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Uniqueness of Power Flow Solutions Using
Graph-Theoretic Notions

Haixiang Zhang, SangWoo Park

Absiraci—This article extends the uniqueness theory in
(Park et al., 2021) and establishes general necessary and
sufficient conditions for the uniqueness of P-© power flow
solutions in an AC power system using some properties
of the monotone regime and the power network topology.
We show that the necessary and sufficient conditions can
lead to tighter sufficient conditions for the uniqueness in
several special cases. Our results are based on the exist-
ing notion of maximal girth and our new notion of maxi-
mal eye. Moreover, we develop a series—parallel reduction
method and search-based algorithms for computing the
maximal eye and the maximal girth, which are necessary for
the uniqueness analysis. Reduction to a single line using
the proposed reduction method is guaranteed for 2-vertex-
connected series—parallel graphs. The relations between
the parameters of the network before and after reduction
are obtained. It is verified on real-world networks that the
computation of the maximal eye can be reduced to the anal-
ysis of a much smaller power network, while the maximal
girth is computed during the reduction process.

Index Terms—Graph theory, monotone operators, power
systems, power flow analysis.

[. INTRODUCTION

HE AC power flow problem plays a crucial role in various

aspects of power systems, e.g., the daily operations in con-
tingency analysis and security-constrained dispatch of electric-
ity markets. In essence, the goal of the AC power flow problem
is to solve for the complex voltage of each bus that determines
the power system set point. However, the nonlinear nature of the
AC power flow equations makes it difficult to analytically solve
the equations, if not impossible. Moreover, the uniqueness of
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the AC power flow problem is not guaranteed, even when either
voltage magnitudes or phase angle differences are limited to
the “physically realizable” regime [1]-[4]. Hence, unexpected
operating points may appear for some system conditions and can
jeopardize the normal operations of power systems. Conditions
that ensure the existence of a unique “physically realizable”
power flow solution are important but not fully understood.

For a special case of the AC power flow problem, the unique-
ness property of the real power—phase (P-©) power flow prob-
lem [5] has been studied in [1]. In the P-© power flow problem,
the magnitude of the complex voltage at each node is given and
the objective is to find a set of voltage phases such that the
power flow equations are satisfied. The “physically realizable”
constraint requires that the angular difference across every line
lies within the stability limit of 7/2 for lossless networks.
Sufficient conditions (on the angular differences) that depend on
the topological properties of the power network are established
in [1]. Specifically, the authors proposed the notion of monotone
regime and an upper bound on the angular differences based
on the power network topology, which together can ensure the
uniqueness of solutions. However, due to the nonlinear property
of sinusoidal functions and the low-rank structure of angular
differences, it is unclear to what extent the sufficient conditions
given in [1] are necessary.

The goal of this article is to provide more general necessary
and sufficient conditions for the uniqueness, using the notion of
maximal eye defined in Section III and the notion of maximal
girth introduced in [1]. This article also designs algorithms to
compute these graph-theoretic parameters.

A. Main Results

In this article, we extend the uniqueness theory of the P-©
power flow problem proposed in [1]. We focus on the uniqueness
of the power flow problem in a stronger sense and derive general
necessary and sufficient conditions that depend only on the
choice of the monotone regime and the network topology. Under
certain circumstances, the general conditions can be simplified to
obtain tighter sufficient conditions. In addition, some algorithms
for computing the maximal eye and the maximal girth of undi-
rected graphs are proposed. A reduction method is designed to
reduce the size of graphs and accelerate the computation process.
More specifically, the contributions of this article are threefold.

1) We extend the uniqueness theory of the P—© problem to
a stronger sense. The new uniqueness property is named
strong uniqueness, and a constant called the maximal eye
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is developed to classify all network topologies that ensure
the strong uniqueness. Numerical results show that the
maximal eye gives more reasonable conditions compared
to its counterpart for the weak uniqueness defined in [1]
and is known as the maximal girth.

2) We propose general necessary and sufficient conditions
for both the strong and the weak uniqueness. The condi-
tions are derived by Farkas’ lemma, which are associated
with the dual to the negation of the uniqueness problem.
Sufficient conditions for the strong and the weak unique-
ness are derived directly from the general conditions. In
the special case when the power network is a single cycle
or is lossless, necessary and sufficient conditions that do
not contain sinusoidal functions are derived.

3) Finally, we develop a reduction method, named itera-
tive series—parallel reduction (ISPR) method, that can
accelerate the computation of the maximal eye and the
maximal girth. The ISPR method is proved to reduce
2-vertex-connected series—parallel (SP) graphs to a single
line, independent of the choice of the slack bus. The rela-
tionship between the maximal eye (girth) of graphs before
and after the reduction is unveiled. When applying the
ISPR method to real-world examples, the maximal eye is
usually not changed over the reduction process, while the
maximal girth is computed during the reduction process.
We also design search-based algorithms for computing
the maximal eye and the maximal girth, which are able to
compute the exact value for graphs with up to 100 nodes
before reduction in a reasonable amount of time.

In summary, this article constitutes a substantial general-
ization of the uniqueness theory in [1]. A stronger notion of
uniqueness is proposed, and general necessary and sufficient
conditions are proposed. These two in combination provide
a tool for analyzing large-scale power networks and enable a
deeper understanding of the uniqueness of the P-© power flow
problem.

B. Related Work

The study of solutions to the power flow problem has a long
history dating back to [6], which gave an example showing the
general nonuniqueness of solutions for the power flow problem.
Then, the number of solutions of the power flow problem was
estimated in [7], which also characterized the stability region
for the power flow problem. However, these early works only
considered lossless transmission networks consisting of photo-
voltaic (PV) buses.

The fully coupled AC power flow equations are extremely
difficult to analyze, and the theoretical results that can be ob-
tained are often highly conservative or complicated to interpret.
One approach to overcoming this difficulty is to study two
decoupled power flow problems (the P-© problem and the
reactive power—voltage (Q-V) problem) as in [5]. The intuition
comes from the fact that the sensitivity of real power with respect
to the change in angle differences outweighs the sensitivity with
respect to the change in voltage magnitudes when angle differ-
ences are small and voltage magnitudes are close to 1 per unit

(the opposite relationship holds for reactive power). This simpli-
fication should be differentiated from the DC approximations,
which greatly simplifies the AC power flow equations by lin-
earizing the equations and discarding all of the nonlinearities in
the problem. Note that the P—© problem is still highly nonlinear.
Under the assumption that resistive losses are negligible, condi-
tions for the existence and uniqueness of both the real P—© prob-
lem and the reactive -V problem were derived in [S] and [8].

In another line of work, the topology structure of the power
network was also considered to derive stronger conditions for
the uniqueness. The number of solutions was estimated for radial
networks in [2] and [9] and later for general networks. Moreover,
a more recent work [10] gave several algorithms to compute the
unique high-voltage solution. Delabays et al.[11] established
upper bounds on the number of linearly stable fixed-point so-
lutions for locally coupled Kuramoto models, which can be
applied toward a lossless power flow problem. In this article, we
consider the P-© problem [5] for general lossy power networks
and utilize the topology information. We refer to [1] for a more
detailed review of the existing literature.

