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Figure 1: ParaLib, an interactive interface for comparing and selecting suitable libraries with snippets of code examples labeled 
according to a concept hierarchy. ParaLib consists of three main components: (1) a hierarchy of concepts, e.g., interactions and 
animations : selection, over which to compare the functionality of each library, (2) the distribution of the number of examples 
from each library that contain code labeled with that concept, and (3) a side-by-side view of concept-labeled code examples 
from up to three diferent libraries. 
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ABSTRACT 
Programmers often rely on online resources—such as code exam-
ples, documentation, blogs, and Q&A forums—to compare similar 
libraries and select the one most suitable for their own tasks and 
contexts. However, this comparison task is often done in an ad-hoc 
manner, which may result in suboptimal choices. Inspired by Ana-
logical Learning and Variation Theory, we hypothesize that render-
ing many concept-annotated code examples from diferent libraries 
side-by-side can help programmers (1) develop a more comprehen-
sive understanding of the libraries’ similarities and distinctions and 
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(2) make more robust, appropriate library selections. We designed a 
novel interactive interface, ParaLib, and used it as a technical probe 
to explore to what extent many side-by-side concepted-annotated 
examples can facilitate the library comparison and selection pro-
cess. A within-subjects user study with 20 programmers shows that, 
when using ParaLib, participants made more consistent, suitable 
library selections and provided more comprehensive summaries of 
libraries’ similarities and diferences. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI); Interactive systems and tools. 
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1 INTRODUCTION 
“TensorFlow or PyTorch?” Many beginner students of deep learning 
ask this question when they frst start selecting a deep learning 
library to build their own neural network models. This type of 
selection task is common across many programming domains be-
cause of (1) programmers’ pervasive use of third-party libraries, 
packages, frameworks, and APIs to reuse well-tested functionalities 
and (2) the increasing number and complexity of these third-party 
options. For example, there are now over 1.3 million packages on 
NPM, a JavaScript package manager, many of which have alterna-
tive packages with similar functionality [36]. Given many choices, 
it can be difcult for programmers to identify the library that is 
most appropriate for their own tasks and contexts [32]. 

The current de facto way programmers compare libraries is to 
search online and review documentation, blogs, and Q&A posts [9, 
27, 50]. While there are several library selection websites, such as 
SaaSHub [43] and LibHunt [7], they do not provide afordances 
for direct comparison of libraries’ supported functionalities, learn-
ability, and usability. Liu et al. found that, when navigating online 
resources, programmers often go back and forth and compare mul-
tiple information sources, which is tedious [28]. They also found 
that this process is often non-linear and can become increasingly 
challenging as programmers continue to explore the decision space. 

There are a number of specially built systems to support program-
mers’ library comparisons and general software-related decision-
making. Several published techniques have been proposed to sup-
port library comparison [10, 12], but they are limited to non-technical 
factors of libraries, e.g., popularity, release frequency, and issue 
response rate. Unakite [28] supports programmers in collecting 
and organizing information about decision-making trade-ofs in 
software development, yet it requires users to manually build a 
comparison table with pieces of information from Stack Overfow. 

In this work, we propose a novel interface prototype, ParaLib, 
that helps programmers compare and select libraries at the level of 

concrete code examples. We focus on four key dimensions identi-
fed in Vargas et al.’s need-fnding study [27]: ft for purpose, size, 
complexity, and usability. These dimensions are revealed to users 
through the display of entire collections of concept-annotated code 
examples collected for each library being considered, rendered in 
parallel (Figure 1 ③), as well as empirical overviews, such as the 
distribution over concepts identifed in the examples collected for 
each library (Figure 1 ②). 

Key interface design choices were derived from the design im-
plications of two theories of human concept learning: Variation 
Theory (VT) [34] and Analogical Learning Theory (ALT) [13]. VT 
suggests that many varying examples shown in parallel may help 
programmers form more robust conceptualizations of the libraries’ 
similarities and diferences in syntax and functionality, and re-
quire less working memory during a decision-making task than 
the sequential review of examples. ALT suggests that highlighting 
analogical concepts, i.e., functional correspondences, across all ex-
amples from all libraries will help the programmer appreciate—and 
see past—superfcial diferences. 

Additional interactive features support sensemaking. For ex-
ample, selecting concepts at any level of the functional concept 
hierarchy (Figure 1 ①) allows users to toggle the highlighting of 
individual concepts in each example and flter the collection down 
to a subset of examples that contain that concept. Collectively, these 
features support many of the tasks in Shneiderman’s type by task 
taxonomy (TTT) of information visualizations [45], i.e., overview, 
flter, relate, and extract. 

We designed and implemented ParaLib as a technical probe and 
evaluated it in a within-subjects user study (N=20) to measure the 
utility and usability of these theory-backed design choices. The 
results show that, compared to participants using online search, 
participants using ParaLib made more consistent, suitable library 
selections, provided more comprehensive summaries of libraries’ 
similarities and diferences, and reported more confdence in their 
choices. Since the example collections—nearly 50 examples per 
library—were hand-curated and annotated by the authors, the con-
tribution of this paper is the interface design and the study of its 
efectiveness. Reaping the benefts of a ParaLib-like interface in a 
scalable way will require future investments in appropriate auto-
matic or crowdsourced concept labeling, which we hope this paper 
motivates. In summary, our main contributions include: 

• A theory-backed conceptualization of how large collections 
of concept-annotated code examples presented in parallel 
can support library comparison and assessment. 

• The design and implementation of ParaLib, a novel interface 
that concretizes this conceptualization. 

• A within-subjects user study that demonstrates the value 
of concept-annotated code examples, and motivates future 
work that assists in curating and annotating these collec-
tions. 

2 BACKGROUND 
Modern theories of human concept learning, like Variation The-
ory [34] and Analogical Learning Theory [13], describe the condi-
tions under which humans form more accurate, robust conceptual-
izations. Variation Theory prescribes showing the human learner 
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sets of many examples, presented simultaneously, in parallel, that 
vary in certain ways, and are constant in others. This presentation 
of variation is designed to, and has been empirically validated to, 
help humans form more accurate conceptualizations of the object 
of learning that the examples do (or do not) represent. Analogi-
cal Learning Theory, meanwhile, prescribes identifying analogous 
structures or concepts across superfcially diferent examples, ide-
ally presented in parallel and aligned, so that the human viewer can 
more easily perceive the underlying shared characteristics, schemas, 
or mechanisms. The design of ParaLib is in part derived from these 
theories, in that it simultaneously shows multiple examples from 
each of the objects of learning (libraries under consideration) side-
by-side and highlights analogical correspondences. 

