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ABSTRACT 
 

Binary stochastic neurons (BSNs) are excellent hardware accelerators for machine learning. A popular 
platform for implementing them are low- or zero-energy barrier nanomagnets possessing in-plane magnetic 
anisotropy (e.g. circular disks or quasi-elliptical disks with very small eccentricity). Unfortunately, small 
geometric variations in the lateral shapes of such nanomagnets can produce large changes in the BSN 
response times if the nanomagnets are made of common metallic ferromagnets (Co, Ni, Fe) with large 
saturation magnetization. Additionally, the response times are also very sensitive to initial conditions. Here, 
we show that if the nanomagnets are made of dilute magnetic semiconductors with much smaller saturation 
magnetization, then the variability in their response times (due to shape variations and variation in the initial 
condition) is drastically suppressed. This significantly reduces the device-to-device variation, which is a 
serious challenge for large scale neuromorphic systems.  
 

I. Introduction 
 

ARTIFICIAL intelligence (AI) platforms often employ spiking neural networks (SNN) activated by 
binary stochastic impulses to execute machine learning tasks [1, 2]. The common building block of SNNs 
is a binary stochastic neuron (BSN) that has two distinct output states; the BSN will output either state with 
a probability determined by a specific function of an input impulse. BSN states can also represent Ising 
spins and are useful hardware platforms for Ising machines that can solve combinatorial optimization 
problems. 

Recently, it has become popular to implement BSNs with low (or zero) energy barrier nanomagnets 
(LBMs) possessing in-plane magnetic anisotropy because of their superior energy efficiency and relatively 
fast response times [3-5]. The magnetization vectors of these LBMs, which are circular or nearly circular 
disks, fluctuate randomly at room temperature owing to thermal perturbations and the fluctuating 
magnetization (with suitable hardware design) can produce a binary state mi (-1 or +1) at time step (n+1) 
given by  

( ) ( )( )1 sgn tanhi i im n I n r + = −   ,     (1) 

where Ii is a dimensionless input spin current that biases the output and ri is a random number uniformly 
distributed between -1 and +1. In the absence of Ii, the outputs −1 and +1 are equally likely. A 
positive Ii(n) makes +1 more likely, and a negative Ii(n) makes −1 more likely. Each BSN described 
by Equation (1) receives its input from a weighted sum of other BSNs obtained from a 
synapse ( ) ( )i ij j

j
I n W m n=∑ . A wide variety of problems can be solved by properly designing or learning 

the weights ijW , e.g. classification problems [6], constrain satisfaction problems [7], generation of cursive 





two orders of magnitude smaller. Hence, everything else being the same, a GaMnAs nanomagnet will have 
an energy barrier that is roughly four orders of magnitude smaller than a Co nanomagnet. Hence, the same 
change in a nanomagnet dimension (a or b) will cause a much smaller change in the energy barrier if the 
nanomagnet is made of GaMnAs than if it is made of Co. Thus, a BSN implemented with a GaMnAs LBM 
is expected to be much more robust against small geometric variations than one implemented with a Co 
nanomagnet. 

 
II. Results 

 
We simulate the magneto-dynamics of two sets of nanomagnets made of Co and GaMnAs, 

respectively, using the stochastic Landau-Lifshitz-Gilbert equations and different initial conditions (i.e. 
different initial magnetization orientations) [9]. This yields the magnetization vector as a function of time 
and therefore the autocorrelation plots of any component of the magnetization as a function of the delay 
[9], from which we can extract the correlation time τc for that component. Each of the two sets of 
nanomagnets consists of a slightly elliptical one of major axis 100 and minor axis 99 nm, and a perfectly 
circular one of diameter 100 nm. The magnet thickness is 6 nm. The in-plane shape anisotropy energy 
barrier in the case of the slightly elliptical Co nanomagnets is ~4 kT, while in the case of GaMnAs 
nanomagnets, it is 10-4 kT at room temperature. The Gilbert damping factor in GaMnAs is 0.01 [13], similar 
to that of Co. 