The fixed-point technique is often used for proving the exis-
tence and uniqueness of equations. For the power flow prob-
lem, the fixed-point technique was first utilized in [12] and
was further developed by several works [13]-[18]. Another
more recently applied approach is to treat the P-© power
flow problem as a rank-1 matrix sensing problem and solve
its convex relaxation counterpart [19], [20]. Reference [21]
also considered the domain of voltages over which the power
flow operator is monotone. However, the relation between the
rank-1-constrained problem and its convexification is not clear
for general power networks.

Reference [22] presented a unifying framework for network
problems on the n-torus. The framework applies to the AC
power flow problem when the power networks are lossless.
The idea of considering the regime when the power flow on
each line is monotone was extended to lossy power networks
in [1]. The regime where the power flow on a line increases
monotonically with the angle difference across the line—called
the monotone regime in this article—was proposed. In [1], it
was also shown that the solution of the P—© problem is unique
under the assumption that angle differences across the lines
are bounded by some limit related to the maximal girth of the
network, which is defined in [23]. We refer the reader to the
survey paper [24] for an overview.

The existing algorithms in the literature cannot be directly
used to compute the maximal eye (introduced in Section III) or
the maximal girth. A related problem is computing the maximal
chordless cycle as an upper bound to these parameters. The
computation of maximal chordless cycles was proved to be N'P-
complete in [25]. Efficient algorithms for enumerating chordless
cycles were proposed in [26] and [27], and both take linear
time to enumerate a single chordless cycle. The algorithms for
enumerating maximal chordless cycles can be easily modified to
compute the minimal chordless cycle containing a given edge.
A series—paralle]l reduction (SPR) method was introduced as
an alternative definition of generalized series—parallel (GSP)
graphs in [28]. Under the assumption that the slack bus is the

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 30,2022 at 21:30:43 UTC from IEEE Xplore. Restrictions apply.



102 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 9, NO. 1, MARCH 2022

last bus to be reduced, all GSP graphs can be reduced to a single
line [1]. However, whether the SPR method can still reduce GSP
graphs without the assumption on the slack bus is not known. In
this article, we show that 2-vertex-connected' SP graphs can be
reduced to a single line without the assumption.

C. Notations

We start with some mathematical notations. We use
N, Z,R, and C todenote the set of all natural numbers, integers,
real numbers, and complex numbers, respectively. We denote
[n] :=={1,...,n} for any n € N. The symbol j denotes the
unit imaginary number. The notations (-)T and (-)# denote the
transpose and Hermitian transpose of a matrix, respectively. For
a complex number z, |z| denotes its magnitude, and for a set X,
the symbol | X | denotes its cardinality. {(-) denotes the real part
of a given scalar or matrix.

For an undirected graph, the set of vertices and the set of
edges are denoted as V and E, respectively. Suppose that the
edges of an undirected graph are weighted with the weights
captured by a matrix W € RIVI*IVI where W}, is the weight of
edge {7, 7}. Then, the graph is represented as (V,E, W). For
a directed graph (V,E, A), the matrix A € R/VI*IVI gives the
orientation of each line, where A;; = 1 (respectively, A;; = —1)
represents the direction ¢ — j (respectively, 7 — ). The undi-
rected edge connecting two vertices k and ¢ is denoted by a set
notation {k, £}, whereas (k, £) denotes a directed edge coming
out of vertex k and going into £. For parallel edges, we use
{k, £,1} to represent different edges connecting k and ¢, where
1 € Z is the index of each parallel edge.

A power network G = (V,E,Y’) consists of two parts: the
underlying undirected graph (V, E) and the complex admittance
matrix Y € C™*", where n is the number of vertices in the
underlying graph. The underlying graph is assumed to be a
simple and connected graph. The set of vertices V and the set of
edges E correspond to the set of buses and the set of lines of the
power network. The series element of the equivalent II-model of
each line {k, £} is modeled by admittance Yx, = Ge — jBre,
where Gk,g, Bkg = 0.

We denote v € C™ as the vector of complex bus voltages.
The complex voltage at bus k can be written in the polar form
using its magnitude and phase angle vy = |vx|eI©* for all k €
[n], where |vk| € R and ©4 € R denote the voltage magnitude
and the phase angle, respectively. We denote Oy := O — O, €
[—, ) as the phase difference modulus by 2 forall {k, £} € E.
In the rest of this article, we use the corresponding values in
[—, ) for phase differences.

D. Article Organization

The rest of this article is organized as follows. Section II gives
the necessary background knowledge about the P-© power flow
problem and the existing uniqueness theory for the P—© prob-
lem. The notions of strong uniqueness and weak uniqueness are
also introduced. In Section III, we propose the general analysis

'A graph is called 2-vertex-connected if it is connected after the deletion of
any single vertex.

framework of the uniqueness theory that only depends on the
monotone regime and the topological structure. We show that
necessary and sufficient conditions can be fully characterized
by a feasibility problem, which has fewer variables than that of
the P—© problem. Sufficient conditions for the uniqueness are
derived, and it is shown that the uniqueness conditions in [1]
follow as a natural corollary. Then, we consider three special
cases in Section I'V by assuming specific topological structures
for the underlying graph or a specific monotone regime. In
these special cases, the necessary and sufficient conditions are
simplified and the intricate sinusoidal functions are avoided in
the verification of those conditions. Furthermore, the sufficient
conditions proposed in Section III are proved to be tight when
no information beyond the monotone regime and the topo-
logical structure is available. Finally, a reduction method and
search-based algorithms for computing the maximal girth and
the maximal eye are given in Section V. We provide numerical
illustrations in Section VI. Proofs are delineated in the technical
report [29]. Finally, Section VII concludes this article.

Il. PRELIMINARIES
A. P—0© Problem Formulation

As mentioned in the introduction, we focus our attention to
the P—© problem, which describes the relationship between the
voltage phasor angles and the real power injections. We first
make the following assumptions.

Assumption 1: The slack bus and the reference bus are bus
1. All other buses except the slack bus are PV buses.

Recall that the following injection operator describes the P—-©
problem, where the shunt elements are assumed to be purely
reactive.

Definition 1: Given G = (V,E,Y), define P : {0} x
R™ ! — R as the map from the vector of phasor angles to the
real power injection at bus k:

Pi(©) :=R{(Yv)Fuv,} VO € {0} x R™ 1.

Moreover, define the injection operator P : {0} x R™ ! —
R™ 1 as

P(8) := [Py(8),...,P(O)].

The goal of the P—© problem is, given P € R™ 1, to find the
voltage phasor angles © € {0} x R™~! such that

P©)="P (1)

B. Monotone Regime and Allowable Sets

We are interested in the uniqueness property of the solution to
problem (1). In general, the number of solutions to problem (1)
is hard to estimate because of the periodic behavior of sinusoidal
functions, especially when there is no symmetrical structure in
the power network. Thus, we limit the phase angle vectors to
the monotone regime, within which the real power flow from
bus k to bus £ increases monotonically with respect to the phase
difference Oy, for each line {k, £} € E. The monotone regime
is defined in [1] as follows.
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Definition 2: The monotone regime of a power network
(V,E,Y) is the set

{6 €R™ O = 0,0k € [—ke, Tre] V{k, £} € E},

where i := tan~!(By¢/Gye) € [0,7/2] for all {k, ¢} € E.

