. Huang
et al. [22] mine online discussions in Stack Overfow and clustered
comparative sentences about similar software technologies. Instead
of focusing on community support or quantifable metrics, ParaLib
provides a window into what the actual code looks like when using
each library, as well as what functionalities of the library are used
in practice.

Some prior work focuses on supporting users’ annotation and
evaluation of APIs and sometimes explicit comparison across mul-
tiple options. Adamite [21] provides many useful annotation fea-
tures for API documentations. Unakite [28] allows users to add
API-related information such as code snippets, user reviews, and tu-
torials to a table for comparison. Crystalline [30] automatically col-
lects and organizes information in a tabular structure for decision-
making when browsing the web. Strata [29] facilitates the reusing
of prior users’ programming knowledge. Unlike those tools, ParaLib
displays many code examples, with features to support comparison,
not the process of searching, collecting, and cleaning information.

While most of the existing comparison tools target API and
library users, API and library authors may beneft as well: Zhang et
al. [53] interviewed 23 API designers and found that they too want
to compare APIs—specifcally their own relative to alternatives
made by others—to (1) identify which functionalities are supported
by others but not theirs and (2) understand how well their own
supports features provided by others.

There are several comparison techniques designed for other
tasks and domains. Arab et al. developed HowToo for fnding and
sharing various programming strategies for the same problem [3].
Chang et al. [8] developed an interactive interface for customers to
construct a comparison table to compare Amazon products based
on user-chosen criteria and reviews. And additional tools have been
created for comparing two workfows side by side [25], website
design elements [26], and image manipulation tutorials [39].

3.3 Visualizing and Comparing Code Examples
Dif tools are a common utility in text editors and programming
IDEs to render the diferences between two or occasionally three
code fles, e.g., KDif3 [11]. Distinct from these tools, ParaLib renders
many tens of examples from each of multiple libraries and supports
programmers’ recognition of their similarities and diferences.

Several techniques are designed to visualize many code exam-
ples at scale, but they are designed for tasks other than library
comparison. OverCode [16] provides teachers with a high-level
view of thousands of programming solutions through visualizing
variations. Examplore [17] visualizes many code examples based
on a pre-defned API usage skeleton to show the distribution over
common and uncommon API usage choices in the wild for a single
API call. ExampleNet [52] uses call graph analysis of a corpus of
deep neural network source code to extract and visualize distribu-
tions over (1) neural network model architectures and (2) parameter
settings.

4 INTERFACE DESIGN AND OVERVIEW

4.1 Design Goals
We set out fve design goals for ParaLib, grounded in prior work on
programmers’ goals and information needs during library compari-
son:

• D1. Code Examples: Help users inspect a collection of con-
crete code examples when comparing multiple libraries [6,
44, 46, 52].

• D2. Functionalities: Help users compare the functionalities
(and their associated syntax) provided by each library [14,
27, 32, 51].

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Litao Yan, Miryung Kim, Björn Hartmann, Tianyi Zhang, and Elena L. Glassman

• D3. Usability: Help users assess how easy it might be to
use each library [2, 27, 35, 40].

• D4. Size: Help users anticipate the size of the code they need
to write when using each library [27, 38, 51].

• D5. Similarities, Diferences, and Typicality: Help users
discover the functional and syntactic similarities and difer-
ences between multiple libraries, as well as some notion of
respective typical usage from the distribution of code exam-
ples present in the collection [15–17, 52].

In other words, ParaLib is designed with the intention of making
it easier for users to assess, relative to the other candidate libraries,
what each library is capable of doing, what code leveraging each
library typically looks like and how complex it is, and how easily
they might be able to use it, as well as how customizable each
library appears to be through the variation they see across all the
examples available for each library.

4.2 Interface Overview
Based on these fve design goals, we designed and implemented
ParaLib, an interface backed by collections of hand-curated and
annotated examples from multiple similar but distinct libraries;
see Appendix A for details on how these example collections were
produced. The following interface design choices were used to
render these collections:

Many Parallel Code Examples. The code example view (Figure 1 ③)
shows many distinct examples from each library under consider-
ation, side-by-side with many examples from the other libraries.
This choice is drawn from Variation Theory [34], as explained in
Sections 1 and 2.

Users can scroll downward in any library column to reveal more
examples. Each example is a complete code fle, and above each ex-
ample there is a link to its source, providing details on demand [45].

Concept Annotations. Using concept labels with uniquely as-
signed colors, ParaLib highlights conceptually analogous code seg-
ments across all examples from all libraries with the same color. For
example, the snippets in all the examples annotated with Visualiza-
tion Types are highlighted with the color of the block containing
that concept label, i.e., green. The concept-to-color mapping is
shown in the side panel (Figure 1 ①). This choice draws on Analog-
ical Learning Theory [13] as elaborated on in Sections 1 and 2, and
also addresses the relate task in Schneiderman’s taxonomy [45].

Due to the large number of colors necessary for the many con-
cepts in the hierarchies designed for this technical probe, users can
hover over annotated code to disambiguate which concept the color
highlighting refers to. When users hover over the name of each
concept, a tooltip elaborates on what functionality it refers to.

Already, with these theory-derived design choices combined, users
can use concrete code examples (D1) to directly compare code com-
plexity and usability (D3, D4), functional and syntactic similarities
and variations (D2, D5), and get a sense of typically utilized func-
tion calls (D5) across multiple libraries at the same time. Additional
information visualization features further support users in their
sensemaking:

Concept Hierarchy. The concepts listed in the side panel (Fig-
ure 1 ①) are organized into a hierarchy. Each row contains a concept
identifed by the data curator as either frst-level (more general) or
subordinate (more specifc). The hierarchy groups related concepts.
For example, in Figure 1 ①, the concept of Data Processing is a frst-
level concept that contains fve second-level concepts: Data Format,
Import Data, Data Transformation, etc. In order to initially provide
users with a more general overview of the concept-annotated code,
ParaLib defaults to only highlighting the code snippets correspond-
ing to the more general frst-level concepts in the hierarchy.

Concept Distributions. Three columns of bars (Figure 1 ②) form
three distributions, one for each library under consideration, repre-
senting the number of code examples in each library’s collection
that include a snippet labeled with that concept. By comparing the
length of these bars across the row for each concept, users can
quickly see which functionalities are most commonly utilized in
each library, if at all. The absence of a bar can indicate that the
corresponding library may not support the concept (if the number
of examples in the collection is large enough). With these concepts
and corresponding distribution bars for each library, ParaLib pro-
vides an overview of possible functionalities and their typicality
across multiple libraries.

Example Length Distributions. The distribution over the number
of lines in each code example (top of Figure 1 ③) is rendered for
each library. The same axes are used for these charts across all three
libraries rendered in ParaLib so that users can directly compare the
length of bars. When users traverse the code examples, the bars
corresponding to the code examples within view are highlighted.
Users can also click on any one of these bars to jump to the corre-
sponding example that the user wants to look at, which might be
particularly short or long.

Concept Selection. When a user selects one or more concepts by
clicking their associated check boxes (Figure 2 ①), ParaLib flters
out the code examples that do not include the selected concepts.
For example, if a user wants to fnd examples that support both
visualizing a line chart and adding an animation, she can click
the check boxes for the concepts corresponding to line charts and
animations.