3 RELATED WORK 

3.1 Empirical Studies on Library Selection 
Selecting the right library or API is a critical step before writing 
code. Several studies have investigated factors to be considered 
when selecting libraries [1, 10, 20, 35, 37]. Vargas et al. [27] sur-
veyed 115 developers and discovered 26 factors that infuence the 
software libraries’ selection. They found the size and complexity, ft 
for purpose, usability, and quality of match between a set of func-
tionalities and the desired features are crucial to decision making. 
This motivates us to focus on four dimensions—ft for purpose, size, 
complexity, and usability, which are not yet supported by prior 
work for library selection. 

Our focus on supporting library comparison at the level of con-
cepts corresponding to key functionalities is motivated by previous 
studies on library and API learning [24, 33, 41, 42, 49]. Ko et al. [24] 
found that lacking code examples and the difculty of determining 
the supported functionality are two of the six major learning barri-
ers for programming interfaces. The API learning theory by Thayer 
et al. [49] also highlighted the importance of domain concepts in 
addition to code examples and usage patterns. 

3.2 Tool Support for Library Comparison 
Online library comparison websites such as StackShare [23] and 
LibHunt [7] provide high-level summaries of libraries’ community 
support, e.g., number of GitHub stars and forks, crowdsourced 
pros and cons, the popularity of the libraries in helping developers 
complete various tasks, and online reviews written by library users. 
These online resources rarely include concrete code examples, or 
may only include a couple of examples that may not address the 
readers’ informational needs. 

The research community has also proposed several automated 
tools for library comparison [10, 12, 22]. LibComp is an IntelliJ plu-
gin that supports library comparison based on quantifable metrics 
such as popularity, release frequency, and performance [12]. Huang 
et al. [22] mine online discussions in Stack Overfow and clustered 
comparative sentences about similar software technologies. Instead 
of focusing on community support or quantifable metrics, ParaLib 
provides a window into what the actual code looks like when using 
each library, as well as what functionalities of the library are used 
in practice. 

Some prior work focuses on supporting users’ annotation and 
evaluation of APIs and sometimes explicit comparison across mul-
tiple options. Adamite [21] provides many useful annotation fea-
tures for API documentations. Unakite [28] allows users to add 
API-related information such as code snippets, user reviews, and tu-
torials to a table for comparison. Crystalline [30] automatically col-
lects and organizes information in a tabular structure for decision-
making when browsing the web. Strata [29] facilitates the reusing 
of prior users’ programming knowledge. Unlike those tools, ParaLib 
displays many code examples, with features to support comparison, 
not the process of searching, collecting, and cleaning information. 

While most of the existing comparison tools target API and 
library users, API and library authors may beneft as well: Zhang et 
al. [53] interviewed 23 API designers and found that they too want 
to compare APIs—specifcally their own relative to alternatives 
made by others—to (1) identify which functionalities are supported 
by others but not theirs and (2) understand how well their own 
supports features provided by others. 

There are several comparison techniques designed for other 
tasks and domains. Arab et al. developed HowToo for fnding and 
sharing various programming strategies for the same problem [3]. 
Chang et al. [8] developed an interactive interface for customers to 
construct a comparison table to compare Amazon products based 
on user-chosen criteria and reviews. And additional tools have been 
created for comparing two workfows side by side [25], website 
design elements [26], and image manipulation tutorials [39]. 

3.3 Visualizing and Comparing Code Examples 
Dif tools are a common utility in text editors and programming 
IDEs to render the diferences between two or occasionally three 
code fles, e.g., KDif3 [11]. Distinct from these tools, ParaLib renders 
many tens of examples from each of multiple libraries and supports 
programmers’ recognition of their similarities and diferences. 

Several techniques are designed to visualize many code exam-
ples at scale, but they are designed for tasks other than library 
comparison. OverCode [16] provides teachers with a high-level 
view of thousands of programming solutions through visualizing 
variations. Examplore [17] visualizes many code examples based 
on a pre-defned API usage skeleton to show the distribution over 
common and uncommon API usage choices in the wild for a single 
API call. ExampleNet [52] uses call graph analysis of a corpus of 
deep neural network source code to extract and visualize distribu-
tions over (1) neural network model architectures and (2) parameter 
settings. 

4 INTERFACE DESIGN AND OVERVIEW 

4.1 Design Goals 
We set out fve design goals for ParaLib, grounded in prior work on 
programmers’ goals and information needs during library compari-
son: 

• D1. Code Examples: Help users inspect a collection of con-
crete code examples when comparing multiple libraries [6, 
44, 46, 52]. 

• D2. Functionalities: Help users compare the functionalities 
(and their associated syntax) provided by each library [14, 
27, 32, 51]. 
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• D3. Usability: Help users assess how easy it might be to 
use each library [2, 27, 35, 40]. 

• D4. Size: Help users anticipate the size of the code they need 
to write when using each library [27, 38, 51]. 

• D5. Similarities, Diferences, and Typicality: Help users 
discover the functional and syntactic similarities and difer-
ences between multiple libraries, as well as some notion of 
respective typical usage from the distribution of code exam-
ples present in the collection [15–17, 52]. 

In other words, ParaLib is designed with the intention of making 
it easier for users to assess, relative to the other candidate libraries, 
what each library is capable of doing, what code leveraging each 
library typically looks like and how complex it is, and how easily 
they might be able to use it, as well as how customizable each 
library appears to be through the variation they see across all the 
examples available for each library. 

4.2 Interface Overview 
Based on these fve design goals, we designed and implemented 
ParaLib, an interface backed by collections of hand-curated and 
annotated examples from multiple similar but distinct libraries; 
see Appendix A for details on how these example collections were 
produced. The following interface design choices were used to 
render these collections: 

Many Parallel Code Examples. The code example view (Figure 1 ③) 
shows many distinct examples from each library under consider-
ation, side-by-side with many examples from the other libraries. 
This choice is drawn from Variation Theory [34], as explained in 
Sections 1 and 2. 

Users can scroll downward in any library column to reveal more 
examples. Each example is a complete code fle, and above each ex-
ample there is a link to its source, providing details on demand [45]. 

Concept Annotations. Using concept labels with uniquely as-
signed colors, ParaLib highlights conceptually analogous code seg-
ments across all examples from all libraries with the same color. For 
example, the snippets in all the examples annotated with Visualiza-
tion Types are highlighted with the color of the block containing 
that concept label, i.e., green. The concept-to-color mapping is 
shown in the side panel (Figure 1 ①). This choice draws on Analog-
ical Learning Theory [13] as elaborated on in Sections 1 and 2, and 
also addresses the relate task in Schneiderman’s taxonomy [45]. 

