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On the Connectivity Properties of Feasible
Regions of Optimal Decentralized
Control Problems

Yingjie Bi and Javad Lavaei

Abstiraci—The optimal decentralized control (ODC) is an
NP-hard problem with many applications in real-world sys-
tems. There is a recent trend of using local search algo-
rithms for solving optimal control problems. However, the
effectiveness of these methods depends on the connec-
tivity property of the feasible region of the underlying op-
timization problem. In this article, for ODC problems with
static controllers, we develop a novel criterion for certifying
the connectivity of the feasible region in the case where
the input and output matrices of the system dynamics are
identity matrices. This criterion can be checked via an effi-
cient algorithm, and it is used to prove that the number of
communication networks leading to connected feasible re-
gions is greater than a square root of the exponential num-
ber of possible communication networks (named patterns).
For ODC problems with dynamic controllers, we prove that
under certain mild conditions, the closure of the feasible
region is always connected after some parameterization, for
general communication networks and system dynamics.

Index Terms—Decentralized control, nonconvexity, opti-
mal control.

[. INTRODUCTION

HE FIELD of optimal decentralized control (ODC) has
T emerged in response to the prevalence of communication
constraints among agents in many real-world interconnected
or multiagent systems, including power grids [1] and robotics
[2]. Being a nonconvex optimization problem, the general ODC
problem has proved to be computationally intractable [3], [4].
Many techniques have been proposed in the literature to con-
vexify or solve special cases of the ODC problem [5]-[9].

Inspired by the learning algorithms in the field of machine
learning, the recent work [10] has advocated for using local
search methods to solve the optimal control problems. Local
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search methods have several advantages, such as having low
computational and memory complexities and the ability to
be implemented without explicitly establishing the underlying
model. The main issue with these methods is that they are not
guaranteed to find the global optimal solution if the problem
does not have a convex structure. However, for the classical
(centralized) linear—quadratic regulator (LQR) optimal control
problem, Fazel et al. [10] have proved that the gradient descent
method converges to the globally optimal solution despite the
nonconvexity of the problem. Given this surprising result, it is
natural to ask whether local search methods are also effective
for ODC problems. Furieri and Kamgarpour [11] show the
global convergence of local search methods under the quadratic
invariance condition.

The effectiveness of local search methods depends on the
connectivity properties of the feasible region. If the feasible
region is connected, a local search method only needs to take
feasible directions. Since they are successful in many machine
learning problems, stochastic gradient methods are able to
find near-globally optimal solutions of nonconvex problems
even in the presence of some types of spurious local min-
ima [12]-[15]. However, if the feasible region is disconnected,
then there is a local minimum in each connected compo-
nent, which significantly increases the computational burden
and is the underlying reason for the NP-hardness of many
problems.

The recent work [16] has found a class of ODC problems
with n state variables whose feasible regions have O(2") con-
nected components. This negative result shows that local search
methods are not effective for general ODC problems, since there
could be an exponential number of local minima that are far away
from each other. Bu et al. [17] characterize the connectivity
property for single-input—single-output systems. However, for
general multiple-input—multiple-output systems, there are only
a few cases in which the connectivity of the feasible region has
been determined.

In this article, we investigate the ODC problem in two scenar-
ios of static controllers and dynamic controllers, and the goal is
to derive conditions under which the feasible region of the ODC
problem in each scenario is connected. For static ODC problems,
we focus on the cases where the input and output matrices of
the system dynamics are identity matrices. To this end, a new
criterion for the connectivity of the feasible region is developed,
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which can be verified by an efficient algorithm. Furthermore,
based on the new tool, two results are developed as follows.
1) The feasible region is connected for most dense commu-
nication networks.
2) There are an exponential number of communication net-
works with connected feasible regions.

These networks constitute a set of easier ODC problems
that can be used as approximations for other ODC problems,
which is in the same vein as the common approach of using
convex functions to approximate nonconvex functions. For ODC
problems with dynamic controllers, we first parameterize all
possible controllers in some metric space, and then prove that the
closure of the feasible region in this space is always connected
under some mild conditions.

