

1 Manuscript Submission – Arctic Science: ITEX Special Issue

2 **Full Title:**

3 A review of open top chamber (OTC) performance across the ITEX Network

5 Robert D. Hollister ¹6 Cassandra Elphinstone ²7 Greg H. R. Henry ²8 Anne D. Bjorkman ^{3,4}9 Kari Klanderud ⁵10 Robert G. Björk ^{3,6}11 Mats P. Björkman ^{3,6}12 Stef Bokhorst ⁷13 Michele Carbognani ⁸14 Elisabeth J. Cooper ⁹15 Ellen Dorrepaal ¹⁰16 Sarah C. Elmendorf ^{11,12}17 Ned Fatcher ¹³18 Elise C. Gallois ^f19 Jón Guðmundsson ^g20 Nathan C. Healey ^h21 Ingibjörg Svala Jónsdóttir ⁱ22 Ingeborg J. Klarenberg ^j23 Steven F. Oberbauer ¹24 Petr Macek ^m25 Jeremy L. May ^{l, n}26 Alessandro Mereghetti ^o27 Ulf Molau ⁴28 Alessandro Petraglia ⁸

67 ^r Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Flüelastrasse
68 11, 7260 Davos Dorf, Switzerland

69 Institute for Environmental Science and Sustainability, Wilkes University ,84 W. South St., Wilkes-Barre,
70 PA 18766, USA

71 ^z Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, FK9 4LA,
72 Stirling, UK

73

74

75 Corresponding author: Robert Hollister (e-mail: hollistr@gvsu.edu)

76 **Abstract (200 word max):**

77 Open top chambers (OTCs) were adopted as the recommended warming mechanism by
78 the International Tundra Experiment (ITEX) network in the early 1990's. Since then, OTCs have
79 been deployed across the globe. Hundreds of papers have reported the impacts of OTCs on the
80 abiotic environment and the biota. Here we review the impacts of the OTC on the physical
81 environment, with comments on the appropriateness of using OTCs to characterize the response
82 of biota to warming. The purpose of this review is to guide readers to previously published work
83 and to provide recommendations for continued use of OTCs to understand the implications of
84 warming on low stature ecosystems. In short, the OTC is a useful tool to experimentally
85 manipulate temperature, however the characteristics and magnitude of warming varies greatly in
86 different environments, therefore it is important to document chamber performance to maximize
87 the interpretation of biotic response. When coupled with long-term monitoring, warming
88 experiments are a valuable means to understand the impacts of climate change on natural
89 ecosystems.

90

91 *Key words:* Arctic, Alpine, Tundra, Warming experiment, Large-scale coordinated experiment

92 **Introduction**

93 Warming chambers have been used for many decades to study the impacts of rising
94 temperature on vegetation. Interest in the impacts of warming on natural ecosystems increased
95 greatly in the 1980's as researchers speculated on the potential effects of climate change across
96 the globe. Different warming experiment designs have been employed over time spanning a

97 variety of environmental gradients (Kennedy 1995; Shaver et al. 2000; Hanson and Walker 2020;
98 Michelsen et al. 2012). Every warming mechanism has its own strengths and weaknesses. Open
99 top chambers (OTCs, Fig. 1) were chosen as the recommended warming mechanism for low
100 growing tundra vegetation by the International Tundra Experiment (ITEX) network because of
101 their low cost, easy deployment, and relatively few experimental artifacts (Molau and Mølgaard
102 1996; Marion et al. 1997). Currently, OTCs are widely used in alpine and Arctic locations with
103 low-stature vegetation (Henry et al. 2022). Many of the researchers using OTCs are members of
104 the ITEX network, but many are not. While the OTCs are well suited for tundra environments,
105 particularly at higher latitudes where diurnal contrasts in warming are small, they have been
106 employed in other ecosystems with low-stature vegetation such as lower latitude meadows and
107 peatlands. Over the past three decades there have been hundreds of papers that have documented
108 the impacts of OTCs on the physical environment and the organisms living in them. Here we
109 review what has been learned about the impacts of OTCs on the physical environment and
110 provide commentary on the interpretation of the biotic response to OTCs.

111

112 **Diversity of OTCs**

113 While somewhat standardized, the ITEX OTCs are not all the same and they vary in size
114 from approximately 1 to 2 m² (Fig. 2). The materials used have varied over time, originally most
115 of the OTCs deployed in North America were made of fiberglass while OTCs deployed in
116 Europe were made of plexiglass. Although these solid self-supporting materials are most
117 commonly used, another approach utilized thin plastic wrapped around a solid metal frame (Day
118 et al. 2008), and another modification is the use of semiflexible material wrapped into a cone

119 (Schedlbauer et al. 2018; Parker et al. 2017, 2022). Other related approaches to experimental
120 warming in tundra ecosystems have deployed plastic tents or greenhouses (Chapin & Shaver
121 1985, Havström et al. 1993, Wookey et al. 1993), although these do not clearly fall under the
122 definition of OTC so they are not considered directly here. While there have not been detailed *in*
123 *situ* studies of the difference in building materials, the common assumption is that the
124 manufacturer's specifications apply and that most commercially available building materials for
125 greenhouses are suitable. The materials are chosen to block wind and allow photosynthetically
126 active wavelengths to pass through, although the various materials differ in their transmission of
127 solar radiation. OTCs may need to be periodically cleaned to remove dirt and bird guano.
128 Degradation of the materials over time is another potential issue, either through
129 photodegradation, scratches by windblown snow or dust, or by staining from tannins at sites with
130 periodic standing water. Different materials likely have different degradation rates.

131 Over time there have been a number of suggested improvements to the basic ITEX
132 chamber design. These include increasing the height (Welshofer et al. 2017), addition of water
133 filled pipes -providing thermal mass- to reduce fluctuations in the magnitude of heating
134 throughout the day and night (Godfree et al. 2010), adding heating cables to ensure heating at
135 low light levels (Sun et al. 2013), or adding small legs at each corner to allow air exchange
136 (Delarue et al. 2011). Yet the basic ITEX OTC has remained one of the most commonly
137 implemented field manipulations for examining vegetation response to warming, and it continues
138 to be used in many tundra and non-tundra settings (Bokhorst et al. 2007; Aronson and McNulty
139 2009; Spence et al. 2014; Pugnaire et al. 2020; Bjorkman et al 2020).

140

141 **Physics of OTC warming**

142 During the day, short-wave solar radiation is largely transmitted through the OTC walls,
143 contributing to surface warming. By contrast, the OTC walls are more opaque to outgoing long-
144 wave radiation, particularly in the infrared range of the electromagnetic spectrum (> 700 nm
145 wavelength), increasing the sensible heat of air inside the OTC. The increase in temperature is
146 due to the absorption of solar radiation directly by the plant canopy and other exposed surfaces
147 within the OTC (soil surface, exposed rock or standing water) and the emission of long-wave
148 radiation from these surfaces. The shape of the OTC was designed to increase the boundary layer
149 and provide the opportunity for a warm “bubble” of air to develop over the surface, by greatly
150 reducing wind speed and to reduce the loss of energy from air movement (advection). The panels
151 also provide shelter from the wind reducing heat loss by convection, yet the open-top allows air
152 to flow in and out and small eddies may form.

153 Because OTC performance varies both temporally and among locations, we recommend
154 direct measurements of the physical environment in individual experiments to quantify net
155 effects. To help understand the source of these variable impacts, it is useful to review the
156 fundamental physics of energy balance. The equation for energy balance may be expressed as
157 follows:

158 $\text{net radiation absorbed (Q*)} = \text{evapotranspiration (QLE)} + \text{sensible heat flux (QH)} + \text{ground heat}$
159 $\text{flux (QG)} + [\text{net energy flux by advection (QV)} + \text{net storage } (\square S)].$

160 Generally, QV and $\square S$ are not included as they are considered to balance out over time. The
161 OTC warming acts by blocking the wind and interfering with loss of energy from the surface
162 through QV. Furthermore, the magnitude of these flows can then vary between wet and dry

163 surfaces. Taken together, understanding the physics behind OTC warming can help understand
164 the complex impacts of OTCs on air, leaf tissue, and soil temperatures (Fig. 3).

165 The impact of OTCs on humidity varies greatly between field locations (Sjögersten and
166 Wookey 2002; Bokhorst et al. 2007). It is difficult to predict the impacts of OTCs on humidity
167 without field observations, as humidity depends on vegetation, soil properties, and soil moisture,
168 which are linked with landscape position and lateral movements of soil water. Plants and soils in
169 the OTCs respond to the vapor pressure deficit (VPD). In many cases air VPD increases inside
170 OTCs as a function of increasing temperature and the subsequent increase in water holding
171 potential of warmer air (Lamentowicz et al. 2016). In some locations VPD may remain the same
172 or decrease inside the OTC presumably due to sheltering from dry winds (Dorrepaal et al. 2004).
173 At temperatures lower than 10 °C VPD is generally at levels that do not constrain photosynthesis
174 (Supplementary material 1) unless relative humidity is significantly below 50 %.

175

176 **Impacts on air and leaf temperatures**

177 The OTCs provide passive warming; therefore, the magnitude of warming can vary
178 greatly between locations (Fig. 4). Typically, warming is greatest around solar noon on a clear
179 day with little wind and warming may be negligible when solar intensity is low (Fig. 5). At night
180 temperatures within the OTC may also be cooler than outside the OTC due to radiative heat loss
181 and reduced mixing and exchange with surrounding air (Dabros et al. 2010). The maximum
182 potential intensity of warming is greatest near summer solstice, but in most locations, the
183 variability of warming is more directly influenced by sky conditions and weather (Fig. 6;
184 Hollister et al. 2006; Bokhorst et al. 2013; Schedlbauer et al 2018). The effectiveness of OTCs at

185 increasing air temperatures has been shown to be reduced at higher temperatures (Carlyle et al.
186 2011). Therefore, the net effect of OTCs can also be highly variable across time because the
187 warming intensity of the OTCs depends on the ambient climate. This variability may better
188 reflect future climate change than methods that increase temperature a constant amount.

189 Due to the nature of the warming, the daily range of temperatures is significantly greater
190 in the OTC than the nearby ambient conditions (Fig. 6). This greater range is due to multiple
191 factors, with the two main factors being reduction of wind and that the open top allows direct
192 sunlight in part of the OTC (Hollister 1998). The greater range of temperatures and the general
193 warming changes the number of freeze thaw events and other extreme temperatures experienced
194 in the OTC (Bokhorst et al. 2013). The length of the growing season may be increased due to the
195 warmer temperatures; however, snow accumulation inside the OTCs may negate the potential for
196 earlier growth (see below **Impacts on snow**) and the lack of OTC heating at night is likely to
197 negate any differences in freeze events in the fall despite increasing average temperatures.

198 The OTC-effect on temperature depends on where the temperature is measured. Warming
199 is greatest near the ground surface in the center of the plot where direct sunlight enters the OTC
200 (Hollister 1998); on average, at Northern latitudes, the Northern half of the chamber warms
201 slightly more than the Southern half, although throughout the daily cycle different regions in the
202 chamber will warm more based primarily on what regions receive the most direct sunlight.
203 Cross-site analyses benefit from standardized measurements. We therefore recommend studies
204 employing OTCs deploy temperature sensors in the most commonly used location to date:
205 halfway between the northernmost edge and center of the plot (or southernmost for Southern
206 hemisphere sites), which will usually capture the largest magnitude of warming. Similarly,
207 deployment of temperature sensors at the standardized (10-15 cm) plant height is recommended.

208 At many sites the ground height is variable and the temperature sensor itself is more than a few
209 cm long; therefore, an exact location is often not possible. The OTCs' effect on plant tissue and
210 leaf surface temperatures have been found to be higher than the effect on the air temperatures
211 (DeBoeck et al 2012). The range of surface temperatures is greater within OTCs than in controls
212 and results in higher maximum temperatures (Fig. 7; Healey et al. 2016; Lindwall et al. 2016) as
213 well as lower temperatures due to shading (Jónsdóttir et al. 2005; Dabros et al. 2010). Elevated
214 leaf temperatures have important consequences for plant water status through the increase in leaf
215 to air VPD.