Due to the large number of colors necessary for the many con-
cepts in the hierarchies designed for this technical probe, users can 
hover over annotated code to disambiguate which concept the color 
highlighting refers to. When users hover over the name of each 
concept, a tooltip elaborates on what functionality it refers to. 

Already, with these theory-derived design choices combined, users 
can use concrete code examples (D1) to directly compare code com-
plexity and usability (D3, D4), functional and syntactic similarities 
and variations (D2, D5), and get a sense of typically utilized func-
tion calls (D5) across multiple libraries at the same time. Additional 
information visualization features further support users in their 
sensemaking: 

Concept Hierarchy. The concepts listed in the side panel (Fig-
ure 1 ①) are organized into a hierarchy. Each row contains a concept 
identifed by the data curator as either frst-level (more general) or 
subordinate (more specifc). The hierarchy groups related concepts. 
For example, in Figure 1 ①, the concept of Data Processing is a frst-
level concept that contains fve second-level concepts: Data Format, 
Import Data, Data Transformation, etc. In order to initially provide 
users with a more general overview of the concept-annotated code, 
ParaLib defaults to only highlighting the code snippets correspond-
ing to the more general frst-level concepts in the hierarchy. 

Concept Distributions. Three columns of bars (Figure 1 ②) form 
three distributions, one for each library under consideration, repre-
senting the number of code examples in each library’s collection 
that include a snippet labeled with that concept. By comparing the 
length of these bars across the row for each concept, users can 
quickly see which functionalities are most commonly utilized in 
each library, if at all. The absence of a bar can indicate that the 
corresponding library may not support the concept (if the number 
of examples in the collection is large enough). With these concepts 
and corresponding distribution bars for each library, ParaLib pro-
vides an overview of possible functionalities and their typicality 
across multiple libraries. 

Example Length Distributions. The distribution over the number 
of lines in each code example (top of Figure 1 ③) is rendered for 
each library. The same axes are used for these charts across all three 
libraries rendered in ParaLib so that users can directly compare the 
length of bars. When users traverse the code examples, the bars 
corresponding to the code examples within view are highlighted. 
Users can also click on any one of these bars to jump to the corre-
sponding example that the user wants to look at, which might be 
particularly short or long. 

Concept Selection. When a user selects one or more concepts by 
clicking their associated check boxes (Figure 2 ①), ParaLib flters 
out the code examples that do not include the selected concepts. 
For example, if a user wants to fnd examples that support both 
visualizing a line chart and adding an animation, she can click 
the check boxes for the concepts corresponding to line charts and 
animations. 

As illustrated in Figure 2, in addition to fltering the collection 
of examples shown, other components of ParaLib also update when 
a user selects a concept. After a concept is selected, the distribution 
bars have two colors—the bars in dark gray represent the number of 
code examples after fltering, while the longer super-imposed light 
gray bars show the original number of examples in the collection 
prior to fltering (Figure 2 ④). If the user selects a second-level 
concept, the lines of code annotated with that second-level concept 
will change color from the frst-level concept color to the subor-
dinate second-level concept color (Figure 2 ③). The distribution 
over example lengths updates to refect which examples are left 
(Figure 2 ②). 

Revealing Additional Within- and Across-Library Correspondences 
Between Examples. Two additional buttons are intended to help 
users (1) focus on functionalities they most care about and (2) 
more easily see possible additional connections across libraries, be-
yond the concept annotations. The “Only Show Highlights” button, 
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Figure 2: After clicking on the Geo Maps concept (1a → 1b), ParaLib fltered out examples that do not contain Geo Maps func-
tionalities. As a result, three components updated: example-length-representing bars corresponding to fltered examples were 
grayed out (2a → 2b); the color of code snippets annotated with the concept in the concept hierarchy changed from green, 
the color associated with their top-level concept annotation Visualization Types, to blue, the color associated with the more 
specifc, selected second-level concept within Visualization Types: Geo Maps (3a → 3b); and the distributions over concepts 
represented in the remaining examples updated too (4a → 4b). 

shown most clearly in Figure 3 (1a-b), enables users to hide all unla-
beled lines of code. With this view (Figure 3 (2a-b)), users hide code 
unrelated to the concepts they have chosen to focus on through de-
fault settings or explicit selections. The “Show Common Substrings 
Across Libraries” button, shown in Figure 3 (3a-b), increases the 
saliency of substrings that exist in multiple code examples from 
more than two libraries. Specifcally, ParaLib bolds automatically 
identifed similar function and variable names that are used by 
multiple libraries. For example, after checking the “lemmatization” 

concept, the substring lemma is shown in bold wherever it occurs 
in examples for all three libraries, shown in Figure 3 (4a-b). 

4.3 Technical Probe Caveats 
The hierarchy is currently designed by hand, in this case by the 
authors, and it is a function of the domain in which libraries are 
being compared. The method for constructing this hierarchy and 
the evaluation of its quality or how that quality impacts the user 
experience are beyond the scope of this work. 
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Figure 3: Looking at multiple libraries’ code examples related to the lemmatization concept: after checking Only Show 
Highlights button (1a → 1b), unrelated code was hidden (2a → 2b). After checking Show Common Substrings Across Libraries 
button (3a → 3b), the substring lemma was bolded in many examples across the two libraries shown (4a → 4b). 

Similarly, the information carried by the relative lengths of the 
distributions bars is assumed to scale with the quantity of the ex-
amples collected for each library, and the quality of the sampling 
method. For the purposes of evaluating the design choices imple-
mented in ParaLib, we hand-created example collections of nearly 
50 examples per library, as described in Appendix A. 

5 USAGE SCENARIO 
Jane, a software developer with access to ParaLib, is looking to vi-
sualize COVID-19 data in a treemap, but has not settled on a visual-
ization library to use yet. She decides to consider D3.js, Chart.js, 
and Recharts, and ParaLib is loaded with concept-annotated ex-
ample collections for each library. 

Right away, Jane observes some interesting diferences between 
libraries. Compared with Chart.js, which has a JSON-like format, 
D3.js looks more like a function-call-based library. Recharts has 
a syntax that is unlike anything else she has ever seen. By looking 
at the concept distributions, Jane can see at a glance which func-
tionalities are more commonly used within each library. From these 
distribution bars, Jane also sees that, given the selection of examples 
in the corpus, D3.js supports the most functionalities, Chart.js 
only supports some common visualization types and functionalities, 
and Recharts is in between. Now, Jane gets a sense of the expres-
siveness of each library that’s typically used in practice. She then 
sees that the distribution bar corresponding to the Treemapping 
concept in Chart.js is empty, which means that developers may 
not often use Chart.js to develop treemaps, or it may even be 

impossible because it is unsupported. Based on this, she decides to 
eliminate Chart.js from consideration for now. 