This article mainly focuses on providing sufficient conditions
to certify the connectivity of the feasible region, rather than
finding conditions for the disconnectivity of the region as done
in [16]. Proving disconnectivity properties requires different
mathematical techniques than the ones used in this article to
discover connectivity properties. In particular, the common way
to prove that a set is connected is to show that any two points
in the set can be connected by a path, while proving discon-
nectivity and counting the number of connected components
usually involve constructing a partition of the set into disjoint
open subsets. The former technique is used in the proof of
Proposition 1 and Theorem 11, and the latter one is used in
the proof of Proposition 6.

Il. NOTATION AND PROBLEM FORMULATION

We summarize the common notations used in this article as
follows.

1) Normal letters such as A refer to matrices, while bold
letters such as H refer to controllers or systems.

2) I, is the n x n identity matrix, and 0y, is the zero matrix.

3) diag(a1, az, ..., ay) is the diagonal matrix, whose diag-
onal enfries are a1, as, ..., an.

4) Sy, is the set of n x n symmetric matrices.

5) Py, is the set of n x n positive definite matrices.

6) KC,, is the set of n x n stable matrices, i.e., matrices whose
eigenvalues have a negative real part.

7) |M | is the elementwise infinity norm of the matrix M.

A. ODC Problems With Static Controllers
Consider the continuous-time linear system
z(t) = Ax(t) + Bu(t)
y(t) = Cx(t) M

in which z(¢) € R"™ is the state, u(t) € R™ is the control in-
put, and y(t) € RP? is the output. The optimal static output-
feedback control problem is to design a feedback controller
u(t) = —Ky(t) with K € R™*P while minimizing certain cost
functional. For example, in the classical infinite-horizon LQR
problem, the objective is to minimize

F— A +m(z:T(t)Q1:(t) + uT (t)Ru(t) + 227 (t)Nu(t))dt

®

Fig. 1. Graph representation of the pattern (3).

subject to the constraint that the closed-loop system
z(t) = (A — BKC)z(t)

must be stable. Consider the ODC problem of designing an
optimal static controller minimizing an arbitrary cost functional
(not necessarily a quadratic one), where there are some commu-
nication constraints enforcing certain entries of K to be zero.
Let

be the set of indices of the free variables K;;, whose values are
not restricted by the communication constraints. The set 22 will
be referred to as a pattern in this article. After substituting

o(t) = A BEON (), wu(t) = —KCeABEO ()

into the cost functional, the ODC problem can be formulated
as the minimization of a cost function with the only variable K
over the feasible region

D={K e L(#)|A—-BKCeKk,}
where the linear subspace £(£?) is given by
L(P)={K e R™P|K;; =0Y(s,5) ¢ Z}. (2

The performance of local search methods for solving ODC
through this formulation (or other reformulation of the problem)
is directly related to the geometric properties of the feasible
region D. In Sections III and IV, we will study the connectivity
of D under the usual Euclidean topology. For the special case
when m = n = pand B and C are identity matrices, similar to
the notations used in [18], the pattern 22 can be represented by
both a matrix and a directed graph with possible self-loops. For
instance, the pattern

{(1,1),(1,2),(2,3),3,1)} 3)

can be described in the matrix form

o

® %
0 0
0

*

(=N

or, equivalently, in the graph form given in Fig. 1. In addition,
for a pattern 2 viewed as a graph, we denote its complement
graph as 2 and the number of edges in #7°, i.e., the number of
“07s in 2, as | F°|.

In this work, we will use the fact that an arbitrary pattern &2
for a given system can be converted to a simple diagonal pattern
for an augmented system. More precisely, one can order all the
pairs (i, j) € 22 into a list (i1, 71), .. ., (ir, jr), and define two
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matrices B’ and C" of sizes m x r and r x p, respectively, by
setting

Bl ,=1, O;fjk =i "VWhi= gy
and setting the remaining entries to zero. Then, any feedback

gain K satisfying the pattern 2 can be decomposed as
K= B! dja‘g(Khj‘x ’ Kiz.‘fg: LR Kﬁr.‘fr)o!'