216

217 **Impacts on snow**

218 OTCs were designed to be installed year-round; however, many studies remove them in
219 winter. In locations where the snowpack is lower than the height of the OTC, especially
220 windswept regions with minimal snow cover, snow is trapped inside the OTCs and may
221 accumulate; nevertheless, the warmer temperatures inside the OTCs tend to melt snow faster
222 than the surrounding (Marion et al. 1997). However, without empirical evidence it is difficult to
223 determine when snowmelt will occur within the OTC relative to the surroundings. At Alexandra
224 Fiord (Ellesmere Island, Canada) and Finse (Norway) the combined effect of accumulated snow
225 and warmer temperatures resulted in similar meltout days within the OTCs and ambient plots
226 (Bjorkman et al. 2015; Klanderud personal observation). In sites with deeper snow inside the
227 OTC, the soils under the OTC are more insulated from cold winter air and the soils are warmer
228 during the winter compared to the ambient plots (Bokhorst et al. 2013; Bjorkman et al. 2015).
229 The impacts of snow can be large and may vary greatly throughout the year and between years

230 (Fig. 8). Greater snow accumulation in the OTCs has also the potential to increase water
231 availability and nutrients, similar to snowfence manipulations (Rixen et al. 2022).

232

233 **Impacts on soils and belowground properties**

234 The impact of OTCs on soils varies greatly between locations and may result in higher
235 soil temperatures within OTCs (Marion et al. 1997; Klanderud and Totland 2005; Bokhorst et al.
236 2013) as well as a cooling of the soil due to shading (Jónsdóttir et al. 2005; Dabros et al. 2010;
237 Hollister et al. 2006; Dabros et al. 2010; Bokhorst et al. 2013), while some sites show no effect
238 on soil temperatures (Hollister et al. 2006; Delarue et al. 2011; Buttler et al. 2015; Ma et al.
239 2022; Björkman unpublished data). The impact on soil temperatures is complex, while air
240 warming generally results in soil warming, reduced direct sunlight due to shading may offset
241 increased air temperatures and the net result may be lower heat inputs into the soil, especially in
242 landscapes with bare ground (see above **Physics of OTC warming** and **Impacts on air and leaf**
243 **temperatures**). Cooling of the soil surface may be due to shading by the chamber walls or
244 denser plant canopies reducing incoming radiation reaching the soil surface and thus reducing
245 the warming effect (Klanderud and Totland 2005). It is also possible that vegetation changes
246 inside the OTCs can impact the transfer of heat from the air to the soil, similar to what has been
247 suggested for shrubs (Blok et al. 2010), in particular a thicker moss layer may insulate the soil
248 from ambient temperatures and incoming radiation (Lett et al. 2020). Furthermore, the lateral
249 movement of soil water from outside the OTCs can negate any potential soil warming in moist,
250 wet and flooded sites (Natali et al. 2011; Lindwall et al. 2016). The magnitude of difference may
251 vary greatly throughout the year; for example, see differences in air temperature which may

252 drive soil temperature (Fig. 8). While only a few OTC experiments have measured soil warming
253 at depths of, or greater than, 20 cm (but see Hollister et al. 2006; Yang et al. 2014), it is generally
254 assumed that warming effects diminish at greater soil depths due to the small size of the OTC
255 and the hysteresis of surrounding soils. For this reason, soil temperature should be measured near
256 the center of the plot. Warmer soils has resulted in increased depth of seasonal thaw under OTCs
257 in Alaska (Welker et al. 2004; Hollister et al. 2006); increased thaw depth is particularly evident
258 early in the season but may be swamped by the spatial diversity of thaw across the landscape
259 (see Hinkel and Nelson 2003).

260 The OTCs tend to decrease soil moisture in drier sites, especially at the surface
261 (Sjögersten & Wookey 2002; Bokhorst et al. 2013; van Zuijen et al. 2022; Björnsdóttir et al
262 2022; Jeanbille et al. 2022), although the effect is often not statistically significant and varies
263 greatly depending on the soil moisture of the surroundings. However, in dry communities a
264 minor lowering in soil moisture near the surface may be enough to constrain plant performance
265 (Hudson and Henry 2010; Dorji et al. 2013; Hollister et al. 2015). In moist and wet communities,
266 the impact of the OTCs on soil moisture is often negligible (Hollister et al. 2006; Bernareggi et
267 al. 2015), yet wet communities have also experienced drying in the OTCs (Jassey et al. 2011;
268 Schärn et al. 2021). Measurements of bare ground have shown increased soil moisture in OTCs
269 due to reduced losses of soil water to the atmosphere (evaporation) as a result of reduced wind
270 speed (Bernareggi et al. 2015; D'Imperio et al. 2017). It is also possible that changes in plant
271 biomass may result in changes in evapotranspiration and soil moisture. Jeanbille et al. (2022)
272 found decreased water content of the litter inside OTCs in some sites, whereas in other sites litter
273 water content was higher in OTCs than in controls. In Latnjajare (Sweden), the OTCs are
274 deployed over five plant communities following a soil moisture gradient (Schärn et al. 2021);

275 here, only the warmed meadow (not heath) plots had a lower soil moisture content compared to
276 ambient conditions. In particular for the dry and mesic meadow plots, the timing and magnitude
277 of snowmelt drove the soil moisture differences between warmed and ambient plots (Scharn et
278 al. 2021).

279 Studies on soil processes and the microbial communities have often found few direct
280 impacts of the OTC (Lamb et al. 2011; Andresen et al. 2022; Jeanbille et al. 2022); however,
281 there have been several studies that have documented changes in the microbial communities and
282 soil processes in peatlands outside the tundra (Jassey et al. 2015; Delarue et al. 2015; Binet et al.
283 2017). The lack of a response in tundra is notable, given that warming has been shown to impact
284 the quality of litter and thereby nutrient cycling (Cornelissen et al. 2007; Jeanbille et al. 2022)
285 and impact the soil fauna (Dollery et al. 2006; Hågvar and Klanderud 2009). The reasons for a
286 lack of response are unclear, but are likely due to the relatively low warming impact on soil
287 temperatures, which decreases with depth, and may be masked by the heterogeneity of soils and
288 vegetation. Furthermore, the rooting zones of the plants are likely to extend well beyond the
289 chamber walls especially for plants with long rhizomes and underground stems, and below
290 ground plant biomass has been shown to be less responsive to temperature than above ground
291 biomass (Wang et al. 2016; Ma et al. 2022a, 2022b). Nevertheless, a few studies have shown
292 earlier root growth (Sullivan and Welker 2005) and changing allocation patterns in response to
293 warming (Björk et al. 2007; Hollister and Flaherty 2010; Yang et al. 2011).

294

295 **Impacts on vegetation**

296 The impacts of warming on tundra vegetation are the primary focus of the ITEX network
297 and as such is described elsewhere; see Henry et al. 2022, this issue, for a review of OTC
298 impacts on community composition, plant performance and carbon cycling. Here we focus on
299 the robustness of using observations from the experimental manipulation to guide forecasts of
300 vegetation change due to regional climate warming. Several studies have compared the response
301 of plants in OTCs to that of a warmer year and in many cases found similar responses (Hollister
302 and Webber 2000; Elmendorf et al. 2015; Bjorkman et al. 2020). Thawing degree days (daily
303 temperatures above the lower threshold of 0°C summed daily) have been shown to provide a
304 reasonable prediction of plant responses irrespective of warming treatment (Hollister et al.
305 2005a), this is for instance true for inflorescence length of *Carex aquatilis* in Northern Alaska
306 (Fig. 9). Comparisons of vegetation change due to warming by OTCs show similar patterns to
307 regional warming and climate warming (Hollister et al. 2015; Elmendorf et al. 2015; Bjorkman
308 et al. 2020). However, phenological development in OTCs has been shown to not advance as
309 much as would be expected based on air temperatures (Hollister et al. 2005a; Oberbauer et al.
310 2013; Parker et al. 2017, 2021). Warming experiments across all biomes have been shown to
311 under-predict phenological advance due to regional climate warming (Wolkovich et al. 2012).
312 There is also evidence that OTC response may vary greatly depending on the season and year,
313 these differences can be due to moisture available (Delarue et al. 2015; Jassey and Signarieux
314 2019), the responsiveness of plants has also been shown to be less during a warm year relative to
315 a cold year (Barrett and Hollister 2016; Carbognani et al. 2016; but see Collins et al 2021).

316 The explanation(s) for the differences between response to experimental warming and
317 regional climate warming is not fully understood and there are likely a suite of reasons that vary
318 between locations and species. Examining the differences between responses may further our

319 understanding of the underlying mechanisms driving response to temperature. For example, the
320 OTCs reduce wind, and sheltering from the wind can in itself drive vegetation change (Fitzgerald
321 and Kirkpatrick 2017; Momberg et al. 2021). Also, the walls of the chambers may constrain seed
322 rain and colonization of new species, which may protect plants inside the OTCs from
323 interactions with new immigrants (Yang et al. 2018).

324 The magnitude and quality of OTC warming may be significantly different from the
325 warming experienced from climate change. The magnitude and timing of OTC warming varies
326 by location and is generally on average less than 2°C, this is a modest magnitude of warming that
327 is less than some regions have already experienced due to climate change (IPCC 2022). The
328 maximum temperatures experienced in warming experiments (including OTCs) may be outside
329 the range normally experienced and the response to warming may diminish if the temperature
330 optimum is exceeded (Hollister unpublished data), it is possible that the maximum temperatures
331 may negatively impact performance (Marchand et al. 2005; Shi et al. 2010). The potential
332 decoupling of air and soil warming due to OTCs described above (**Impacts on soils and**
333 **belowground properties**) may also impact plant performance. The reduction of incoming
334 photosynthetically active radiation (PAR) and other wavelengths relevant for plant development,
335 such as far-red and ultraviolet radiation, varies within the OTC. Few studies report radiation
336 measurements along with results from OTCs even though the reduced radiation and altered
337 spectral composition, especially near the chamber walls, may impact plant production and
338 change plant morphology in ways similar to shade experiments (May et al. 2022). Reductions of
339 photosynthetic photon flux density as high as 16-25% have been documented, the OTCs reduce
340 light most when the sun is at a low angle, yet the open top allows direct sunlight and reductions
341 are near zero at solar noon especially at lower latitude (Bokhorst et al. 2007; Lindwall et al.

342 2016; Schollert et al. 2017). It is also reasonable to assume that the vegetation response to
343 warming may have built in lags and that the short-term response may be different from the long-
344 term impacts (Hollister et al. 2005b; Rozema et al 2009).

345 Cryptogam responses can vary greatly to OTC-warming, with a dominant role for
346 competition for light between cryptogams and vascular plants (Klanderud and Totland 2005;
347 Wahren et al. 2005; Walker et al. 2006; Cornelissen et al. 2001; Day et al. 2008). In the few
348 studied sites where mosses and lichens dominated, responses were highly species-specific
349 (Keuper et al 2011; Dorrepaal 2007; Bokhorst et al 2015, 2016). Moreover, this relationship can
350 even be inverted in some habitats, e.g. in *Sphagnum* dominated peatlands (Dorrepaal et al. 2006),
351 often as a result of *Sphagnum* being a stronger competitor for nitrogen (Heijmans et al. 2002).
352 Future studies may consider a specific focus on cryptogam communities with little to no vascular
353 plants to better understand the moss and lichen response to climate warming without the
354 influence of faster growing vascular plants.

355

356 **Impacts on herbivores and pollinators**

357 The impacts of OTCs on herbivores depend greatly on the species of interest. Large
358 herbivores have often avoided OTCs, although reindeer have been seen to lean in and graze the
359 plants within (personal observation IS Jónsdóttir at Endalen, Svalbard; EJ Cooper at
360 Adventalen and Ny Ålesund, Svalbard; RG Björk at Latnjajaure, Sweden). The presence of
361 large herbivores can affect the outcome of passive warming from OTCs on plant communities. In
362 West Greenland, herbivory by caribou and muskoxen has been observed to differentially
363 influence the biomass response of plant functional groups to OTC-induced warming (Post and

364 Pedersen 2008). After 7 years of study, grazed plots showed higher plant community stability
365 and species diversity than ungrazed plots receiving the same warming treatment. The greater
366 stability of grazed plots has been interpreted as the result of herbivore biomass exploitation
367 mediating the effect of interspecific competition, which increases with warmer temperatures
368 (Post 2013). The presence of small mammals such as lemmings and voles is patchy, although
369 anecdotal evidence suggests that they may shelter in the OTCs. At Alexandra Fiord, OTCs were
370 often covered with a screen to keep song birds from perching on the chamber walls and
371 providing unwanted nutrient inputs and decimating the seed production. Juvenile snowy owls
372 have also been observed to shelter in the OTCs on cool windy days.

