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ABSTRACT

Binary stochastic neurons (BSNs) are excellent hardware accelerators for machine learning. A popular
platform for implementing them are low- or zero-energy barrier nanomagnets possessing in-plane magnetic
anisotropy (e.g. circular disks or quasi-elliptical disks with very small eccentricity). Unfortunately, small
geometric variations in the lateral shapes of such nanomagnets can produce large changes in the BSN
response times if the nanomagnets are made of common metallic ferromagnets (Co, Ni, Fe) with large
saturation magnetization. Additionally, the response times are also very sensitive to initial conditions. Here,
we show that if the nanomagnets are made of dilute magnetic semiconductors with much smaller saturation
magnetization, then the variability in their response times (due to shape variations and variation in the initial
condition) is drastically suppressed. This significantly reduces the device-to-device variation, which is a
serious challenge for large scale neuromorphic systems.

| Introduction

ARTIFICIAL intelligence (Al) platforms often employ spiking neural networks (SNN) activated by
binary stochastic impulses to execute machine learning tasks [1, 2]. The common building block of SNNs
is a binary stochastic neuron (BSN) that has two distinct output states; the BSN will output either state with
a probability determined by a specific function of an input impulse. BSN states can also represent Ising
spins and are useful hardware platforms for Ising machines that can solve combinatorial optimization
problems.

Recently, it has become popular to implement BSNs with low (or zero) energy barrier nanomagnets
(LBMs) possessing in-plane magnetic anisotropy because of their superior energy efficiency and relatively
fast response times [3-5]. The magnetization vectors of these LBMs, which are circular or nearly circular
disks, fluctuate randomly at room temperature owing to thermal perturbations and the fluctuating
magnetization (with suitable hardware design) can produce a binary state m; (-1 or +1) at time step (n+1)
given by

mi(n+l)=sgn[tanh(]i(n))—z;] : (1)
where /; is a dimensionless input spin current that biases the output and 7; is a random number uniformly
distributed between -1 and +1. In the absence of /;, the outputs —1 and +1 are equally likely. A

positive [;(n) makes +1 more likely, and a negative /;(n) makes —1 more likely. Each BSN described
by Equation (1) receives its input from a weighted sum of other BSNs obtained from a

synapse I, (n) = z W:.jm ; (n) . A wide variety of problems can be solved by properly designing or learning
j

the weights W;j , €.g. classification problems [6], constrain satisfaction problems [7], generation of cursive



letters [8], etc.

A critical parameter for a BSN implemented with LBMs is the “correlation time” t. which is the full-
width-at-half maximum (FWHM) of the temporal decay characteristic of the auto-correlation function of
the magnetization fluctuations [4]. This quantity determines the BSN’s response speed. LBMs with in-
plane anisotropy typically have a value of 1. that is about two orders of magnitude smaller than LBMs with
perpendicular magnetic anisotropy [4] and are therefore favored because they lend themselves to faster
circuit operation. The correlation time, however, is very sensitive to small geometric variations if LBMs
with in-plane magnetic anisotropy are realized with magnetic materials possessing large saturation
magnetization, e.g. Co, Ni or Fe [9, 10]. The reason for this is that the shape anisotropy barrier £ in a
nanomagnetic disk that is not a perfect circle but is slightly elliptical, as shown in Fig. 1, is given (within
the macrospin approximation) as

g~ N, d-yy ) > )

where 1 is the permeability of free space, Q is the nanomagnet volume, Ns.. and Ng,, are the
demagnetization factors along the minor and major axes of the ellipse, respectively, and M is the saturation
magnetization. The expressions for the demagnetization factors are [11]
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where a = major axis dimension, » = minor axis dimension and 7 = thickness of the elliptical nanomagnet.
For a perfect circle, a = b and hence E;, = 0. For an ellipse, a > b and hence £, > 0.

E, =" mlo(N
M.

Fig. 1: A nanomagnet shaped like a slightly elliptical disk.

It is clear from Equations (2) and (3) that a slight change in the nanomagnet dimension a or b can cause
a large change in the energy barrier £} if the saturation magnetization of the nanomagnet M is large. A
material like Co has a saturation magnetization of 10° A/m, whereas a dilute magnetic semiconductor like

GaMnAs has a saturation magnetization of only 5x10° A/m [12] at room temperature, which is more than



two orders of magnitude smaller. Hence, everything else being the same, a GaMnAs nanomagnet will have
an energy barrier that is roughly four orders of magnitude smaller than a Co nanomagnet. Hence, the same
change in a nanomagnet dimension (a or b) will cause a much smaller change in the energy barrier if the
nanomagnet is made of GaMnAs than if it is made of Co. Thus, a BSN implemented with a GaMnAs LBM
is expected to be much more robust against small geometric variations than one implemented with a Co
nanomagnet.