After inspecting the lower-level concepts under the Visualization 
Types concept, Jane fnds some visualization types she is unfamiliar 
with. By hovering over each of them, a tooltip shows a more detailed 
explanation of what it refers to. After reading these explanations, 
Jane is still most interested in making a treemap. 

When Jane clicks on Treemapping, code examples that do not 
include Treemapping are fltered out of view, and the Treemap-
ping-specifc snippets of code change from the higher-level concept 
label’s color, i.e., the color of Visualization Types, to match the color 
of the Treemapping concept, making it easier for her to visually 
pick out the snippets of code associated with the selected concept 
within the remaining examples. 

Within this subset of examples, Jane wants to compare how 
she perceives each library’s relative code complexity and potential 
usability. Looking across each library’s example length distribu-
tions, Jane notices that the code examples for D3.js are typically 
longer than the other two libraries, though, at the long end of the 
distributions, Chart.js appears to catch up in length, for imple-
menting non-trivial customizations. To reduce the visual noise of 
less relevant code, Jane checks the “Only Show Code Highlights” 
button, so ParaLib hides the unannotated lines of code, leaving 
just the concept-annotated code, which remains highlighted in 
concept-specifc colors. 

https://Chart.js
https://Chart.js
https://Chart.js
https://Chart.js
https://Chart.js
https://Chart.js
https://Chart.js
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Since Jane fnds the syntax of Recharts unfamiliar and difcult 
to parse, she eliminates it as well, selecting the more verbose but cus-
tomizable D3.js to implement her treemap visualization of COVID-
19 data. She scrolls down the collection of concept-annotated D3.js 
examples, seeing how there are recurring patterns in the sequence 
of concepts instantiated in each example, and the variety in which 
each concept is instantiated. This gives her a sense of the general 
structure that her code is likely to take, and what individual por-
tions of it might look like, as she leaves ParaLib to write her own 
code. 

6 USER STUDY 
We conducted a within-subjects user study with 20 participants in 
order to evaluate ParaLib’s efectiveness, i.e., how well it supports 
users’ library comparison and selection processes. We hoped to 
answer the following questions: 

• What kinds of value does the concept hierarchy ofer for com-
paring and selecting suitable libraries? 

• How do concept-annotated code examples help programmers 
anticipate the complexity of code they are going to write with 
each library? 

• In what ways do concept hierarchies and code examples help 
programmers develop useful insights? 

• What is the user experience of using ParaLib to compare li-
braries like? 

6.1 Procedure 
We designed two library comparison tasks: one for the domain of 
Visualization and the other for Natural Language Processing (NLP). 
In the Visualization domain, we selected three JavaScript libraries, 
D3.js [5], Chart.js [47], and Recharts [48], for participants to 
compare. In the NLP domain, we selected three Python libraries for 
participants to compare: NLTK [4], TextBlob [31], and spaCy [19]. 

Within each domain, the library comparison task included three 
components: First, ranking each library along fve independent 
dimensions, i.e., (1) ft for purpose, (2) code size, (3) code complexity, 
(4) usability, and (5) appropriateness for a specifc scenario. Second, 
listing the libraries’ similarities and diferences. Third, ranking 
their preference for using each library for a particular hypothetical 
scenario. See Appendix B for the exact wording of each component. 

There were two conditions in which participants performed 
the library comparison task. In the control condition, participants 
completed the task using online search, i.e., any and all online 
resources, such as tutorials, blogs, Stack Overfow Q&A, and each 
library’s ofcial documentation. In the experimental condition, they 
were only allowed to use ParaLib to compare libraries. Prior to 
attempting to compare libraries in the experimental condition, every 
participant watched a fve-minute tutorial video about ParaLib, and 
then had fve minutes to interact with and familiarize themselves 
with ParaLib. 

The entire study took about an hour. Each participant was given 
20 minutes to compare each set of domain-specifc libraries. As 
a within-subjects lab study, each participant compared both sets 
of libraries over the course of their lab session, completing the 
comparison task in one domain just using ParaLib and in another 

domain just using online search. Both the order of domains and 
conditions were counterbalanced. 

After comparing each set of libraries, participants completed a 
questionnaire to record their refections on their experience in the 
assigned condition. As part of the post-task survey, participants 
were asked to answer fve NASA Task Load Index questions [18] 
to rate the cognitive load of the assigned task. After fnishing both 
tasks, participants were asked to fll out another survey to directly 
compare the online search and ParaLib conditions. 

6.2 Scenario Design 
Based on real-world use cases, we created a library selection sce-
nario for each domain. We designed each scenario so that only 
one library could meet all requirements. In the NLP domain, we 
constructed a scenario about using a pre-trained neural network 
model to classify tweets. The two requirements, i.e., the library 
should provide a pre-trained neural network and the library should 
be able to help with text classifcation, are only supported by spaCy. 
NLTK and TextBlob both include some important machine learn-
ing techniques, but neither provide a pre-trained neural network 
model. For the second requirement, all three libraries support text 
classifcation. 

In the visualization domain, we describe a scenario for visu-
alizing COVID-19 data on a map with two requirements: (1) the 
library has the ability to flter data and (2) the library supports 
geo-maps without the use of additional plugins. Given these con-
straints, D3.js is the unambiguous best choice because Chart.js 
does not support geo-maps and Recharts requires external plugins 
to produce geo-maps. 

6.3 Participants 
We recruited 20 participants (11 male, 9 female) from three partici-
pant pools: Eight participants were recruited from Reddit’s r/learn-
python and r/learnjavascript forums. Nine participants were re-
cruited via the CS graduate mailing list at Harvard University, and 
3 were recruited via the CS graduate mailing list at Purdue Uni-
versity. All of the participants were over 18 years old and fuent in 
English. 

Participants had a range of prior experience in both Python 
(µ = 3.95, σ = 1.00, on a 6-point Likert scale) and JavaScript (µ = 
1.90, σ = 1.71, on a 6-point Likert scale). Participants ranged from 
having one year to over fve years of experience programming. 

In order to capture the infuence of participants’ previous expe-
rience in each domain on the task results, we asked participants 
about their profciency in both the visualization and NLP domains. 
In the data visualization domain, 40% indicated they had less than 
one year of experience, 50% had two-to-fve years of experience, 
and 5% had over fve years of experience. In the NLP domain, the 
majority of participants (11 out of 20) had learned NLP in less than 
one year, fve participants had two-to-fve years of experience, and 
one had more than fve years of experience in the NLP domain. 