373 Observations of insects are complex; for some species the chamber walls provide a
374 deterrent, while other species seek out the chambers for shelter. Once in an OTC, activity is
375 greater due to the lack of wind and warmer air temperatures (e.g. Gillespie et al 2013; Birkemoe
376 et al. 2016). Observations at Alexandra Fiord showed no impact of the OTC on insect pollination
377 nor on wind pollinated species (Robinson and Henry 2018) whereas other sites have shown
378 indications of potential pollen limitations in OTCs (Jones et al. 1997; Molau and Shaver 1997;
379 Totland and Alatalo 2002; Totland and Eide 1999). OTCs have been used to demonstrate the link
380 between timing of flowering and pollination in the High Arctic (Gillespie et al 2016; Gillespie
381 and Cooper 2022).

382

383 **Items to consider**

384 Robotic tram systems in close proximity to OTCs can provide continuous objective
385 measurements of fundamental micrometeorological conditions present as well as biophysical

386 properties of vegetation represented in nearby OTCs (Healey et al. 2014). Such implementations
387 may help understand the different processes occurring at different scales across the
388 heterogeneous landscape. Similarly, handheld instrumentation has also provided analysis of
389 unique spectral characteristics linked with growth, development and phenology that are
390 undetectable to the human eye (May et al. 2020). Our understanding of physiological impacts
391 induced by OTCs has also been enhanced using thermal imaging technology (Healey et al.
392 2016). Surface tissue and underlying soil or moss temperatures are key determinants of
393 metabolic activity and monitoring such phenomena is vital for comprehensive analysis of subtle,
394 yet complex, interactions among permafrost, surface moss, cryptogamic crusts and soils, and
395 tundra vegetation. Given the many factors and potential interactions between factors, we believe
396 the use of OTCs is most effective when coupled with long-term monitoring.

397 As with any long-term experiment, it is important to clearly mark the plots with
398 permanent robust markers and the corresponding precise GPS locations. Markers may include
399 anchors that serve to retain the OTCs in position during high winds that occur at many study
400 sites. How the OTCs are secured will depend on the location and the monitoring techniques
401 deployed. Sometimes removal of the OTCs is desirable or necessary to facilitate measurement of
402 the properties within. For example, measurement of vegetation solar spectral reflectance within
403 the OTCs requires removal of the OTCs because of changes in the spectrum and amount of light
404 transmitted through the chamber walls. Measurements of ecosystem trace gas fluxes within the
405 OTCs creates a dilemma, should measurements be taken with the OTCs in place or with them
406 removed. Measurements taken with the OTCs in place reflect the vegetation performance within
407 the OTC environment that might include higher air and soil temperatures and lower light, while

408 in cases where the focus is the vegetation potential it is preferable to remove the OTC to measure
409 plant performance under the same environmental conditions.

410 While most experiments using OTC leave the OTCs in place year-round, many others
411 remove them during the winter. It may be useful to deploy the OTCs during specific times of the
412 year to ask specific questions. For example, Gehrman et al. (2022) deployed OTCs for late
413 summer only use. Given that autumn is the season most neglected by summer-visiting
414 researchers, autumn studies could help elucidate ecological activity and thermal sensitivities
415 during the end of the growing season and during the onset of winter dormancy. However, there
416 are caveats here related to the potential warming performance of OTCs at lower solar angles and
417 shorter day-lengths as the autumnal equinox approaches.

418 Finally, recent attempts have been made to scale up plot-level observations from OTCs to
419 biome-wide analyses using aerial or spaceborne observations (Westergaard-Nielsen et al. 2021).
420 Therefore, it is important to clearly document the characteristics of the study site within the
421 heterogeneity of the landscape and region to allow for comparison across sites and scaling of
422 observations. The continued inclusion of remote sensing observations at a variety of scales will
423 improve future monitoring of tundra plant responses to warming scenarios that have been
424 projected to occur with climate change.

425

426 **Recommendations and Concluding Remarks**

427 It is important to document the impacts of the OTC on the physical environment at each
428 study site. We have shown above that the impacts of OTCs vary greatly between locations in

429 ways that are difficult to predict without empirical observations. Therefore, any observed
430 biological response must be coupled with a clear understanding of the changes to the physical
431 environment, including measurements at standardized locations throughout the season.

432 The OTC is a cost-effective robust method of *in situ* warming of ecosystems with low
433 stature plants such as tundra environments. The response of tundra vegetation to OTC warming
434 has been shown to be similar to that of interannual variability and latitudinal gradients
435 (Elmendorf et al. 2015). However, as with any experimental manipulation, there are artifacts that
436 may be problematic depending on the situation (Ettinger et al. 2019; Kimmel et al. 2021). The
437 OTC may or may not provide a reasonable approximation of regional climate warming
438 depending on the application. For example, the increased daily range of temperatures may be
439 unrealistic, likewise air and soil warming may be decoupled. In many cases properly
440 documenting the magnitude of warming both above-ground and below-ground may be enough to
441 properly interpret the observations that the experiment was intended to examine. In other cases, it
442 may be important to document other physical factors such as plant surface temperatures, PAR,
443 wind speed, snow accumulation, nutrient inputs, or soil moisture. It may also be important to
444 account for differences in herbivory or pollination. The small scale of the OTC makes it poorly
445 suited to examine landscape dynamics such as permafrost degradation and changing migration
446 patterns (Hegland et al. 2009; Post et al. 2009). Conversely, the small scale confers the
447 advantage that OTCs can be deployed in contrasting landscape contexts, refining the process
448 understanding necessary to underpin up-scaling such as interactions between microbes and plants
449 (Jassey et al. 2015; Jeanbille et al. 2022; Klarenberg et al. 2022). Furthermore, the OTC does not
450 require electricity and can be placed in remote locations.

451 In general, we recommend using the findings from OTC in conjunction with those of
452 multiple years of observation. If the same patterns are observed in a warm year at ambient plot as
453 observed in a warmed plot in a colder year, then the difference between warmed and control plot
454 is mostly likely due primarily to temperature (Hollister et al. 2005a, b; Hollister et al. 2015). In
455 cases where the response to experimental warming and regional climate change are different,
456 then the experiment may help elucidate biological processes that better our understanding of
457 temperature relationships.

458 **Acknowledgments**

459 This manuscript is based on work supported by many funding agencies including the National
460 Science Foundation (NSF) award numbers 856516, 1432277, 1504224, and 1836839.
461
462

463 **Competing Interests**

464 The authors declare there are no competing interests.
465
466

467 **Data Availability**

468 Most of the data presented in this study are continuations or redrawing of figures from published
469 papers. All previously unpublished data are available from the corresponding author upon reasonable
470 request.
471
472

473 **References**

474

475 Andresen, L.C., Bodé, S., Björk, R.G., Michelsen, A., Aerts, R., Boeckx, P., Cornelissen, J.H.C.,
476 Klanderud, K., van Logtestijn, R.S.P., and Rütting, T. 2022. Patterns of free amino acids
477 in tundra soils reflect mycorrhizal type, shrubification, and warming. *Mycorrhiza*.
478 doi:10.1007/s00572-022-01075-4.

479 Aronson, E.L., and McNulty, S.G. 2009. Appropriate experimental ecosystem warming methods
480 by ecosystem, objective, and practicality. *Agricultural and Forest Meteorology* **149**:
481 1791–1799. doi:10.1016/j.agrformet.2009.06.007.

482 Barrett, R.T., and Hollister, R.D. 2016. Arctic plants are capable of sustained responses to long-
483 term warming. *Polar Research* **35**: 25405. doi:10.3402/polar.v35.25405.

484 Bernareggi, G., Carbognani, M., Petraglia, A., and Mondoni, A. 2015. Climate warming could
485 increase seed longevity of alpine snowbed plants. *Alp Botany* **125**: 69–78.
486 doi:10.1007/s00035-015-0156-0.

487 Binet, P., Rouifed, S., Jassey, V.E.J., Toussaint, M.-L., and Chiapusio, G. 2017. Experimental
488 climate warming alters the relationship between fungal root symbiosis and Sphagnum
489 litter phenolics in two peatland microhabitats. *Soil Biology and Biochemistry* **105**: 153–
490 161. doi:10.1016/j.soilbio.2016.11.020.

491 Birkemoe, T., Bergmann, S., Hasle, T.E., and Klanderud, K. 2016. Experimental warming
492 increases herbivory by leaf-chewing insects in an alpine plant community. *Ecology and
493 Evolution* **6**: 6955–6962. doi:10.1002/ece3.2398.

494 Bjorkman, A.D. 2015. Ecological and Evolutionary Consequences of Experimental and Natural
495 Warming in the High Arctic Tundra. Ph.D. Thesis, The University of British Columbia.

496 Bjorkman, A.D., Elmendorf, S.C., Beamish, A.L., Vellend, M., and Henry, G.H.R. 2015.
497 Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology
498 over the past two decades. *Global Change Biology* **21**: 4651–4661.
499 doi:10.1111/gcb.13051.

500 Bjorkman, A.D., Garcia Criado, M., Myers-Smith, I.H., Ravolainen, V., Jónsdóttir, I.S.,
501 Westergaard, K.B., Lawler, J.P., Aronsson, M., Bennett, B., Gardfjell, H., Heidmarsson,
502 S., Stewart, L., and Normand, S. 2020. Status and trends in Arctic vegetation: Evidence
503 from experimental warming and long-term monitoring. *Ambio* **49**: 678–692.
504 doi:10.1007/s13280-019-01161-6.

505 Björnsdóttir, K., Barrio, I.C., and Jónsdóttir, I.S. 2022. Long-term warming manipulations reveal
506 complex decomposition responses across different tundra vegetation types. *Arctic
507 Science*: 1–13. doi:10.1139/as-2020-0046.

508 Blok, D., Heijmans, M.M.P.D., Schaepman-Strub, G., Kononov, A.V., Maximov, T.C., and
509 Berendse, F. 2010. Shrub expansion may reduce summer permafrost thaw in Siberian
510 tundra. *Global Change Biology* **16**: 1296–1305. doi:10.1111/j.1365-2486.2009.02110.x.

511 Bokhorst, S., Convey, P., Huiskes, A., and Aerts, R. 2016. *Usnea antarctica*, an important
512 Antarctic lichen, is vulnerable to aspects of regional environmental change. *Polar Biol*

513 39: 511–521. doi:10.1007/s00300-015-1803-z.

514 Bokhorst, S., Huiskes, A., Aerts, R., Convey, P., Cooper, E.J., Dalen, L., Erschbamer, B.,
515 Gudmundsson, J., Hofgaard, A., Hollister, R.D., Johnstone, J., Jónsdóttir, I.S., Lebouvier,
516 M., Van de Vijver, B., Wahren, C.-H., and Dorrepaal, E. 2013. Variable temperature
517 effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow
518 depth. *Glob Change Biol* **19**: 64–74. doi:10.1111/gcb.12028.

519 Bokhorst, S., Huiskes, A., Convey, P., and Aerts, R. 2007. The effect of environmental change
520 on vascular plant and cryptogam communities from the Falkland Islands and the
521 Maritime Antarctic. *BMC Ecology* **7**: 15. doi:10.1186/1472-6785-7-15.

522 Bokhorst, S., Phoenix, G.K., Berg, M.P., Callaghan, T.V., Kirby-Lambert, C., and Bjerke, J.W.
523 2015. Climatic and biotic extreme events moderate long-term responses of above- and
524 belowground sub-Arctic heathland communities to climate change. *Global Change
525 Biology* **21**: 4063–4075. doi:10.1111/gcb.13007.

526 Buttler, A., Robroek, B.J.M., Laggoun-Défarge, F., Jassey, V.E.J., Pochelon, C., Bernard, G.,
527 Delarue, F., Gogo, S., Mariotte, P., Mitchell, E.A.D., and Bragazza, L. 2015.
528 Experimental warming interacts with soil moisture to discriminate plant responses in an
529 ombrotrophic peatland. *J Veg Sci* **26**: 964–974. doi:10.1111/jvs.12296.

530 Carbognani, M., Bernareggi, G., Perucco, F., Tomaselli, M., and Petraglia, A. 2016. Micro-
531 climatic controls and warming effects on flowering time in alpine snowbeds. *Oecologia*
532 **182**: 573–585. doi:10.1007/s00442-016-3669-3.