1I. Results

We simulate the magneto-dynamics of two sets of nanomagnets made of Co and GaMnAs,
respectively, using the stochastic Landau-Lifshitz-Gilbert equations and different initial conditions (i.e.
different initial magnetization orientations) [9]. This yields the magnetization vector as a function of time
and therefore the autocorrelation plots of any component of the magnetization as a function of the delay
[9], from which we can extract the correlation time 1. for that component. Each of the two sets of
nanomagnets consists of a slightly elliptical one of major axis 100 and minor axis 99 nm, and a perfectly
circular one of diameter 100 nm. The magnet thickness is 6 nm. The in-plane shape anisotropy energy
barrier in the case of the slightly elliptical Co nanomagnets is ~4 kT, while in the case of GaMnAs
nanomagnets, it is 10 kT at room temperature. The Gilbert damping factor in GaMnAs is 0.01 [13], similar
to that of Co.

We simulate the magneto-dynamics in the presence of thermal noise at room temperature (300 K),
taking into account spin inertia which causes nutational dynamics [14]. The nutational dynamics lasts for
a duration 1 (which depends on the magnetic vector’s moment of inertia and damping) and we consider
three values of T = 1, 10 and 100 ps. The detailed procedures for calculation can be found in ref. [9] and
not repeated here to avoid redundancy.

We calculate the autocorrelation functions of the magnetization components along the minor and major

axes of the nanomagnets, C Im t+t )dt and C _[m z‘+t )dt with two sets of

initial conditions: m_ (0) =0.995;m, (O) =0.095;m, (0) =0.031 (initial orientation along the minor axis)
and m_ (0) =0.095;m, (0) =0.995;m_ (0) =0.031 (initial orientation along major axis). We then plot

the autocorrelation functions as a function of the delay # for the Co and GaMnAs nanomagnets for both
slightly elliptical and circular nanomagnets and for both initial conditions in Fig. 2. These characteristics
are averaged over 1000 simulation runs which is equivalent to ensemble averaging over 1000 identical
nanomagnets for each plot (the averaging is necessary since thermal fluctuations are random). We have
ascertained that a larger ensemble size does not change any result perceptibly.

We see no significant dependence on spin inertia since the plots do not change appreciably for the
three different values of 1, but this is expected since the nutational duration T is much smaller than the
correlation time T in all cases. There are situations when the nutational dynamics can affect outcomes
which emerge long after nutation has ceased [15], but this is not such a case. Clearly, the fluctuation
magneto-dynamics does not retain any memory of the nutation long after it ceases to exist.

The interesting observation is that in the case of GaMnAs, unlike in the case of Co, the autocorrelation
decay plots are not very sensitive to small deviations in shape (perfectly circular versus slightly elliptical),
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Fig. 2: Left column (a) — (e) are for Co nanomagnets of slightly elliptical and circular shapes for different
initial orientations of the magnetizations and right column (f) — (j) are the corresponding plots for GaMnAs
nanomagnets. Figures (a) — (e) are reproduced from [9].



nor are they particularly sensitive to the initial orientation of the magnetization for the case of the slightly
elliptical nanomagnet. The latter feature can be understood easily. If the initial orientation of the
magnetization is along the major axis of the ellipse, which is the easy axis, the magnetization is in a stable
state and it will take a long time for thermal perturbations to destabilize it if the energy barrier is large. On
the other hand, if the magnetization is initially along the minor axis (hard axis), it is at the maximally
unstable location and thermal perturbations will very quickly destabilize it if the energy barrier is large.
That is why in the case of Co (large energy barrier owing to large saturation magnetization) t. is ~20 ns if
the initial orientation is along the major axis and only ~1.5 ns if it is along the minor axis. The difference
is more than an order of magnitude. This large difference (and hence variability) would mandate an
initialization step where the initial magnetizations of all BSNs are forcibly aligned in the same direction
with a magnetic field, which is an inconvenience. Second, we notice that even a 1% change in a lateral
dimension can change the correlation time t. by a factor of 4! This would demand unrealistic fabrication
tolerance. On the other hand, in the case of the GaMnAs nanomagnets, T. varies between 5.95 and 6.23 ns
for all cases, showing that the variability is dramatically suppressed. Neither is the correlation time sensitive
to small geometric variations, nor is it sensitive to initial conditions. This is, of course, a consequence of
the much smaller energy barrier in the case of GaMnAs compared to Co.

I11. Conclusion

Device to device variability in BSNs, and neuromorphic circuits in general, is a serious problem and
countermeasures have been proposed to alleviate it. One recent suggestion was to use hardware-aware in-
situ learning [16]. Here, we propose a simpler solution; replacement of a magnetic material with a large
saturation magnetization with one with smaller saturation magnetization, such as a dilute magnetic
semiconductor like GaMnAs. This reduces the sensitivity of the correlation time (response time) of BSNs
to small geometric variations and also initial conditions.
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