Due to the periodicity of sinusoidal functions, the solution to
the P—© problem is trivially nonunique if there is no constraint
on the phase angles. In this article, we consider the case when
the voltage phase angles are within the monotone regime. It is
noted in [30] that g, is generally larger than 27/5, while O,
is rarely larger than 7 /6 due to stability and thermal limits. The
constraint that the angular difference across every line lies within
the stability limit of [—~xs, x| is equivalent to the steady-state
stability limit if each line is considered individually. As shown
in [1], the phase angle vectors of leaf buses except the slack bus
are uniquely determined by the phase angle vectors of nonleaf
buses in the monotone regime. Hence, we assume that all vertices
in the underlying graph except vertex 1 have degree at least 2.

Assumption 2: The graph (V,[E) is connected. All vertices
except vertex 1 in the graph (V, E) have degree at least 2.

We focus on finding a neighborhood of a solution, in which
there is no other solution to the P—© problem. The neighborhood
is defined as follows.

Definition 3: The set of allowable perturbations is defined as

Wa— {wk,g > O|V{k€} € ]E}

Suppose that © is a solution to the P-© problem in the
monotone regime. Then, the set of neighboring phases is defined
as

N(G,O,W):= {0 cR"|6; =0,
Okt € [Tkt Tre] N [Oke — wie, Oke + wie] V{k, £} € E}.

We note that éke refers to the value of © o ég modulo 2.

Without loss of generality, we assume that wy; < 2y, for
all {k, £} € E, since the width of the monotone regime is 2,
setting wre > 27x¢ Will not enlarge the set of neighboring phases
compared to setting wiy = 2.

Assumption 3: The perturbation width satisfies wie < 27y
forall {k,{} € E.

It is desirable to analyze the uniqueness of the solution in the
neighborhood V' (G, ©, W). Park et al. [1] considered the set of
allowable angles, which is defined as

{6 e R™"O; = 0,64 € [~wre/2,wre/2] V{k, £} € E}.

Note that the set of allowable angles is a special case of the set
of allowable perturbations, since any two phase vectors in the set
of allowable angles are in the corresponding sets of neighboring
phases of each other. In this article, we use the set of allowable
perturbations, but the sufficient conditions we derive can be
naturally applied to using the sef of allowable angles.

C. Notions of Weak and Strong Uniqueness

Informally, we say that the P—© problem (1) has a unique
solution © under the allowable perturbation set W, if there
exists at most one solution in the set N'(G, 0, W). We give

two different definitions of the uniqueness. First, we introduce
the uniqueness in the weak sense.

Definition 4: We say that a solution © to the P-© problem (1)
is weakly unique with the given set of allowable perturbations
W if, for any solution © € N'(G, O, W), there exists a line
{k, f} € [ such that O, = ék,g.

In other words, two solutions are different according to Def-
inition 4 if and only if they have different phase differences for
every line. Next, we extend the definition of the weak uniqueness
to a stronger sense that is also more useful and usual.

Definition 5: We say that a solution © to the P-© problem (1)
is strongly unique with the given set of allowable perturbations
W if, for any solution ® € N(G,0,W) and any {k,¢} € E,
we have Oy, = Oy,.

In other words, two solutions are different according to Def-
inition 5 if and only if the phase differences are different on at
least one line.

l1l. UNIQUENESS THEORY FOR GENERAL GRAPHS

In this section, we derive necessary and sufficient conditions
on the set of allowable perturbations }V such that the solution to
problem (1) becomes strongly or weakly unique. In particular,
we aim to analyze the impact of the power system topology
and the size of the monotone regime on the uniqueness prop-
erty. Namely, given the topological structure and the monotone
regime, we aim to find conditions on W such that the uniqueness
of solutions holds. To achieve this, we need to derive conditions
under which all power networks with the same topological struc-
ture and monotone regime have unique solutions. To formalize
the problem, we fix the underlying graph (V, E) and the angles
specifying the monotone regime I" := {~;, € (0,7/2] | {k, £} €
E}. We define the set of possible admittances with the same
monotone regime as

8(7) := {(Ccos(v),Csin(y)) | C > 0} Vv € [0,7/2].

The set of complex admittance matrices with the same mono-
tone regime is defined as

YV(V,E,T) := {Y is an admittance matrix |
Yie = Gie — iBre, (Gre, Bre) € S(vke), {k, £} € E}.

Then, we define the set of power networks with the same
topological structure and the same monotone regime as

G(V,E, ) :={G = (V,E,Y)|Y € Y(V,E,T')}

or simply G if there is no confusion about V, E, and I'. Hence,
the problem under study in this article can be stated as follows.
1) What are the necessary and sufficient conditions on the
allowable perturbations V' such that the solution to prob-
lem (1) is unique within the set of allowable perturbations

for any power network G € G?

The necessary and sufficient conditions provide two sides on
the uniqueness theory. The sufficient conditions give a guarantee
for the uniqueness of solutions for any single power network with
the given topological structure and monotone regime, while the
necessary conditions bound the optimal conditions we can derive
only using the knowledge of the topological structure and the

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 30,2022 at 21:30:43 UTC from IEEE Xplore. Restrictions apply.



104 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 9, NO. 1, MARCH 2022

monotone regime. We first give an equivalent characterization
of strong and weak uniqueness.

Lemma 1 (Necessary and sufficient conditions for
uniqueness): Given the set of power networks G(V,E,T")
and the set of allowable perturbations W, the following two
statements are equivalent.

1) For any power network G € G(V,E,I') and any power
injection P € RIVI-1 such that problem (1) is feasible in
the monotone regime, the solution to problem (1) in the
monotone regime is strongly unique in (G, 0, W).

2) For any power network G € G(V,E,I') and any two
phase angle vectors ©', ©2 in the monotone regime with
the property ©% € N'(G,0', W), there exists a vector
y € RVl such that y; = 0 and

sin(Yke + Ore/2 + O14/2) - Yk
> sin(yge — 9};2/2 - eﬁf/m e

V{k,f} €E st.6},—07,>0,
2

where at least one of the inequalities above is strict.

The equivalence between statements 1 and 2 still holds true
even after replacing the strong uniqueness with the weak unique-
ness in statement 1, provided that the phase angle vector © in
statement 2 is required to satisfy ©L, # ©%, for all {k, £} € E.

Intuitively, the above lemma studies the uniqueness of solu-
tions through its dual form. The existence of multiple solutions
can be formulated as a linear feasibility problem. Then, the
strong duality of linear programming allows us to equivalently
consider the dual of the feasibility problem. The dual form is
preferred since the dual problem has fewer variables and its
solution is easier to construct. We, then, derive several sufficient
conditions using Lemma 1. We first show that we only need
to verify statement 2 in Lemma 1 for two phase angle vectors
©! and ©? that induce a (weakly) feasible orientation, which
we will define below. We define the orientation induced by two
phase angle vectors.

