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76 Abstract (200 word max):

77 Open top chambers (OTCs) were adopted as the recommended warming mechanism by 

78 the International Tundra Experiment (ITEX) network in the early 1990’s. Since then, OTCs have 

79 been deployed across the globe. Hundreds of papers have reported the impacts of OTCs on the 

80 abiotic environment and the biota. Here we review the impacts of the OTC on the physical 

81 environment, with comments on the appropriateness of using OTCs to characterize the response 

82 of biota to warming. The purpose of this review is to guide readers to previously published work 

83 and to provide recommendations for continued use of OTCs to understand the implications of 

84 warming on low stature ecosystems. In short, the OTC is a useful tool to experimentally 

85 manipulate temperature, however the characteristics and magnitude of warming varies greatly in 

86 different environments, therefore it is important to document chamber performance to maximize 

87 the interpretation of biotic response. When coupled with long-term monitoring, warming 

88 experiments are a valuable means to understand the impacts of climate change on natural 

89 ecosystems.   

90  

91 Key words: Arctic, Alpine, Tundra, Warming experiment, Large-scale coordinated experiment 

92 Introduction

93 Warming chambers have been used for many decades to study the impacts of rising 

94 temperature on vegetation. Interest in the impacts of warming on natural ecosystems increased 

95 greatly in the 1980’s as researchers speculated on the potential effects of climate change across 

96 the globe. Different warming experiment designs have been employed over time spanning a 
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97 variety of environmental gradients (Kennedy 1995; Shaver et al. 2000; Hanson and Walker 2020; 

98 Michelsen et al. 2012). Every warming mechanism has its own strengths and weaknesses. Open 

99 top chambers (OTCs, Fig. 1) were chosen as the recommended warming mechanism for low 

100 growing tundra vegetation by the International Tundra Experiment (ITEX) network because of 

101 their low cost, easy deployment, and relatively few experimental artifacts (Molau and Mølgaard 

102 1996; Marion et al. 1997). Currently, OTCs are widely used in alpine and Arctic locations with 

103 low-stature vegetation (Henry et al. 2022). Many of the researchers using OTCs are members of 

104 the ITEX network, but many are not. While the OTCs are well suited for tundra environments, 

105 particularly at higher latitudes where diurnal contrasts in warming are small, they have been 

106 employed in other ecosystems with low-stature vegetation such as lower latitude meadows and 

107 peatlands. Over the past three decades there have been hundreds of papers that have documented 

108 the impacts of OTCs on the physical environment and the organisms living in them. Here we 

109 review what has been learned about the impacts of OTCs on the physical environment and 

110 provide commentary on the interpretation of the biotic response to OTCs. 

111

112 Diversity of OTCs

113 While somewhat standardized, the ITEX OTCs are not all the same and they vary in size 

114 from approximately 1 to 2 m2 (Fig. 2). The materials used have varied over time, originally most 

115 of the OTCs deployed in North America were made of fiberglass while OTCs deployed in 

116 Europe were made of plexiglass. Although these solid self-supporting materials are most 

117 commonly used, another approach utilized thin plastic wrapped around a solid metal frame (Day 

118 et al. 2008), and another modification is the use of semiflexible material wrapped into a cone 
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119 (Schedlbauer et al. 2018; Parker et al. 2017, 2022). Other related approaches to experimental 

120 warming in tundra ecosystems have deployed plastic tents or greenhouses (Chapin & Shaver 

121 1985, Havström et al. 1993, Wookey et al. 1993), although these do not clearly fall under the 

122 definition of OTC so they are not considered directly here. While there have not been detailed in 

123 situ studies of the difference in building materials, the common assumption is that the 

124 manufacturer's specifications apply and that most commercially available building materials for 

125 greenhouses are suitable. The materials are chosen to block wind and allow photosynthetically 

126 active wavelengths to pass through, although the various materials differ in their transmission of 

127 solar radiation. OTCs may need to be periodically cleaned to remove dirt and bird guano. 

128 Degradation of the materials over time is another potential issue, either through 

129 photodegradation, scratches by windblown snow or dust, or by staining from tannins at sites with 

130 periodic standing water. Different materials likely have different degradation rates.  

131 Over time there have been a number of suggested improvements to the basic ITEX 

132 chamber design. These include increasing the height (Welshofer et al. 2017), addition of water 

133 filled pipes -providing thermal mass- to reduce fluctuations in the magnitude of heating 

134 throughout the day and night (Godfree et al. 2010), adding heating cables to ensure heating at 

135 low light levels (Sun et al. 2013), or adding small legs at each corner to allow air exchange 

136 (Delarue et al. 2011). Yet the basic ITEX OTC has remained one of the most commonly 

137 implemented field manipulations for examining vegetation response to warming, and it continues 

138 to be used in many tundra and non-tundra settings (Bokhorst et al. 2007; Aronson and McNulty 

139 2009; Spence et al. 2014; Pugnaire et al. 2020; Bjorkman et al 2020).  