Hence, there is a one-to-one mapping between the feasible
region of the original ODC problem with the system matrices
(A, B, C) under the pattern 27 and that of the ODC problem with
the system matrices (A, BB, C'C’) under a diagonal pattern.
This observation suggests that one can limit the pattern 22 to be
a diagonal pattern when studying general ODC problems with
arbitrary B and C' matrices.

B. ODC Problems With Dynamic Controllers

In contrast to static controllers, whose communication con-
straints can be represented by a single pattern 2, dynamic con-
trollers are much harder to characterize. A dynamic controller
contains multiple local controllers, each with some internal state.
Using the technique discussed at the end of Section II-A, one
can convert a dynamic ODC problem with an arbitrary sparsity
pattern to another ODC problem with a diagonal pattern, which
can be directly formulated as follows:

#(t) = Az(t) + > Bius(t)
i=1

y!’(t) :O!'I(t) Vi= 11"':T (4)

where u;(¢) and y; (¢) are the input and output of the subsystem :.
The goal is to design a decentralized dynamic controller H con-
sisting of 7 local controllers, each associated to one subsystem.
The local controller for the subsystem ¢, named H;, is modeled
as

2i(t) = Aizi(t) + Biyi(t)
ui(t) = Cizi(t) + Diga(t).
The local controller H; can be described by its matrices as
H; = (A, By, C;, Dy).

The size of fL is called tlle degree of local controller H;, and
H; is said to be stable if A; is a stable matrix.
The decentralized controller H itself will be denoted as

H= (Hl'.!"":HW')‘

Let H denote the set of all decentralized controllers for the
system (4). Similar to the case of static controllers, a controller
H € H is said to (internally) stabilize the system (4) if the
closed-loop system is stable, and the set of all stabilizing con-
trollers will be denoted as ‘H.. The existence of such stabilizing
decentralized controllers can be characterized by the notions
of decentralized fixed modes [19] or decentralized overlapping
fixed modes [20]. The connectivity properties of the dynamic
ODC problems will be studied in Section V.

lll. CONNECTIVITY PROPERTIES OF STATIC ODC PROBLEMS

In this section, the connectivity properties of ODC problems
with static controllers will be explored. First, we limit ourselves
to problems with B and C matrices being identity and develop a
powerful criterion for the connectivity of their feasible regions.
An accompanying algorithm will then be devised based on the
criterion, and its implications will be deferred to Section IV.
Then, we show that the developed results also hold true for the
case when B and C are not identity matrices but structurally keep
the pattern invariant. At the end of this section, the difficulties
of investigating the connectivity properties for general ODC
problems with arbitrary B and C will be explained, and we
will discuss how the introduction of dynamic controllers would
simplify the problem.

A. Connectivity Criterion

To enable the mathematical analysis of the feasible region of
ODC problems corresponding to a pattern 22, it is beneficial to
introduce a new notion stated as follows.

Definition 1: A pattern 22 is said to be stably expandable if
the following property holds: for every two stable matrices K° €
K, and K! € K, together with arbitrary continuous functions
73 (1) : [0,1] — R defined for all (z, j) ¢ &2 with the endpoint
conditions

K3 = 74(0), K} =;(1)

there exists a (continuous) path K(7):[0,1] = K, with
K(0) = KY K(1) = K! expanding the functions ~;;(7), i.e.,

Kij(r) = %j(r) VT €0,1] V(,j) € 2.

