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Abstract (200 word max):

Open top chambers (OTCs) were adopted as the recommended warming mechanism by
the International Tundra Experiment (ITEX) network in the early 1990’s. Since then, OTCs have
been deployed across the globe. Hundreds of papers have reported the impacts of OTCs on the
abiotic environment and the biota. Here we review the impacts of the OTC on the physical
environment, with comments on the appropriateness of using OTCs to characterize the response
of biota to warming. The purpose of this review is to guide readers to previously published work
and to provide recommendations for continued use of OTCs to understand the implications of
warming on low stature ecosystems. In short, the OTC is a useful tool to experimentally
manipulate temperature, however the characteristics and magnitude of warming varies greatly in
different environments, therefore it is important to document chamber performance to maximize
the interpretation of biotic response. When coupled with long-term monitoring, warming
experiments are a valuable means to understand the impacts of climate change on natural

ecosystems.

Key words: Arctic, Alpine, Tundra, Warming experiment, Large-scale coordinated experiment

Introduction

Warming chambers have been used for many decades to study the impacts of rising
temperature on vegetation. Interest in the impacts of warming on natural ecosystems increased
greatly in the 1980’s as researchers speculated on the potential effects of climate change across

the globe. Different warming experiment designs have been employed over time spanning a
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variety of environmental gradients (Kennedy 1995; Shaver et al. 2000; Hanson and Walker 2020;
Michelsen et al. 2012). Every warming mechanism has its own strengths and weaknesses. Open
top chambers (OTCs, Fig. 1) were chosen as the recommended warming mechanism for low
growing tundra vegetation by the International Tundra Experiment (ITEX) network because of
their low cost, easy deployment, and relatively few experimental artifacts (Molau and Melgaard
1996; Marion et al. 1997). Currently, OTCs are widely used in alpine and Arctic locations with
low-stature vegetation (Henry et al. 2022). Many of the researchers using OTCs are members of
the ITEX network, but many are not. While the OTCs are well suited for tundra environments,
particularly at higher latitudes where diurnal contrasts in warming are small, they have been
employed in other ecosystems with low-stature vegetation such as lower latitude meadows and
peatlands. Over the past three decades there have been hundreds of papers that have documented
the impacts of OTCs on the physical environment and the organisms living in them. Here we
review what has been learned about the impacts of OTCs on the physical environment and

provide commentary on the interpretation of the biotic response to OTCs.

Diversity of OTCs

While somewhat standardized, the ITEX OTCs are not all the same and they vary in size
from approximately 1 to 2 m? (Fig. 2). The materials used have varied over time, originally most
of the OTCs deployed in North America were made of fiberglass while OTCs deployed in
Europe were made of plexiglass. Although these solid self-supporting materials are most
commonly used, another approach utilized thin plastic wrapped around a solid metal frame (Day

et al. 2008), and another modification is the use of semiflexible material wrapped into a cone

© The Author(s) or their Institution(s)
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(Schedlbauer et al. 2018; Parker et al. 2017, 2022). Other related approaches to experimental
warming in tundra ecosystems have deployed plastic tents or greenhouses (Chapin & Shaver
1985, Havstrom et al. 1993, Wookey et al. 1993), although these do not clearly fall under the
definition of OTC so they are not considered directly here. While there have not been detailed in
situ studies of the difference in building materials, the common assumption is that the
manufacturer's specifications apply and that most commercially available building materials for
greenhouses are suitable. The materials are chosen to block wind and allow photosynthetically
active wavelengths to pass through, although the various materials differ in their transmission of
solar radiation. OTCs may need to be periodically cleaned to remove dirt and bird guano.
Degradation of the materials over time is another potential issue, either through
photodegradation, scratches by windblown snow or dust, or by staining from tannins at sites with

periodic standing water. Different materials likely have different degradation rates.