140
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1 4 1 P h ysi cs of O T C w a r mi n g

1 4 2 D uri n g t h e d a y, s h ort- w a v e s ol ar r a di ati o n is l ar g el y tr a ns mitt e d t hr o u g h t h e O T C w alls, 

1 4 3 c o ntri b uti n g t o s urf a c e w ar mi n g. B y c o ntr ast, t h e O T C w alls ar e m or e o p a q u e t o o ut g oi n g l o n g-

1 4 4 w a v e r a di ati o n, p arti c ul arl y i n t h e i nfr ar e d r a n g e of t h e el e ctr o m a g n eti c s p e ctr u m ( > 7 0 0 n m 

1 4 5 w a v el e n gt h), i n cr e asi n g t h e s e nsi bl e h e at of air i nsi d e t h e O T C. T h e i n cr e as e i n t e m p er at ur e is 

1 4 6 d u e t o t h e a bs or pti o n of s ol ar r a di ati o n dir e ctl y b y t h e pl a nt c a n o p y a n d ot h er e x p os e d s urf a c es 

1 4 7 wit hi n t h e O T C (s oil s urf a c e, e x p os e d r o c k or st a n di n g w at er) a n d t h e e missi o n of l o n g- w a v e 

1 4 8 r a di ati o n fr o m t h es e s urf a c es. T h e s h a p e of t h e O T C w as d esi g n e d t o i n cr e as e t h e b o u n d ar y l a y er 

1 4 9 a n d pr o vi d e t h e o p p ort u nit y f or a w ar m “ b u b bl e ” of air t o d e v el o p o v er t h e s urf a c e, b y gr e atl y 

1 5 0 r e d u ci n g wi n d s p e e d a n d t o r e d u c e t h e l oss of e n er g y fr o m air m o v e m e nt ( a d v e cti o n). T h e p a n els 

1 5 1 als o pr o vi d e s h elt er fr o m t h e wi n d r e d u ci n g h e at l oss b y c o n v e cti o n, y et t h e o p e n-t o p all o ws air 

1 5 2 t o fl o w i n a n d o ut a n d s m all e d di es m a y f or m.  

1 5 3 B e c a us e O T C p erf or m a n c e v ari es b ot h t e m p or all y a n d a m o n g l o c ati o ns, w e r e c o m m e n d 

1 5 4 dir e ct m e as ur e m e nts of t h e p h ysi c al e n vir o n m e nt i n i n di vi d u al e x p eri m e nts t o q u a ntif y n et 

1 5 5 eff e cts. T o h el p u n d erst a n d t h e s o ur c e of t h es e v ari a bl e i m p a cts, it is us ef ul t o r e vi e w t h e 

1 5 6 f u n d a m e nt al p h ysi cs of e n er g y b al a n c e. T h e e q u ati o n f or e n er g y b al a n c e m a y b e e x pr ess e d as 

1 5 7 f oll o ws:

1 5 8 n et r a di ati o n a bs or b e d ( Q *) = e v a p otr a ns pir ati o n ( Q L E) + s e nsi bl e h e at fl u x ( Q H) + gr o u n d h e at 

1 5 9 fl u x ( Q G) + [ n et e n er g y fl u x b y a d v e cti o n ( Q V) + n et st or a g e (  S)].

1 6 0 G e n er all y, Q V a n d  S  ar e n ot i n cl u d e d as t h e y ar e c o nsi d er e d t o b al a n c e o ut o v er ti m e. T h e 

1 6 1 O T C w ar mi n g a cts b y bl o c ki n g t h e wi n d a n d i nt erf eri n g wit h l oss of e n er g y fr o m t h e s urf a c e 

1 6 2 t hr o u g h Q V. F urt h er m or e, t h e m a g nit u d e of t h es e fl o ws c a n t h e n v ar y b et w e e n w et a n d dr y 

P a g e 7 of 4 4 Ar cti c S ci e n c e ( A ut h or ? s A c c e pt e d M a n u s cri pt)
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163 surfaces. Taken together, understanding the physics behind OTC warming can help understand 

164 the complex impacts of OTCs on air, leaf tissue, and soil temperatures (Fig. 3).  