Since the feasible region of an ODC problemis always an open
set, for a given pattern 2, if in the aforementioned definition the
functions ~y;;(7) are further restricted to be constant functions,
then 22 satisfies this modified definition if and only if the feasible
region D is connected for all ODC problems with pattern 22, the
arbitrary matrix A, and identity matrices B and C. However,
because ~y;;(7) are arbitrary in Definition 1, the stable expand-
ability is generally a stronger property than being connected.
In this section, we work on the stable expandability instead
of the original definition of connectivity, because the stable
expandability of a pattern P can be reduced to that of a subpattern
of P. As a result, the to-be-developed results will be sufficient
conditions only. We believe that finding a polynomial-time
verifiable condition that is equivalent to connectivity is similar to
finding the boundary of P and NP for a class of problems, which
is by itself an NP-hard problem. The aforementioned discussion
can be summarized in the following proposition:

Proposition 1: If a pattern 22 is stably expandable, then the
corresponding feasible region D is connected for ODC problems
with arbitrary A € R"" and B = C = I,,. |

We emphasize that the property of stable expandability im-
plies the connectivity of the feasible region for all values of the
matrix A. In contrast, [16, Th. 6.1] shows that the feasible region
is always connected under an arbitrary pattern 27, arbitrary
matrix A whose diagonal entries are sufficiently negative, and
Bi=0C=1L
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The remaining goal is to further develop sufficient conditions
in several steps to imply the stable expandability for a pattern
2. The conditions should be efficiently verifiable and hold
for numerous patterns. First, Theorem 3 provides sufficient
conditions for the stable expandability based on the reduction
idea mentioned previously. Then, Corollary 4 provides further
sufficient conditions implying the ones in Theorem 3. Finally,
Algorithm 1 gives an efficient algorithm to certify a pattern
based on the conditions in Corollary 4. We start with some basic
properties of the stable expandability, which are as follows.

1) If the pattern 27 is stably expandable and 22 C 2, then
2 is also stably expandable.

2) If the pattern 4 is stably expandable, its transpose 77
is also stably expandable, since any matrix is similar to
its transpose.

3) If the pattern £?is stably expandable and 2 is isomorphic
(as a graph) to &2, then 2 is also stably expandable,
since any matrix is similar to the matrix obtained by
simultaneously applying the same permutation on its rows
and columns.

For ODC problems with identity matrices B and C, it is
shown in [16] that the feasible region D is connected if the
diagonal elements of K are free. The following proposition
shows that such patterns also satisfy the stronger property of
stable expandability.

Proposition 2: A pattern 22 is stably expandable if its com-
plement graph 7 does not have self-loops.

Proof: Given stable matrices K? and K'! and functions
7i;(T), consider an arbitrary path K'(r) satisfying all the re-
quirements in Definition 1 except the stability of K'(r) for all
7 € [0, 1]. Define the function o(7) to be the largest real part of
the eigenvalues of K'(7). Then, o(7) is a continuous function
and the path

K(1) = K'(1) — (max{o(7),0} + 7(1 — 7)) 1I,,

is guaranteed to be contained in K. Since K (0) = K'(0),
K (1) = K'(1) and the two paths have the same off-diagonal
elements, K(7) is a path satisfying all the requirements in
Definition 1. O
It is desirable to show that the stable expendability of a pattern
may be checked by analyzing smaller subpatterns.
Theorem 3: The n x n pattern

a{l€¢: 2
SR
n—q q

is stably expandable if
1) the pattern .27is stably expandable;
2) the number of rows in 2 without “0”s is at least ¢ + 1;
3) the pattern ¥ does not contain “0”s.
Proof: Please see the online version [21] of this article. [
To check the connectivity of the feasible region D associated
with a pattern 2, one can partition the vertices of 22 appropri-
ately, and then, apply Theorem 3 multiple times. This will be
formalized as follows:

Corollary 4: A pattern 2 is stably expandable if there exists
a partition {51, S, ..., Sy } of the vertices such that
1) forevery 1 < k <l < w, there is no edge from S; to Sy,
in the complement graph 27¢;
2) the subpattern with the vertex set .S is stably expandable;
3) for every k > 1, if dy denotes the number of vertices ¢
with the property

i & Sk and 37 € Si, s.t. (z,j)eﬁc

and r;, denotes the number of vertices in S}, then
k-1
ZT; > dk. T (5)
1=1
Proof: Let 27 be the subpattern of 22 with the vertex set
UF_, S;. We prove by induction that 9 is stably expandable.
The base step k = 1 is obviously true. Now, assume that &7 4
is stably expandable. After ordering the vertices, one can write
the subpattern £y, in the matrix form as follows:

Py B
¢ 9|
In the aforementioned pattern, 2?;,_; is a stably expandable pat-
tern of size Y"1 r; and Pis the subpattern of 22 with the vertex
set Si. By Condition 1, % does not have “0”s. Moreover, the
number of rows in % containing “0”s is exactly dj. Therefore,

in light of Condition 3, the number of rows in % without “0”’s
can be computed as

k-1

ZT{ —dg > 1%

=1
By Theorem 3, the subpattern 27, is stably expandable. This
completes the proof. O

It is worth mentioning that Corollary 4 is equivalent to Theo-
rem 3 in the sense that the conditions in Theorem 3 are a special
case of those in Corollary 4 if we choose the partition to be
{51,552} with Sy corresponding to the subpattern . and Ss
corresponding to the subpattern & in Theorem 3. Moreover,
both results can be combined with other ways of showing the
stable expandability such as using the property that the stable
expandability is invariant under transposition.

Example 1: To illustrate the application of Corollary 4, con-
sider the 7 x T pattern % whose complement graph .2 is given
in Fig. 2 . One can partition the pattern into three parts Sy, S,
and Ss as shown in Fig. 2, where

T1:4, T2:1, T3:2, dQZQ, d3:2.

For this partition, the subpattern corresponding to \S; is stably
expandable due to Proposition 2, and the other conditions in
Corollary 4 can be directly verified. As a result, the pattern 22 is
stably expandable and the feasible region of the ODC problem
is connected if B and C' are identity matrices.

B. Connectivity Detection Algorithm

The objective of this part is to develop an algorithm that
finds a suitable partition for an arbitrary pattern 42 to reason
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Fig. 2. Complement graph of the pattern studied in Example 1.

about its stable expandability based on Corollary 4. To design
the algorithm, the first step is to choose S;. Since the only
stably expandable patterns known initially are the ones satisfying
Proposition 2, we select Sy to be the set of all vertices not
reachable in the complement graph 4?° from any vertex with
a self-loop in 9.

Next, since the partition in Corollary 4 has an acyclic structure,
it is natural to consider the strongly connected components of
the complement graph 2. By the definition of Sy, there is no
edge from the vertices in {1,...,n} — 5] to the vertices in S;.
Now, we further divide the prior set into strongly connected
components Sy, . . ., Sy, of Z°. The remaining task is to find an
ordering for the sets S5, . . ., S, such that Conditions 1 and 3 in
Corollary 4 are satisfied.

The aforementioned ordering problem is analogous to the
task scheduling problem studied in [22]. If each set Sy is
regarded as a task that requires r;, amount of time to complete,
then the goal is to find an ordering of all tasks satisfying the
precedence constraints in such a way that S; becomes the first
task and the starting time for each remaining task S; becomes
strictly later than dy + r,. We propose Algorithm 1 based on
the aforementioned ideas. If the algorithm returns “succeeded,”
then the feasible region D associated with the given pattern has
been proved to be connected, while “failed” means that it cannot
determine whether the feasible region is connected.

C. Numerical Examples

To demonstrate the performance of Algorithm 1, it is desirable
to provide some numerical examples with randomly generated
patterns. Let each entry in the pattern be chosen as “0” inde-
pendently with a fixed probability. The following two types of
random instances are considered:

1) the dense case where

Pr(Py =0) =~ ©)

with some parameter c;
2) the sparse case where

PI(@«U = 0) = C.

For each of the two cases, we generate 1000 random samples
according to the aforementioned probability distribution, run

Algorithm 1: Checking Connectivity for Pattern 2.

Compute Sy through a breadth-first search.
if S; = ( then
return failed
end if
Divide {1,...,n} — 5] into strongly connected
components Sy, . .., Sy, of F°.
Compute dj, and r, for each Sy.
Remove S from the graph.
T + T
while T' < n do
Find an unprocessed set S with no incoming edges in
G and T > dp + Tk
if not found then
return failed
end if
Remove Sy from the graph.
T — T + Tk
end while
return succeeded

Algorithm 1 on these samples and calculate the empirical prob-
ability that the algorithm finds patterns with connected feasible
regions.