Over time there have been a number of suggested improvements to the basic ITEX
chamber design. These include increasing the height (Welshofer et al. 2017), addition of water
filled pipes -providing thermal mass- to reduce fluctuations in the magnitude of heating
throughout the day and night (Godfree et al. 2010), adding heating cables to ensure heating at
low light levels (Sun et al. 2013), or adding small legs at each corner to allow air exchange
(Delarue et al. 2011). Yet the basic ITEX OTC has remained one of the most commonly
implemented field manipulations for examining vegetation response to warming, and it continues
to be used in many tundra and non-tundra settings (Bokhorst et al. 2007; Aronson and McNulty

2009; Spence et al. 2014; Pugnaire et al. 2020; Bjorkman et al 2020).
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Physics of OTC warming

During the day, short-wave solar radiation 1s largely transmitted through the OTC walls,
contributing to surface warming. By contrast, the OTC walls are more opaque to outgoing long-
wave radiation, particularly in the infrared range of the electromagnetic spectrum (> 700 nm
wavelength), increasing the sensible heat of air inside the OTC. The increase in temperature is
due to the absorption of solar radiation directly by the plant canopy and other exposed surfaces
within the OTC (soil surface, exposed rock or standing water) and the emission of long-wave
radiation from these surfaces. The shape of the OTC was designed to increase the boundary layer
and provide the opportunity for a warm “bubble” of air to develop over the surface, by greatly
reducing wind speed and to reduce the loss of energy from air movement (advection). The panels
also provide shelter from the wind reducing heat loss by convection, yet the open-top allows air

to flow in and out and small eddies may form.

Because OTC performance varies both temporally and among locations, we recommend
direct measurements of the physical environment in individual experiments to quantify net
effects. To help understand the source of these variable impacts, it is useful to review the
fundamental physics of energy balance. The equation for energy balance may be expressed as

follows:

net radiation absorbed (Q*) = evapotranspiration (QLE) + sensible heat flux (QH) + ground heat

flux (QG) + [net energy flux by advection (QV) + net storage (JS)].

Generally, QV and OS are not included as they are considered to balance out over time. The
OTC warming acts by blocking the wind and interfering with loss of energy from the surface

through QV. Furthermore, the magnitude of these flows can then vary between wet and dry

© The Author(s) or their Institution(s)
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surfaces. Taken together, understanding the physics behind OTC warming can help understand

the complex impacts of OTCs on air, leaf tissue, and soil temperatures (Fig. 3).

The impact of OTCs on humidity varies greatly between field locations (Sjogersten and
Wookey 2002; Bokhorst et al. 2007). It is difficult to predict the impacts of OTCs on humidity
without field observations, as humidity depends on vegetation, soil properties, and soil moisture,
which are linked with landscape position and lateral movements of soil water. Plants and soils in
the OTCs respond to the vapor pressure deficit (VPD). In many cases air VPD increases inside
OTCs as a function of increasing temperature and the subsequent increase in water holding
potential of warmer air (Lamentowicz et al. 2016). In some locations VPD may remain the same
or decrease inside the OTC presumably due to sheltering from dry winds (Dorrepaal et al. 2004).
At temperatures lower than 10 °C VPD is generally at levels that do not constrain photosynthesis

(Supplementary material 1) unless relative humidity is significantly below 50 %.

Impacts on air and leaf temperatures

The OTCs provide passive warming; therefore, the magnitude of warming can vary
greatly between locations (Fig. 4). Typically, warming is greatest around solar noon on a clear
day with little wind and warming may be negligible when solar intensity is low (Fig. 5). At night
temperatures within the OTC may also be cooler than outside the OTC due to radiative heat loss
and reduced mixing and exchange with surrounding air (Dabros et al. 2010). The maximum
potential intensity of warming is greatest near summer solstice, but in most locations, the
variability of warming is more directly influenced by sky conditions and weather (Fig. 6;

Hollister et al. 2006; Bokhorst et al. 2013; Schedlbauer et al 2018). The effectiveness of OTCs at

8
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increasing air temperatures has been shown to be reduced at higher temperatures (Carlyle et al.
2011). Therefore, the net effect of OTCs can also be highly variable across time because the
warming intensity of the OTCs depends on the ambient climate. This variability may better

reflect future climate change than methods that increase temperature a constant amount.