165 The impact of OTCs on humidity varies greatly between field locations (Sjögersten and 

166 Wookey 2002; Bokhorst et al. 2007). It is difficult to predict the impacts of OTCs on humidity 

167 without field observations, as humidity depends on vegetation, soil properties, and soil moisture, 

168 which are linked with landscape position and lateral movements of soil water. Plants and soils in 

169 the OTCs respond to the vapor pressure deficit (VPD). In many cases air VPD increases inside 

170 OTCs as a function of increasing temperature and the subsequent increase in water holding 

171 potential of warmer air (Lamentowicz et al. 2016). In some locations VPD may remain the same 

172 or decrease inside the OTC presumably due to sheltering from dry winds (Dorrepaal et al. 2004). 

173 At temperatures lower than 10 oC VPD is generally at levels that do not constrain photosynthesis 

174 (Supplementary material 1) unless relative humidity is significantly below 50 %.  

175

176 Impacts on air and leaf temperatures

177 The OTCs provide passive warming; therefore, the magnitude of warming can vary 

178 greatly between locations (Fig. 4). Typically, warming is greatest around solar noon on a clear 

179 day with little wind and warming may be negligible when solar intensity is low (Fig. 5). At night 

180 temperatures within the OTC may also be cooler than outside the OTC due to radiative heat loss 

181 and reduced mixing and exchange with surrounding air (Dabros et al. 2010). The maximum 

182 potential intensity of warming is greatest near summer solstice, but in most locations, the 

183 variability of warming is more directly influenced by sky conditions and weather (Fig. 6; 

184 Hollister et al. 2006; Bokhorst et al. 2013; Schedlbauer et al 2018). The effectiveness of OTCs at 
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185 increasing air temperatures has been shown to be reduced at higher temperatures (Carlyle et al. 

186 2011). Therefore, the net effect of OTCs can also be highly variable across time because the 

187 warming intensity of the OTCs depends on the ambient climate. This variability may better 

188 reflect future climate change than methods that increase temperature a constant amount. 

189 Due to the nature of the warming, the daily range of temperatures is significantly greater 

190 in the OTC than the nearby ambient conditions (Fig. 6). This greater range is due to multiple 

191 factors, with the two main factors being reduction of wind and that the open top allows direct 

192 sunlight in part of the OTC (Hollister 1998). The greater range of temperatures and the general 

193 warming changes the number of freeze thaw events and other extreme temperatures experienced 

194 in the OTC (Bokhorst et al. 2013). The length of the growing season may be increased due to the 

195 warmer temperatures; however, snow accumulation inside the OTCs may negate the potential for 

196 earlier growth (see below Impacts on snow) and the lack of OTC heating at night is likely to 

197 negate any differences in freeze events in the fall despite increasing average temperatures.

198 The OTC-effect on temperature depends on where the temperature is measured. Warming 

199 is greatest near the ground surface in the center of the plot where direct sunlight enters the OTC 

200 (Hollister 1998); on average, at Northern latitudes, the Northern half of the chamber warms 

201 slightly more than the Southern half, although throughout the daily cycle different regions in the 

202 chamber will warm more based primarily on what regions receive the most direct sunlight. 

203 Cross-site analyses benefit from standardized measurements. We therefore recommend studies 

204 employing OTCs deploy temperature sensors in the most commonly used location to date: 

205 halfway between the northernmost edge and center of the plot (or southernmost for Southern 

206 hemisphere sites), which will usually capture the largest magnitude of warming. Similarly, 

207 deployment of temperature sensors at the standardized (10-15 cm) plant height is recommended. 
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208 At many sites the ground height is variable and the temperature sensor itself is more than a few 

209 cm long; therefore, an exact location is often not possible. The OTCs’ effect on plant tissue and 

210 leaf surface temperatures have been found to be higher than the effect on the air temperatures 

211 (DeBoeck et al 2012). The range of surface temperatures is greater within OTCs than in controls 

212 and results in higher maximum temperatures (Fig. 7; Healey et al. 2016; Lindwall et al. 2016) as 

213 well as lower temperatures due to shading (Jónsdóttir et al. 2005; Dabros et al. 2010). Elevated 

214 leaf temperatures have important consequences for plant water status through the increase in leaf 

215 to air VPD.

216

217 Impacts on snow

218 OTCs were designed to be installed year-round; however, many studies remove them in 

219 winter. In locations where the snowpack is lower than the height of the OTC, especially 

220 windswept regions with minimal snow cover, snow is trapped inside the OTCs and may 

221 accumulate; nevertheless, the warmer temperatures inside the OTCs tend to melt snow faster 

222 than the surrounding (Marion et al. 1997). However, without empirical evidence it is difficult to 

223 determine when snowmelt will occur within the OTC relative to the surroundings. At Alexandra 

224 Fiord (Ellesmere Island, Canada) and Finse (Norway) the combined effect of accumulated snow 

225 and warmer temperatures resulted in similar meltout days within the OTCs and ambient plots 

226 (Bjorkman et al. 2015; Klanderud personal observation). In sites with deeper snow inside the 

227 OTC, the soils under the OTC are more insulated from cold winter air and the soils are warmer 

228 during the winter compared to the ambient plots (Bokhorst et al. 2013; Bjorkman et al. 2015). 