As illustrated in Figure 2, in addition to fltering the collection
of examples shown, other components of ParaLib also update when
a user selects a concept. After a concept is selected, the distribution
bars have two colors—the bars in dark gray represent the number of
code examples after fltering, while the longer super-imposed light
gray bars show the original number of examples in the collection
prior to fltering (Figure 2 ④). If the user selects a second-level
concept, the lines of code annotated with that second-level concept
will change color from the frst-level concept color to the subor-
dinate second-level concept color (Figure 2 ③). The distribution
over example lengths updates to refect which examples are left
(Figure 2 ②).

Revealing Additional Within- and Across-Library Correspondences
Between Examples. Two additional buttons are intended to help
users (1) focus on functionalities they most care about and (2)
more easily see possible additional connections across libraries, be-
yond the concept annotations. The “Only Show Highlights” button,

Concept-Annotated Examples for Library Comparison UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 2: After clicking on the Geo Maps concept (1a → 1b), ParaLib fltered out examples that do not contain Geo Maps func-
tionalities. As a result, three components updated: example-length-representing bars corresponding to fltered examples were
grayed out (2a → 2b); the color of code snippets annotated with the concept in the concept hierarchy changed from green,
the color associated with their top-level concept annotation Visualization Types, to blue, the color associated with the more
specifc, selected second-level concept within Visualization Types: Geo Maps (3a → 3b); and the distributions over concepts
represented in the remaining examples updated too (4a → 4b).

shown most clearly in Figure 3 (1a-b), enables users to hide all unla-
beled lines of code. With this view (Figure 3 (2a-b)), users hide code
unrelated to the concepts they have chosen to focus on through de-
fault settings or explicit selections. The “Show Common Substrings
Across Libraries” button, shown in Figure 3 (3a-b), increases the
saliency of substrings that exist in multiple code examples from
more than two libraries. Specifcally, ParaLib bolds automatically
identifed similar function and variable names that are used by
multiple libraries. For example, after checking the “lemmatization”

concept, the substring lemma is shown in bold wherever it occurs
in examples for all three libraries, shown in Figure 3 (4a-b).

4.3 Technical Probe Caveats
The hierarchy is currently designed by hand, in this case by the
authors, and it is a function of the domain in which libraries are
being compared. The method for constructing this hierarchy and
the evaluation of its quality or how that quality impacts the user
experience are beyond the scope of this work.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Litao Yan, Miryung Kim, Björn Hartmann, Tianyi Zhang, and Elena L. Glassman

Figure 3: Looking at multiple libraries’ code examples related to the lemmatization concept: after checking Only Show
Highlights button (1a → 1b), unrelated code was hidden (2a → 2b). After checking Show Common Substrings Across Libraries
button (3a → 3b), the substring lemma was bolded in many examples across the two libraries shown (4a → 4b).

Similarly, the information carried by the relative lengths of the
distributions bars is assumed to scale with the quantity of the ex-
amples collected for each library, and the quality of the sampling
method. For the purposes of evaluating the design choices imple-
mented in ParaLib, we hand-created example collections of nearly
50 examples per library, as described in Appendix A.

5 USAGE SCENARIO
Jane, a software developer with access to ParaLib, is looking to vi-
sualize COVID-19 data in a treemap, but has not settled on a visual-
ization library to use yet. She decides to consider D3.js, Chart.js,
and Recharts, and ParaLib is loaded with concept-annotated ex-
ample collections for each library.

Right away, Jane observes some interesting diferences between
libraries. Compared with Chart.js, which has a JSON-like format,
D3.js looks more like a function-call-based library. Recharts has
a syntax that is unlike anything else she has ever seen. By looking
at the concept distributions, Jane can see at a glance which func-
tionalities are more commonly used within each library. From these
distribution bars, Jane also sees that, given the selection of examples
in the corpus, D3.js supports the most functionalities, Chart.js
only supports some common visualization types and functionalities,
and Recharts is in between. Now, Jane gets a sense of the expres-
siveness of each library that’s typically used in practice. She then
sees that the distribution bar corresponding to the Treemapping
concept in Chart.js is empty, which means that developers may
not often use Chart.js to develop treemaps, or it may even be

impossible because it is unsupported. Based on this, she decides to
eliminate Chart.js from consideration for now.

After inspecting the lower-level concepts under the Visualization
Types concept, Jane fnds some visualization types she is unfamiliar
with. By hovering over each of them, a tooltip shows a more detailed
explanation of what it refers to. After reading these explanations,
Jane is still most interested in making a treemap.

When Jane clicks on Treemapping, code examples that do not
include Treemapping are fltered out of view, and the Treemap-
ping-specifc snippets of code change from the higher-level concept
label’s color, i.e., the color of Visualization Types, to match the color
of the Treemapping concept, making it easier for her to visually
pick out the snippets of code associated with the selected concept
within the remaining examples.

Within this subset of examples, Jane wants to compare how
she perceives each library’s relative code complexity and potential
usability. Looking across each library’s example length distribu-
tions, Jane notices that the code examples for D3.js are typically
longer than the other two libraries, though, at the long end of the
distributions, Chart.js appears to catch up in length, for imple-
menting non-trivial customizations. To reduce the visual noise of
less relevant code, Jane checks the “Only Show Code Highlights”
button, so ParaLib hides the unannotated lines of code, leaving
just the concept-annotated code, which remains highlighted in
concept-specifc colors.

https://Chart.js
https://Chart.js
https://Chart.js
https://Chart.js
https://Chart.js
https://Chart.js
https://Chart.js

Concept-Annotated Examples for Library Comparison UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Since Jane fnds the syntax of Recharts unfamiliar and difcult
to parse, she eliminates it as well, selecting the more verbose but cus-
tomizable D3.js to implement her treemap visualization of COVID-
19 data. She scrolls down the collection of concept-annotated D3.js
examples, seeing how there are recurring patterns in the sequence
of concepts instantiated in each example, and the variety in which
each concept is instantiated. This gives her a sense of the general
structure that her code is likely to take, and what individual por-
tions of it might look like, as she leaves ParaLib to write her own
code.

6 USER STUDY
We conducted a within-subjects user study with 20 participants in
order to evaluate ParaLib’s efectiveness, i.e., how well it supports
users’ library comparison and selection processes. We hoped to
answer the following questions:

• What kinds of value does the concept hierarchy ofer for com-
paring and selecting suitable libraries?

• How do concept-annotated code examples help programmers
anticipate the complexity of code they are going to write with
each library?

• In what ways do concept hierarchies and code examples help
programmers develop useful insights?

• What is the user experience of using ParaLib to compare li-
braries like?

6.1 Procedure
We designed two library comparison tasks: one for the domain of
Visualization and the other for Natural Language Processing (NLP).
In the Visualization domain, we selected three JavaScript libraries,
D3.js [5], Chart.js [47], and Recharts [48], for participants to
compare. In the NLP domain, we selected three Python libraries for
participants to compare: NLTK [4], TextBlob [31], and spaCy [19].

Within each domain, the library comparison task included three
components: First, ranking each library along fve independent
dimensions, i.e., (1) ft for purpose, (2) code size, (3) code complexity,
(4) usability, and (5) appropriateness for a specifc scenario. Second,
listing the libraries’ similarities and diferences. Third, ranking
their preference for using each library for a particular hypothetical
scenario. See Appendix B for the exact wording of each component.