The result for the dense case is given in Fig. 3(a). It can be
observed that most patterns generated by ¢ < 1, i.e., patterns
whose number of “0” is approximately less than n, are associ-
ated with connected feasible regions. This observation will be
mathematically supported in Section IV.

The result for the sparse case is given in Fig. 3(b). The
feasible region for a sparse pattern such as the counterexample
in [16, Th. 7.6] may have an exponential number of connected
components, while the set is connected in the full matrix case
associated with the centralized problem. Thus, the number of
connected components goes from an exponential number to one
as we go from the sparse case to the dense case. This implies
that the sparse case is harder than the dense case. On the other
hand, it will be shown in Section IV that it is still possible to
construct an exponential number of patterns, with approximately
up to half of the entries being “0,” which can all be certified via
Theorem 3.

D. General Static ODC Problems

In the following, we turn to general static ODC problems in
which B or C is not necessarily identity matrices. In the cases
when the structure of B and C keeps the pattern £ invariant,
the results developed before all hold.

Proposition 5: If a pattern 22 is stably expandable, then the
corresponding feasible region D is connected for ODC problems
with arbitrary matrices A, B, and C' € R™*" satisfying

L(P) = {BKC|K € L(P)}

where £(.2) is the linear subspace defined in (2).
Proof: By the assumption, the linearmap f : £(#?) — L(2?)
givenby f(K) = BKCisinvertible, which implies thatitis also
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Fig. 3. Success rate of Algorithm 1 on random examples with different values for n and c.

a homeomorphism between the feasible regions
Dy ={K, € L(P)|A—BK,1C e Ky}
Dy ={K; € L(P)A— Ky € Ky}

Proposition 1 implies the connectivity of Dy, and sois D;. [

For example, when B and C are diagonal matrices with
nonzero diagonal entries, the assumption in Proposition 5 is
automatically satisfied, and thus, the feasible region is connected
if the pattern 22 is stably expandable. However, based on the
following two observations, the aforementioned result cannot be
easily extended to static ODC problems with general matrices
B and C. First, the following result shows that connectivity is
not a robust property under perturbation of B and C matrices.

Proposition 6: There is a static ODC problem with system
matrices (A, B = I,, C = I,) and some pattern 22 such that its
feasible region is connected but for any € > 0, one can always
find matrices B’ € R™*" and C' € R™*" satisfying

B —Bla<s, [P —lase

for which the new ODC problem with the same pattern 2 and
system matrices (A, B,’ C’) has a disconnected feasible region.
Proof: Consider the n x n pattern

* % ... % 0

* ok aam ook 0
G0 —

¥ E e o B

[ B e KB E

The feasible region of the ODC problem with arbitrary A and
B = C = I,, is connected because the diagonal entries in P are
all free. However, for the ODC problem with the same pattern
4 but for the system with matrices A = 0,,,C' = I, and

EE] 0 4]

0 4 0 6
B' = A

0 0 1

[0 0 = [

the corresponding feasible region
D={K € L(%)|—-BK e K,}

will be disconnected if § # 0. To prove this, note that the
linear subspace £ = { B'K |K € L(?)} is the set of all matrices
A € R™™ satisfying

Asr—idlan, 2=Tooume1, (7
The set £ N K,, is disconnected since
i L 0 D B - e 0 0 4]
o ... -1 0 =410 ... -1 0 4
0o ... 0 -1 -6 0o ... 0 -2 4
|6 ... O 0 =1] L0 ... 0 36 1

are two stable matrices in £ but any path in £ connecting the
aforementioned two matrices must pass through some matrix
M e & with M,,,, = 0. The entries in the last column of M are
all zerodue to (7), and thus, M is unstable. Since the connectivity
of the feasible region D would imply the connectivity of the set
&€ N K, D cannot be a connected set. ]
The situation would become even more complex if the B and
C matrices are allowed to be far away from identity matrices.
Disconnectivity can occur in the feasible region of these prob-
lems due to the instabilizability or undetectability of the partially
closed-loop system, as illustrated by the following example.
Example 2: Consider the following ODC problem in which

e [3 —0.2]1 - l—2 —1]1 G
04 08 1.5 0.7

and the pattern is diagonal. Let K = diag(e, 3), where e and
B are the free parameters of the controller gain. As shown in