229 The impacts of snow can be large and may vary greatly throughout the year and between years 
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230 (Fig. 8). Greater snow accumulation in the OTCs has also the potential to increase water 

231 availability and nutrients, similar to snowfence manipulations (Rixen et al. 2022).

232

233 Impacts on soils and belowground properties

234 The impact of OTCs on soils varies greatly between locations and may result in higher 

235 soil temperatures within OTCs (Marion et al. 1997; Klanderud and Totland 2005; Bokhorst et al. 

236 2013) as well as a cooling of the soil due to shading (Jónsdóttir et al. 2005; Dabros et al. 2010; 

237 Hollister et al. 2006; Dabros et al. 2010; Bokhorst et al. 2013), while some sites show no effect 

238 on soil temperatures (Hollister et al. 2006; Delarue et al. 2011; Buttler et al. 2015; Ma et al. 

239 2022; Björkman unpublished data). The impact on soil temperatures is complex, while air 

240 warming generally results in soil warming, reduced direct sunlight due to shading may offset 

241 increased air temperatures and the net result may be lower heat inputs into the soil, especially in 

242 landscapes with bare ground (see above Physics of OTC warming and Impacts on air and leaf 

243 temperatures). Cooling of the soil surface may be due to shading by the chamber walls or 

244 denser plant canopies reducing incoming radiation reaching the soil surface and thus reducing 

245 the warming effect (Klanderud and Totland 2005). It is also possible that vegetation changes 

246 inside the OTCs can impact the transfer of heat from the air to the soil, similar to what has been 

247 suggested for shrubs (Blok et al. 2010), in particular a thicker moss layer may insulate the soil 

248 from ambient temperatures and incoming radiation (Lett et al. 2020). Furthermore, the lateral 

249 movement of soil water from outside the OTCs can negate any potential soil warming in moist, 

250 wet and flooded sites (Natali et al. 2011; Lindwall et al. 2016). The magnitude of difference may 

251 vary greatly throughout the year; for example, see differences in air temperature which may 
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252 drive soil temperature (Fig. 8). While only a few OTC experiments have measured soil warming 

253 at depths of, or greater than, 20 cm (but see Hollister et al. 2006; Yang et al. 2014), it is generally 

254 assumed that warming effects diminish at greater soil depths due to the small size of the OTC 

255 and the hysteresis of surrounding soils. For this reason, soil temperature should be measured near 

256 the center of the plot. Warmer soils has resulted in increased depth of seasonal thaw under OTCs 

257 in Alaska (Welker et al. 2004; Hollister et al. 2006); increased thaw depth is particularly evident 

258 early in the season but may be swamped by the spatial diversity of thaw across the landscape 

259 (see Hinkel and Nelson 2003).

260 The OTCs tend to decrease soil moisture in drier sites, especially at the surface 

261 (Sjögersten & Wookey 2002; Bokhorst et al. 2013; van Zuijlen et al. 2022; Björnsdóttir et al 

262 2022; Jeanbille et al. 2022), although the effect is often not statistically significant and varies 

263 greatly depending on the soil moisture of the surroundings. However, in dry communities a 

264 minor lowering in soil moisture near the surface may be enough to constrain plant performance 

265 (Hudson and Henry 2010; Dorji et al. 2013; Hollister et al. 2015). In moist and wet communities, 

266 the impact of the OTCs on soil moisture is often negligible (Hollister et al. 2006; Bernareggi et 

267 al. 2015), yet wet communities have also experienced drying in the OTCs (Jassey et al. 2011; 

268 Scharn et al. 2021). Measurements of bare ground have shown increased soil moisture in OTCs 

269 due to reduced losses of soil water to the atmosphere (evaporation) as a result of reduced wind 

270 speed (Bernareggi et al. 2015; D’Imperio et al. 2017). It is also possible that changes in plant 

271 biomass may result in changes in evapotranspiration and soil moisture. Jeanbille et al. (2022) 

272 found decreased water content of the litter inside OTCs in some sites, whereas in other sites litter 

273 water content was higher in OTCs than in controls. In Latnjajare (Sweden), the OTCs are 

274 deployed over five plant communities following a soil moisture gradient (Scharn et al. 2021); 
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275 here, only the warmed meadow (not heath) plots had a lower soil moisture content compared to 

276 ambient conditions. In particular for the dry and mesic meadow plots, the timing and magnitude 

277 of snowmelt drove the soil moisture differences between warmed and ambient plots (Scharn et 

278 al. 2021). 