533 Carlyle, C.N., Fraser, L.H., and Turkington, R. 2011. Tracking Soil Temperature and Moisture in
534 a Multi-Factor Climate Experiment in Temperate Grassland: Do Climate Manipulation
535 Methods Produce their Intended Effects? *Ecosystems* **14**: 489–502. doi:10.1007/s10021-
536 011-9425-y.

537 Chapin III, F.S., and Shaver, G.R. 1985. Individualistic Growth Response of Tundra Plant
538 Species to Environmental Manipulations in the Field. *Ecology* **66**: 564–576.
539 doi:10.2307/1940405.

540 Chapin III, F.S., Shaver, G.R., Giblin, A.E., Nadelhoffer, K.J., and Laundre, J.A. 1995.
541 Responses of Arctic Tundra to Experimental and Observed Changes in Climate. *Ecology*
542 **76**: 694–711. doi:10.2307/1939337.

543 Collins, C.G., Elmendorf, S.C., Hollister, R.D., Henry, G.H.R., Clark, K., Bjorkman, A.D.,
544 Myers-Smith, I.H., Prevéy, J.S., Ashton, I.W., Assmann, J.J., Alatalo, J.M., Carbognani,
545 M., Chisholm, C., Cooper, E.J., Forrester, C., Jónsdóttir, I.S., Klanderud, K., Kopp,
546 C.W., Livenberger, C., Mauritz, M., May, J.L., Molau, U., Oberbauer, S.F., Ogburn, E.,
547 Panchen, Z.A., Petraglia, A., Post, E., Rixen, C., Rodenhizer, H., Schuur, E.A.G.,
548 Semenchuk, P., Smith, J.G., Steltzer, H., Totland, Ø., Walker, M.D., Welker, J.M., and
549 Suding, K.N. 2021. Experimental warming differentially affects vegetative and
550 reproductive phenology of tundra plants. *Nat Commun* **12**: 3442. doi:10.1038/s41467-
551 021-23841-2.

552 Cornelissen, J.H.C., Callaghan, T.V., Alatalo, J.M., Michelsen, A., Graglia, E., Hartley, A.E.,
553 Hik, D.S., Hobbie, S.E., Press, M.C., Robinson, C.H., Henry, G.H.R., Shaver, G.R.,
554 Phoenix, G.K., Gwynn Jones, D., Jonasson, S., Chapin III, F.S., Molau, U., Neill, C.,

555 Lee, J.A., Melillo, J.M., Sveinbjörnsson, B., and Aerts, R. 2001. Global change and arctic
556 ecosystems: is lichen decline a function of increases in vascular plant biomass? *Journal of
557 Ecology* **89**: 984–994. doi:10.1111/j.1365-2745.2001.00625.x.

558 Cornelissen, J.H.C., Van Bodegom, P.M., Aerts, R., Callaghan, T.V., Van Logtestijn, R.S.P.,
559 Alatalo, J., Stuart Chapin, F., Gerdol, R., Gudmundsson, J., Gwynn-Jones, D., Hartley,
560 A.E., Hik, D.S., Hofgaard, A., Jónsdóttir, I.S., Karlsson, S., Klein, J.A., Laundre, J.,
561 Magnusson, B., Michelsen, A., Molau, U., Onipchenko, V.G., Quested, H.M., Sandvik,
562 S.M., Schmidt, I.K., Shaver, G.R., Solheim, B., Soudzilovskaia, N.A., Stenström, A.,
563 Tolvanen, A., Totland, Ø., Wada, N., Welker, J.M., Zhao, X., and Team, M.O.L. 2007.
564 Global negative vegetation feedback to climate warming responses of leaf litter
565 decomposition rates in cold biomes. *Ecology Letters* **10**: 619–627. doi:10.1111/j.1461-
566 0248.2007.01051.x.

567 Dabros, A., Fyles, J.W., and Strachan, I.B. 2010. Effects of open-top chambers on physical
568 properties of air and soil at post-disturbance sites in northwestern Quebec. *Plant Soil* **333**:
569 203–218. doi:10.1007/s11104-010-0336-z.

570 Day, T.A., Ruhland, C.T., and Xiong, F.S. 2008. Warming increases aboveground plant biomass
571 and C stocks in vascular-plant-dominated Antarctic tundra. *Global Change Biology* **14**:
572 1827–1843. doi:10.1111/j.1365-2486.2008.01623.x.

573 De Boeck, H.J., De Groote, T., and Nijs, I. 2012. Leaf temperatures in glasshouses and open-top
574 chambers. *New Phytol* **194**: 1155–1164. doi:10.1111/j.1469-8137.2012.04117.x.

575 Delarue, F., Buttler, A., Bragazza, L., Grasset, L., Jassey, V.E.J., Gogo, S., and Laggoun-
576 Défarge, F. 2015. Experimental warming differentially affects microbial structure and
577 activity in two contrasted moisture sites in a Sphagnum-dominated peatland. *Science of
578 The Total Environment* **511**: 576–583. doi:10.1016/j.scitotenv.2014.12.095.

579 Delarue, F., Laggoun-Défarge, F., Buttler, A., Gogo, S., Jassey, V.E.J., and Disnar, J.-R. 2011.
580 Effects of short-term ecosystem experimental warming on water-extractable organic
581 matter in an ombrotrophic Sphagnum peatland (Le Forbonnet, France). *Organic
582 Geochemistry* **42**: 1016–1024. doi:10.1016/j.orggeochem.2011.07.005.

583 D'Imperio, L., Nielsen, C.S., Westergaard-Nielsen, A., Michelsen, A., and Elberling, B. 2017.
584 Methane oxidation in contrasting soil types: responses to experimental warming with
585 implication for landscape-integrated CH₄ budget. *Glob Change Biol* **23**: 966–976.
586 doi:10.1111/gcb.13400.

587 Dollery, R., Hodkinson, I.D., and Jónsdóttir, I.S. 2006. Impact of warming and timing of snow
588 melt on soil microarthropod assemblages associated with Dryas-dominated plant
589 communities on Svalbard. *Ecography* **29**: 111–119. doi:10.1111/j.2006.0906-
590 7590.04366.x.

591 Dorji, T., Totland, Ø., Moe, S.R., Hopping, K.A., Pan, J.B., and Klein, J.A. 2013. Plant
592 functional traits mediate reproductive phenology and success in response to experimental
593 warming and snow addition in Tibet. *Global Change Biol* **19**: 459–472.
594 doi:10.1111/gcb.12059.

595 Dorrepaal, E. 2007. Are plant growth-form-based classifications useful in predicting northern
596 ecosystem carbon cycling feedbacks to climate change? *Journal of Ecology* **95**: 1167–

597 1180. doi:10.1111/j.1365-2745.2007.01294.x.

598 Dorrepaal, E., Aerts, R., Cornelissen, J.H.C., Callaghan, T.V., and Van Logtestijn, R.S.P. 2004.
599 Summer warming and increased winter snow cover affect Sphagnum fuscum growth,
600 structure and production in a sub-arctic bog. *Global Change Biology* **10**: 93–104.
601 doi:10.1111/j.1365-2486.2003.00718.x.

602 Dorrepaal, E., Aerts, R., Cornelissen, J.H.C., Van Logtestijn, R.S.P., and Callaghan, T.V. 2006.
603 Sphagnum modifies climate-change impacts on subarctic vascular bog plants. *Functional
604 Ecology* **20**: 31–41. doi:10.1111/j.1365-2435.2006.01076.x.

605 Elmendorf, S.C., Henry, G.H.R., Hollister, R.D., Fosaa, A.M., Gould, W.A., Hermanutz, L.,
606 Hofgaard, A., Jónsdóttir, I.S., Jorgenson, J.C., Lévesque, E., Magnusson, B., Molau, U.,
607 Myers-Smith, I.H., Oberbauer, S.F., Rixen, C., Tweedie, C.E., and Walker, M.D. 2015.
608 Experiment, monitoring, and gradient methods used to infer climate change effects on
609 plant communities yield consistent patterns. *Proc Natl Acad Sci USA* **112**: 448–452.
610 doi:10.1073/pnas.1410088112.

611 Ettinger, A.K., Chuine, I., Cook, B.I., Dukes, J.S., Ellison, A.M., Johnston, M.R., Panetta, A.M.,
612 Rollinson, C.R., Vitasse, Y., and Wolkovich, E.M. 2019. How do climate change
613 experiments alter plot-scale climate? *Ecology Letters* **22**: 748–763.
614 doi:10.1111/ele.13223.

615 Fitzgerald, N.B., and Kirkpatrick, J.B. 2017. Wind Distortion in Alpine and Subantarctic Plants
616 is Constant among Life Forms but does not Necessarily Reflect Prevailing Wind
617 Direction. *Arctic, Antarctic, and Alpine Research* **49**: 521–535. doi:10.1657/AAAR0016-
618 054.

619 Gehrman, F., Ziegler, C., and Cooper, E.J. 2022. Onset of autumn senescence in High Arctic
620 plants shows similar patterns in natural and experimental snow depth gradients. *Arctic
621 Science* **00**: 23. doi:10.1139/as-2020-0044.

622 Gillespie, M.A.K., Baggesen, N., and Cooper, E.J. 2016. High Arctic flowering phenology and
623 plant–pollinator interactions in response to delayed snow melt and simulated warming.
624 *Environ. Res. Lett.* **11**: 115006. doi:10.1088/1748-9326/11/11/115006.

625 Gillespie, M.A.K., Jónsdóttir, I.S., Hodkinson, I.D., and Cooper, E.J. 2013. Aphid–willow
626 interactions in a high Arctic ecosystem: responses to raised temperature and goose
627 disturbance. *Global Change Biology* **19**: 3698–3708. doi:10.1111/gcb.12284.

628 Godfree, R., Robertson, B., Bolger, T., Carnegie, M., and Young, A. 2011. An improved
629 hexagon open-top chamber system for stable diurnal and nocturnal warming and
630 atmospheric carbon dioxide enrichment. *Global Change Biology* **17**: 439–451. Wiley
631 Online Library. doi:10.1111/j.1365-2486.2010.02276.x.

632 Hågvar, S., and Klanderud, K. 2009. Effect of simulated environmental change on alpine soil
633 arthropods. *Global Change Biology* **15**: 2972–2980. doi:10.1111/j.1365-
634 2486.2009.01926.x.

635 Hanson, P.J., and Walker, A.P. 2020. Advancing global change biology through experimental
636 manipulations: Where have we been and where might we go? *Glob Change Biol* **26**: 287–
637 299. doi:10.1111/gcb.14894.

638 Havström, M., Callaghan, T.V., Jonasson, S., and Havstrom, M. 1993. Differential growth
639 responses of *Cassiope tetragona*, an arctic dwarf-shrub, to environmental perturbations
640 among three contrasting high- and sub- arctic sites. *Oikos* **66**: 389. doi:10.2307/3544933.

641 Healey, N., Oberbauer, S.F., Ahrends, H., Dierick, D., Welker, J., Leffler, A., Hollister, R.D.,
642 Vargas, S., and Tweedie, C.E. 2014. A mobile instrumented sensor platform for long-
643 term terrestrial ecosystem analysis: An example application in an arctic tundra
644 ecosystem. *Journal of Environmental Informatics* **24**: 1–10. doi:10.3808/jei.201400278.

645 Healey, N.C., Oberbauer, S.F., and Hollister, R.D. 2016. Examination of surface temperature
646 modification by Open Top Chambers along moisture and latitudinal gradients in Arctic
647 Alaska using thermal infrared photography. *Remote Sensing* **8**: 54 1–19.
648 doi:10.3390/rs8010054.

649 Hegland, S.J., Nielsen, A., Lázaro, A., Bjerknes, A.-L., and Totland, Ø. 2009. How does climate
650 warming affect plant-pollinator interactions? *Ecology Letters* **12**: 184–195.
651 doi:10.1111/j.1461-0248.2008.01269.x.

652 Heijmans, M.M.P.D., Klees, H., and Berendse, F. 2002. Competition between *Sphagnum*
653 *magellanicum* and *Eriophorum angustifolium* as affected by raised CO₂ and increased N
654 deposition. *Oikos* **97**: 415–425. doi:10.1034/j.1600-0706.2002.970311.x.