Definition 6: Suppose that ©! and ©2 are two phase angle
vectors of the graph. Then, we define the induced orientation of
A := 0! — 02 as Ay, := sign(Ay,) for all {k, £} € E, where
the sign function sign(-) is defined as

+1, ifz>0
sign(z) := <0, ifz=0.
-1, ifr<0

In the definition of induced orientations, we assign one of
the three directions 41, —1, and O to each edge. The first two
directions are “normal” directions for directed graphs. An edge
with direction +1 or —1 is called a normal edge. Edges with
direction O are viewed as an undirected edge and reachable in
both directions. In addition, edges with direction 0 are not con-
sidered when computing the in-degree and the out-degree. We
only need to consider orientations induced by two different phase
angle vectors ©! —02 such that P(6!) = P(6?). However, a
precise characterization of those orientations is difficult, and we
consider a larger set that contains those orientations.

Definition 7: An orientation assigned to an undirected graph
is called a feasible orientation if all edges are normal and each
vertex except vertex 1 has nonzero in-degree and out-degree.

According to the analysis in [1], the induced orientation of two
solutions ©! and ©2 in the monotone regime that are different
according to Definition 4 must be a feasible orientation. Then,
we give the definition of weakly feasible orientations as the
counterpart for the strong uniqueness.

Definition 8: An orientation assigned to an undirected graph
is called a weakly feasible orientation if two properties are
satisfied: 1) there exists at least one normal edge and 2) the
in-degree and the out-degree of any vertex except vertex 1 are
both zero or both nonzero.

Edges with direction 0 are lines with the same angular dif-
ference for the two phase angle vectors ©! and ©2. By the
same discussion as in Section I, we can view a weakly feasible
orientation as a feasible orientation for the subgraph that only
has normal edges. The next lemma shows that we only need
to consider weakly feasible orientations or feasible orientations
when checking the conditions in statement 2 of Lemma 1.

Lemma 2: If two different phase angle vectors ©! and ©2
in the monotone regime satisfy ©2 € N'(G,©0',W) and the
induced orientation of ©' —©? is not weakly feasible, then there
exists avectory € RIV such that statement 2 of Lemma 1 holds.
The result holds true for the weak uniqueness property as well,
provided that the induced orientation of ©! —©? is not a feasible
orientation.

Combining Lemmas 1 and 2, we obtain sufficient conditions
for the strong uniqueness and the weak uniqueness.

Theorem 3 (Sufficient conditions for uniqueness): Given
the set of allowable perturbations W, suppose that for any two
different phase angle vectors ©!—6? in the monotone regime
satisfying ©, € N (G, ©1, W), the induced orientation of O —
©? is not a weakly feasible orientation. Then, the solution to
problem (1) is strongly unique for all power networks in G. The
result holds true for the weak uniqueness as well, provided that
the induced orientation of ©! —©? is not a feasible orientation.

The sufficient condition given above is a generalization of [1,
Th. 4], which ensures the weak uniqueness of solutions in the set
of allowable phases. Using Theorem 3, we can derive a corollary
similar to [1, Th. 4].

Corollary 4: Consider an arbitrary set of allowable perturba-
tions WV. The solution to problem (1) in the monotone regime is
strongly unique for any power network G € G if, for any weakly
feasible orientation of the underlying graph (V, E), there exists
adirected cycle (K1, . . ., k:) containing at least one normal edge
such that the allowable perturbations satisfy the inequality

>,

{ki,kiy1} is normal

WEkikiya < 27{'3

where k;y1 := k1. The same result holds true for the weak
uniqueness if we substitute weakly feasible orientations with
feasible orientations.

Now, we consider a special case where all constants wg, in
the set of allowable perturbations are equal, i.e., there exists a
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constant w > 0 such that the set of allowable perturbation is
Wy = {wre = wV{k, £} e E}.

The problem we consider in this case is as follows.

2) Whatis the sufficient condition on w such that the solution
to problem (1) is unique with the allowable perturbation
set W,,?

We derive an upper bound on the constant w to guarantee the
uniqueness. We first define the maximal eye and the maximal
girth of an undirected graph.

Definition 9: Consider an undirected graph (V,E). For any
weakly feasible orientation assigned to the graph (V,E), we
define the minimal length of directed cycles that contain at least
one normal edge as the size of eye of this orientation, where
edges with direction O are considered as bidirectional edges. We
define the maximal eye of the graph (V,E) as the maximum of
the size of eye over all possible weakly feasible orientations. We
denote the maximal eyes of the graph (V,E), a power network
G, and a group of power networks G ase(V,E), e(G),and e(G),
respectively.

Remark 1: There always exists a directed cycle containing
normal edges when the underlying graph is under a weakly
feasible orientation. To understand this, we first choose an
arbitrary normal edge (k1,k2) € E. Since the vertex ko has
nonzero in-degree, it also has nonzero out-degree. Hence, there
exists another vertex ks such that (kg, ks) € E. Continuing
this procedure will result in the existence of a vertex k; such
that v; = k. for some s < t. This generates a directed cycle
(Es,kss+1,-..,kt—1) containing only normal edges. Hence, the
size of eye is well defined.

The counterpart of the maximal eye, known as the maximal
girth, is defined in [1], and we restate the definition as follows.

Definition 10: Consider an undirected graph (V, E). For any
feasible orientation assigned to the underlying graph (V,E),
we define the minimal size of directed cycles as the girth of this
feasible orientation. We define the maximal girth of the graph
(V, E) as the maximum of the girth over all feasible orientations.
We denote the maximal girths of the graph (V,E), a power
network G, and a group of power networks G as g(V,E), g(G),
and g(G), respectively.

Remark 2: Similar to the discussion in Remark 1, there exists
at least one directed cycle when the graph is under a feasible
orientation. The maximal eye can be equivalently defined as the
maximum of the maximal girth over all subgraphs that do not
have degree-1 vertices.

We provide an upper bound for w using the maximal eye and
the maximal girth, which follows from Corollary 4.

Corollary 5: If the inequality
V{k,£} € E 3)

= 2w
i Sl
ke <)
is satisfied, then the solution to problem (1) in the monotone
regime is strongly unique for any power network G € G. The
same result holds true for the weak uniqueness, provided that
e(@G) in (3) is substituted by g(G).

In Section V, we design search-based algorithms to calculate
the maximal eye and the maximal girth. However, computing

the maximal eye or the maximal girth is challenging for graphs
with more than 100 nodes. Hence, we seek upper bounds and
lower bounds for the maximal eye and the maximal girth. In this
article, we obtain a simple upper bound for both the maximal
girth and the maximal eye. We define (G ) and x(G) as the sizes
of the longest chordless cycles of the underlying graph of the
power network G and any power network in the power network
class G, respectively. The upper bound on the maximal girth and
the maximal eye will be provided in the following.
Theorem 6: For any power network G, it holds that

g(G) <e(G) < x(G) )

and that g(G) < e(G) < K(G).