279 Studies on soil processes and the microbial communities have often found few direct 

280 impacts of the OTC (Lamb et al. 2011; Andresen et al. 2022; Jeanbille et al. 2022); however, 

281 there have been several studies that have documented changes in the microbial communities and 

282 soil processes in peatlands outside the tundra (Jassey et al. 2015; Delarue et al. 2015; Binet et al. 

283 2017). The lack of a response in tundra is notable, given that warming has been shown to impact 

284 the quality of litter and thereby nutrient cycling (Cornelissen et al. 2007; Jeanbille et al. 2022) 

285 and impact the soil fauna (Dollery et al. 2006; Hågvar and Klanderud 2009). The reasons for a 

286 lack of response are unclear, but are likely due to the relatively low warming impact on soil 

287 temperatures, which decreases with depth, and may be masked by the heterogeneity of soils and 

288 vegetation. Furthermore, the rooting zones of the plants are likely to extend well beyond the 

289 chamber walls especially for plants with long rhizomes and underground stems, and below 

290 ground plant biomass has been shown to be less responsive to temperature than above ground 

291 biomass (Wang et al. 2016; Ma et al. 2022a, 2022b). Nevertheless, a few studies have shown 

292 earlier root growth (Sullivan and Welker 2005) and changing allocation patterns in response to 

293 warming (Björk et al. 2007; Hollister and Flaherty 2010; Yang et al. 2011). 

294

295 Impacts on vegetation
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296 The impacts of warming on tundra vegetation are the primary focus of the ITEX network 

297 and as such is described elsewhere; see Henry et al. 2022, this issue, for a review of OTC 

298 impacts on community composition, plant performance and carbon cycling. Here we focus on 

299 the robustness of using observations from the experimental manipulation to guide forecasts of 

300 vegetation change due to regional climate warming. Several studies have compared the response 

301 of plants in OTCs to that of a warmer year and in many cases found similar responses (Hollister 

302 and Webber 2000; Elmendorf et al. 2015; Bjorkman et al. 2020). Thawing degree days (daily 

303 temperatures above the lower threshold of 0oC summed daily) have been shown to provide a 

304 reasonable prediction of plant responses irrespective of warming treatment (Hollister et al. 

305 2005a), this is for instance true for inflorescence length of Carex aquatilis in Northern Alaska 

306 (Fig. 9). Comparisons of vegetation change due to warming by OTCs show similar patterns to 

307 regional warming and climate warming (Hollister et al. 2015; Elmendorf et al. 2015; Bjorkman 

308 et al. 2020). However, phenological development in OTCs has been shown to not advance as 

309 much as would be expected based on air temperatures (Hollister et al. 2005a; Oberbauer et al. 

310 2013; Parker et al. 2017, 2021). Warming experiments across all biomes have been shown to 

311 under-predict phenological advance due to regional climate warming (Wolkovich et al. 2012). 

312 There is also evidence that OTC response may vary greatly depending on the season and year, 

313 these differences can be due to moisture available (Delarue et al. 2015; Jassey and Signarieux 

314 2019), the responsiveness of plants has also been shown to be less during a warm year relative to 

315 a cold year (Barrett and Hollister 2016; Carbognani et al. 2016; but see Collins et al 2021). 

316 The explanation(s) for the differences between response to experimental warming and 

317 regional climate warming is not fully understood and there are likely a suite of reasons that vary 

318 between locations and species. Examining the differences between responses may further our 
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319 understanding of the underlying mechanisms driving response to temperature. For example, the 

320 OTCs reduce wind, and sheltering from the wind can in itself drive vegetation change (Fitzgerald 

321 and Kirkpatrick 2017; Momberg et al. 2021). Also, the walls of the chambers may constrain seed 

322 rain and colonization of new species, which may protect plants inside the OTCs from 

323 interactions with new immigrants (Yang et al. 2018).   