There were two conditions in which participants performed
the library comparison task. In the control condition, participants
completed the task using online search, i.e., any and all online
resources, such as tutorials, blogs, Stack Overfow Q&A, and each
library’s ofcial documentation. In the experimental condition, they
were only allowed to use ParaLib to compare libraries. Prior to
attempting to compare libraries in the experimental condition, every
participant watched a fve-minute tutorial video about ParaLib, and
then had fve minutes to interact with and familiarize themselves
with ParaLib.

The entire study took about an hour. Each participant was given
20 minutes to compare each set of domain-specifc libraries. As
a within-subjects lab study, each participant compared both sets
of libraries over the course of their lab session, completing the
comparison task in one domain just using ParaLib and in another

domain just using online search. Both the order of domains and
conditions were counterbalanced.

After comparing each set of libraries, participants completed a
questionnaire to record their refections on their experience in the
assigned condition. As part of the post-task survey, participants
were asked to answer fve NASA Task Load Index questions [18]
to rate the cognitive load of the assigned task. After fnishing both
tasks, participants were asked to fll out another survey to directly
compare the online search and ParaLib conditions.

6.2 Scenario Design
Based on real-world use cases, we created a library selection sce-
nario for each domain. We designed each scenario so that only
one library could meet all requirements. In the NLP domain, we
constructed a scenario about using a pre-trained neural network
model to classify tweets. The two requirements, i.e., the library
should provide a pre-trained neural network and the library should
be able to help with text classifcation, are only supported by spaCy.
NLTK and TextBlob both include some important machine learn-
ing techniques, but neither provide a pre-trained neural network
model. For the second requirement, all three libraries support text
classifcation.

In the visualization domain, we describe a scenario for visu-
alizing COVID-19 data on a map with two requirements: (1) the
library has the ability to flter data and (2) the library supports
geo-maps without the use of additional plugins. Given these con-
straints, D3.js is the unambiguous best choice because Chart.js
does not support geo-maps and Recharts requires external plugins
to produce geo-maps.

6.3 Participants
We recruited 20 participants (11 male, 9 female) from three partici-
pant pools: Eight participants were recruited from Reddit’s r/learn-
python and r/learnjavascript forums. Nine participants were re-
cruited via the CS graduate mailing list at Harvard University, and
3 were recruited via the CS graduate mailing list at Purdue Uni-
versity. All of the participants were over 18 years old and fuent in
English.

Participants had a range of prior experience in both Python
(µ = 3.95, σ = 1.00, on a 6-point Likert scale) and JavaScript (µ =
1.90, σ = 1.71, on a 6-point Likert scale). Participants ranged from
having one year to over fve years of experience programming.

In order to capture the infuence of participants’ previous expe-
rience in each domain on the task results, we asked participants
about their profciency in both the visualization and NLP domains.
In the data visualization domain, 40% indicated they had less than
one year of experience, 50% had two-to-fve years of experience,
and 5% had over fve years of experience. In the NLP domain, the
majority of participants (11 out of 20) had learned NLP in less than
one year, fve participants had two-to-fve years of experience, and
one had more than fve years of experience in the NLP domain.

Participants’ prior library knowledge may infuence their f-
nal library selection. Therefore, we asked about their familiarity
with each library (D3.js, Chart.js, and Recharts in the visu-
alization domain, and NLTK, TextBlob, and spaCy in NLP) on a
6-point Likert scale. They have various backgrounds in using the

https://Chart.js
https://Chart.js
https://Chart.js

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Litao Yan, Miryung Kim, Björn Hartmann, Tianyi Zhang, and Elena L. Glassman

P1

P2

P3

P4

P13

P14

P15

P16

P17

P18

P5

P6

P7

P8

P9

P10

P11

P12

P19

P20

Fit for Purpose Size Scenario Complexity Usability

1
0

9

NLTK TextBlob spaCy

2 2

6

9

1
0

NLTK TextBlob spaCy

7

3
2

0 0

10

NLTK TextBlob spaCy

3

1

6

1

5
4

NLTK TextBlob spaCy

3 3

6

2
3

5

NLTK TextBlob spaCy

2

5

7

ParaLib

Distribution
of Top

Choices

Online
Search

Figure 4: Twenty participants’ rankings of three NLP libraries (NLTK, TextBlob, and spaCy) for ft-for-purpose, code example
size, a given scenario, code complexity, and usability, using online search vs. ParaLib.

three visualization libraries (D3.js: µ = 1.35, σ = 1.79, Chart.js:
µ = 1.30, σ = 1.81, Recharts: µ = 0.95, σ = 1.70) and NLP libraries
(NLTK: µ = 1.45, σ = 1.88, TextBlob: µ = 1.10, σ = 1.89, spaCy:
µ = 1.55, σ = 2.09). In both domains, nearly half of the partici-
pants (9 out of 20) had no prior knowledge of using any of these
libraries. Four participants rated themselves as somewhat familiar
(2–3 on the Likert scale) with using at least one of the libraries in
the visualization domain and two in the NLP domain. From the 20
participants we recruited, 3 considered themselves experts (4-5 on
the Likert scale) in using at least one of the visualization libraries,
and 5 used one of the NLP libraries we mentioned above.

7 USER STUDY RESULTS

7.1 User Performance
7.1.1 Participants’ library rankings. Figures 4 and 5 show how par-
ticipants ranked the suitability of each library along fve dimensions.
The histograms show how many participants ranked each library
as their frst choice in each dimension. When using online search,
several participants could not make a decision about which library

was better in certain dimensions. These are depicted as two-way or
three-way ties in white boxes.

In both domains, participants made more consistent library se-
lections when using ParaLib than when using online search. As
shown in Figure 4, in the NLP domain, when participants were
using ParaLib, 9 out of 10 participants ranked spaCy as the top
choice in terms of ft for purpose, 9 out of 10 ranked NLTK as the
top choice in terms of code example size, and all 10 participants
ranked spaCy as the top choice for the given scenario. Participants’
choices were less convergent in terms of complexity and usability.
The results are similar for the Visualization domain, as shown in
Figure 5.

Participants using online search made more divergent choices
and became indecisive when comparing libraries along some di-
mensions. In the NLP domain, when using online search, only 6
participants ranked spaCy as the top choice in terms of ft for pur-
pose, 2 participants chose NTLK, and 2 chose TextBlob. Similar
divergences existed along the other four dimensions. In particular,
4 out of 10 participants could not decide which library was better
in at least one dimension when using online search. By contrast,
none of them became indecisive when using ParaLib. Compared

https://Chart.js

Concept-Annotated Examples for Library Comparison UIST ’22, October 29-November 2, 2022, Bend, OR, USA

P5

P6

P7

P8

P9

P10

P11

P12

P19

P20

P1

P2

P3

P4

P13

P14

P15

P16

P17

P18

Fit for Purpose Size Scenario Complexity Usability

9

0
1

D3.jsChart.jsRecharts

6

2 2

8

1 1

D3.jsChart.jsRecharts

7

0

3

10

0 0
D3.jsChart.jsRecharts

8

1 1

3
2

5

D3.jsChart.jsRecharts

4
3 3

6

1

3

D3.jsChart.jsRecharts

3

5

2

ParaLib

Distribution
of Top

Choices

Online
Search

Figure 5: Twenty participants’ rankings of three visualization libraries (D3.js, Chart.js, and Recharts) for ft-for-purpose, code
example size, a given scenario, code complexity, and usability, using online search vs. ParaLib.

with the NLP domain, fewer participants were indecisive in the
Visualization domain when using online search, but participants’
choices were still more divergent than when using ParaLib.