Due to the nature of the warming, the daily range of temperatures is significantly greater
in the OTC than the nearby ambient conditions (Fig. 6). This greater range is due to multiple
factors, with the two main factors being reduction of wind and that the open top allows direct
sunlight in part of the OTC (Hollister 1998). The greater range of temperatures and the general
warming changes the number of freeze thaw events and other extreme temperatures experienced
in the OTC (Bokhorst et al. 2013). The length of the growing season may be increased due to the
warmer temperatures; however, snow accumulation inside the OTCs may negate the potential for
earlier growth (see below Impacts on snow) and the lack of OTC heating at night is likely to

negate any differences in freeze events in the fall despite increasing average temperatures.

The OTC-effect on temperature depends on where the temperature is measured. Warming
is greatest near the ground surface in the center of the plot where direct sunlight enters the OTC
(Hollister 1998); on average, at Northern latitudes, the Northern half of the chamber warms
slightly more than the Southern half, although throughout the daily cycle different regions in the
chamber will warm more based primarily on what regions receive the most direct sunlight.
Cross-site analyses benefit from standardized measurements. We therefore recommend studies
employing OTCs deploy temperature sensors in the most commonly used location to date:
halfway between the northernmost edge and center of the plot (or southernmost for Southern
hemisphere sites), which will usually capture the largest magnitude of warming. Similarly,

deployment of temperature sensors at the standardized (10-15 cm) plant height is recommended.

9
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At many sites the ground height is variable and the temperature sensor itself is more than a few
cm long; therefore, an exact location is often not possible. The OTCs’ effect on plant tissue and
leaf surface temperatures have been found to be higher than the effect on the air temperatures
(DeBoeck et al 2012). The range of surface temperatures is greater within OTCs than in controls
and results in higher maximum temperatures (Fig. 7; Healey et al. 2016; Lindwall et al. 2016) as
well as lower temperatures due to shading (Jonsdottir et al. 2005; Dabros et al. 2010). Elevated
leaf temperatures have important consequences for plant water status through the increase in leaf

to air VPD.

Impacts on snow

OTCs were designed to be installed year-round; however, many studies remove them in
winter. In locations where the snowpack is lower than the height of the OTC, especially
windswept regions with minimal snow cover, snow is trapped inside the OTCs and may
accumulate; nevertheless, the warmer temperatures inside the OTCs tend to melt snow faster
than the surrounding (Marion et al. 1997). However, without empirical evidence it is difficult to
determine when snowmelt will occur within the OTC relative to the surroundings. At Alexandra
Fiord (Ellesmere Island, Canada) and Finse (Norway) the combined effect of accumulated snow
and warmer temperatures resulted in similar meltout days within the OTCs and ambient plots
(Bjorkman et al. 2015; Klanderud personal observation). In sites with deeper snow inside the
OTC, the soils under the OTC are more insulated from cold winter air and the soils are warmer
during the winter compared to the ambient plots (Bokhorst et al. 2013; Bjorkman et al. 2015).

The impacts of snow can be large and may vary greatly throughout the year and between years

10
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(Fig. 8). Greater snow accumulation in the OTCs has also the potential to increase water

availability and nutrients, similar to snowfence manipulations (Rixen et al. 2022).