324 The magnitude and quality of OTC warming may be significantly different from the 

325 warming experienced from climate change. The magnitude and timing of OTC warming varies 

326 by location and is generally on average less than 2°C, this is a modest magnitude or warming that 

327 is less than some regions have already experienced due to climate change (IPCC 2022). The 

328 maximum temperatures experienced in warming experiments (including OTCs) may be outside 

329 the range normally experienced and the response to warming may diminish if the temperature 

330 optimum is exceeded (Hollister unpublished data), it is possible that the maximum temperatures 

331 may negatively impact performance (Marchand et al. 2005; Shi et al. 2010). The potential 

332 decoupling of air and soil warming due to OTCs described above (Impacts on soils and 

333 belowground properties) may also impact plant performance. The reduction of incoming 

334 photosynthetically active radiation (PAR) and other wavelengths relevant for plant development, 

335 such as far-red and ultraviolet radiation, varies within the OTC. Few studies report radiation 

336 measurements along with results from OTCs even though the reduced radiation and altered 

337 spectral composition, especially near the chamber walls, may impact plant production and 

338 change plant morphology in ways similar to shade experiments (May et al. 2022). Reductions of 

339 photosynthetic photon flux density as high as 16-25% have been documented, the OTCs reduce 

340 light most when the sun is at a low angle, yet the open top allows direct sunlight and reductions 

341 are near zero at solar noon especially at lower latitude (Bokhorst et al. 2007; Lindwall et al. 
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342 2016; Schollert et al. 2017). It is also reasonable to assume that the vegetation response to 

343 warming may have built in lags and that the short-term response may be different from the long-

344 term impacts (Hollister et al. 2005b; Rozema et al 2009). 

345 Cryptogam responses can vary greatly to OTC-warming, with a dominant role for 

346 competition for light between cryptogams and vascular plants (Klanderud and Totland 2005; 

347 Wahren et al. 2005; Walker et al. 2006; Cornelissen et al. 2001; Day et al. 2008). In the few 

348 studied sites where mosses and lichens dominated, responses were highly species-specific 

349 (Keuper et al 2011; Dorrepaal 2007; Bokhorst et al 2015, 2016). Moreover, this relationship can 

350 even be inverted in some habitats, e.g. in Sphagnum dominated peatlands (Dorrepaal et al. 2006), 

351 often as a result of Sphagnum being a stronger competitor for nitrogen (Heijmans et al. 2002). 

352 Future studies may consider a specific focus on cryptogam communities with little to no vascular 

353 plants to better understand the moss and lichen response to climate warming without the 

354 influence of faster growing vascular plants.

355

356 Impacts on herbivores and pollinators

357 The impacts of OTCs on herbivores depend greatly on the species of interest. Large 

358 herbivores have often avoided OTCs, although reindeer have been seen to lean in and graze the 

359 plants within (personal observation IS Jónsdóttir at Endalen, Svalbard; EJ Cooper at 

360 Adventdalen and Ny Ålesund, Svalbard; RG Björk at Latnjajaure, Sweden). The presence of 

361 large herbivores can affect the outcome of passive warming from OTCs on plant communities. In 

362 West Greenland, herbivory by caribou and muskoxen has been observed to differentially 

363 influence the biomass response of plant functional groups to OTC-induced warming (Post and 
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364 Pedersen 2008). After 7 years of study, grazed plots showed higher plant community stability 

365 and species diversity than ungrazed plots receiving the same warming treatment. The greater 

366 stability of grazed plots has been interpreted as the result of herbivore biomass exploitation 

367 mediating the effect of interspecific competition, which increases with warmer temperatures 

368 (Post 2013). The presence of small mammals such as lemmings and voles is patchy, although 

369 anecdotal evidence suggests that they may shelter in the OTCs. At Alexandra Fiord, OTCs were 

370 often covered with a screen to keep song birds from perching on the chamber walls and 

371 providing unwanted nutrient inputs and decimating the seed production. Juvenile snowy owls 

372 have also been observed to shelter in the OTCs on cool windy days.  

373 Observations of insects are complex; for some species the chamber walls provide a 

374 deterrent, while other species seek out the chambers for shelter. Once in an OTC, activity is 

375 greater due to the lack of wind and warmer air temperatures (e.g. Gillespie et al 2013; Birkemoe 

376 et al. 2016). Observations at Alexandra Fiord showed no impact of the OTC on insect pollination 

377 nor on wind pollinated species (Robinson and Henry 2018) whereas other sites have shown 

378 indications of potential pollen limitations in OTCs (Jones et al. 1997; Molau and Shaver 1997; 

379 Totland and Alatalo 2002; Totland and Eide 1999). OTCs have been used to demonstrate the link 

380 between timing of flowering and pollination in the High Arctic (Gillespie et al 2016; Gillespie 

381 and Cooper 2022). 

382

383 Items to consider

384 Robotic tram systems in close proximity to OTCs can provide continuous objective 

385 measurements of fundamental micrometeorological conditions present as well as biophysical 
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386 properties of vegetation represented in nearby OTCs (Healey et al. 2014). Such implementations 

387 may help understand the different processes occurring at different scales across the 

388 heterogeneous landscape. Similarly, handheld instrumentation has also provided analysis of 

389 unique spectral characteristics linked with growth, development and phenology that are 

390 undetectable to the human eye (May et al. 2020). Our understanding of physiological impacts 

391 induced by OTCs has also been enhanced using thermal imaging technology (Healey et al. 