All 10 participants made the right choice of library for the scenar-
ios in both domains when using ParaLib. In contrast, 4 participants
made the wrong choice in the NLP domain and 2 participants made
the wrong choice in the Visualization domain when using online
search.

In the NLP and Visualization domains, there were 4 and 3 par-
ticipants, respectively, who were already familiar with one of the
three libraries in the set. These participants’ library selections in-
dicated some correlation between their prior knowledge and their
fnal choice. For example, P7, who rated himself as an expert (5
on a 6-point Likert scale) in spaCy, also ranked spaCy as the least
complex and easiest-to-use library when using online search. P18,
who rated herself as an expert in D3.js, also ranked D3.js as the
easiest-to-use library when using online search. However, with-
out an adequate sample size, we cannot safely draw a conclusion
about the relationship between users’ prior experience and library
selection preferences. We did notice that when using ParaLib, there
was no discernible diference in responses between experienced

participants (4 or 5 on a 6-point Likert scale) with prior knowledge
of at least one library in each domain and participants with much
more limited experience (0 or 1 on a 6-point Likert scale).

7.1.2 Number of code examples inspected during comparison. By
analyzing the study recordings, we manually counted the number
of code examples participants inspected in each condition. In both
conditions, an example was counted as inspected when participants
thought out loud about a code example or selected and highlighted
some lines of code when browsing the examples. As results show in
Table 1, participants inspected 3 times more examples when using
ParaLib than when using online search.

7.1.3 Participants’ responses to the similarities and diferences of
libraries. As part of the post-task questionnaire, participants were
asked two questions, i.e., (1) describe the similarities and (2) de-
scribe the diferences, between the set of libraries in each domain.
First, we analyzed (1) the length of participants’ responses, in char-
acters, with and without counting characters in any code examples
within their responses and (2) the number of code examples in
their responses. Without removing code examples from our charac-
ter counts, participants wrote nearly three times longer responses

https://Chart.js

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Litao Yan, Miryung Kim, Björn Hartmann, Tianyi Zhang, and Elena L. Glassman

NLTK TextBlob spaCy D3.js Chart.js Recharts
Min Median Max Min Median Max Min Median Max Min Median Max Min Median Max Min Median Max

ParaLib 5 9.5 15 4 8.5 14 7 10 16 7 11.5 15 5 8 14 7 9.5 17
Online Search 0 3.5 6 0 2 6 1 2 8 0 3 8 0 3 5 1 3 5

Table 1: Statistics about the number of investigated examples using online search vs. ParaLib.

Specifc Human / Social Too General Technical Factors Incorrect Functionality Factors or Vague
Online Online Online Online Online

ParaLib ParaLib ParaLib ParaLib ParaLib Search Search Search Search Search
Min 1 0 1 0 0 0 0 0 0 0
Median 1 0 3.5 0 0 0 0 0.5 0 0

Similarities Max 5 4 9 5 0 0 1 2 0 1
Mean(µ) 1.7 0.7 4.2 0.6 0 0 0.1 0.6 0 0.2

Viz
∆µ 1 3.6* 0 -0.5 -0.2
Min 1 0 0 0 0 0 0 0 0 0
Median 4.5 1 2.5 0 0 0 0 0 0 0

Diferences Max 10 2 4 1 0 2 0 0 0 0
Mean(µ) 4.7 1.3 2.4 0.4 0 0.4 0 0 0 0
∆µ 3.4* 2* -0.4 0 0
Min 0 0 0 0 0 0 0 0 0 0
Median 1.5 0 3.5 1 0 0 0 0.5 0 0

Similarities Max 4 3 6 5 0 0 1 3 0 1
Mean(µ) 1.6 0.7 3.5 0.3 0 0 0.1 0.7 0 0.1

NLP
∆µ 0.9 3.2* 0 -0.6 -0.1
Min 2 0 0 0 0 0 0 0 0 0
Median 3 2.5 3 1 0 0 0 0 0 0

Diferences Max 6 5 12 2 0 2 0 2 0 0
Mean(µ) 3.3 2.1 4.1 0.7 0 0.4 0 0.2 0 0
∆µ 1.2 3.4* -0.4 -0.2 0

Table 2: Statistics about the number of insights shared by participants in diferent categories when using ParaLib vs. online
search. * indicates statistical signifcance (paired t-test: p < 0.05).

when using ParaLib than when using online search in both domains.
The mean diferences in the number of characters between partici-
pants’ responses in the control and experimental conditions were
statistically signifcant (paired t-test: p-values=0.02398, 0.00970,
0.04367, 0.002494 for both questions in both domains). Even after
removing the code examples included in participants’ responses,
the mean diferences in response length were still statistically sig-
nifcant (paired t-test: p-value=0.02983, 0.00911, 0.0014, 0.0022).

The mean diferences in the number of examples participants
provided between the control and experimental conditions were
not statistically signifcant (paired t-test: p-value=0.16048, 0.06797,
0.33057, 0.16048 for both questions in both domains). This result
suggests that participants tended to share more textual description
of insights about library similarity and diferences when using
ParaLib compared with when using online search. This could be
attributed to the many concept-annotated code examples shown in
ParaLib, through which participants could gather concrete details
such as library functionality, syntax, and coding style, and assess
potential learnability for them. For example, P5 wrote a detailed
comment on the syntax of three visualization libraries: “Rechart is
HTML-based (JSX-based), Chart is CSS-based, and D3 is attribute-
based. I personally fnd Rechart’s HTML base very clunky and difcult
to keep track of, as HTML syntax can be needlessly pedantic with its
various types of brackets (e.g., “{}”, “<>”). While D3’s attribute-based

characteristics are initially of-putting, it is a very clean organization
of the parent->child structure—more than the other 2 libraries.”

To better understand the content and quality of participants’ re-
sponses, the frst author manually coded the participants’ responses
and categorized their insights into fve categories:

(1) Technical Factors Comments on the technical properties
of libraries such as fexibility, learnability, syntax, etc., not
including comments on specifc functionalities, which has
its own category.

(2) Specifc Functionality Comments on specifc functionali-
ties supported by a library (or not).

(3) Human/Social Factors Comments on human or social fac-
tors, e.g., library popularity, perceived trustworthiness of
developers, other users’ sentiments, etc.

(4) Too General or Vague Comments on some generally known
facts about a library, e.g., “both libraries are written in Python,”
or comments that are too vague to understand.

(5) Incorrect Comments that contradict statements in ofcial
documentation, tutorials, blogs, etc.

Table 2 shows the distribution of diferent kinds of insights
shared by participants when using ParaLib vs. online search. When
using ParaLib, participants pointed out signifcantly more specifc
functionalities supported or unsupported by a certain library in
their responses (paired t-test: p < 0.05). Participants also shared

https://Chart.js

Concept-Annotated Examples for Library Comparison UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 6: When using ParaLib: (a) Participants felt more confdent in their library selections and comparisons. (b) Participants
felt less mental demand, hurry, efort, and frustration during the comparison tasks in both domains, and they reported im-
proved performance when using ParaLib, since a lower score in this fgure corresponds to a better perceived performance
(paired t-test: p − value < 0.0001 in all categories).

more insights about technical factors and fewer insights about hu-
man factors when using ParaLib, though the diferences were mostly
not signifcant. Participants shared fewer general or vague insights
and made slightly fewer incorrect comments when using ParaLib,
though these diferences were not signifcant either. These results
suggest that rendering concept-annotated examples in parallel did
help programmers obtain a more comprehensive understanding of
supported functionalities in similar libraries.