We note that although computing the longest chordless cycle
is N"P-complete [25], the computation of the longest chordless
cycle is faster than the computation of the maximal eye and the
maximal girth in practice.

[V. UNIQUENESS THEORY FOR THREE SPECIAL CASES

In this section, we consider three special cases. For each case,
the power network has either a special topological structure or a
special monotone regime. In the first two cases, the underlying
graph of the power network is a single cycle or a 2-vertex-
connected SP graph. When the underlying graph is a single
cycle, the sufficient conditions in Corollary 4 are also necessary.
If the underlying graph is a 2-vertex-connected SP graph, we
prove that the sufficient conditions for the weak uniqueness in
Corollary 5 also ensure the strong uniqueness. In the last case,
the power network is assumed to be lossless. In this case, the
monotone regime of each line reaches the maximum possible
size [—m/2,7/2]. Sinusoidal functions can, then, be avoided
in statement 2 of Lemma 1, and therefore, the verification of
conditions is easier.

A. Single Cycles

We first consider the case when the underlying graph (V,E)
is a single cycle. We first show that the weak uniqueness is
equivalent to the strong uniqueness in this case.

Lemma 7: Suppose that the underlying graph is a single cycle
with the edges (1, 2),(2,3),...,(n,1). Then, given the set of
allowable perturbations W, the solution to problem (1) in the
monotone regime is weakly unique if and only if it is strongly
unique.

Next, we prove that the sufficient conditions derived in Corol-
lary 4 are also necessary for a single cycle with the nontrivial
monotone regime.

Theorem 8: Suppose that the underlying graph is a single
cycle with the edges (1,2),(2,3),...,(n,1), and that the set
of allowable perturbations satisfies 0 < w; ;11 < 7,441 for all
i € [n],where~y, 11 = Yp,1 a0dwy, n 11 = wy 1. The solution
to problem (1) in the monotone regime is strongly unique for
any power network G € G(V,E,TI') and any power injection
P € R™! that makes problem (1) feasible if and only if the set
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of allowable perturbations W satisfies

n
Zwiﬂ-ﬁ-l < 27
i=1

where wy ny1 == wn 1.

In contrast to requiring w; ;41 > 0 in the above theorem,
the condition that w; ;1 = 0 for some : is sufficient but not
necessary for the uniqueness of solutions. Under this condition,
two solutions ©! and ©2 in the monotone regime such that
0% € N(G,©', W) must satisfy O], ; = 67, ;. Hence, any
solution is strongly unique with this set of allowable perturba-
tions. However, by Theorem 8, this condition is not necessary
for the uniqueness of solutions.

B. SP Graphs

In this subsection, we consider another special class of graphs,
namely, the 2-vertex-connected SP graphs. The objective is to
find an upper bound on the constant w to guarantee that the
solution to problem (1) is unique. Corollary 5 shows that the
solution is strongly unique ifw < 27 /e(G) and is weakly unique
if w < 2w /g(G). However, for a 2-vertex-connected SP graph,
we can prove a stronger theorem. We first prove that the maximal
eye is equal to the maximal girth for a 2-vertex-connected SP
graph. The main tool is the ear decomposition of an undirected
graph [31].

Definition 11: An ear of an undirected graph (V,E) is a
simple path or a single cycle. An ear decomposition of an
undirected graph (V,E), denoted as D := (Lg, ..., Ly_1), is
a partition of E into an ordered sequence of ears such that one or
two endpoints of each ear L, are contained in an earlier ear, i.e.,
an ear L, with £ < k, and the internal vertices of each ear do not
belong to any earlier ear. We call D a proper ear decomposition
if each ear Ly, is asimple path forall k =1,...,7 — 1. A tree
ear decomposition is a proper ear decomposition in which the
first ear is a single edge, and for each subsequent ear Ly, there
is a single ear L, with £ < k, such that both endpoints of Ly, lie
on L;. A nested ear decomposition is a tree ear decomposition
such that, within each ear L, the set of pairs of endpoints of
other ears L;, that lie within L, forms a set of nested intervals.

The following theorem in [32] provides an equivalent char-
acterization of 2-vertex-connected SP graphs through the ear
decomposition.

Theorem 9: A 2-vertex-connected graph is SP if and only if
it has a nested ear decomposition.

With the help of the nested ear decomposition, we will prove
that the maximal girth is equal to the maximal eye for 2-vertex-
connected SP graphs. The intuition behind the proof is that we
first choose two vertices as the “source” and the “sink™ for the
power flow network. For each edge with direction 0, we first
consider the directed path that contains this edge and goes from
the “source” to the “sink™ and, then, assign a normal direction
(£1) to this edge according to the directed path. This step ensures
that the first inequality in (4) holds as equality.

Lemma 10: Suppose that (V, E) is a 2-vertex-connected SP
graph. Then, the following equality holds true:

g(V,E) =¢(V,E).

Therefore, combining the above lemma with Corollary 5, we
obtain a stronger sufficient condition for 2-vertex-connected SP
graphs. This result implies that the sufficient conditions for
the weak uniqueness in Corollary 5 also guarantee the strong
uniqueness.

Theorem 11: Suppose that the underlying graph (V,E) is
a 2-vertex-connected SP graph. The solution to problem (1) is
strongly unique for any power network G € G in the monotone
regime if

2T

C. Lossless Networks

Finally, we consider the case when the power network is
lossless, namely, whenyy, = 7/2forall {k, £} € E.Inthiscase,
we prove that the strong uniqueness holds if and only if there
does not exist another solution in the set of neighboring phases
such that the induced orientation has strictly more strongly con-
nected components than weakly connected components. This
result makes it possible to avoid nonlinear sinusoidal functions
in statement 2 of Lemma 1, and therefore, the uniqueness of
solutions becomes easier to verify. We first define the subgraph
induced by two phase angle vectors.

Definition 12: Suppose that ©' and ©2 are two different phase
angle vectors, and that the orientation A is the induced orien-
tation of ©!—©?2. Then, the induced subgraph of ©' —©? is
constructed as a directed subgraph of (V,E, A) by first deleting
all edges with direction 0 and then deleting all degree-1 vertices.

In what follows, we establish a necessary and sufficient con-
dition for the uniqueness of the solution that does not contain
sinusoidal functions.

Theorem 12: Consider the set of allowable perturbations W.
If the monotone regime satisfies g, = /2 for all {k,/} € E,
then the following two statements are equivalent.

1) For any power network G € G(V,E,I'") and any power
injection P € R!VI=! such that problem (1) is feasible,
the solution to problem (1) in the monotone regime is
strongly unique in N'(G, 0, W).

2) For any power network G € G(V,E,I') and any two
phase angle vectors ©! and ©? in the monotone regime
with the property ©2 € N (G, 0!, W), the induced sub-
graph of ©'—©?2 has strictly more strongly connected
components than weakly connected components.