Impacts on soils and belowground properties

The impact of OTCs on soils varies greatly between locations and may result in higher
soil temperatures within OTCs (Marion et al. 1997; Klanderud and Totland 2005; Bokhorst et al.
2013) as well as a cooling of the soil due to shading (Jonsdéttir et al. 2005; Dabros et al. 2010;
Hollister et al. 2006; Dabros et al. 2010; Bokhorst et al. 2013), while some sites show no effect
on soil temperatures (Hollister et al. 2006; Delarue et al. 2011; Buttler et al. 2015; Ma et al.
2022; Bjorkman unpublished data). The impact on soil temperatures is complex, while air
warming generally results in soil warming, reduced direct sunlight due to shading may offset
increased air temperatures and the net result may be lower heat inputs into the soil, especially in
landscapes with bare ground (see above Physics of OTC warming and Impacts on air and leaf
temperatures). Cooling of the soil surface may be due to shading by the chamber walls or
denser plant canopies reducing incoming radiation reaching the soil surface and thus reducing
the warming effect (Klanderud and Totland 2005). It is also possible that vegetation changes
inside the OTCs can impact the transfer of heat from the air to the soil, similar to what has been
suggested for shrubs (Blok et al. 2010), in particular a thicker moss layer may insulate the soil
from ambient temperatures and incoming radiation (Lett et al. 2020). Furthermore, the lateral
movement of soil water from outside the OTCs can negate any potential soil warming in moist,
wet and flooded sites (Natali et al. 2011; Lindwall et al. 2016). The magnitude of difference may

vary greatly throughout the year; for example, see differences in air temperature which may

11
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drive soil temperature (Fig. 8). While only a few OTC experiments have measured soil warming
at depths of, or greater than, 20 cm (but see Hollister et al. 2006; Yang et al. 2014), it is generally
assumed that warming effects diminish at greater soil depths due to the small size of the OTC
and the hysteresis of surrounding soils. For this reason, soil temperature should be measured near
the center of the plot. Warmer soils has resulted in increased depth of seasonal thaw under OTCs
in Alaska (Welker et al. 2004; Hollister et al. 2006); increased thaw depth is particularly evident
early in the season but may be swamped by the spatial diversity of thaw across the landscape

(see Hinkel and Nelson 2003).

The OTCs tend to decrease soil moisture in drier sites, especially at the surface
(Sjogersten & Wookey 2002; Bokhorst et al. 2013; van Zuijlen et al. 2022; Bjornsdottir et al
2022; Jeanbille et al. 2022), although the effect is often not statistically significant and varies
greatly depending on the soil moisture of the surroundings. However, in dry communities a
minor lowering in soil moisture near the surface may be enough to constrain plant performance
(Hudson and Henry 2010; Dorji et al. 2013; Hollister et al. 2015). In moist and wet communities,
the impact of the OTCs on soil moisture is often negligible (Hollister et al. 2006; Bernareggi et
al. 2015), yet wet communities have also experienced drying in the OTCs (Jassey et al. 2011;
Scharn et al. 2021). Measurements of bare ground have shown increased soil moisture in OTCs
due to reduced losses of soil water to the atmosphere (evaporation) as a result of reduced wind
speed (Bernareggi et al. 2015; D’Imperio et al. 2017). It is also possible that changes in plant
biomass may result in changes in evapotranspiration and soil moisture. Jeanbille et al. (2022)
found decreased water content of the litter inside OTCs in some sites, whereas in other sites litter
water content was higher in OTCs than in controls. In Latnjajare (Sweden), the OTCs are

deployed over five plant communities following a soil moisture gradient (Scharn et al. 2021);

12
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here, only the warmed meadow (not heath) plots had a lower soil moisture content compared to
ambient conditions. In particular for the dry and mesic meadow plots, the timing and magnitude
of snowmelt drove the soil moisture differences between warmed and ambient plots (Scharn et

al. 2021).