7.2 User Confdence and Cognitive Load
Figure 6(a) shows participants’ confdence in their library selec-
tions and comparisons on a 7-point Likert scale. Visually, it is clear
that participants felt more confdence on average when using Par-
aLib than online search, and the median diference of 1.5 is statis-
tically signifcant (paired t-test: t=4.1991, df=19, p-value=0.0005).
Figure 6(b) shows participants’ ratings on the fve cognitive factors
of the NASA TLX questionnaire. Participants experienced signif-
cantly less mental demand, efort, hurry, and frustration when using
ParaLib instead of online search. Participants also thought they had
better performance (refected in the fgure as a lower score) when
using ParaLib. These diferences were all statistically signifcant
(paired t-test: p − value < 0.0001 in all categories).

Online search provided a less organized plethora of information,
with less support for sensemaking and integration than ParaLib.
P9 mentioned, “Using an online search gave me many options, ... I
felt that I didn’t have enough time to make a great judgment simply
because decision-making can be difcult with so many options.” P16
had a similar experience when using online search. He said, “It’s
not efcient since so much information will distract me. In most
cases, I can’t fnd a direct answer from an online search and I need
to integrate this information.” In contrast, P18 said, “I liked that
[ParaLib] provided comprehensive information on three libraries. As
it provided example code with the same view, it was easier for me to
understand their similarities and diferences.”

In the post-study survey, participants directly compared their
experiences of using online search and ParaLib (Figure 7). Since we
adjusted the post-study survey questions after completing the frst
3 studies, there are only 17 responses represented in this fgure. As
shown in Figure 7(a), 16 of these 17 participants found ParaLib more
useful than online search for comparing functionalities across multi-
ple libraries. In Figure 7(b), all 17 participants rated ParaLib easier to
use for comparing code examples across multiple libraries. P4 wrote,
“[ParaLib] gave a great visual interface to systematically summarize
and compare functionality across diferent libraries!” Among the 17
responses, 16 participants felt more confdent when using ParaLib
in library comparison (Figure 7(c)). Fifteen participants felt less
overwhelmed when comparing libraries using ParaLib compared
to using online search (Figure 7(d)). Sixteen participants also found
ParaLib a helpful resource (Figure 7(e)). They believed ParaLib was
not redundant even when online search is available (Figure 7(f)).

Some participants, rather than calling out the novel concept-
driven structure provided by ParaLib, ascribed at least some of its
value, implicitly, to the fact that it came pre-loaded with a large
number of examples that they appreciated and would otherwise
have had to go and collect themselves. For example, P19 said, “There
was an overwhelming amount of information (online). Often, I was not
able to flter out the necessary information. I was not able to go through
a large number of examples as they needed manual searching.”

7.3 Qualitative Feedback
The post-task survey of ParaLib asked participants to rate the use-
fulness of each feature in a 7-point Likert scale. Most participants
(19/20) rated the concept hierarchy useful or very useful. Partici-
pants mentioned that the concept hierarchy is easy-to-use, good
for summarization, detailed, and systematic for comparing multiple
libraries in a single view. P19 said, “I really liked the left panel of the
concept hierarchy. It was very detailed. The sub-types [second-level
concepts] under each category [frst-level concepts] covered a lot of
visualization aspects.” P17 mentioned, “It shows all the available

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Litao Yan, Miryung Kim, Björn Hartmann, Tianyi Zhang, and Elena L. Glassman

Figure 7: The distribution of participants’ ratings to three comparative questions about ParaLib vs. online search, as well as
their agreements to three statements about ParaLib. We adjusted the survey questions after completing 3 studies; therefore,
there are only 17 responses in this fgure.

features of each library in one organized table, which makes it easy
to fnd features.” Seventeen participants also rated the feature of
displaying code examples from multiple libraries side by side as
more helpful than overwhelming (6 or 7 on a 7-point Likert scale).
Other components, such as code examples annotated with concepts
(15/20) and highlighting common substrings across multiple code
examples (9/20), also received positive reviews. P16 commented,
“Highlights help me quickly fnd the position of the function and learn
how to use the function.”

Participants also commented on the challenges they faced when
comparing libraries with online search. Fifteen out of 20 participants

complained about the massive amount of information available on-
line, which made the comparison process difcult and overwhelm-
ing. P17 said, “So many resources pop up in the online search results
and it’s hard to fnd the one that I really want.” P20 mentioned, “A
lot of information cannot be read at one time. Too much information
will leave me unsure of how to judge.” Five out of 20 participants
pointed out that online search was time-consuming. Four partici-
pants said that the large amount of potentially misleading or not
quite comparable information that exists online was distracting.
P6 said, “It was time-consuming (when using online search). I didn’t
know if I had found the best info for comparison, because I didn’t feel
like an apples-to-apples comparison.” P4 added, “I feel that I might

Concept-Annotated Examples for Library Comparison UIST ’22, October 29-November 2, 2022, Bend, OR, USA

have overlooked signifcant diferences in the setup/context needed to
use the libraries.”

In both the post-task and post-study surveys, participants made
some suggestions to improve ParaLib. Six participants suggested
ParaLib include previous programmers’ comments, opinions, and
reviews. Four participants wanted to have more documentation
or tutorials about each library in ParaLib to help them better un-
derstand the functionalities and the API usages. Ten participants
wanted ParaLib to add more information and measurements to code
examples, such as the output of the examples (3/20), the meaning
of function calls (2/20), runtime (1/20), library history (1/20), and
installation (1/20). Five participants suggested making the mapping
from concepts to colors more visually distinguishable.

In the post-study survey, we also asked how their library com-
parison process would change if they had access to ParaLib in the
future. Thirteen participants frmly expressed their willingness to
use ParaLib in their future library comparison and selection pro-
cesses. Among them, 5 people said they plan to use ParaLib in
conjunction with an online search to compare libraries. P9 said, “I’d
be able to access code samples and compare them objectively through
this site if [ParaLib] had a greater number of samples ... I’d still use
it as a supplement to internet searching.” P3 said, “I will probably
frst do an online search, and then look at ParaLib to confrm my
impression from online search.”

8 DISCUSSION
This data suggests that ParaLib clearly fulflled four of the fve
interface design goals. Specifcally, participants were able to extract
usable information from the collection of code examples in ParaLib
(D1). With this information, participants could assess the relative
volume of code necessary to use each library (D4) and the functional
and syntactic similarities and diferences between libraries (D2, D5).
As a result, relative to using existing online resources, participants
found it easier to compare and select suitable libraries. They also
made more consistent, appropriate library selections, had more
insights about specifc functionalities, and felt more confdent about
their decisions.