The equivalence between statements 1 and 2 still holds true
even after replacing the strong uniqueness with the weak unique-
ness in statement 1, provided that the phase angle vectors ©2 in
statement 2 is required to satisfy O}, # ©2, for all {k, ¢} € E.

The result of the above theorem is stronger than the sufficient
conditions in Theorem 3. This is because any (weakly) infeasible
orientation has strictly more strongly connected components
than weakly connected components. Hence, the sufficient con-
ditions in Theorem 3 ensure that all induced orientations are
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(weakly) infeasible. Then, statement 2 of this theorem holds
true, and the solution becomes strongly (weakly) unique.

V. ITERATIVE SERIES—PARALLEL REDUCTION

In the preceding sections, we have shown that the maximal
eye and the maximal girth play important roles in the uniqueness
theory. However, computing the maximal eye or the maximal
girth is cumbersome for large graphs. Hence, we develop an
iterative reduction method to design a reduced graph and, then,
prove the relationship between the maximal eye or the maximal
girth of the original graph and those of the reduced graph.
Next, we test the performance of those algorithms on real-world
problems. Search-based algorithms for computing the maximal
eye and the maximal girth are given in [29].

A. ISPR Method

In this subsection, we propose an iterative reduction method,
named as the ISPR method, that can reduce the size of the
underlying graph for computing the maximal eye and the max-
imal girth. The ISPR method is different from the SPR method
introduced in [1] in two aspects. First, the purpose of the ISPR
method is to accelerate the computation of the maximal eye
and the maximal girth, while the focus of the SPR method is to
facilitate the verification of uniqueness conditions. Second, we
prove that all 2-vertex-connected SP graphs can be reduced to
a single edge (K2) without the assumption in [1] that the slack
bus is the last to be reduced.

Before introducing the ISPR method, we extend the definition
of the maximal eye and the maximal girth to weighted graphs
with “multiple slack buses.” This generalized class of graphs
appear during the reduction process. By defining the length of
a cycle as the sum of the weights of the edges on the cycle,
the maximal eye and the maximal girth can be generalized to
weighted graphs. Next, we define (weakly) feasible orientations
for graphs with “multiple slack buses,” namely, the slack nodes.

Definition 13: For a weighted undirected graph (V,E, W), a
subset of vertices V, C V is called the set of slack nodes. An
orientation A assigned to the graph is called a weakly feasible
orientation if each edge has one of the directions {+1,—1,0}
and each vertex not in V, either has nonzero in-degree and
nonzero out-degree or has zero in-degree and zero out-degree.
An orientation A assigned to the graph is called a feasible
orientation if each edge has one of the directions {+1,—1}
and each vertex not in V; has nonzero in-degree and nonzero
out-degree.

Now, we can define the maximal eye for graphs with slack
nodes by taking the maximum of the size of eye over weakly
feasible orientations. The maximal girth can be defined in a
similar way. For power networks, the only slack node is the
slack bus of the power network. Hence, the extended definitions
of the maximal eye and the maximal girth are consistent with
their original definitions. The ISPR method is based on three
types of operation.

1) Type I Operation: Replacement of a set of parallel edges
with a single edge that connects their common endpoints.

Algorithm 1: ISPR Method.

Input:Undirected unweighted graph (V,E), slack bus k&
Output:Reduced undirected weighted graph
(Vgr,Eg, Wg), two constants a1, cp defined in
Theorems 14 and 16, set of slack nodes V,
Set the initial weight for each edge to be 1.
Set the initial set of slack nodes as V, + {k}.
while at least one operation is implementable do
if Type I Operations are implementable then
Implement Type I Operation.
Update values o1 and a according to their
definitions in Theorems 14 and 16.
continue
end if
if Type Il Operations are implementable then
Implement Type II Operation.
continue
end if
if Type III Operations are implementable then
Implement Type III Operation.
Update values «vjand arg according to their definitions
in Theorems 14 and 16.
Update the set of slack nodes V.
continue
end if
end while
Return reduced graph (Vg, E g, Wg), set of slack nodes
V., and values a; and as.

The weight of the new single edge is the minimum over
the weights of the deleted parallel edges.

2) Type Il Operation: Replacement of the two edges incident
to a degree-2 vertex with a single edge, if the vertex has
exactly two neighboring vertices and is not a slack node.
The weight of the new edge is the sum of the weights of
the two deleted edges.

3) Type III Operation: Deletion of a vertex that has only a
single neighboring vertex. If the deleted vertex is a slack
node, or if the deleted vertex has degree at least 2 for the
problem of computing the maximal girth, then we define
its neighboring vertex as a slack node.

The update scheme of weights and slack nodes is designed
to control the change of the maximal eye or the maximal girth.
The ISPR method successively reduces the size of the graph
by applying Type I-III Operations; the pseudocode of the ISPR
method is given in Algorithm 1.

We note that after the reduction process, there is no parallel
edge or pendant (degree-1) vertex in the reduced graph. Ignoring
the weights of the edges and the set of the slack nodes, the
operations in the ISPR method can cover the operations in the
classical SPR [28], which are as follows.

1) Type I operation: Replacement of parallel edges with a
single edge that connects their common endpoints.

2) Type Il operation: Replacement of the two edges incident
to a degree-2 vertex with a single edge.
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3) Type III' operation: Deletion of a pendant vertex.

Hence, the ISPR method can be viewed as a generalization of
the classical SPR. We first consider the change of the maximal
eye after each operation.

Lemma 13: Given a weighted undirected graph (V,E, W),
let e denote its maximal eye. Assume that one of Type I-III
Operations is implemented on the graph. By denoting the new
graph and its maximal eye as (V,E, W) and &, the following
statements hold.

1) If Type I Operation is implemented, then

e<e< ma.x{é, Wax + Wmirl}-s

where Wi and Wiy, are the maximal and minimal
weights of the deleted parallel edges, respectively.

2) If Type II Operation is implemented, then e = e.

3) If Type III Operation is implemented and the deleted
vertex has degree 1, thene = é.

4) If Type III Operation is implemented and the deleted
vertex has degree larger than 1, then

€= max{é, Wmax + Wmin}:

where Wi and Wy, are the maximal and minimal
weights of the deleted parallel edges, respectively.
Using the above lemma, we have the following theorem.
Theorem 14: Given a power network with the underlying
graph (V, E), let e denote the maximal eye of the graph. Denote
the graph after reduction and its maximal eye as (Vg, Er, Wg)
and ep, respectively. Then, we have

max{ep,az} < e < max{eg,a,as},

where a; and o are the maximum of Wiax + Wi over Type
I and IIT Operations, respectively. Here, Wiax and Wiy, are
defined in Lemma 13. If Type I or III Operations is never
implemented, then we set a; or ap to 0.

Similarly, we can prove the relation between the maximal
girth of the original graph and that of the reduced graph. We
first show the change of the maximal girth after each operation.

Lemma 15: Given a weighted undirected graph (V,E, W),
let g denote its maximal girth. Assume that one of Type I-III
Operations is implemented on the graph. By denoting the new
graph and its maximal girth of new graph as (V,E, W) and g,
the following statements hold.