Participants’ prior library knowledge may infuence their f-
nal library selection. Therefore, we asked about their familiarity 
with each library (D3.js, Chart.js, and Recharts in the visu-
alization domain, and NLTK, TextBlob, and spaCy in NLP) on a 
6-point Likert scale. They have various backgrounds in using the 
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Figure 4: Twenty participants’ rankings of three NLP libraries (NLTK, TextBlob, and spaCy) for ft-for-purpose, code example 
size, a given scenario, code complexity, and usability, using online search vs. ParaLib. 

three visualization libraries (D3.js: µ = 1.35, σ = 1.79, Chart.js: 
µ = 1.30, σ = 1.81, Recharts: µ = 0.95, σ = 1.70) and NLP libraries 
(NLTK: µ = 1.45, σ = 1.88, TextBlob: µ = 1.10, σ = 1.89, spaCy: 
µ = 1.55, σ = 2.09). In both domains, nearly half of the partici-
pants (9 out of 20) had no prior knowledge of using any of these 
libraries. Four participants rated themselves as somewhat familiar 
(2–3 on the Likert scale) with using at least one of the libraries in 
the visualization domain and two in the NLP domain. From the 20 
participants we recruited, 3 considered themselves experts (4-5 on 
the Likert scale) in using at least one of the visualization libraries, 
and 5 used one of the NLP libraries we mentioned above. 

7 USER STUDY RESULTS 

7.1 User Performance 
7.1.1 Participants’ library rankings. Figures 4 and 5 show how par-
ticipants ranked the suitability of each library along fve dimensions. 
The histograms show how many participants ranked each library 
as their frst choice in each dimension. When using online search, 
several participants could not make a decision about which library 

was better in certain dimensions. These are depicted as two-way or 
three-way ties in white boxes. 

In both domains, participants made more consistent library se-
lections when using ParaLib than when using online search. As 
shown in Figure 4, in the NLP domain, when participants were 
using ParaLib, 9 out of 10 participants ranked spaCy as the top 
choice in terms of ft for purpose, 9 out of 10 ranked NLTK as the 
top choice in terms of code example size, and all 10 participants 
ranked spaCy as the top choice for the given scenario. Participants’ 
choices were less convergent in terms of complexity and usability. 
The results are similar for the Visualization domain, as shown in 
Figure 5. 

Participants using online search made more divergent choices 
and became indecisive when comparing libraries along some di-
mensions. In the NLP domain, when using online search, only 6 
participants ranked spaCy as the top choice in terms of ft for pur-
pose, 2 participants chose NTLK, and 2 chose TextBlob. Similar 
divergences existed along the other four dimensions. In particular, 
4 out of 10 participants could not decide which library was better 
in at least one dimension when using online search. By contrast, 
none of them became indecisive when using ParaLib. Compared 
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Figure 5: Twenty participants’ rankings of three visualization libraries (D3.js, Chart.js, and Recharts) for ft-for-purpose, code 
example size, a given scenario, code complexity, and usability, using online search vs. ParaLib. 

with the NLP domain, fewer participants were indecisive in the 
Visualization domain when using online search, but participants’ 
choices were still more divergent than when using ParaLib. 

All 10 participants made the right choice of library for the scenar-
ios in both domains when using ParaLib. In contrast, 4 participants 
made the wrong choice in the NLP domain and 2 participants made 
the wrong choice in the Visualization domain when using online 
search. 

In the NLP and Visualization domains, there were 4 and 3 par-
ticipants, respectively, who were already familiar with one of the 
three libraries in the set. These participants’ library selections in-
dicated some correlation between their prior knowledge and their 
fnal choice. For example, P7, who rated himself as an expert (5 
on a 6-point Likert scale) in spaCy, also ranked spaCy as the least 
complex and easiest-to-use library when using online search. P18, 
who rated herself as an expert in D3.js, also ranked D3.js as the 
easiest-to-use library when using online search. However, with-
out an adequate sample size, we cannot safely draw a conclusion 
about the relationship between users’ prior experience and library 
selection preferences. We did notice that when using ParaLib, there 
was no discernible diference in responses between experienced 

participants (4 or 5 on a 6-point Likert scale) with prior knowledge 
of at least one library in each domain and participants with much 
more limited experience (0 or 1 on a 6-point Likert scale). 

7.1.2 Number of code examples inspected during comparison. By 
analyzing the study recordings, we manually counted the number 
of code examples participants inspected in each condition. In both 
conditions, an example was counted as inspected when participants 
thought out loud about a code example or selected and highlighted 
some lines of code when browsing the examples. As results show in 
Table 1, participants inspected 3 times more examples when using 
ParaLib than when using online search. 

7.1.3 Participants’ responses to the similarities and diferences of 
libraries. As part of the post-task questionnaire, participants were 
asked two questions, i.e., (1) describe the similarities and (2) de-
scribe the diferences, between the set of libraries in each domain. 
First, we analyzed (1) the length of participants’ responses, in char-
acters, with and without counting characters in any code examples 
within their responses and (2) the number of code examples in 
their responses. Without removing code examples from our charac-
ter counts, participants wrote nearly three times longer responses 
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NLTK TextBlob spaCy D3.js Chart.js Recharts 
Min Median Max Min Median Max Min Median Max Min Median Max Min Median Max Min Median Max 

ParaLib 5 9.5 15 4 8.5 14 7 10 16 7 11.5 15 5 8 14 7 9.5 17 
Online Search 0 3.5 6 0 2 6 1 2 8 0 3 8 0 3 5 1 3 5 

Table 1: Statistics about the number of investigated examples using online search vs. ParaLib. 