655 Henry, G.H.R., Klanderud, K., Hollister, R.D., Bjorkman, A.D., Björk, R.G., Elphinstone, C.,
656 Jónsdóttir, I.S., Molau, U., Oberbauer, S.F., Petraglia, A., Rixen, C., and Wookey, P.A.
657 2022. The impacts of climate change on tundra ecosystems: Three Decades of Results
658 from the International Tundra Experiment (ITEX) Network. *Arctic Science* **Submitted**.

659 Hinkel, K.M., and Nelson, F.E. 2003. Spatial and temporal patterns of active layer thickness at
660 Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska, 1995–2000.
661 *Journal of Geophysical Research: Atmospheres* **108**. doi:10.1029/2001JD000927.

662 Hollister, R.D. 1998. Response of Wet Meadow Tundra to Interannual and Manipulated
663 Temperature Variation: Implications for Climate Change Research. Master's Thesis,
664 Michigan State University.

665 Hollister, R.D., and Flaherty, K.J. 2010. Above and belowground plant biomass response to
666 experimental warming in northern Alaska. *Applied Vegetation Science* **13**: 378–387.
667 doi:10.1111/j.1654-109X.2010.01079.x.

668 Hollister, R.D., May, J.L., Kremers, K.S., Tweedie, C.E., Oberbauer, S.F., Liebig, J.A., Botting,
669 T.F., Barrett, R.T., and Gregory, J.L. 2015. Warming experiments elucidate the drivers of
670 observed directional changes in tundra vegetation. *Ecology and Evolution* **5**: 1881–1895.
671 doi:10.1002/ece3.1499.

672 Hollister, R.D., and Webber, P.J. 2000. Biotic validation of small open-top chambers in a tundra
673 ecosystem. *Global Change Biol* **6**: 835–842. doi:10.1046/j.1365-2486.2000.00363.x.

674 Hollister, R.D., Webber, P.J., and Bay, C. 2005a. Plant response to temperature in northern
675 Alaska: Implications for predicting vegetation change. *Ecology* **86**: 1562–1570.
676 doi:10.1890/04-0520.

677 Hollister, R.D., Webber, P.J., Nelson, F.E., and Tweedie, C.E. 2006. Soil thaw and temperature
678 response to air warming varies by plant community: Results from an open-top chamber

679 experiment in northern Alaska. *Arct Antarct Alp Res* **38**: 206–215. doi:10.1657/1523-
680 0430(2006)38[206:STATRT]2.0.CO;2.

681 Hollister, R.D., Webber, P.J., and Tweedie, C.E. 2005b. The response of Alaskan arctic tundra to
682 experimental warming: Differences between short- and long-term responses. *Global
683 Change Biol* **11**: 525–536. doi:10.1111/j.1365-2486.2005.00926.x.

684 Hudson, J.M.G., and Henry, G.H.R. 2010. High Arctic plant community resists 15 years of
685 experimental warming. *J Ecol* **98**: 1035–1041. doi:10.1111/j.1365-2745.2010.01690.x.

686 IPCC 2022. *Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of
687 Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on
688 Climate Change*. Cambridge University Press.

689 Jassey, V.E.J., and Signarbieux, C. 2019. Effects of climate warming on Sphagnum
690 photosynthesis in peatlands depend on peat moisture and species-specific anatomical
691 traits. *Global Change Biology* **25**: 3859–3870. doi:10.1111/gcb.14788.

692 Jassey, V.E.J., Signarbieux, C., Hättenschwiler, S., Bragazza, L., Buttler, A., Delarue, F.,
693 Fournier, B., Gilbert, D., Laggoun-Défarge, F., Lara, E., T. E. Mills, R., Mitchell, E.A.D.,
694 Payne, R.J., and Robroek, B.J.M. 2015. An unexpected role for mixotrophs in the
695 response of peatland carbon cycling to climate warming. *Sci Rep* **5**: 16931.
696 doi:10.1038/srep16931.

697 Jeanbille, M., Clemmensen, K., Juhanson, J., Michelsen, A., Cooper, E.J., Henry, G.H.R.,
698 Hofgaard, A., Hollister, R.D., Jónsdóttir, I.S., Klanderud, K., Tolvanen, A., and Hallin, S.
699 2022. Site-specific responses of fungal and bacterial abundances to experimental
700 warming in litter and soil across Arctic and alpine tundra. *Arctic Science*: 1–14.
701 doi:10.1139/as-2020-0053.

702 Jones, M.H., Bay, C., and Nordenhall, U. 1997. Effects of experimental warming on Arctic
703 willows (*Salix* spp.): A comparison of responses from the Canadian High Arctic, Alaskan
704 Arctic, and Swedish Subarctic. *Global Change Biol* **3**: 55–60. doi:10.1111/j.1365-
705 2486.1997.gcb135.x.

706 Jónsdóttir, I.S., Magnússon, B., Gudmundsson, J., Elmarsdóttir, Á., and Hjartarson, H. 2005.
707 Variable sensitivity of plant communities in Iceland to experimental warming. *Global
708 Change Biology* **11**: 553–563. doi:10.1111/j.1365-2486.2005.00928.x.

709 Junzeng, X., Qi, W., Shizhang, P., and Yanmei, Y. 2012. Error of Saturation Vapor Pressure
710 Calculated by Different Formulas and Its Effect on Calculation of Reference
711 Evapotranspiration in High Latitude Cold Region. *Procedia Engineering* **28**: 43–48.
712 doi:10.1016/j.proeng.2012.01.680.

713 Klarenberg, I.J., Keuschnig, C., Russi Colmenares A.J., Warshan D., Jungblut A.D., Jónsdóttir
714 I.S., Vilhelmsen, O. 2022. Long-term warming effects on the microbiome and *nifH* gene
715 abundance of a common moss species in sub-Arctic tundra. *New Phytologist* **234**: 2044-
716 2056. <https://doi.org/10.1111/nph.17837>.

717 Kennedy, A.D. 1995. Temperature Effects of Passive Greenhouse Apparatus in High-Latitude
718 Climate Change Experiments. *Functional Ecology* **9**: 340–350. [British Ecological
719 Society, Wiley]. doi:10.2307/2390583.

720 Keuper, F., Dorrepaal, E., Van Bodegom, P.M., Aerts, R., Van Logtestijn, R.S.P., Callaghan,
721 T.V., and Cornelissen, J.H.C. 2011. A Race for Space? How Sphagnum fuscum stabilizes
722 vegetation composition during long-term climate manipulations. *Global Change Biology*
723 **17**: 2162–2171. doi:10.1111/j.1365-2486.2010.02377.x.

724 Kimmel, K., Dee, L.E., Avolio, M.L., and Ferraro, P.J. 2021. Causal assumptions and causal
725 inference in ecological experiments. *Trends in Ecology & Evolution* **36**: 1141–1152.
726 doi:10.1016/j.tree.2021.08.008.

727 Klanderud, K., and Totland, Ø. 2005. Simulated Climate Change Altered Dominance Hierarchies
728 and Diversity of an Alpine Biodiversity Hotspot. *Ecology* **86**: 2047–2054.
729 doi:10.1890/04-1563.

730 Lamb, E.G., Han, S., Lanoil, B.D., Henry, G.H.R., Brummell, M.E., Banerjee, S., and Siciliano,
731 S.D. 2011. A High Arctic soil ecosystem resists long-term environmental manipulations.
732 *Global Change Biology* **17**: 3187–3194. doi:10.1111/j.1365-2486.2011.02431.x.

733 Lamentowicz, M., Słowińska, S., and Słowiński, M. 2016. Combining short-term manipulative
734 experiments with long-term palaeoecological investigations at high resolution to assess
735 the response of Sphagnum peatlands to drought, fire and warming. *Mires and Peat*: 1–17.
736 doi:10.19189/MaP.2016.OMB.244.

737 Lett, S., Teuber, L.M., Krab, E.J., Michelsen, A., Olofsson, J., Nilsson, M.-C., Wardle, D.A., and
738 Dorrepaal, E. 2020. Mosses modify effects of warmer and wetter conditions on tree
739 seedlings at the alpine treeline. *Global Change Biology* **26**: 5754–5766.
740 doi:10.1111/gcb.15256.

741 Lindwall, F., Svendsen, S.S., Nielsen, C.S., Michelsen, A., and Rinnan, R. 2016. Warming
742 increases isoprene emissions from an arctic fen. *Science of The Total Environment* **553**:
743 297–304. doi:10.1016/j.scitotenv.2016.02.111.

744 Ma, T., Parker, T., Fetcher, N., Unger, S.L., Gewirtzman, J., Moody, M.L., and Tang, J. 2022a.
745 Leaf and root phenology and biomass of *Eriophorum vaginatum* in response to warming
746 in the Arctic. *Journal of Plant Ecology*: rtac010. doi:10.1093/jpe/rtac010.

747 Ma, T., Parker, T., Unger, S., Gewirtzman, J., Fetcher, N., Moody, M.L., and Tang, J. 2022b.
748 Responses of root phenology in ecotypes of *Eriophorum vaginatum* to transplantation and
749 warming in the Arctic. *Science of The Total Environment* **805**: 149926.
750 doi:10.1016/j.scitotenv.2021.149926.

751 Marchand, F.L., Mertens, S., Kockelbergh, F., Beyens, L., and Nijs, I. 2005. Performance of
752 High Arctic tundra plants improved during but deteriorated after exposure to a simulated
753 extreme temperature event. *Global Change Biology* **11**: 2078–2089. doi:10.1111/j.1365-
754 2486.2005.01046.x.

755 Marion, G. m., Henry, G. h. r., Freckman, D. w., Johnstone, J., Jones, G., Jones, M. h., Lévesque,
756 E., Molau, U., Mølgaard, P., Parsons, A. n., Svoboda, J., and Virginia, R. a. 1997. Open-
757 top designs for manipulating field temperature in high-latitude ecosystems. *Global
758 Change Biology* **3**: 20–32. doi:10.1111/j.1365-2486.1997.gcb136.x.

759 May, J.L., Hollister, R.D., Betway, K.R., Harris, J.A., Tweedie, C.E., Welker, J.M., Gould,
760 W.A., and Oberbauer, S.F. 2020. NDVI changes show warming increases the length of
761 the green season at tundra communities in northern alaska: A fine-scale analysis. *Front.*

762 Plant Sci. **11**: 1174. doi:10.3389/fpls.2020.01174.

763 May, J.L., Oberbauer, S.F., Unger, S.L., Simon, M.J., Betway, K.R., and Hollister, R.D. 2022.
764 Shading decreases and delays NDVI and flowering of prostrate Arctic shrubs. Arctic
765 Science: 1–12. doi:10.1139/as-2020-0043.

766 Michelsen, A., Rinnan, R., and Jonasson, S. 2012. Two decades of experimental manipulations
767 of heaths and forest understory in the subarctic. Ambio **41**: 218–230.
768 doi:10.1007/s13280-012-0303-4.

769 Molau, U., and Mølgaard, P. 1996. International Tundra Experiment (ITEX) manual. Second
770 edition. Danish Polar Center, Copenhagen, Denmark.

771 Molau, U., and Shaver, G.R. 1997. Controls on seed production and seed germinability in
772 *Eriophorum vaginatum*. Global Change Biology **3**: 80–88. doi:10.1111/j.1365-
773 2486.1997.gcb130.x.

774 Momberg, M., Hedding, D.W., Luoto, M., and le Roux, P.C. 2021. Species differ in their
775 responses to wind: the underexplored link between species fine-scale occurrences and
776 variation in wind stress. Journal of Vegetation Science **32**: e13093.
777 doi:10.1111/jvs.13093.

778 Natali, S.M., Schuur, E. a. G., Trucco, C., Hicks Pries, C.E., Crummer, K.G., and Baron Lopez,
779 A.F. 2011. Effects of experimental warming of air, soil and permafrost on carbon balance
780 in Alaskan tundra. Global Change Biology **17**: 1394–1407. doi:10.1111/j.1365-
781 2486.2010.02303.x.

782 Oberbauer, S.F., Elmendorf, S.C., Troxler, T.G., Hollister, R.D., Rocha, A.V., Bret-Harte, M.S.,
783 Dawes, M.A., Fosaa, A.M., Henry, G.H.R., Høye, T.T., Jarrad, F.C., Jónsdóttir, I.S.,
784 Klanderud, K., Klein, J.A., Molau, U., Rixen, C., Schmidt, N.M., Shaver, G.R., Slider,
785 R.T., Totland, Ø., Wahren, C.-H., and Welker, J.M. 2013. Phenological response of
786 tundra plants to background climate variation tested using the International Tundra
787 Experiment. Phil. Trans. R. Soc. B **368**: 20120481. doi:10.1098/rstb.2012.0481.