1) If Type I Operation is implemented, then

g<g< max{g, Whax + Wmin}:

where Wi and Wiy, are the maximal and minimal
weights of the deleted parallel edges, respectively.

2) If Type II Operation is implemented, then g = g.

3) If Type III Operation is implemented and the deleted
vertex has degree 1, then g = g.

4) If Type III Operation is implemented, the deleted vertex
is a slack node and has degree larger than 1, then

g<g< max{g, Wmax + Wmin}:

where W and Wiy, are the maximal and minimal
weights of the deleted parallel edges, respectively.

TABLE |
NUMBER OF VERTICES AND EDGES BEFORE AND AFTER THE ISPR
METHOD FOR MAXIMAL EYE ALONG WITH VALUES COMPUTED DURING THE
REDUCTION PROCESS

Power Network | Original Size | Reduced Size | oy | a3 eRr
Case 14 (14,20) 2,1) 6 3 ]
Case 30 (30,41) (8,13) 4 3 8
Case 39 (39,46) (8,12) 4 ] 8
Case 57 57.79) 22,39) T - |
Case 118 (118,179) (44,83) 5 - 13
Case 300 (300,409) (109,196) 8 4 =10

Case 1354 (1354,1710) (263,500) 9 8 TLE
Case 2383 (2383,2886) (499,949) 11 5 TLE

5) If Type III Operation is implemented, the deleted vertex
is not a slack node and has degree larger than 1, then

g= mjn{g, Wonax + Wmin}:

where Wy and Wy, are the maximal and minimal
weights of the deleted parallel edges, respectively.

By the above lemma, the relationship between the maximal
girth of the original graph and that of the reduced graph will be
discovered below.

Theorem 16: Given a power network with the underlying
graph (V,E), let g denote its maximal girth. By denoting the
graph after reduction and its maximal girth as (Vg,Eg, Wg)
and gp, we have

min{gg, a2} < g < min{max{gg, a1}, asz},

where a4 is the maximum of Wiax + Whin over Type I Oper-
ations and the second case of Type III Operations, and o is
the minimum of Wi + Whin over the third case of Type III
Operations. Here, Wiyax and Wiy, are defined in Lemma 13. If
operations for computing c:; or ap are never implemented, then
we set aq to 0 or ap to +oo.

Based on the numerical results in Table I and [29, Table II]
for large power networks, the values of a; and a3 in Theorems
14 and 16 are usually smaller than e and gr. Hence, we have
the approximation

e er, g~ Q. (5)

The above relations imply that for large power networks,
computing the maximal eye is equivalent to computing the
maximal eye of a reduced graph, while the maximal girth is
already computed during the reduction process. Finally, we
prove that 2-vertex-connected SP graphs can be reduced to a
single edge by the ISPR method.

Theorem 17: If the underlying graph (V,E) of a
power network is a 2-vertex-connected SP graph, then the
ISPR method reduces the underlying graph to a single
edge.

For an undirected graph without slack nodes, the classical
SPR (Type I'-III' Operations) can reduce the graph to a single
edge if and only if the graph is a GSP graph [28]. We note that
2-vertex-connected SP graphs are a special class of GSP graphs,
and it is unclear whether the reduction guarantee for the ISPR
method can be extended to any GSP graphs in the presence of
slack nodes.
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VI. NUMERICAL RESULTS

In this section, we verify the theoretical results of this article
and test the performance of the proposed algorithms. First,
we show that, using the ISPR method, the computation of the
maximal eye can be reduced to a smaller graph, while the
computation of the maximal girth is finished during the process
of reduction. Then, we show that Corollary 5 gives a valid
sufficient condition for the strong uniqueness. We use IEEE
power networks in MATPOWER [33] to perform experiments.
Finally, the proximity between the P—© problem and the AC
power flow problem is numerically illustrated.

A. Computation of the Maximal Eye and the
Maximal Girth

We first consider the computation of the maximal eye. The
results are listed in Table 1. Here, we use “— to denote the
case when this value does not exist and use “TLE” (time limit
exceeded) to denote the case when the algorithm does not find
any leaf node in two days. The lower bounds for the maximal eye
are derived by stopping the algorithm before it terminates. It can
be observed that the ISPR method can largely reduce the size of
the graph and, therefore, can accelerate the computing process.
Moreover, the values of «; and ap are small compared to the
maximal eye of the reduced graph. Hence, the approximation
in (5) holds and the maximal eye of the original graph is
equal to the maximal eye of the reduced graph. Although the
algorithm achieves acceleration compared to the brute-force
search method, we are only able to compute the maximal eye for
graphs with up to 118 vertices. Note that since graph problems
have exponential complexities, solving them for graphs having
as low as 200 nodes is still beyond the current computational
capabilities. However, this does not undermine the usefulness of
the introduced graph parameters, since it is shown in this article
that those parameters accurately decide whether the power flow
problem has a unique solution.

Next, we consider the computation of the maximal girth. We
use the same algorithms and the results are listed in the technical
report [29]. In this case, it can be observed that «v; is equal to 3
for large power networks. This is because the underlying graphs
of large power networks considered in Table I have “pendant
triangles.” Pendant triangles are triangles that have only one
vertex connected to the rest of the graph. Furthermore, the
approximation in Theorem 16 holds and the maximal girth of
the original graph is equal to s = 3. Hence, the maximal girth
can be computed during the reduction process. This shows that
the conditions for the weak uniqueness is significantly loose
and requiring wy, to be at most 27 /3 for all edges {k, £} is
enough. However, for 2-vertex-connected SP graphs, we have
shown that the maximal girth is equal to the maximal eye, and
the requirement for the weak uniqueness is the same as that for
the strong uniqueness.

B. Verification of Corollary 5

In this subsection, we validate the results in Corollary 5, i.e.,
showing that there does not exist a different solution in the

monotone regime with the set of allowable perturbations being
Wan/e(g)-

A random power flow set point is generated by first choosing
arandom vector of voltages. The voltage magnitudes and angles
are randomly sampled from a uniform distribution ranging from
user-set min/max values

|U?| 2 EIA"(T"’fmin:‘ Vmax) forallz € V,’
19| ~ U(Omin, Omax) forall i € V,

where U(a, b) is the uniform distribution on [a, b]. The voltage
angles are rejected and discarded if they do not belong to the
monotone regime. A new random sample is chosen until the
angles belong to the monotone regime. Finally, once we have a
voltage profile belonging to the monotone regime, we use the
information to calculate the real power injections, namely, P°.
The values of |v°| and PP are provided as an input to the power
flow algorithm. Note that ©° is always a solution to the P—©
problem P(©) = PY. In this sense, we refer to ©° the ground
truth solution. There are usually other solutions, and the goal
of this experiment is to analyze where those other solutions are
situated with respect to the ground truth solution.