392 2016). Surface tissue and underlying soil or moss temperatures are key determinants of 

393 metabolic activity and monitoring such phenomena is vital for comprehensive analysis of subtle, 

394 yet complex, interactions among permafrost, surface moss, cryptogamic crusts and soils, and 

395 tundra vegetation. Given the many factors and potential interactions between factors, we believe 

396 the use of OTCs is most effective when coupled with long-term monitoring. 

397 As with any long-term experiment, it is important to clearly mark the plots with 

398 permanent robust markers and the corresponding precise GPS locations. Markers may include 

399 anchors that serve to retain the OTCs in position during high winds that occur at many study 

400 sites. How the OTCs are secured will depend on the location and the monitoring techniques 

401 deployed. Sometimes removal of the OTCs is desirable or necessary to facilitate measurement of 

402 the properties within. For example, measurement of vegetation solar spectral reflectance within 

403 the OTCs requires removal of the OTCs because of changes in the spectrum and amount of light 

404 transmitted through the chamber walls. Measurements of ecosystem trace gas fluxes within the 

405 OTCs creates a dilemma, should measurements be taken with the OTCs in place or with them 

406 removed. Measurements taken with the OTCs in place reflect the vegetation performance within 

407 the OTC environment that might include higher air and soil temperatures and lower light, while 
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408 in cases where the focus is the vegetation potential it is preferable to remove the OTC to measure 

409 plant performance under the same environmental conditions. 

410 While most experiments using OTC leave the OTCs in place year-round, many others 

411 remove them during the winter. It may be useful to deploy the OTCs during specific times of the 

412 year to ask specific questions. For example, Gehrman et al. (2022) deployed OTCs for late 

413 summer only use. Given that autumn is the season most neglected by summer-visiting 

414 researchers, autumn studies could help elucidate ecological activity and thermal sensitivities 

415 during the end of the growing season and during the onset of winter dormancy. However, there 

416 are caveats here related to the potential warming performance of OTCs at lower solar angles and 

417 shorter day-lengths as the autumnal equinox approaches.

418 Finally, recent attempts have been made to scale up plot-level observations from OTCs to 

419 biome-wide analyses using aerial or spaceborne observations (Westergaard-Nielsen et al. 2021). 

420 Therefore, it is important to clearly document the characteristics of the study site within the 

421 heterogeneity of the landscape and region to allow for comparison across sites and scaling of 

422 observations. The continued inclusion of remote sensing observations at a variety of scales will 

423 improve future monitoring of tundra plant responses to warming scenarios that have been 

424 projected to occur with climate change. 

425

426 Recommendations and Concluding Remarks

427 It is important to document the impacts of the OTC on the physical environment at each 

428 study site. We have shown above that the impacts of OTCs vary greatly between locations in 
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429 ways that are difficult to predict without empirical observations. Therefore, any observed 

430 biological response must be coupled with a clear understanding of the changes to the physical 

431 environment, including measurements at standardized locations throughout the season. 

432 The OTC is a cost-effective robust method of in situ warming of ecosystems with low 

433 stature plants such as tundra environments. The response of tundra vegetation to OTC warming 

434 has been shown to be similar to that of interannual variability and latitudinal gradients 

435 (Elmendorf et al. 2015). However, as with any experimental manipulation, there are artifacts that 

436 may be problematic depending on the situation (Ettinger et al. 2019; Kimmel et al. 2021). The 

437 OTC may or may not provide a reasonable approximation of regional climate warming 

438 depending on the application. For example, the increased daily range of temperatures may be 

439 unrealistic, likewise air and soil warming may be decoupled. In many cases properly 

440 documenting the magnitude of warming both above-ground and below-ground may be enough to 

441 properly interpret the observations that the experiment was intended to examine. In other cases, it 

442 may be important to document other physical factors such as plant surface temperatures, PAR, 

443 wind speed, snow accumulation, nutrient inputs, or soil moisture. It may also be important to 

444 account for differences in herbivory or pollination. The small scale of the OTC makes it poorly 

445 suited to examine landscape dynamics such as permafrost degradation and changing migration 

446 patterns (Hegland et al. 2009; Post et al. 2009). Conversely, the small scale confers the 

447 advantage that OTCs can be deployed in contrasting landscape contexts, refining the process 

448 understanding necessary to underpin up-scaling such as interactions between microbes and plants 