Specifc Human / Social Too General Technical Factors Incorrect Functionality Factors or Vague 
Online Online Online Online Online

ParaLib ParaLib ParaLib ParaLib ParaLib Search Search Search Search Search 
Min 1 0 1 0 0 0 0 0 0 0 
Median 1 0 3.5 0 0 0 0 0.5 0 0 

Similarities Max 5 4 9 5 0 0 1 2 0 1 
Mean(µ) 1.7 0.7 4.2 0.6 0 0 0.1 0.6 0 0.2 

Viz 
∆µ 1 3.6* 0 -0.5 -0.2 
Min 1 0 0 0 0 0 0 0 0 0 
Median 4.5 1 2.5 0 0 0 0 0 0 0 

Diferences Max 10 2 4 1 0 2 0 0 0 0 
Mean(µ) 4.7 1.3 2.4 0.4 0 0.4 0 0 0 0 
∆µ 3.4* 2* -0.4 0 0 
Min 0 0 0 0 0 0 0 0 0 0 
Median 1.5 0 3.5 1 0 0 0 0.5 0 0 

Similarities Max 4 3 6 5 0 0 1 3 0 1 
Mean(µ) 1.6 0.7 3.5 0.3 0 0 0.1 0.7 0 0.1 

NLP 
∆µ 0.9 3.2* 0 -0.6 -0.1 
Min 2 0 0 0 0 0 0 0 0 0 
Median 3 2.5 3 1 0 0 0 0 0 0 

Diferences Max 6 5 12 2 0 2 0 2 0 0 
Mean(µ) 3.3 2.1 4.1 0.7 0 0.4 0 0.2 0 0 
∆µ 1.2 3.4* -0.4 -0.2 0 

Table 2: Statistics about the number of insights shared by participants in diferent categories when using ParaLib vs. online 
search. * indicates statistical signifcance (paired t-test: p < 0.05). 

when using ParaLib than when using online search in both domains. 
The mean diferences in the number of characters between partici-
pants’ responses in the control and experimental conditions were 
statistically signifcant (paired t-test: p-values=0.02398, 0.00970, 
0.04367, 0.002494 for both questions in both domains). Even after 
removing the code examples included in participants’ responses, 
the mean diferences in response length were still statistically sig-
nifcant (paired t-test: p-value=0.02983, 0.00911, 0.0014, 0.0022). 

The mean diferences in the number of examples participants 
provided between the control and experimental conditions were 
not statistically signifcant (paired t-test: p-value=0.16048, 0.06797, 
0.33057, 0.16048 for both questions in both domains). This result 
suggests that participants tended to share more textual description 
of insights about library similarity and diferences when using 
ParaLib compared with when using online search. This could be 
attributed to the many concept-annotated code examples shown in 
ParaLib, through which participants could gather concrete details 
such as library functionality, syntax, and coding style, and assess 
potential learnability for them. For example, P5 wrote a detailed 
comment on the syntax of three visualization libraries: “Rechart is 
HTML-based (JSX-based), Chart is CSS-based, and D3 is attribute-
based. I personally fnd Rechart’s HTML base very clunky and difcult 
to keep track of, as HTML syntax can be needlessly pedantic with its 
various types of brackets (e.g., “{}”, “<>”). While D3’s attribute-based 

characteristics are initially of-putting, it is a very clean organization 
of the parent->child structure—more than the other 2 libraries.” 

To better understand the content and quality of participants’ re-
sponses, the frst author manually coded the participants’ responses 
and categorized their insights into fve categories: 

(1) Technical Factors Comments on the technical properties 
of libraries such as fexibility, learnability, syntax, etc., not 
including comments on specifc functionalities, which has 
its own category. 

(2) Specifc Functionality Comments on specifc functionali-
ties supported by a library (or not). 

(3) Human/Social Factors Comments on human or social fac-
tors, e.g., library popularity, perceived trustworthiness of 
developers, other users’ sentiments, etc. 

(4) Too General or Vague Comments on some generally known 
facts about a library, e.g., “both libraries are written in Python,” 
or comments that are too vague to understand. 

(5) Incorrect Comments that contradict statements in ofcial 
documentation, tutorials, blogs, etc. 

Table 2 shows the distribution of diferent kinds of insights 
shared by participants when using ParaLib vs. online search. When 
using ParaLib, participants pointed out signifcantly more specifc 
functionalities supported or unsupported by a certain library in 
their responses (paired t-test: p < 0.05). Participants also shared 
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Figure 6: When using ParaLib: (a) Participants felt more confdent in their library selections and comparisons. (b) Participants 
felt less mental demand, hurry, efort, and frustration during the comparison tasks in both domains, and they reported im-
proved performance when using ParaLib, since a lower score in this fgure corresponds to a better perceived performance 
(paired t-test: p − value < 0.0001 in all categories). 

more insights about technical factors and fewer insights about hu-
man factors when using ParaLib, though the diferences were mostly 
not signifcant. Participants shared fewer general or vague insights 
and made slightly fewer incorrect comments when using ParaLib, 
though these diferences were not signifcant either. These results 
suggest that rendering concept-annotated examples in parallel did 
help programmers obtain a more comprehensive understanding of 
supported functionalities in similar libraries. 

7.2 User Confdence and Cognitive Load 
Figure 6(a) shows participants’ confdence in their library selec-
tions and comparisons on a 7-point Likert scale. Visually, it is clear 
that participants felt more confdence on average when using Par-
aLib than online search, and the median diference of 1.5 is statis-
tically signifcant (paired t-test: t=4.1991, df=19, p-value=0.0005). 
Figure 6(b) shows participants’ ratings on the fve cognitive factors 
of the NASA TLX questionnaire. Participants experienced signif-
cantly less mental demand, efort, hurry, and frustration when using 
ParaLib instead of online search. Participants also thought they had 
better performance (refected in the fgure as a lower score) when 
using ParaLib. These diferences were all statistically signifcant 
(paired t-test: p − value < 0.0001 in all categories). 

Online search provided a less organized plethora of information, 
with less support for sensemaking and integration than ParaLib. 
P9 mentioned, “Using an online search gave me many options, ... I 
felt that I didn’t have enough time to make a great judgment simply 
because decision-making can be difcult with so many options.” P16 
had a similar experience when using online search. He said, “It’s 
not efcient since so much information will distract me. In most 
cases, I can’t fnd a direct answer from an online search and I need 
to integrate this information.” In contrast, P18 said, “I liked that 
[ParaLib] provided comprehensive information on three libraries. As 
it provided example code with the same view, it was easier for me to 
understand their similarities and diferences.” 

In the post-study survey, participants directly compared their 
experiences of using online search and ParaLib (Figure 7). Since we 
adjusted the post-study survey questions after completing the frst 
3 studies, there are only 17 responses represented in this fgure. As 
shown in Figure 7(a), 16 of these 17 participants found ParaLib more 
useful than online search for comparing functionalities across multi-
ple libraries. In Figure 7(b), all 17 participants rated ParaLib easier to 
use for comparing code examples across multiple libraries. P4 wrote, 
“[ParaLib] gave a great visual interface to systematically summarize 
and compare functionality across diferent libraries!” Among the 17 
responses, 16 participants felt more confdent when using ParaLib 
in library comparison (Figure 7(c)). Fifteen participants felt less 
overwhelmed when comparing libraries using ParaLib compared 
to using online search (Figure 7(d)). Sixteen participants also found 
ParaLib a helpful resource (Figure 7(e)). They believed ParaLib was 
not redundant even when online search is available (Figure 7(f)). 