Studies on soil processes and the microbial communities have often found few direct
impacts of the OTC (Lamb et al. 2011; Andresen et al. 2022; Jeanbille et al. 2022); however,
there have been several studies that have documented changes in the microbial communities and
soil processes in peatlands outside the tundra (Jassey et al. 2015; Delarue et al. 2015; Binet et al.
2017). The lack of a response in tundra is notable, given that warming has been shown to impact
the quality of litter and thereby nutrient cycling (Cornelissen et al. 2007; Jeanbille et al. 2022)
and impact the soil fauna (Dollery et al. 2006; Hagvar and Klanderud 2009). The reasons for a
lack of response are unclear, but are likely due to the relatively low warming impact on soil
temperatures, which decreases with depth, and may be masked by the heterogeneity of soils and
vegetation. Furthermore, the rooting zones of the plants are likely to extend well beyond the
chamber walls especially for plants with long rhizomes and underground stems, and below
ground plant biomass has been shown to be less responsive to temperature than above ground
biomass (Wang et al. 2016; Ma et al. 2022a, 2022b). Nevertheless, a few studies have shown
earlier root growth (Sullivan and Welker 2005) and changing allocation patterns in response to

warming (Bjork et al. 2007; Hollister and Flaherty 2010; Yang et al. 2011).

Impacts on vegetation

13
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The impacts of warming on tundra vegetation are the primary focus of the ITEX network
and as such is described elsewhere; see Henry et al. 2022, this issue, for a review of OTC
impacts on community composition, plant performance and carbon cycling. Here we focus on
the robustness of using observations from the experimental manipulation to guide forecasts of
vegetation change due to regional climate warming. Several studies have compared the response
of plants in OTCs to that of a warmer year and in many cases found similar responses (Hollister
and Webber 2000; Elmendorf et al. 2015; Bjorkman et al. 2020). Thawing degree days (daily
temperatures above the lower threshold of 0°C summed daily) have been shown to provide a
reasonable prediction of plant responses irrespective of warming treatment (Hollister et al.
2005a), this is for instance true for inflorescence length of Carex aquatilis in Northern Alaska
(Fig. 9). Comparisons of vegetation change due to warming by OTCs show similar patterns to
regional warming and climate warming (Hollister et al. 2015; Elmendorf et al. 2015; Bjorkman
et al. 2020). However, phenological development in OTCs has been shown to not advance as
much as would be expected based on air temperatures (Hollister et al. 2005a; Oberbauer et al.
2013; Parker et al. 2017, 2021). Warming experiments across all biomes have been shown to
under-predict phenological advance due to regional climate warming (Wolkovich et al. 2012).
There is also evidence that OTC response may vary greatly depending on the season and year,
these differences can be due to moisture available (Delarue et al. 2015; Jassey and Signarieux
2019), the responsiveness of plants has also been shown to be less during a warm year relative to

a cold year (Barrett and Hollister 2016; Carbognani et al. 2016; but see Collins et al 2021).

The explanation(s) for the differences between response to experimental warming and
regional climate warming is not fully understood and there are likely a suite of reasons that vary

between locations and species. Examining the differences between responses may further our
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understanding of the underlying mechanisms driving response to temperature. For example, the
OTCs reduce wind, and sheltering from the wind can in itself drive vegetation change (Fitzgerald
and Kirkpatrick 2017; Momberg et al. 2021). Also, the walls of the chambers may constrain seed
rain and colonization of new species, which may protect plants inside the OTCs from

interactions with new immigrants (Yang et al. 2018).

The magnitude and quality of OTC warming may be significantly different from the
warming experienced from climate change. The magnitude and timing of OTC warming varies
by location and is generally on average less than 2°C, this is a modest magnitude or warming that
is less than some regions have already experienced due to climate change (IPCC 2022). The
maximum temperatures experienced in warming experiments (including OTCs) may be outside
the range normally experienced and the response to warming may diminish if the temperature
optimum is exceeded (Hollister unpublished data), it is possible that the maximum temperatures
may negatively impact performance (Marchand et al. 2005; Shi et al. 2010). The potential
decoupling of air and soil warming due to OTCs described above (Impacts on soils and
belowground properties) may also impact plant performance. The reduction of incoming
photosynthetically active radiation (PAR) and other wavelengths relevant for plant development,
such as far-red and ultraviolet radiation, varies within the OTC. Few studies report radiation
measurements along with results from OTCs even though the reduced radiation and altered
spectral composition, especially near the chamber walls, may impact plant production and
change plant morphology in ways similar to shade experiments (May et al. 2022). Reductions of
photosynthetic photon flux density as high as 16-25% have been documented, the OTCs reduce
light most when the sun is at a low angle, yet the open top allows direct sunlight and reductions