449 (Jassey et al. 2015; Jeanbille et al. 2022; Klarenberg et al. 2022). Furthermore, the OTC does not 

450 require electricity and can be placed in remote locations. 
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451 In general, we recommend using the findings from OTC in conjunction with those of 

452 multiple years of observation. If the same patterns are observed in a warm year at ambient plot as 

453 observed in a warmed plot in a colder year, then the difference between warmed and control plot 

454 is mostly likely due primarily to temperature (Hollister et al. 2005a, b; Hollister et al. 2015). In 

455 cases where the response to experimental warming and regional climate change are different, 

456 then the experiment may help elucidate biological processes that better our understanding of 

457 temperature relationships.
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920

921

922 Table and Figure Captions

923

924

925 Fig. 1. Photographs of open top chambers (OTCs). Images are of warming experiments at 

926 Utqiaġvik, Alaska USA (upper left, photo credit Robert Hollister); Latnja, Sweden (upper right, 

927 photo credit Mario Rudner); Alexandra Fjord, Ellesmere Island Canada (lower left, credit 

928 Cassandra Elphinstone); and Finse, Norway (lower right, photo credit Kari Klanderud). 
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930

931 Fig. 2. Range of design dimensions for most commonly implemented hexagonal open top 

932 chambers (redrawn from Molau and Mølgaard 1996 and Hollister 1998). The size can vary, the 

933 corners are 120o angle and can be braced with a bracket or the materials can be longer on one 

934 side and bent to a 60o angle.  
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935

936

937 Fig. 3. Solar radiation and energy balance in and out of the OTC. 

938

939
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940

941

942 Fig. 4. The average magnitude of OTC warming at Atqasuk, Alaska USA; Latnja, Sweden; 

943 Finse, Norway; and three sites at Alexandra Fjord, Ellesmere Island Canada. The dotted line 

944 represents the overall average. The daily course of warming was compiled for the summer 

945 months (June, July, and August) (unpublished data). The smoothness of the curve is a result of 

946 more years of observation (Atqasuk 1998-2021, Latnja 2020-2021, Finse 2019, Alexandra Fjord 

947 Cassiope and Willow 2008-2019, Alexandra Fjord Dryas 2000-2019). 
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948

949

950 Fig. 5. The course of temperature and relative humidity over representative days in OTCs (red 

951 dashed) and adjacent control plots (blue solid) (redrawn from Hollister 1998). Note, these 

952 readings are from a site with drier soils; in areas with higher moisture or standing water, relative 

953 humidity may be higher inside the OTCs and condensation may form on the inside of chamber 

954 walls (Bjorkman 2015).  
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955

956

957 Fig. 6. Change in the daily maximum, mean and minimum temperatures due to OTC warming. 

958 Points show average temperature differences from 1994-2018 at Utqiaġvik, Alaska USA; lines 

959 show the 2-week running mean for minimum (periwinkle), mean (grey) and maximum (magenta) 

960 daily temperatures (unpublished data). 

961
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962

963 Fig. 7. Range of surface temperature observed by infrared photography of OTC (open red bars) 

964 and control (solid blue bars) plots (redrawn from Healey et al. 2016). The histogram represents 

965 surface temperatures observed in the Utqiaġvik dry plots near mid-day on August 4, 2014; the 

966 spatial resolution was approximately 3 mm2.  
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968 Fig. 8. Warming effect of the OTCs (relative to control plots) at Atqasuk, Alaska USA and three 

969 sites at Alexandra Fjord, Ellesmere Island Canada. Lines represent the average daily temperature 

970 difference (OTC minus control) of each year, the thick blue line is a GAM-smoothed curve for 

971 the mean temperature difference across all years. Air temperatures were measured at a height of 

972 10 to 15cm. The OTCs are installed for the summer only at Atqasuk and remain in place year-

973 round at Alexandra Fjord (redrawn from Bjorkman 2015 for the Dryas site and unpublished data 

974 compiled according to the methods in Bjorkman 2015); therefore, differences in air temperature 

975 above or within the snowpack during the winter at Atqasuk are due to differences in snow 

976 properties which vary greatly between years. At Alexandra Fjord, OTC impacts on above ground 

977 temperature greatly across the year and are greatest during the winter due to the insulative 

978 properties of the changed snow regimes.  
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44

979

980

981 Fig. 9. Inflorescence length of Carex aquatilis measured at the end of the summer at Atqasuk 

982 (triangles) and Utqiaġvik (squares) in OTCs (open red symbols) and ambient plots (closed blue 

983 symbols) graphed against thawing degree days measured from snowmelt until August 15 

984 (redrawn and extended from Hollister et al. 2005).  
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