788 Parker, T.C., Tang, J., Clark, M.B., Moody, M.M., and Fetcher, N. 2017. Ecotypic differences in
789 the phenology of the tundra species *Eriophorum vaginatum* reflect sites of origin. Ecol
790 Evol **7**: 9775–9786. doi:10.1002/ece3.3445.

791 Parker, T.C., Unger, S.L., Moody, M.L., Tang, J., and Fetcher, N. 2022. Intraspecific variation in
792 phenology offers resilience to climate change for *Eriophorum vaginatum*. Arctic Science:
793 1–17. doi:10.1139/as-2020-0039.

794 Post, E. 2013. Erosion of community diversity and stability by herbivore removal under
795 warming. Proc. R. Soc. B. **280**: 20122722. doi:10.1098/rspb.2012.2722.

796 Post, E., Forchhammer, M.C., Bret-Harte, M.S., Callaghan, T.V., Christensen, T.R., Elberling,
797 B., Fox, A.D., Gilg, O., Hik, D.S., Høye, T.T., Ims, R.A., Jeppesen, E., Klein, D.R.,
798 Madsen, J., McGuire, A.D., Rysgaard, S., Schindler, D.E., Stirling, I., Tamstorf, M.P.,
799 Tyler, N.J.C., van der Wal, R., Welker, J., Wookey, P.A., Schmidt, N.M., and Aastrup, P.
800 2009. Ecological dynamics across the Arctic associated with recent Climate Change.
801 Science **325**: 1355–1358. doi:10.1111/j.1365-2486.1997.gcb135.x.

802 Post, E., and Pedersen, C. 2008. Opposing plant community responses to warming with and

803 without herbivores. *Proc. Natl. Acad. Sci. U.S.A.* **105**: 12353–12358.
804 doi:10.1073/pnas.0802421105.

805 Pugnaire, F.I., Pistón, N., Macek, P., Schöb, C., Estruch, C., and Armas, C. 2020. Warming
806 enhances growth but does not affect plant interactions in an alpine cushion species.
807 *Perspectives in Plant Ecology, Evolution and Systematics* **44**: 125530.
808 doi:10.1016/j.ppees.2020.125530.

809 Rixen, C., Høye, T.T., Macek, P., Aerts, R., Alatalo, J., Andeson, J., Arnold, P., Barrio, I.C.,
810 Bjerke, J., Björkman, M.P., Blok, D., Blume-Werry, G., Boike, J., Bokhorst, S.,
811 Carbognani, M., Christiansen, C., Convey, P., Cooper, E.J., Cornelissen, J.H.C., Coulson,
812 S., Dorrepaal, E., Elberling, B., Elmendorf, S., Elphinstone, C., Forte, T.G.W., Frei, E.R.,
813 Geange, S., Gehrmann, F., Gibson, C., Grogan, P., Halbritter Rechsteiner, A., Harte, J.,
814 Henry, G.H.R., Inouye, D., Irwin, R., Jespersen, G., Jónsdóttir, I.S., Jung, J.Y., Klinges,
815 D., Kudo, G., Lämsä, J., Lee, H., Lembrechts, J., Lett, S., Lynn, J.S., Mann, H.M.,
816 Mastepanov, M., Morse, J., Myers-Smith, I., Olofsson, J., Paavola, R., Petraglia, A.,
817 Phoenix, G., Semenchuk, P., Siewert, M., Slatyer, R., Spasojevic, M., Suding, K.,
818 Sullivan, P., Thompson, K., Väistönen, M., Vandvik, V., Venn, S., Walz, J., Way, R.,
819 Welker, J., Wipf, S., and Zong, S. 2022. Winters are changing: snow effects on Arctic
820 and alpine tundra ecosystems. *Arctic Science*: AS-2020-0058. doi:10.1139/AS-2020-
821 0058.

822 Robinson, S.V.J., and Henry, G.H.R. 2018. High Arctic plants show independent responses to
823 pollination and experimental warming. *Botany* **96**: 385–396. doi:10.1139/cjb-2017-0200.

824 Rozema, J., Weijers, S., Broekman, R., Blokker, P., Buizer, B., Werleman, C., El Yaqine, H.,
825 Hoogendoorn, H., Fuertes, M.M., and Cooper, E. 2009. Annual growth of *Cassiope*
826 *tetragona* as a proxy for Arctic climate: developing correlative and experimental transfer
827 functions to reconstruct past summer temperature on a millennial time scale. *Global*
828 *Change Biology* **15**: 1703–1715. doi:10.1111/j.1365-2486.2009.01858.x.

829 Scharn, R., Little, C.J., Bacon, C.D., Alatalo, J.M., Antonelli, A., Björkman, M.P., Molau, U.,
830 Nilsson, R.H., and Björk, R.G. 2021. Decreased soil moisture due to warming drives
831 phylogenetic diversity and community transitions in the tundra. *Environ. Res. Lett.* **16**:
832 064031. doi:10.1088/1748-9326/abfe8a.

833 Schedlbauer, J.L., Fetcher, N., Hood, K., Moody, M.L., and Tang, J. 2018. Effect of growth
834 temperature on photosynthetic capacity and respiration in three ecotypes of *Eriophorum*
835 *vaginatum*. *Ecol Evol* **8**: 3711–3725. doi:10.1002/ece3.3939.

836 Schollert, M., Kivimäenpää, M., Michelsen, A., Blok, D., and Rinnan, R. 2017. Leaf anatomy,
837 BVOC emission and CO₂ exchange of arctic plants following snow addition and summer
838 warming. *Ann Bot* **119**: 433–445. doi:10.1093/aob/mcw237.

839 Shaver, G.R., Canadell, J.G., Chapin, F.S., Gurevitch, J., Harte, J., Henry, G., Ineson, P.,
840 Jonasson, S., Melillo, J.M., Pitelka, L.F., and Rustad, L.E. 2000. Global warming and
841 terrestrial ecosystems: A conceptual framework for analysis. *BioScience* **50**: 871–882.
842 doi:10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2.

843 Shi, F.S., Wu, Y., Wu, N., and Luo, P. 2010. Different growth and physiological responses to
844 experimental warming of two dominant plant species *Elymus nutans* and *Potentilla*
845 *anserina* in an alpine meadow of the eastern Tibetan Plateau. *Photosynt.* **48**: 437–445.

846 doi:10.1007/s11099-010-0058-8.

847 Sjögersten, S., and Wookey, P.A. 2002. Spatio-temporal variability and environmental controls
848 of methane fluxes at the forest–tundra ecotone in the Fennoscandian mountains. *Global
849 Change Biology* **8**: 885–894. doi:10.1046/j.1365-2486.2002.00522.x.

850 Spence, L.A., Liancourt, P., Boldgiv, B., Petraitis, P.S., and Casper, B.B. 2014. Climate change
851 and grazing interact to alter flowering patterns in the Mongolian steppe. *Oecologia* **175**:
852 251–260. doi:10.1007/s00442-014-2884-z.

853 Sullivan, P.F., and Welker, J.M. 2005. Warming chambers stimulate early season growth of an
854 arctic sedge: results of a minirhizotron field study. *Oecologia* **142**: 616–626.
855 doi:10.1007/s00442-004-1764-3.

856 Sun, S.-Q., Peng, L., Wang, G.-X., Wu, Y.-H., Zhou, J., Bing, H.-J., Yu, D., and Luo, J. 2013.
857 An improved open-top chamber warming system for global change research. *Silva Fenn.*
858 **47**. doi:10.14214/sf.960.

859 Totland, Ø., and Alatalo, J.M. 2002. Effects of temperature and date of snowmelt on growth,
860 reproduction, and flowering phenology in the arctic/alpine herb, *Ranunculus glacialis*.
861 *Oecologia* **133**: 168–175. doi:10.1007/s00442-002-1028-z.

862 Totland, Ø., and Eide, W. 1999. Environmentally-dependent pollen limitation on seed production
863 in alpine *Ranunculus acris*. *Ecoscience* **6**: 173–179.
864 doi:10.1080/11956860.1999.11682518.

865 Wahren, C.-H.A., Walker, M.D., and Bret-Harte, M.S. 2005. Vegetation responses in Alaskan
866 arctic tundra after 8 years of a summer warming and winter snow manipulation
867 experiment. *Global Change Biology* **11**: 537–552. doi:10.1111/j.1365-
868 2486.2005.00927.x.

869 Walker, M.D., Wahren, C.H., Hollister, R.D., Henry, G.H.R., Ahlquist, L.E., Alatalo, J.M., Bret-
870 Harte, M.S., Calef, M.P., Callaghan, T.V., Carroll, A.B., Epstein, H.E., Jónsdóttir, I.S.,
871 Klein, J.A., Magnusson, B., Molau, U., Oberbauer, S.F., Rewa, S.P., Robinson, C.H.,
872 Shaver, G.R., Suding, K.N., Thompson, C.C., Tolvanen, A., Totland, O., Turner, P.L.,
873 Tweedie, C.E., Webber, P.J., and Wookey, P.A. 2006. Plant community responses to
874 experimental warming across the tundra biome. *Proc Natl Acad Sci USA* **103**: 1342–
875 1346. doi:10.1073/pnas.0503198103.

876 Wang, P., Heijmans, M.M.P.D., Mommer, L., van Ruijven, J., Maximov, T.C., and Berendse, F.
877 2016. Belowground plant biomass allocation in tundra ecosystems and its relationship
878 with temperature. *Environ. Res. Lett.* **11**: 055003. doi:10.1088/1748-9326/11/5/055003.

879 Welker, J.M., Fahnstock, J.T., Henry, G.H.R., O'Dea, K.W., and Chimner, R.A. 2004. CO₂
880 exchange in three Canadian High Arctic ecosystems: response to long-term experimental
881 warming. *Global Change Biol* **10**: 1981–1995. doi:10.1111/j.1365-2486.2004.00857.x.

882 Welshofer, K.B., Zarnetske, P.L., Lany, N.K., and Thompson, L.A.E. 2018. Open-top chambers
883 for temperature manipulation in taller-stature plant communities. *Methods Ecol Evol* **9**:
884 254–259. doi:10.1111/2041-210X.12863.

885 Westergaard-Nielsen, A., Christiansen, C.T., and Elberling, B. 2021. Growing season leaf
886 carbon:nitrogen dynamics in Arctic tundra vegetation from ground and Sentinel-2

887 observations reveal reallocation timing and upscaling potential. *Remote Sensing of*
888 *Environment* **262**: 112512. doi:10.1016/j.rse.2021.112512.

889 Wolkovich, E.M., Cook, B.I., Allen, J.M., Crimmins, T.M., Betancourt, J.L., Travers, S.E., Pau,
890 S., Regetz, J., Davies, T.J., Kraft, N.J.B., Ault, T.R., Bolmgren, K., Mazer, S.J., McCabe,
891 G.J., McGill, B.J., Parmesan, C., Salamin, N., Schwartz, M.D., and Cleland, E.E. 2012.
892 Warming experiments underpredict plant phenological responses to climate change.
893 *Nature* **485**: 494–497. doi:10.1038/nature11014.

894 Wookey, P.A., Parsons, A.N., Welker, J.M., Potter, J.A., Callaghan, T.V., Lee, J.A., and Press,
895 M.C. 1993. Comparative Responses of Phenology and Reproductive Development to
896 Simulated Environmental Change in Sub-Arctic and High Arctic Plants. *Oikos* **67**: 490–
897 502. [Nordic Society Oikos, Wiley]. doi:10.2307/3545361.

898 Yang, Y., Halbritter, A.H., Klanderud, K., Telford, R.J., Wang, G., and Vandvik, V. 2018.
899 Transplants, Open Top Chambers (OTCs) and Gradient Studies Ask Different Questions
900 in Climate Change Effects Studies. *Front. Plant Sci.* **9**: 1574.
901 doi:10.3389/fpls.2018.01574.

902 Yang, Y., Wang, G., Klanderud, K., Wang, J., and Liu, G. 2015. Plant community responses to
903 five years of simulated climate warming in an alpine fen of the Qinghai–Tibetan Plateau.
904 *Plant Ecology & Diversity* **8**: 211–218. doi:10.1080/17550874.2013.871654.