are near zero at solar noon especially at lower latitude (Bokhorst et al. 2007; Lindwall et al.
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2016; Schollert et al. 2017). It is also reasonable to assume that the vegetation response to
warming may have built in lags and that the short-term response may be different from the long-

term impacts (Hollister et al. 2005b; Rozema et al 2009).

Cryptogam responses can vary greatly to OTC-warming, with a dominant role for
competition for light between cryptogams and vascular plants (Klanderud and Totland 2005;
Wabhren et al. 2005; Walker et al. 2006; Cornelissen et al. 2001; Day et al. 2008). In the few
studied sites where mosses and lichens dominated, responses were highly species-specific
(Keuper et al 2011; Dorrepaal 2007; Bokhorst et al 2015, 2016). Moreover, this relationship can
even be inverted in some habitats, e.g. in Sphagnum dominated peatlands (Dorrepaal et al. 2006),
often as a result of Sphagnum being a stronger competitor for nitrogen (Heijmans et al. 2002).
Future studies may consider a specific focus on cryptogam communities with little to no vascular
plants to better understand the moss and lichen response to climate warming without the

influence of faster growing vascular plants.

Impacts on herbivores and pollinators

The impacts of OTCs on herbivores depend greatly on the species of interest. Large
herbivores have often avoided OTCs, although reindeer have been seen to lean in and graze the
plants within (personal observation IS Jonsdottir at Endalen, Svalbard; EJ Cooper at
Adventdalen and Ny Alesund, Svalbard; RG Bjérk at Latnjajaure, Sweden). The presence of
large herbivores can affect the outcome of passive warming from OTCs on plant communities. In
West Greenland, herbivory by caribou and muskoxen has been observed to differentially

influence the biomass response of plant functional groups to OTC-induced warming (Post and
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Pedersen 2008). After 7 years of study, grazed plots showed higher plant community stability
and species diversity than ungrazed plots receiving the same warming treatment. The greater
stability of grazed plots has been interpreted as the result of herbivore biomass exploitation
mediating the effect of interspecific competition, which increases with warmer temperatures
(Post 2013). The presence of small mammals such as lemmings and voles is patchy, although
anecdotal evidence suggests that they may shelter in the OTCs. At Alexandra Fiord, OTCs were
often covered with a screen to keep song birds from perching on the chamber walls and
providing unwanted nutrient inputs and decimating the seed production. Juvenile snowy owls

have also been observed to shelter in the OTCs on cool windy days.

Observations of insects are complex; for some species the chamber walls provide a
deterrent, while other species seek out the chambers for shelter. Once in an OTC, activity is
greater due to the lack of wind and warmer air temperatures (e.g. Gillespie et al 2013; Birkemoe
et al. 2016). Observations at Alexandra Fiord showed no impact of the OTC on insect pollination
nor on wind pollinated species (Robinson and Henry 2018) whereas other sites have shown
indications of potential pollen limitations in OTCs (Jones et al. 1997; Molau and Shaver 1997,
Totland and Alatalo 2002; Totland and Eide 1999). OTCs have been used to demonstrate the link
between timing of flowering and pollination in the High Arctic (Gillespie et al 2016; Gillespie

and Cooper 2022).