The study results relevant to ParaLib’s utility for usability as-
sessment, e.g., assessing how complex or unfamiliar the syntax
is, (D3) is less clear, but promising. As mentioned in Section 7.1.1,
participants did not readily converge when ranking the complexity
and usability of library code examples using either online search
or ParaLib. This may be due to participants’ prior knowledge and
particular preferences. If this is true, this is a positive result: we
believe a tool like ParaLib should support programmers in making
their own personalized assessments along these dimensions. In the
open-ended questions on the similarities and diferences between
the three libraries, half of the participants mentioned that they
preferred one library over the other because they felt the library’s
syntax was more similar to a library they were familiar with. In
other words, when confronted with an unfamiliar language or li-
brary, they will try to understand it by associating it with a language
or library they have used before. For example, many participants
mentioned that the syntax of Recharts is similar to HTML/XML/JSX,
which they either did or did not have comfort with. In the NLP
domain, P1 mentioned the usage of spaCy to train a classifer was

similar to training a neural network in TensorFlow. However, the
transfer of familiar knowledge to unfamiliar domains may lead to
two opposite consequences. On one hand, the knowledge transfer
may help them understand the new concept faster by connecting
similar familiar syntax, function names, or usages to the unfamiliar
code examples. On the other hand, participants may misinterpret
information and deviate more from the correct meaning of the
new concept on further exploration. For example, after fnding the
similarities between the three libraries’ examples in adjusting the
chart’s size, P14 mistakenly claimed that all three visualization
libraries support canvas.

Future studies with diferent baselines would be necessary to
disambiguate the relative impact of key features of ParaLib’s design,
e.g., the size of each library’s example collection, showing examples
from multiple libraries in parallel, annotating code snippets within
each example with concepts from a unifed concept hierarchy, and
showing the distribution over concepts represented in examples in
each library’s collection. However, the data suggests that, together,
they enabled programmers to explore and compare libraries both
at a high level, e.g., the general structure and conceptual compo-
nents of code examples, and a more granular low level, e.g., syntax.
And given that many of these key features were possible design
implications derived from theories of human concept learning, the
success of ParaLib suggests that these theories may be a fruitful
source of design inspiration for future designers in this domain.

We described participants’ future library selection workfows
with ParaLib, and expanding on their answers, we can imagine
future tools like ParaLib supplementing existing online resources and
helping programmers conduct initial investigations, make sense of
how one or more libraries are typically used in the wild, compare
and select libraries, and identify good examples of a chosen library’s
usage to adapt to their own purposes or program by bricolage—by
remixing concept-annotated snippets from a set of chosen examples.

9 LIMITATIONS AND FUTURE WORK
There are a number of limitations to what we know so far, given
that ParaLib is a technical probe and only one of multiple possible
baselines was used in the user study. For example, since there was
one concept hierarchy per domain, created by the authors, our
work does not capture how the quality of the concept hierarchy
and mapping of concepts to code snippets afects the benefts that
ParaLib has to ofer.

In our user study, we chose online search as the baseline, but
other baselines could have been used to learn diferent information
about what does and does not help programmers compare libraries.
These alternative baselines include pre-existing comparison tools
like Unakite, Crystalline, or Strata; specifc library comparison
websites such as StackShare, SassHub, LibHunt; and access to the
same collection of examples that were loaded into ParaLib but
without any of the key features like concept annotations. The online
search baseline does include library comparison websites as well
as other sources of complementary information such as ofcial
documentation and blogs; during the user study, an average of
three library comparison websites (median: 1.5) appeared on the
frst page of participants’ Google search results. This indicates
that one alternative baseline, i.e., library comparison websites, was

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Litao Yan, Miryung Kim, Björn Hartmann, Tianyi Zhang, and Elena L. Glassman

easily accessible to participants within the baseline we chose. Even
so, because we chose a less restricted baseline—online search—we
cannot necessarily attribute participants’ success to key features
such as the concept annotations themselves.

ParaLib does not address the need to consider and compare
human factors, e.g., the popularity of a library for a specifc task
and other programmers’ reviews. ParaLib also does not address
the need to compare other technical factors, such as maintenance
expectations, maturity, stability, and the quality of documentation.
Online search can support the comparison of these many other
factors—until there are specialized tools to support one or more of
these remaining factors more systematically.

Finally, the current process of creating concept hierarchies and
concept-annotated example collections is manual, as described in
Appendix A. Given the results of the study, we suggest the develop-
ment of more automated authoring tools for collecting and labeling
code examples with concepts. We believe there are two major fea-
tures worth including in such an authoring tool. First, it should
help domain experts create a (possibly evolving) concept hierarchy
based on their prior knowledge and existing code examples. Second,
it should accelerate the tedious process of annotating code with the
concepts in the hierarchy. One possible method would be to ask
expert(s) to hand-label a small number of examples, from which
the authoring tool could identify similar code patterns, function
calls, and comments in yet-to-be annotated examples using machine
learning, NLP, or program synthesis methods. The expert(s) could
then iteratively review and approve or modify pending propagated
concept annotations.

ACKNOWLEDGMENTS
We would like to thank the 20 anonymous participants in the user
study and anonymous reviewers for their valuable feedback. This
work was partially funded by NSF grants IIS-1955699, IIS-1955394,
and IIS-1956322.

REFERENCES
[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why do developers use trivial packages? an empirical case study
on npm. In Proceedings of the 2017 11th joint meeting on foundations of software
engineering. 385–395.

[2] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad
Shihab. 2017. Why Do Developers Use Trivial Packages? An Empirical Case
Study on Npm. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). Association for
Computing Machinery, New York, NY, USA, 385–395. https://doi.org/10.1145/
3106237.3106267

[3] Maryam Arab, Jenny Liang, Yang Yoo, Amy J Ko, and Thomas D LaToza. 2021.
HowToo: A Platform for Sharing, Finding, and Using Programming Strategies.
In 2021 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 1–9.

[4] Steven Bird, Edward Loper, Ewan Klein, and community. 2001. NLTK: Natural
Language Toolkit. https://www.nltk.org

[5] Mike Bostock, Jason Davies, Jefrey Heer, Vadim Ogievetsky, and community.
2011. D3.js - Data-Driven Documents. https://d3js.org

[6] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Boston, MA, USA) (CHI ’09). Association for
Computing Machinery, New York, NY, USA, 1589–1598. https://doi.org/10.1145/
1518701.1518944

[7] Stan Bright. 2014. LibHunt - Trending open-source projects and their alternatives.
https://www.libhunt.com

[8] Joseph Chee Chang, Nathan Hahn, and Aniket Kittur. 2020. Mesh: Scafolding
Comparison Tables for Online Decision Making. In Proceedings of the 33rd Annual

ACM Symposium on User Interface Software and Technology. 391–405.
[9] Chunyang Chen, Zhenchang Xing, and Yang Liu. 2019. What’s Spain’s Paris?

Mining Analogical Libraries from Q&A Discussions. Empirical Softw. Engg. 24, 3
(jun 2019), 1155–1194. https://doi.org/10.1007/s10664-018-9657-y

[10] Fernando López de la Mora and Sarah Nadi. 2018. An empirical study of metric-
based comparisons of software libraries. In Proceedings of the 14th International
Conference on Predictive Models and Data Analytics in Software Engineering. 22–31.

[11] Joachim Eibl. 2014. KDif3 - Homepage. http://kdif3.sourceforge.net
[12] Rehab El-Hajj and Sarah Nadi. 2020. LibComp: An IntelliJ Plugin for Comparing

Java Libraries. Association for Computing Machinery, New York, NY, USA,
1591–1595. https://doi.org/10.1145/3368089.3417922

[13] Dedre Gentner. 1987. Mechanisms of analogical learning. Technical Report. Illinois
Univ at Urbana-Champaign Dept of Computer Science.