We simulate the magneto-dynamics in the presence of thermal noise at room temperature (300 K), 
taking into account spin inertia which causes nutational dynamics [14]. The nutational dynamics lasts for 
a duration τ (which depends on the magnetic vector’s moment of inertia and damping) and we consider 
three values of τ = 1, 10 and 100 ps. The detailed procedures for calculation can be found in ref. [9] and 
not repeated here to avoid redundancy.  

We calculate the autocorrelation functions of the magnetization components along the minor and major 

axes of the nanomagnets, ( ) ( ) ( )
0

' 'x x xC t m t m t t dt
∞

= +∫ and ( ) ( ) ( )
0

' 'y y yC t m t m t t dt
∞

= +∫ with two sets of 

initial conditions: ( ) ( ) ( )0 0 995 0 0 095 0 0 031. ; . ; .x y zm m m= = = (initial orientation along the minor axis) 

and ( ) ( ) ( )0 0 095 0 0 995 0 0 031. ; . ; .x y zm m m= = = (initial orientation along major axis). We then plot 

the autocorrelation functions as a function of the delay t’ for the Co and GaMnAs nanomagnets for both 
slightly elliptical and circular nanomagnets and for both initial conditions in Fig. 2. These characteristics 
are averaged over 1000 simulation runs which is equivalent to ensemble averaging over 1000 identical 
nanomagnets for each plot (the averaging is necessary since thermal fluctuations are random). We have 
ascertained that a larger ensemble size does not change any result perceptibly. 

We see no significant dependence on spin inertia since the plots do not change appreciably for the 
three different values of τ, but this is expected since the nutational duration τ is much smaller than the 
correlation time τc in all cases.  There are situations when the nutational dynamics can affect outcomes 
which emerge long after nutation has ceased [15], but this is not such a case. Clearly, the fluctuation 
magneto-dynamics does not retain any memory of the nutation long after it ceases to exist.  

The interesting observation is that in the case of GaMnAs, unlike in the case of Co, the autocorrelation 
decay plots are not very sensitive to small deviations in shape (perfectly circular versus slightly elliptical),  
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nor are they particularly sensitive to the initial orientation of the magnetization for the case of the slightly 
elliptical nanomagnet. The latter feature can be understood easily. If the initial orientation of the 
magnetization is along the major axis of the ellipse, which is the easy axis, the magnetization is in a stable 
state and it will take a long time for thermal perturbations to destabilize it if the energy barrier is large. On 
the other hand, if the magnetization is initially along the minor axis (hard axis), it is at the maximally 
unstable location and thermal perturbations will very quickly destabilize it if the energy barrier is large. 
That is why in the case of Co (large energy barrier owing to large saturation magnetization) τc is ~20 ns if 
the initial orientation is along the major axis and only ~1.5 ns if it is along the minor axis. The difference 
is more than an order of magnitude. This large difference (and hence variability) would mandate an 
initialization step where the initial magnetizations of all BSNs are forcibly aligned in the same direction 
with a magnetic field, which is an inconvenience. Second, we notice that even a 1% change in a lateral 
dimension can change the correlation time τc by a factor of 4! This would demand unrealistic fabrication 
tolerance. On the other hand, in the case of the GaMnAs nanomagnets, τc varies between 5.95 and 6.23 ns 
for all cases, showing that the variability is dramatically suppressed. Neither is the correlation time sensitive 
to small geometric variations, nor is it sensitive to initial conditions. This is, of course, a consequence of 
the much smaller energy barrier in the case of GaMnAs compared to Co. 
 

III. Conclusion 
 

Device to device variability in BSNs, and neuromorphic circuits in general, is a serious problem and 
countermeasures have been proposed to alleviate it. One recent suggestion was to use hardware-aware in-
situ learning [16]. Here, we propose a simpler solution; replacement of a magnetic material with a large 
saturation magnetization with one with smaller saturation magnetization, such as a dilute magnetic 
semiconductor like GaMnAs. This reduces the sensitivity of the correlation time (response time) of BSNs 
to small geometric variations and also initial conditions. 
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