Items to consider

Robotic tram systems in close proximity to OTCs can provide continuous objective

measurements of fundamental micrometeorological conditions present as well as biophysical
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properties of vegetation represented in nearby OTCs (Healey et al. 2014). Such implementations
may help understand the different processes occurring at different scales across the
heterogeneous landscape. Similarly, handheld instrumentation has also provided analysis of
unique spectral characteristics linked with growth, development and phenology that are
undetectable to the human eye (May et al. 2020). Our understanding of physiological impacts
induced by OTCs has also been enhanced using thermal imaging technology (Healey et al.
2016). Surface tissue and underlying soil or moss temperatures are key determinants of
metabolic activity and monitoring such phenomena is vital for comprehensive analysis of subtle,
yet complex, interactions among permafrost, surface moss, cryptogamic crusts and soils, and
tundra vegetation. Given the many factors and potential interactions between factors, we believe

the use of OTCs is most effective when coupled with long-term monitoring.

As with any long-term experiment, it is important to clearly mark the plots with
permanent robust markers and the corresponding precise GPS locations. Markers may include
anchors that serve to retain the OTCs in position during high winds that occur at many study
sites. How the OTCs are secured will depend on the location and the monitoring techniques
deployed. Sometimes removal of the OTCs is desirable or necessary to facilitate measurement of
the properties within. For example, measurement of vegetation solar spectral reflectance within
the OTCs requires removal of the OTCs because of changes in the spectrum and amount of light
transmitted through the chamber walls. Measurements of ecosystem trace gas fluxes within the
OTCs creates a dilemma, should measurements be taken with the OTCs in place or with them
removed. Measurements taken with the OTCs in place reflect the vegetation performance within

the OTC environment that might include higher air and soil temperatures and lower light, while
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in cases where the focus is the vegetation potential it is preferable to remove the OTC to measure

plant performance under the same environmental conditions.

While most experiments using OTC leave the OTCs in place year-round, many others
remove them during the winter. It may be useful to deploy the OTCs during specific times of the
year to ask specific questions. For example, Gehrman et al. (2022) deployed OTCs for late
summer only use. Given that autumn is the season most neglected by summer-visiting
researchers, autumn studies could help elucidate ecological activity and thermal sensitivities
during the end of the growing season and during the onset of winter dormancy. However, there
are caveats here related to the potential warming performance of OTCs at lower solar angles and

shorter day-lengths as the autumnal equinox approaches.

Finally, recent attempts have been made to scale up plot-level observations from OTCs to
biome-wide analyses using aerial or spaceborne observations (Westergaard-Nielsen et al. 2021).
Therefore, it is important to clearly document the characteristics of the study site within the
heterogeneity of the landscape and region to allow for comparison across sites and scaling of
observations. The continued inclusion of remote sensing observations at a variety of scales will
improve future monitoring of tundra plant responses to warming scenarios that have been

projected to occur with climate change.

Recommendations and Concluding Remarks

It is important to document the impacts of the OTC on the physical environment at each

study site. We have shown above that the impacts of OTCs vary greatly between locations in
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ways that are difficult to predict without empirical observations. Therefore, any observed
biological response must be coupled with a clear understanding of the changes to the physical

environment, including measurements at standardized locations throughout the season.

The OTC is a cost-effective robust method of in situ warming of ecosystems with low
stature plants such as tundra environments. The response of tundra vegetation to OTC warming
has been shown to be similar to that of interannual variability and latitudinal gradients
(Elmendorf et al. 2015). However, as with any experimental manipulation, there are artifacts that
may be problematic depending on the situation (Ettinger et al. 2019; Kimmel et al. 2021). The
OTC may or may not provide a reasonable approximation of regional climate warming
depending on the application. For example, the increased daily range of temperatures may be
unrealistic, likewise air and soil warming may be decoupled. In many cases properly
documenting the magnitude of warming both above-ground and below-ground may be enough to
properly interpret the observations that the experiment was intended to examine. In other cases, it
may be important to document other physical factors such as plant surface temperatures, PAR,
wind speed, snow accumulation, nutrient inputs, or soil moisture. It may also be important to
account for differences in herbivory or pollination. The small scale of the OTC makes it poorly
suited to examine landscape dynamics such as permafrost degradation and changing migration
patterns (Hegland et al. 2009; Post et al. 2009). Conversely, the small scale confers the
advantage that OTCs can be deployed in contrasting landscape contexts, refining the process
understanding necessary to underpin up-scaling such as interactions between microbes and plants
(Jassey et al. 2015; Jeanbille et al. 2022; Klarenberg et al. 2022). Furthermore, the OTC does not