[14] Andreas Gizas, Sotiris Christodoulou, and Theodore Papatheodorou. 2012. Com-
parative Evaluation of Javascript Frameworks. In Proceedings of the 21st In-
ternational Conference on World Wide Web (Lyon, France) (WWW ’12 Com-
panion). Association for Computing Machinery, New York, NY, USA, 513–514.
https://doi.org/10.1145/2187980.2188103

[15] Elena L. Glassman, Lyla Fischer, Jeremy Scott, and Robert C. Miller. 2015. Foobaz:
Variable Name Feedback for Student Code at Scale. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology (Charlotte, NC,
USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA,
609–617. https://doi.org/10.1145/2807442.2807495

[16] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller.
2015. OverCode: Visualizing variation in student solutions to programming
problems at scale. ACM Transactions on Computer-Human Interaction (TOCHI)
22, 2 (2015), 1–35.

[17] Elena L. Glassman, Tianyi Zhang, Björn Hartmann, and Miryung Kim. 2018.
Visualizing API usage examples at scale. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. 1–12.

[18] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of Empirical and Theoretical Research. In Human
Mental Workload, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances
in Psychology, Vol. 52. North-Holland, 139–183. https://doi.org/10.1016/S0166-
4115(08)62386-9

[19] Matthew Honnibal and community. 2016. spaCy: Industrial-Strength Natural
Language Processing in Python. https://spacy.io

[20] André Hora and Marco Tulio Valente. 2015. apiwave: Keeping track of API popu-
larity and migration. In 2015 IEEE international conference on software maintenance
and evolution (ICSME). IEEE, 321–323.

[21] Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shannon, Emma
Paterson, Kazi Jawad, Andrew Macvean, and Brad A Myers. 2022. Understanding
How Programmers Can Use Annotations on Documentation. In Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans,
LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA,
Article 69, 16 pages. https://doi.org/10.1145/3491102.3502095

[22] Yi Huang, Chunyang Chen, Zhenchang Xing, Tian Lin, and Yang Liu. 2018. Tell
Them Apart: Distilling Technology Diferences from Crowd-Scale Comparison
Discussions. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (Montpellier, France) (ASE 2018). Association for
Computing Machinery, New York, NY, USA, 214–224. https://doi.org/10.1145/
3238147.3238208

[23] StackShare Inc. 2014. D3.js vs Chart.js vs Recharts | What are the diferences?
https://stackshare.io/stackups/d3-vs-plotly-js

[24] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers in
End-User Programming Systems. In 2004 IEEE Symposium on Visual Languages -
Human Centric Computing. 199–206. https://doi.org/10.1109/VLHCC.2004.47

[25] Nicholas Kong, Tovi Grossman, Björn Hartmann, Maneesh Agrawala, and George
Fitzmaurice. 2012. Delta: a tool for representing and comparing workfows. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
1027–1036.

[26] Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres, Maxine Lim, Salman Ahmad,
Scott R. Klemmer, and Jerry O. Talton. 2013. Webzeitgeist: Design Mining the
Web. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Paris, France) (CHI ’13). Association for Computing Machinery, New
York, NY, USA, 3083–3092. https://doi.org/10.1145/2470654.2466420

[27] Enrique Larios Vargas, Maurício Aniche, Christoph Treude, Magiel Bruntink,
and Georgios Gousios. 2020. Selecting third-party libraries: The practitioners’
perspective. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
245–256.

[28] Michael Xieyang Liu, Jane Hsieh, Nathan Hahn, Angelina Zhou, Emily Deng,
Shaun Burley, Cynthia Taylor, Aniket Kittur, and Brad A Myers. 2019. Unakite:
Scafolding Developers’ Decision-Making Using the Web. In Proceedings of the
32nd Annual ACM Symposium on User Interface Software and Technology. 67–80.

[29] Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2021. To Reuse or Not
To Reuse? A Framework and System for Evaluating Summarized Knowledge.
Proc. ACM Hum.-Comput. Interact. 5, CSCW1, Article 166 (apr 2021), 35 pages.

https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/3106237.3106267
https://www.nltk.org
https://d3js.org
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/1518701.1518944
https://www.libhunt.com
https://doi.org/10.1007/s10664-018-9657-y
http://kdiff3.sourceforge.net
https://doi.org/10.1145/3368089.3417922
https://doi.org/10.1145/2187980.2188103
https://doi.org/10.1145/2807442.2807495
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://spacy.io
https://doi.org/10.1145/3491102.3502095
https://doi.org/10.1145/3238147.3238208
https://doi.org/10.1145/3238147.3238208
https://stackshare.io/stackups/d3-vs-plotly-js
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1145/2470654.2466420

Concept-Annotated Examples for Library Comparison UIST ’22, October 29-November 2, 2022, Bend, OR, USA

https://doi.org/10.1145/3449240
[30] Michael Xieyang Liu, Aniket Kittur, and Brad A. Myers. 2022. Crystalline: Low-

ering the Cost for Developers to Collect and Organize Information for Decision
Making. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery,
New York, NY, USA, Article 68, 16 pages. https://doi.org/10.1145/3491102.3501968

[31] Steven Loria and community. 2013. TextBlob: Simplifed Text Processing. https:
//textblob.readthedocs.io/en/dev

[32] Fernando López de la Mora and Sarah Nadi. 2018. Which Library Should I
Use?: A Metric-Based Comparison of Software Libraries. In 2018 IEEE/ACM
40th International Conference on Software Engineering: New Ideas and Emerging
Technologies Results (ICSE-NIER). 37–40.

[33] Walid Maalej and Martin P. Robillard. 2013. Patterns of Knowledge in API
Reference Documentation. IEEE Transactions on Software Engineering 39, 9 (2013),
1264–1282. https://doi.org/10.1109/TSE.2013.12

[34] Ference Marton. 2014. Necessary conditions of learning. Routledge.
[35] Brad A. Myers and Jefrey Stylos. 2016. Improving API Usability. Commun. ACM

59, 6 (may 2016), 62–69. https://doi.org/10.1145/2896587
[36] Ahmad Nassri. 2020. So long, and thanks for all the packages! https://blog.npmjs.

org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html
[37] Amantia Pano, Daniel Graziotin, and Pekka Abrahamsson. 2016. What leads

developers towards the choice of a JavaScript framework? arXiv preprint
arXiv:1605.04303 (2016).

[38] Amantia Pano, Daniel Graziotin, and P. Abrahamsson. 2016. What leads de-
velopers towards the choice of a JavaScript framework? ArXiv abs/1605.04303
(2016).

[39] Amy Pavel, Floraine Berthouzoz, Björn Hartmann, and Maneesh Agrawala. 2013.
Browsing and analyzing the command-level structure of large collections of
image manipulation tutorials. Citeseer, Tech. Rep. (2013).

[40] Marco Piccioni, Carlo A. Furia, and Bertrand Meyer. 2013. An empirical study of
API usability. In 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. IEEE, 5–14.

[41] Martin P. Robillard. 2009. What makes APIs hard to learn? Answers from devel-
opers. IEEE software 26, 6 (2009), 27–34.

[42] Martin P. Robillard and Robert DeLine. 2011. A feld study of API learning
obstacles. Empirical Software Engineering 16, 6 (2011), 703–732.