905 Yang, Y., Wang, G., Klanderud, K., and Yang, L. 2011. Responses in leaf functional traits and
906 resource allocation of a dominant alpine sedge (*Kobresia pygmaea*) to climate warming
907 in the Qinghai-Tibetan Plateau permafrost region. *Plant Soil* **349**: 377–387.
908 doi:10.1007/s11104-011-0891-y.

909 van Zuijlen, K., Klanderud, K., Dahle, O.S., Hasvik, Å., Knutsen, M.S., Olsen, S.L., Sundsbø, S.,
910 and Asplund, J. 2022. Community-level functional traits of alpine vascular plants,
911 bryophytes, and lichens after long-term experimental warming. *Arctic Science*: 1–15.
912 doi:10.1139/as-2020-0007.

913

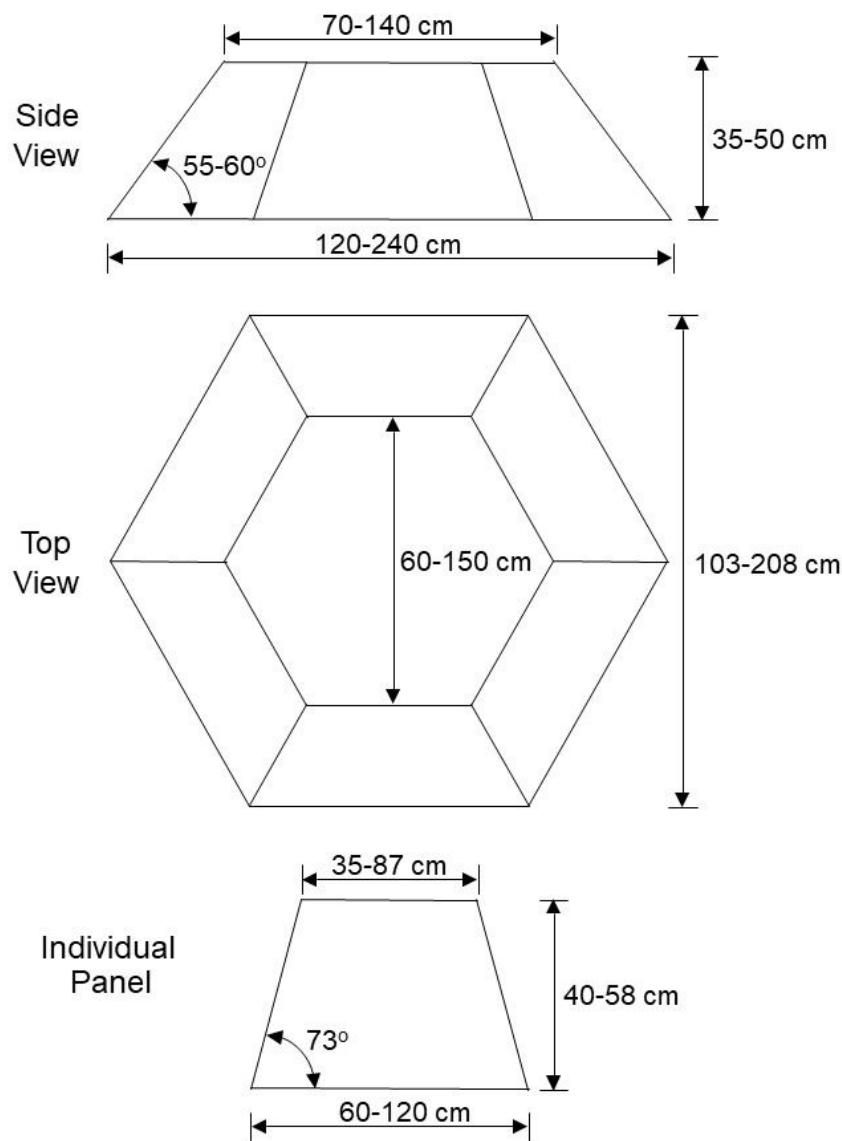
914

915

916

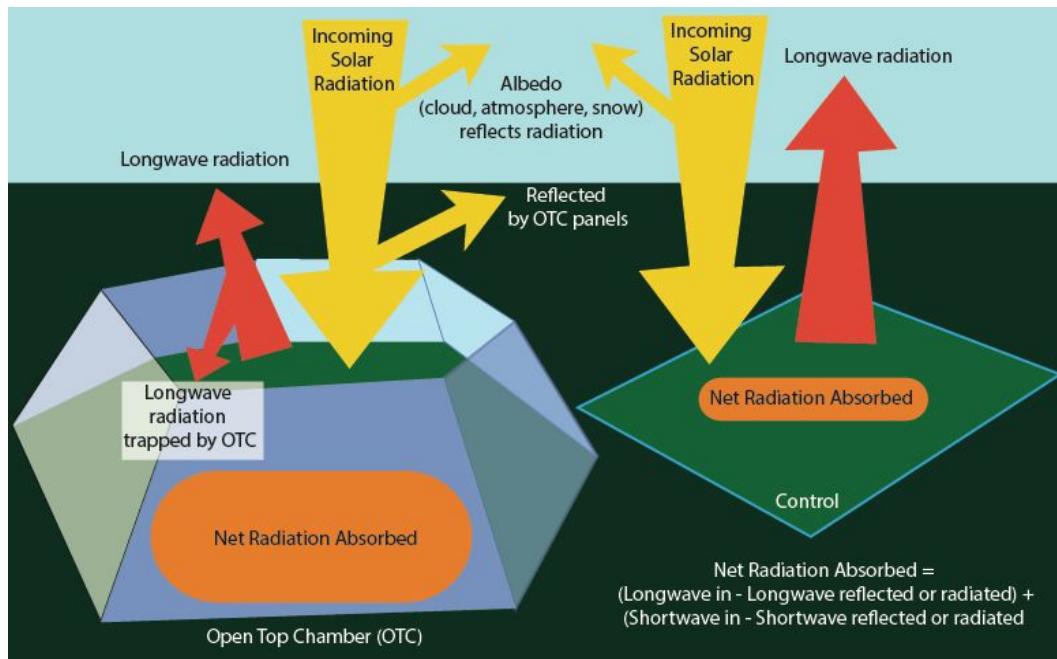
917

918

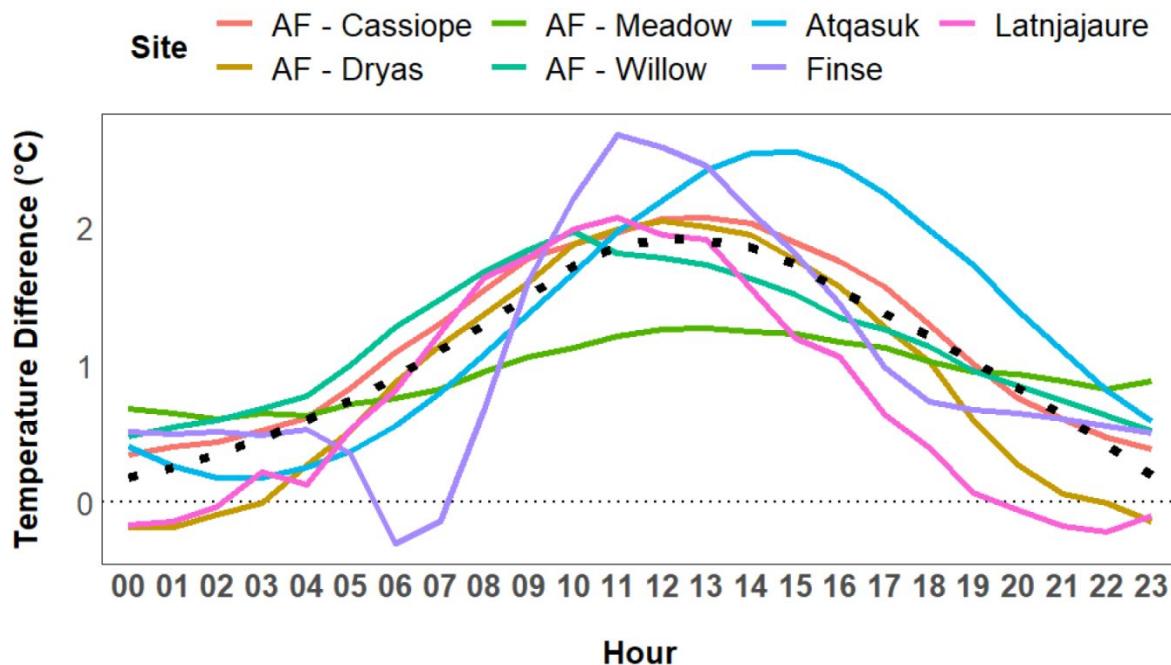

919

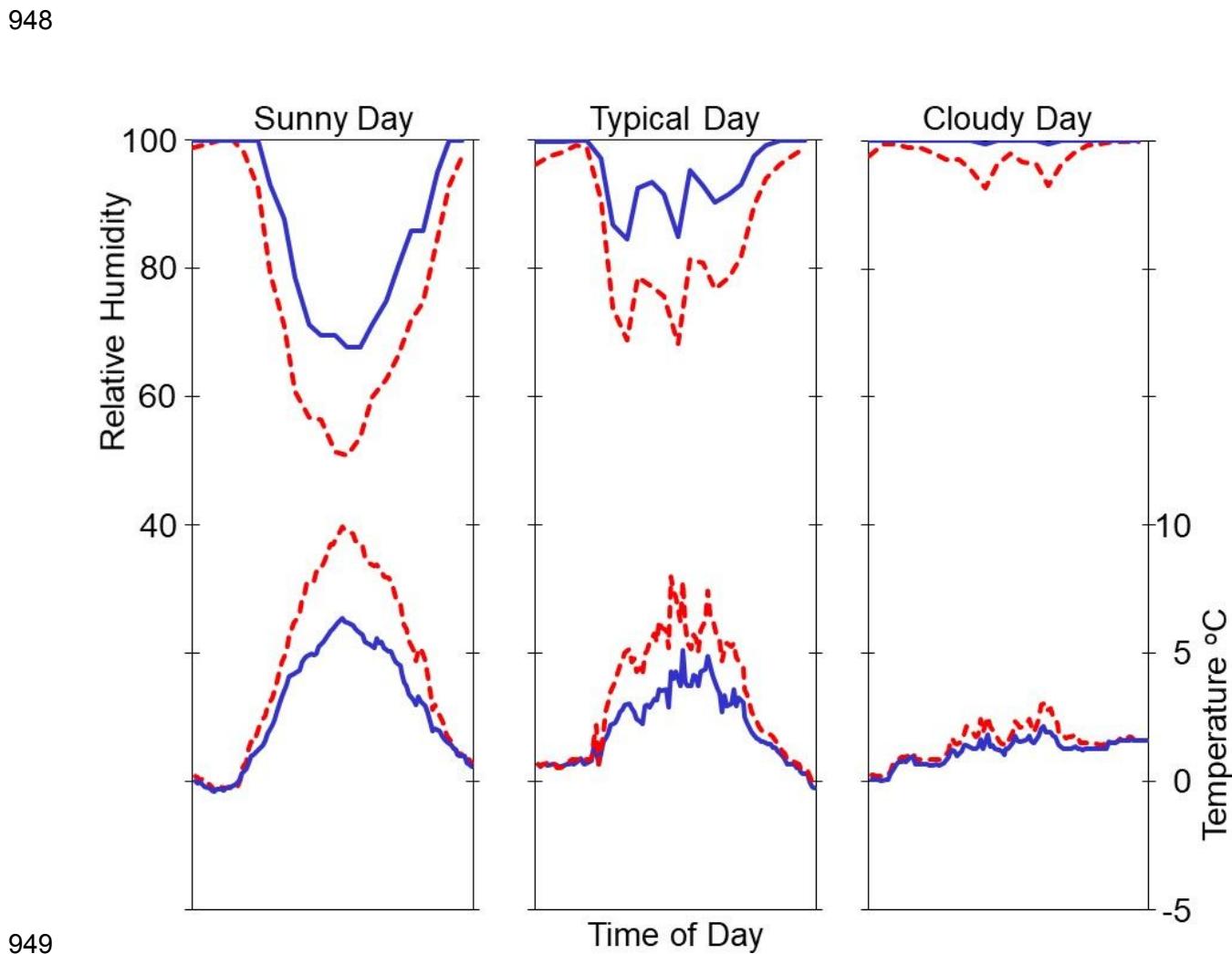
920
921
922
923**Table and Figure Captions**

924
925 **Fig. 1.** Photographs of open top chambers (OTCs). Images are of warming experiments at
926 Utqiagvik, Alaska USA (upper left, photo credit Robert Hollister); Latnja, Sweden (upper right,
927 photo credit Mario Rudner); Alexandra Fjord, Ellesmere Island Canada (lower left, credit
928 Cassandra Elphinstone); and Finse, Norway (lower right, photo credit Kari Klanderud).