Some participants, rather than calling out the novel concept-
driven structure provided by ParaLib, ascribed at least some of its 
value, implicitly, to the fact that it came pre-loaded with a large 
number of examples that they appreciated and would otherwise 
have had to go and collect themselves. For example, P19 said, “There 
was an overwhelming amount of information (online). Often, I was not 
able to flter out the necessary information. I was not able to go through 
a large number of examples as they needed manual searching.” 

7.3 Qualitative Feedback 
The post-task survey of ParaLib asked participants to rate the use-
fulness of each feature in a 7-point Likert scale. Most participants 
(19/20) rated the concept hierarchy useful or very useful. Partici-
pants mentioned that the concept hierarchy is easy-to-use, good 
for summarization, detailed, and systematic for comparing multiple 
libraries in a single view. P19 said, “I really liked the left panel of the 
concept hierarchy. It was very detailed. The sub-types [second-level 
concepts] under each category [frst-level concepts] covered a lot of 
visualization aspects.” P17 mentioned, “It shows all the available 
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Figure 7: The distribution of participants’ ratings to three comparative questions about ParaLib vs. online search, as well as 
their agreements to three statements about ParaLib. We adjusted the survey questions after completing 3 studies; therefore, 
there are only 17 responses in this fgure. 

features of each library in one organized table, which makes it easy 
to fnd features.” Seventeen participants also rated the feature of 
displaying code examples from multiple libraries side by side as 
more helpful than overwhelming (6 or 7 on a 7-point Likert scale). 
Other components, such as code examples annotated with concepts 
(15/20) and highlighting common substrings across multiple code 
examples (9/20), also received positive reviews. P16 commented, 
“Highlights help me quickly fnd the position of the function and learn 
how to use the function.” 

Participants also commented on the challenges they faced when 
comparing libraries with online search. Fifteen out of 20 participants 

complained about the massive amount of information available on-
line, which made the comparison process difcult and overwhelm-
ing. P17 said, “So many resources pop up in the online search results 
and it’s hard to fnd the one that I really want.” P20 mentioned, “A 
lot of information cannot be read at one time. Too much information 
will leave me unsure of how to judge.” Five out of 20 participants 
pointed out that online search was time-consuming. Four partici-
pants said that the large amount of potentially misleading or not 
quite comparable information that exists online was distracting. 
P6 said, “It was time-consuming (when using online search). I didn’t 
know if I had found the best info for comparison, because I didn’t feel 
like an apples-to-apples comparison.” P4 added, “I feel that I might 
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have overlooked signifcant diferences in the setup/context needed to 
use the libraries.” 

In both the post-task and post-study surveys, participants made 
some suggestions to improve ParaLib. Six participants suggested 
ParaLib include previous programmers’ comments, opinions, and 
reviews. Four participants wanted to have more documentation 
or tutorials about each library in ParaLib to help them better un-
derstand the functionalities and the API usages. Ten participants 
wanted ParaLib to add more information and measurements to code 
examples, such as the output of the examples (3/20), the meaning 
of function calls (2/20), runtime (1/20), library history (1/20), and 
installation (1/20). Five participants suggested making the mapping 
from concepts to colors more visually distinguishable. 

In the post-study survey, we also asked how their library com-
parison process would change if they had access to ParaLib in the 
future. Thirteen participants frmly expressed their willingness to 
use ParaLib in their future library comparison and selection pro-
cesses. Among them, 5 people said they plan to use ParaLib in 
conjunction with an online search to compare libraries. P9 said, “I’d 
be able to access code samples and compare them objectively through 
this site if [ParaLib] had a greater number of samples ... I’d still use 
it as a supplement to internet searching.” P3 said, “I will probably 
frst do an online search, and then look at ParaLib to confrm my 
impression from online search.” 

8 DISCUSSION 
This data suggests that ParaLib clearly fulflled four of the fve 
interface design goals. Specifcally, participants were able to extract 
usable information from the collection of code examples in ParaLib 
(D1). With this information, participants could assess the relative 
volume of code necessary to use each library (D4) and the functional 
and syntactic similarities and diferences between libraries (D2, D5). 
As a result, relative to using existing online resources, participants 
found it easier to compare and select suitable libraries. They also 
made more consistent, appropriate library selections, had more 
insights about specifc functionalities, and felt more confdent about 
their decisions. 

The study results relevant to ParaLib’s utility for usability as-
sessment, e.g., assessing how complex or unfamiliar the syntax 
is, (D3) is less clear, but promising. As mentioned in Section 7.1.1, 
participants did not readily converge when ranking the complexity 
and usability of library code examples using either online search 
or ParaLib. This may be due to participants’ prior knowledge and 
particular preferences. If this is true, this is a positive result: we 
believe a tool like ParaLib should support programmers in making 
their own personalized assessments along these dimensions. In the 
open-ended questions on the similarities and diferences between 
the three libraries, half of the participants mentioned that they 
preferred one library over the other because they felt the library’s 
syntax was more similar to a library they were familiar with. In 
other words, when confronted with an unfamiliar language or li-
brary, they will try to understand it by associating it with a language 
or library they have used before. For example, many participants 
mentioned that the syntax of Recharts is similar to HTML/XML/JSX, 
which they either did or did not have comfort with. In the NLP 
domain, P1 mentioned the usage of spaCy to train a classifer was 

similar to training a neural network in TensorFlow. However, the 
transfer of familiar knowledge to unfamiliar domains may lead to 
two opposite consequences. On one hand, the knowledge transfer 
may help them understand the new concept faster by connecting 
similar familiar syntax, function names, or usages to the unfamiliar 
code examples. On the other hand, participants may misinterpret 
information and deviate more from the correct meaning of the 
new concept on further exploration. For example, after fnding the 
similarities between the three libraries’ examples in adjusting the 
chart’s size, P14 mistakenly claimed that all three visualization 
libraries support canvas. 

Future studies with diferent baselines would be necessary to 
disambiguate the relative impact of key features of ParaLib’s design, 
e.g., the size of each library’s example collection, showing examples 
from multiple libraries in parallel, annotating code snippets within 
each example with concepts from a unifed concept hierarchy, and 
showing the distribution over concepts represented in examples in 
each library’s collection. However, the data suggests that, together, 
they enabled programmers to explore and compare libraries both 
at a high level, e.g., the general structure and conceptual compo-
nents of code examples, and a more granular low level, e.g., syntax. 
And given that many of these key features were possible design 
implications derived from theories of human concept learning, the 
success of ParaLib suggests that these theories may be a fruitful 
source of design inspiration for future designers in this domain. 