require electricity and can be placed in remote locations.
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In general, we recommend using the findings from OTC in conjunction with those of
multiple years of observation. If the same patterns are observed in a warm year at ambient plot as
observed in a warmed plot in a colder year, then the difference between warmed and control plot
is mostly likely due primarily to temperature (Hollister et al. 2005a, b; Hollister et al. 2015). In
cases where the response to experimental warming and regional climate change are different,
then the experiment may help elucidate biological processes that better our understanding of

temperature relationships.
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Table and Figure Captions

Fig. 1. Photographs of open top chambers (OTCs). Images are of warming experiments at

Utqiagvik, Alaska USA (upper left, photo credit Robert Hollister); Latnja, Sweden (upper right,
photo credit Mario Rudner); Alexandra Fjord, Ellesmere Island Canada (lower left, credit

Cassandra Elphinstone); and Finse, Norway (lower right, photo credit Kari Klanderud).
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Fig. 2. Range of design dimensions for most commonly implemented hexagonal open top
chambers (redrawn from Molau and Melgaard 1996 and Hollister 1998). The size can vary, the
corners are 120° angle and can be braced with a bracket or the materials can be longer on one

side and bent to a 60° angle.
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Fig. 4. The average magnitude of OTC warming at Atqasuk, Alaska USA; Latnja, Sweden;
Finse, Norway; and three sites at Alexandra Fjord, Ellesmere Island Canada. The dotted line
represents the overall average. The daily course of warming was compiled for the summer

months (June, July, and August) (unpublished data). The smoothness of the curve is a result of

more years of observation (Atqasuk 1998-2021, Latnja 2020-2021, Finse 2019, Alexandra Fjord

Cassiope and Willow 2008-2019, Alexandra Fjord Dryas 2000-2019).
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Fig. 5. The course of temperature and relative humidity over representative days in OTCs (red
dashed) and adjacent control plots (blue solid) (redrawn from Hollister 1998). Note, these
readings are from a site with drier soils; in areas with higher moisture or standing water, relative
humidity may be higher inside the OTCs and condensation may form on the inside of chamber

walls (Bjorkman 2015).
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Fig. 7. Range of surface temperature observed by infrared photography of OTC (open red bars)

and control (solid blue bars) plots (redrawn from Healey et al. 2016). The histogram represents

surface temperatures observed in the Utqiagvik dry plots near mid-day on August 4, 2014; the

spatial resolution was approximately 3 mm?.
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Fig. 8. Warming effect of the OTCs (relative to control plots) at Atqasuk, Alaska USA and three
sites at Alexandra Fjord, Ellesmere Island Canada. Lines represent the average daily temperature
difference (OTC minus control) of each year, the thick blue line is a GAM-smoothed curve for
the mean temperature difference across all years. Air temperatures were measured at a height of
10 to 15cm. The OTCs are installed for the summer only at Atqasuk and remain in place year-
round at Alexandra Fjord (redrawn from Bjorkman 2015 for the Dryas site and unpublished data
compiled according to the methods in Bjorkman 2015); therefore, differences in air temperature
above or within the snowpack during the winter at Atqasuk are due to differences in snow
properties which vary greatly between years. At Alexandra Fjord, OTC impacts on above ground
temperature greatly across the year and are greatest during the winter due to the insulative

properties of the changed snow regimes.
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Fig. 9. Inflorescence length of Carex aquatilis measured at the end of the summer at Atqasuk
(triangles) and Utqiagvik (squares) in OTCs (open red symbols) and ambient plots (closed blue
symbols) graphed against thawing degree days measured from snowmelt until August 15

(redrawn and extended from Hollister et al. 2005).
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