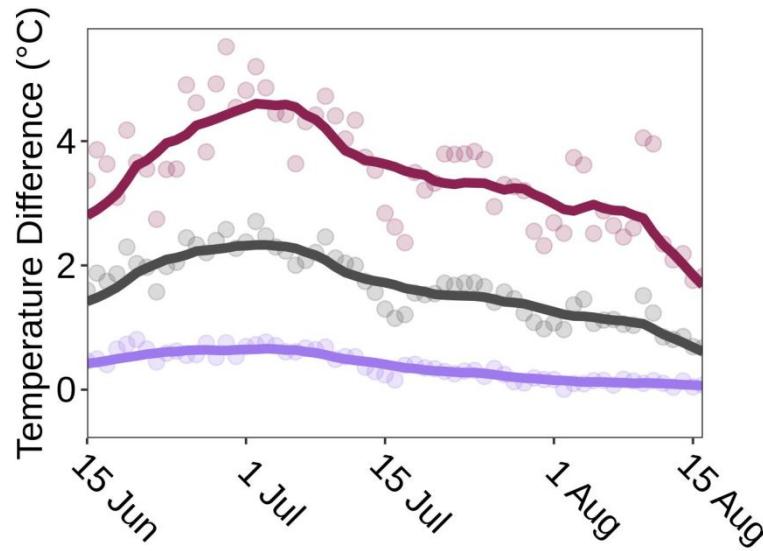


929

35

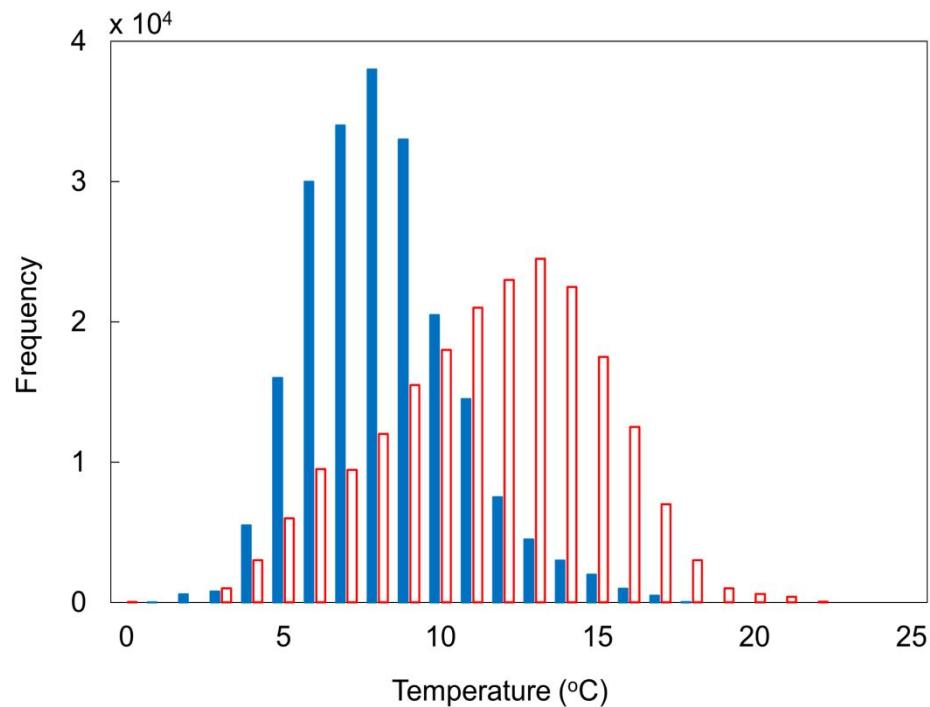



930

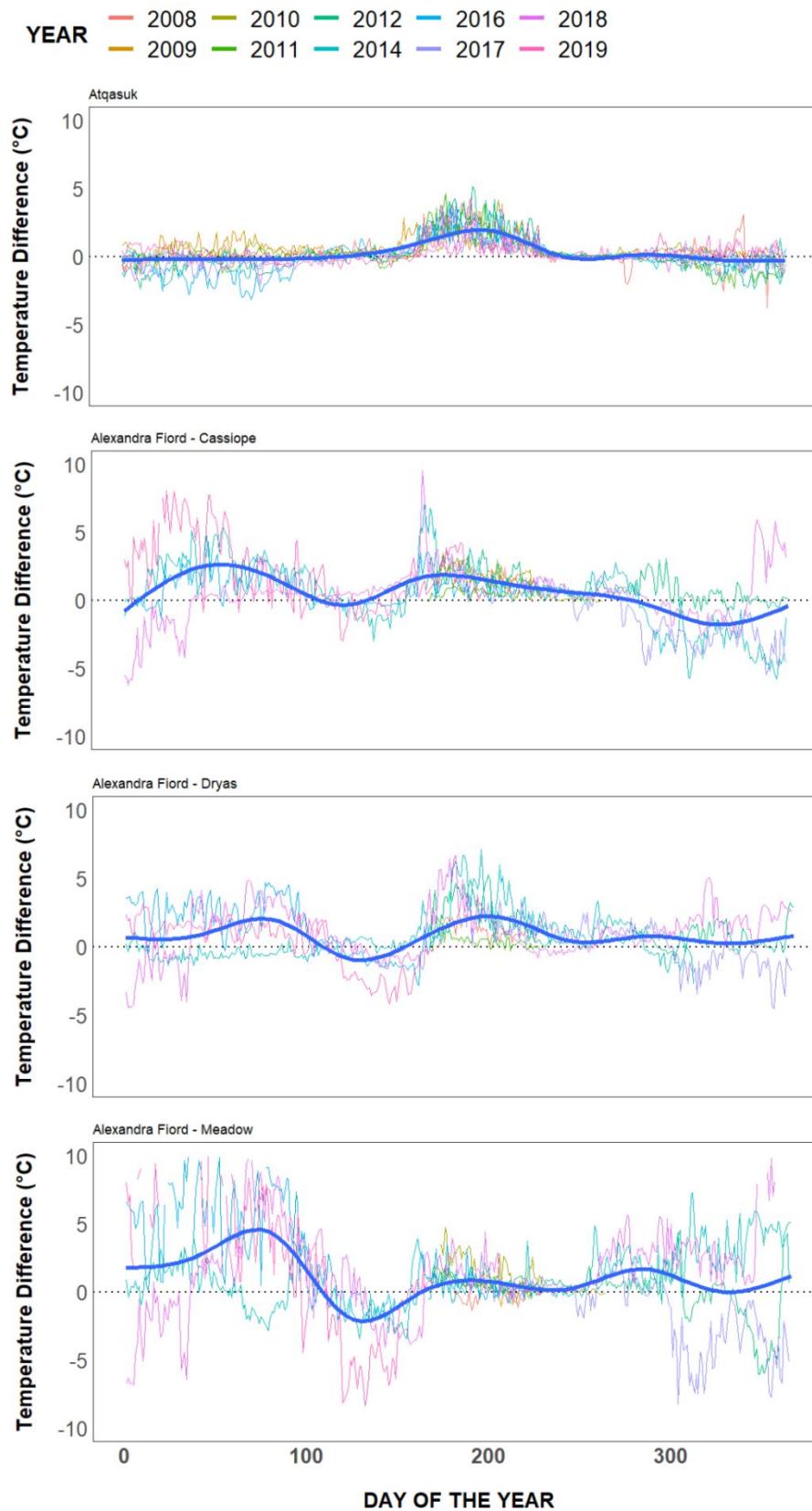
931 **Fig. 2.** Range of design dimensions for most commonly implemented hexagonal open top
932 chambers (redrawn from Molau and Mølgaard 1996 and Hollister 1998). The size can vary, the
933 corners are 120° angle and can be braced with a bracket or the materials can be longer on one
934 side and bent to a 60° angle.



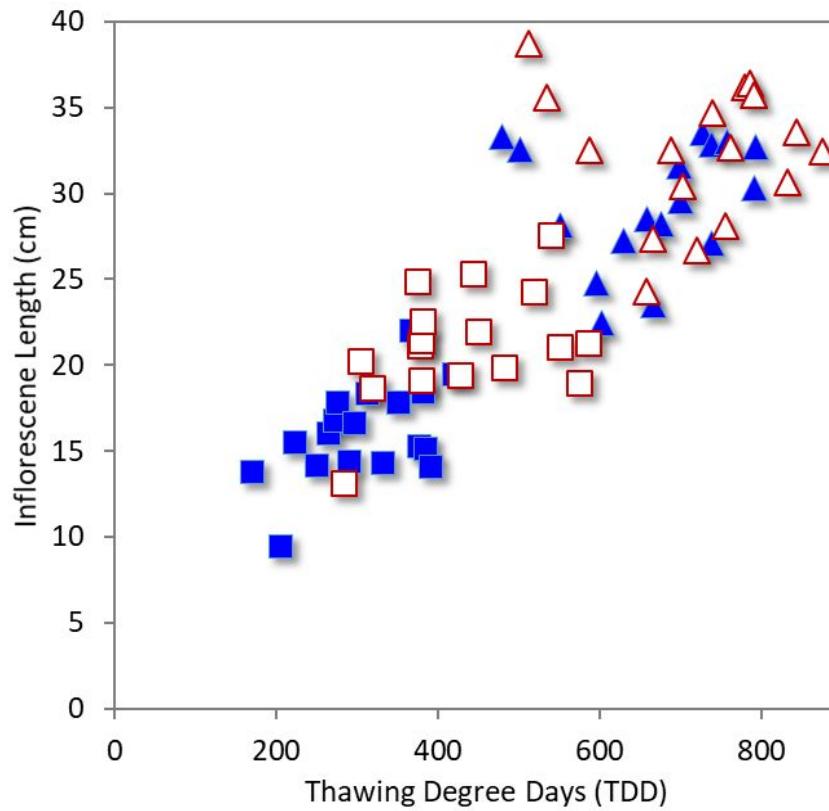
937 **Fig. 3.** Solar radiation and energy balance in and out of the OTC.


955

956


957 **Fig. 6.** Change in the daily maximum, mean and minimum temperatures due to OTC warming.
958 Points show average temperature differences from 1994-2018 at Utqiāġvik, Alaska USA; lines
959 show the 2-week running mean for minimum (periwinkle), mean (grey) and maximum (magenta)
960 daily temperatures (unpublished data).

961


962

963 **Fig. 7.** Range of surface temperature observed by infrared photography of OTC (open red bars)
964 and control (solid blue bars) plots (redrawn from Healey et al. 2016). The histogram represents
965 surface temperatures observed in the Utqiāgvik dry plots near mid-day on August 4, 2014; the
966 spatial resolution was approximately 3 mm².

968 **Fig. 8.** Warming effect of the OTCs (relative to control plots) at Atqasuk, Alaska USA and three
969 sites at Alexandra Fjord, Ellesmere Island Canada. Lines represent the average daily temperature
970 difference (OTC minus control) of each year, the thick blue line is a GAM-smoothed curve for
971 the mean temperature difference across all years. Air temperatures were measured at a height of
972 10 to 15cm. The OTCs are installed for the summer only at Atqasuk and remain in place year-
973 round at Alexandra Fjord (redrawn from Bjorkman 2015 for the Dryas site and unpublished data
974 compiled according to the methods in Bjorkman 2015); therefore, differences in air temperature
975 above or within the snowpack during the winter at Atqasuk are due to differences in snow
976 properties which vary greatly between years. At Alexandra Fjord, OTC impacts on above ground
977 temperature greatly across the year and are greatest during the winter due to the insulative
978 properties of the changed snow regimes.

979

980

981 **Fig. 9.** Inflorescence length of *Carex aquatilis* measured at the end of the summer at Atqasuk
982 (triangles) and Utqiagvik (squares) in OTCs (open red symbols) and ambient plots (closed blue
983 symbols) graphed against thawing degree days measured from snowmelt until August 15
984 (redrawn and extended from Hollister et al. 2005).