We described participants’ future library selection workfows 
with ParaLib, and expanding on their answers, we can imagine 
future tools like ParaLib supplementing existing online resources and 
helping programmers conduct initial investigations, make sense of 
how one or more libraries are typically used in the wild, compare 
and select libraries, and identify good examples of a chosen library’s 
usage to adapt to their own purposes or program by bricolage—by 
remixing concept-annotated snippets from a set of chosen examples. 

9 LIMITATIONS AND FUTURE WORK 
There are a number of limitations to what we know so far, given 
that ParaLib is a technical probe and only one of multiple possible 
baselines was used in the user study. For example, since there was 
one concept hierarchy per domain, created by the authors, our 
work does not capture how the quality of the concept hierarchy 
and mapping of concepts to code snippets afects the benefts that 
ParaLib has to ofer. 

In our user study, we chose online search as the baseline, but 
other baselines could have been used to learn diferent information 
about what does and does not help programmers compare libraries. 
These alternative baselines include pre-existing comparison tools 
like Unakite, Crystalline, or Strata; specifc library comparison 
websites such as StackShare, SassHub, LibHunt; and access to the 
same collection of examples that were loaded into ParaLib but 
without any of the key features like concept annotations. The online 
search baseline does include library comparison websites as well 
as other sources of complementary information such as ofcial 
documentation and blogs; during the user study, an average of 
three library comparison websites (median: 1.5) appeared on the 
frst page of participants’ Google search results. This indicates 
that one alternative baseline, i.e., library comparison websites, was 
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easily accessible to participants within the baseline we chose. Even 
so, because we chose a less restricted baseline—online search—we 
cannot necessarily attribute participants’ success to key features 
such as the concept annotations themselves. 

ParaLib does not address the need to consider and compare 
human factors, e.g., the popularity of a library for a specifc task 
and other programmers’ reviews. ParaLib also does not address 
the need to compare other technical factors, such as maintenance 
expectations, maturity, stability, and the quality of documentation. 
Online search can support the comparison of these many other 
factors—until there are specialized tools to support one or more of 
these remaining factors more systematically. 

Finally, the current process of creating concept hierarchies and 
concept-annotated example collections is manual, as described in 
Appendix A. Given the results of the study, we suggest the develop-
ment of more automated authoring tools for collecting and labeling 
code examples with concepts. We believe there are two major fea-
tures worth including in such an authoring tool. First, it should 
help domain experts create a (possibly evolving) concept hierarchy 
based on their prior knowledge and existing code examples. Second, 
it should accelerate the tedious process of annotating code with the 
concepts in the hierarchy. One possible method would be to ask 
expert(s) to hand-label a small number of examples, from which 
the authoring tool could identify similar code patterns, function 
calls, and comments in yet-to-be annotated examples using machine 
learning, NLP, or program synthesis methods. The expert(s) could 
then iteratively review and approve or modify pending propagated 
concept annotations. 
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A APPENDIX: DATA CURATION PROCESS 
AND RENDERING 

The lead author collected code examples manually using a search 
engine. For example, for the D3.js library, they searched for “D3.js” 
and “examples” on Google and inspected the top 100 search results. 
If a search result contained code examples, they manually added 
the examples to the library’s data set. They spent an average of 2 
hours fnding 50 code examples for each library. Afterwards, they 
removed any repeated code examples and examples with missing 
parts. This process took, on average, 15 minutes per library. 

With these collections of code examples, the lead author used a 
simple authoring interface to add concept annotations to snippets 
within each code example. Specifcally, they began with an empty 
list of functional concepts and read through each example for each 
library in the same domain. For each unannotated line of code, they 
would look for the most relevant functional concept in the list of 
functional concepts collected so far. If there was a suitable func-
tional concept for the unannotated code, they annotated the code 
correspondingly. If there was no suitable functional concept and 
the functionality was deemed important enough to capture, they 
would use the corresponding library’s documentation to determine 
the new functional concept’s name, write a description, and add it 
to the list. By continually repeating this process, a complete list of 
relevant functional concepts was created, and the code examples 
were labeled simultaneously. The construction and labeling pro-
cesses took nearly two hours for three libraries in a single domain. 
The data curator added frst-level concepts to group similar, now 
subordinate, second-level concepts together from the list, and vali-
dated the new concept hierarchy with the rest of the author team. 
They also checked the annotated code examples and corrected any 
missing or incorrectly annotated examples. The entire validation 
process took, on average, 1 hour for each set of three libraries in a 
given domain. 

With the concept hierarchy and labeled code examples, the au-
thoring interface generated a JSON fle to include all of the informa-
tion. We built ParaLib with HTML, CSS, and JavaScript. ParaLib’s 
backend can directly read the JSON fle and generate the concept 
hierarchy and labeled code examples on the interface. 

B APPENDIX: USER STUDY QUESTIONNAIRE 
We used the following seven questions to explore users’ library 
selections in the user study. 

1. Fit for purpose Please rate the libraries based on whether 
they ofer a good match between their set of functionalities and the 
required functionalities needed in the software. (i.e., the number of 
tasks/functionalities/purposes each library supports) 

2. Size Please rate the libraries according to the size of their code 
examples. (i.e., whether APIs in the library require you to write a 
lot of code to use them) 

3. Complexity Please rate the libraries according to the com-
plexity of usage. (i.e., whether a library is easy to use). 

4. Usability Please rank the libraries according to their usability. 
(e.g., learnability, understandability, readability, simplicity, etc.). 

5. Similarities Could you list the similarities of the three li-
braries? 

6. Diferences Could you list some diferences of the three li-
braries? 
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(NLP Domain) 7. Fit for the given scenario You have a large 
dataset of 10,000 tweets from Twitter. You want to directly use a pre-
trained neural network model to classify tweets into two classes: 
"relevant" and "irrelevant" to COVID-19. How would you rate your 
preference for these three libraries if you needed to pick one of the 
three NLP libraries for this classifer? Important functionalities: 1. 

Litao Yan, Miryung Kim, Björn Hartmann, Tianyi Zhang, and Elena L. Glassman 

The library should be able to provide a pre-trained neural network 
model. 2. The library can help with text classifcation) 

(Visualization Domain) 7. Fit for the given scenario If you 
needed to complete the task of visualizing COVID-19 infection 
data (unfltered) on a geo-map, how would you sort these libraries? 
requirement: 1. a library can flter data; 2. a library can visualize 
data on a geo-map (without the need for other plugins). 
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