In order to explore different parts of the solution space, we
randomly sample an initial point around the ground truth ©° and
feed it into MATPOWER. The current setting is to consider a
normal distribution around the ground truth, with some specified
standard deviation. Intuitively, if the random initial point is
close enough to the ground truth solution, then the algorithm
will converge to the ground truth solution. However, if we start
the algorithm with a suitably far initial point, then the power
flow algorithms may converge to a different solution. Note that
initializing too far away can lead to convergence issues of the
algorithm.

Next, we define a metric that can capture the distance between
two solutions to the P—© problem. Consider a solution of the P—
© problem, ©%, where i corresponds to the random initialization
number (z € R := {1,...,10000}). Let ©}, denote the voltage
angle at bus k for the ith experiment. We define dist(©?) to be
the distance between the particular solution ©* and the ground
truth solution, characterized in terms of their angle differences

: B i 0
dist(©") := {I?}z}%E |O%e — Opel-

Now, define dist™(G) to be the smallest nonzero distance
among all solutions in the monotone region for a given power
system G. More concretely, we let the symbol M represent the
set of indices i such that the solution ©7 belongs to the monotone
region defined in this article and define

: 41T — . . i . i
dist™(G) == iEMﬂRdlst(e ) s.t.dist(©") # 0.

As a specific scenario, we consider the case when all the
line properties are the same and the voltage magnitudes are
fixed to be one. In other words, Vipax = Viin = 1. Furthermore,
the lines are close to being lossless. We note that when we
experimented with significantly lossy lines, different solutions
were not found within the monotone region. This is because the
monotone regime is small when the lines are very lossy.
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TABLE 1l
DiSTANCE MEASURE FOR DIFFERENT TEST CASES
Power Networks | dist™ | 27/e
Case 14 00 00
Case 30 71.8 45
Case 39 53.8 45
Case 57 37.8 15.7
Case 118 66.1 2.7
§ GO | | | | IO |

Voltage magnitude distance

Fig. 1. Distance between AC power flow solutions for IEEE-39.

The values of dist(©") and dist™ are calculated for different
networks and are summarized in Table II. The results in the table
are twofolds. First, the distance dist™ provides an upper bound
on the allowable perturbations such that the solution is strongly
unique. On the other hand, the results in the last column are
the theoretical lower bound on the allowable perturbations to
guarantee the strong uniqueness. We can see that the numerical
results verify our theoretical findings, although there exists
a gap between the maximal possible allowable perturbations
that ensure the uniqueness and the bounds obtained from our
theoretical results.

C. Implication for AC Power Flow Problem

The P-O problem discussed in this article makes the assump-
tion that all buses are PV buses. In order to show the connection
between the P—© problem and the full AC power flow problem,
we numerically demonstrate the proximity of the power flow
solutions under the two problem settings. A random set point is
generated, as we did in the previous subsection, by producing a
random voltage profile (|v°|, ©%) and computing the correspond-
ing real/reactive powers. Then, this set point is utilized as input
parameters to solve for the AC power flow problem (without
the assumption that all buses are PV buses) with random initial
points around |v°|, 8. Note that |+°|, ©° (call it the reference
solution) obviously comprises one solution to the AC power flow
problem, but there are potentially other solutions that satisfy the
AC power flow equations. Let us define the distance between
two solutions as we did in the previous subsection. Fig. 1
shows that none of the other solutions are within the allowable
perturbation bound obtained in Corollary 5 when compared
to the reference solution. Furthermore, the voltage magnitude
distance shows that these are unrealistic solutions, since voltage

magnitudes are usually maintained to be within 5% of the nom-
inal value. Similar experiments conducted for various set points
and all the power networks mentioned in Table II lead to the
same results.

VII. CoNCLUSION

In this article, we extended the uniqueness theory of P-©
power flow solutions developed in [1] for an AC power system.
The notion of strong uniqueness was introduced to characterize
the uniqueness in the common sense. We proposed a general
necessary and sufficient condition for the uniqueness of the
solution, which depends only on the monotone regime and the
network topology. These conditions can be greatly simplified
in certain scenarios. When the underlying graph of the power
network is a single cycle, sufficient conditions in [1] are proved
to be necessary. For 2-vertex-connected SP graphs, we showed
that the maximal eye is equal to the maximal girth, which means
that the sufficient condition for the weak uniqueness also implies
the strong uniqueness. When the power network is lossless, we
derived a necessary and sufficient condition that does not contain
sinusoidal functions, and its sufficient part is stronger than the
general sufficient conditions. A reduction method, named the
ISPR method, was proposed to reduce the size of the power
network and accelerate the computation of the maximal eye and
the maximal girth. The ISPR method was proved to reduce a
2-vertex-connected SP graph to a single edge, and the relation
between the graphs before and after the reduction was analyzed.
Some algorithms based on the depth-first search (DFS) method
with pruning were designed to compute the maximal eye and
the maximal girth.

APPENDIX

Algorithms for Computing the Maximal Eye and the
Maximal Girth

In the appendix, we propose search-based algorithms for
computing the maximal eye and the maximal girth. Our approach
is based on the DFS method and utilizes the pruning technique
to accelerate the computing process. We first describe a common
subprocedure that will be used in both algorithms. The subproce-
dure computes the minimal directed chordless cycle containing a
given edge. Given a truncation length 7" > 1, the subprocedure
returns the truncation length if there does not exist a directed
chordless cycle that contains the given edge and has length at
most T". The subprocedure is also based on the DFS method with
pruning and borrows the idea of blocking from [34] to accelerate
the searching process. The pseudocode of the subprocedure is
listed in the online technical report [29].

Next, we propose the algorithms for computing the maximal
eye and the maximal girth. Since the algorithm of the maximal
girth is similar to the algorithm for the maximal eye, we only
present the algorithm for computing the maximal eye and offer
the other one in [29]. The algorithm is also based on the DFS
method with pruning, and the pseudocode is provided in the on-
line technical report [29]. We first order all edges and gradually
assign one of the directions {0, —1, +1} to each edge following
the ordering of the edges. The search space consists of the
orientations for the first several edges (intermediate states) and
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the orientations for the entire graph (final states). One can verify
that all intermediate states and final states form a trinomial
tree, since each orientation for the first k < |E| edges leads
to three different orientations for the first k¥ 4+ 1 edges. Then,
the algorithm for computing the maximal eye searches in the
same way as the classical DFS method on a directed tree. For
each node, we consider the subgraph consisting of those edges
that have been assigned a direction. We compute the length of
the minimal directed chordless cycle in the subgraph, which
contains the last edge in the subgraph, using the subprocedure.
The truncation length can be decided as follows. Since a DFS
method is implemented on a trinomial tree, there exists a directed
path from the root node of the trinomial tree to the current
node. The truncation length can be chosen as the minimal length
computed on the preceding nodes of the path. When the search
reaches a leaf node, we obtain an orientation for the entire graph,
and the size of the eye becomes the minimal length on the path
to the root node. By searching over all leaf nodes, we find the
maximal eye. Similarly, one can use the pruning technique to
reduce the search space. The current node is pruned if it cannot
be extended to a weakly feasible orientation for the entire graph,
or the size of the eye of the subgraph is smaller than the known
maximal size of the eye.
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