[43] SaaSHub. 2014. D3.js VS Chart.js - compare diferences & reviews? https://www.
saashub.com/compare-d3-js-vs-chart-js

[44] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. How Developers
Search for Code: A Case Study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association
for Computing Machinery, New York, NY, USA, 191–201. https://doi.org/10.
1145/2786805.2786855

[45] B. Shneiderman. 1996. The eyes have it: a task by data type taxonomy for infor-
mation visualizations. In Proceedings 1996 IEEE Symposium on Visual Languages.
336–343. https://doi.org/10.1109/VL.1996.545307

[46] Susan Elliott Sim, Medha Umarji, Sukanya Ratanotayanon, and Cristina V. Lopes.
2011. How Well Do Search Engines Support Code Retrieval on the Web? ACM
Trans. Softw. Eng. Methodol. 21, 1, Article 4 (dec 2011), 25 pages. https://doi.org/
10.1145/2063239.2063243

[47] Chart.js Team and Contributors. 2014. Chart.js | Open source HTML5 Charts for
your website. https://www.chartjs.org

[48] Recharts Team. 2018. Recharts | A composable charting library built on React
components. https://recharts.org

[49] Kyle Thayer, Sarah E. Chasins, and Amy J. Ko. 2021. A Theory of Robust API
Knowledge. ACM Trans. Comput. Educ. 21, 1, Article 8 (jan 2021), 32 pages.
https://doi.org/10.1145/3444945

[50] Gias Uddin, Olga Baysal, Latifa Guerrouj, and Foutse Khomh. 2021. Understand-
ing How and Why Developers Seek and Analyze API-Related Opinions. IEEE
Transactions on Software Engineering 47, 4 (2021), 694–735. https://doi.org/10.
1109/TSE.2019.2903039

[51] Bowen Xu, Le An, Ferdian Thung, Foutse Khomh, and David Lo. 2020. Why
Reinventing the Wheels? An Empirical Study on Library Reuse and Re-
Implementation. Empirical Softw. Engg. 25, 1 (jan 2020), 755–789. https:
//doi.org/10.1007/s10664-019-09771-0

[52] Litao Yan, Elena L. Glassman, and Tianyi Zhang. 2021. Visualizing Examples of
Deep Neural Networks at Scale. Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3411764.3445654

[53] Tianyi Zhang, Björn Hartmann, Miryung Kim, and Elena L Glassman. 2020.
Enabling data-driven api design with community usage data: A need-fnding
study. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–13.

A APPENDIX: DATA CURATION PROCESS
AND RENDERING

The lead author collected code examples manually using a search
engine. For example, for the D3.js library, they searched for “D3.js”
and “examples” on Google and inspected the top 100 search results.
If a search result contained code examples, they manually added
the examples to the library’s data set. They spent an average of 2
hours fnding 50 code examples for each library. Afterwards, they
removed any repeated code examples and examples with missing
parts. This process took, on average, 15 minutes per library.

With these collections of code examples, the lead author used a
simple authoring interface to add concept annotations to snippets
within each code example. Specifcally, they began with an empty
list of functional concepts and read through each example for each
library in the same domain. For each unannotated line of code, they
would look for the most relevant functional concept in the list of
functional concepts collected so far. If there was a suitable func-
tional concept for the unannotated code, they annotated the code
correspondingly. If there was no suitable functional concept and
the functionality was deemed important enough to capture, they
would use the corresponding library’s documentation to determine
the new functional concept’s name, write a description, and add it
to the list. By continually repeating this process, a complete list of
relevant functional concepts was created, and the code examples
were labeled simultaneously. The construction and labeling pro-
cesses took nearly two hours for three libraries in a single domain.
The data curator added frst-level concepts to group similar, now
subordinate, second-level concepts together from the list, and vali-
dated the new concept hierarchy with the rest of the author team.
They also checked the annotated code examples and corrected any
missing or incorrectly annotated examples. The entire validation
process took, on average, 1 hour for each set of three libraries in a
given domain.

With the concept hierarchy and labeled code examples, the au-
thoring interface generated a JSON fle to include all of the informa-
tion. We built ParaLib with HTML, CSS, and JavaScript. ParaLib’s
backend can directly read the JSON fle and generate the concept
hierarchy and labeled code examples on the interface.

B APPENDIX: USER STUDY QUESTIONNAIRE
We used the following seven questions to explore users’ library
selections in the user study.

1. Fit for purpose Please rate the libraries based on whether
they ofer a good match between their set of functionalities and the
required functionalities needed in the software. (i.e., the number of
tasks/functionalities/purposes each library supports)

2. Size Please rate the libraries according to the size of their code
examples. (i.e., whether APIs in the library require you to write a
lot of code to use them)

3. Complexity Please rate the libraries according to the com-
plexity of usage. (i.e., whether a library is easy to use).

4. Usability Please rank the libraries according to their usability.
(e.g., learnability, understandability, readability, simplicity, etc.).

5. Similarities Could you list the similarities of the three li-
braries?

6. Diferences Could you list some diferences of the three li-
braries?

https://doi.org/10.1145/3449240
https://doi.org/10.1145/3491102.3501968
https://textblob.readthedocs.io/en/dev
https://textblob.readthedocs.io/en/dev
https://doi.org/10.1109/TSE.2013.12
https://doi.org/10.1145/2896587
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html
https://www.saashub.com/compare-d3-js-vs-chart-js
https://www.saashub.com/compare-d3-js-vs-chart-js
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.1145/2063239.2063243
https://doi.org/10.1145/2063239.2063243
https://www.chartjs.org
https://recharts.org
https://doi.org/10.1145/3444945
https://doi.org/10.1109/TSE.2019.2903039
https://doi.org/10.1109/TSE.2019.2903039
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1145/3411764.3445654
https://Chart.js
https://Chart.js

UIST ’22, October 29-November 2, 2022, Bend, OR, USA

(NLP Domain) 7. Fit for the given scenario You have a large
dataset of 10,000 tweets from Twitter. You want to directly use a pre-
trained neural network model to classify tweets into two classes:
"relevant" and "irrelevant" to COVID-19. How would you rate your
preference for these three libraries if you needed to pick one of the
three NLP libraries for this classifer? Important functionalities: 1.

Litao Yan, Miryung Kim, Björn Hartmann, Tianyi Zhang, and Elena L. Glassman

The library should be able to provide a pre-trained neural network
model. 2. The library can help with text classifcation)

(Visualization Domain) 7. Fit for the given scenario If you
needed to complete the task of visualizing COVID-19 infection
data (unfltered) on a geo-map, how would you sort these libraries?
requirement: 1. a library can flter data; 2. a library can visualize
data on a geo-map (without the need for other plugins).

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	3.1 Empirical Studies on Library Selection
	3.2 Tool Support for Library Comparison
	3.3 Visualizing and Comparing Code Examples

	4 Interface Design and Overview
	4.1 Design Goals
	4.2 Interface Overview
	4.3 Technical Probe Caveats

	5 Usage Scenario
	6 User Study
	6.1 Procedure
	6.2 Scenario Design
	6.3 Participants

	7 User Study Results
	7.1 User Performance
	7.2 User Confidence and Cognitive Load
	7.3 Qualitative Feedback

	8 Discussion
	9 Limitations and Future Work
	References
	A Appendix: Data Curation Process and Rendering
	B Appendix: User Study Questionnaire