Fig. 4, the feasible region has two connected components.
Consider the partially closed-loop system obtained by fixing
the parameter « at some value and treating /3 as a free parameter.
This new system with the input uy(¢) and the output ys(#)
is not stabilizable when o = 10.42 and not detectable when
a = —0.27. Therefore, the closed-loop system is not stable for
these two particular values of o no matter what the value of 3
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Fig 4. Feasible region of the ODC problem in Example 2.

is. On the other hand, when —2.21 < o < 10.66 except for the
aforementioned two o values, the partially closed-loop system
is stabilizable and detectable, which can be stabilized by certain
dynamic local controller from y2(¢) to uz(#) instead of the static
local controller uz(t) = Byz2(t). As will be shown in Section V,
the introduction of dynamic controllers into this problem will
reduce the gap between the connected components in Fig. 4 from
a finite gap to an infinitesimal one. Note that the connectivity
feature in this example is typical, and it is straightforward to
generate many other systems with a similar feature by random
search.

IV, APPLICATIONS OF THE CONNECTIVITY CRITERION

The connectivity criterion proposed in Section IIT has two
important usages.' First, one can apply Theorem 3 to certify the
connectivity for certain classes of patterns. ODC problems with
these patterns are well suited for local search methods due to the
connectivity of the feasible region. Second, one can construct
patterns that make the feasible region D connected by exploiting
the conditions in Theorem 3. The designed patterns can be used
to relax an ODC problem with an unfavorable pattern 22 to
another ODC problem with a favorable pattern 2 such that
2 C 2. For example, such a pattern 2 can be found by re-
moving some self-loops in .27 to enlarge the initial vertex set
S1 in Algorithm 1 or by removing the original incoming edges
to the set S, that violate the inequality (5) minimally at the step
when Algorithm 1 cannot proceed. The relaxed problem may
be solved by local search methods, and its solution provides a
lower bound to the original problem. This is mainly a numerical
approach, and bounding the gap theoretically between the actual
optimal value and the lower bound requires a further study.

A. Proving Connectivity

As an application of Theorem 3, it is desirable to prove that
most dense patterns with a small number of ‘0”s lead to a
connected feasible region D.

Theorem 7: Let r denote the number of vertices in the largest
strongly connected component of the complement graph 2°. If

| %°| < n — max{r,2}

'n this section, all ODC problems are assumed to be static and with identity
matrices B and C.

then 2 is stably expandable.

Proof: Following the argument used in Algorithm 1, let Sy
be the set of all vertices not reachable in 22 from any vertex
with a self-loop in 27°. Observe that each vertex not in S; has
either a self-loop or an incoming edge in 2?°. Since there are
at most n — 2 edges in 97°, the set Sy cannot be empty. We
partition the remaining vertices {1,...,n} —.S; into strongly
connected components of 27 and perform a topological sorting
over these components. The result is a list of strongly connected
components {S, ..., Sy} for which there is no edge from S
to Sy in Z° for k < I.

For any subset S of vertices, let E(.S) denote the number of
edges (including self-loops) in 9?° whose destinations belong
to S. Using this notation, it can be concluded that

ES)>n Vi=2,...,w. ®)

This obviously holds true for a nonsingleton S; since S; is
strongly connected in %°. On the other hand, if S; = {i} is
asingleton, then ¢ ¢ S;. The observation made at the beginning
of the proof implies that E(S;) > 1 = ;.

We claim that the partition {S7,...,S5,} satisfies all the
conditions in Corollary 4. If not, then there exists some k > 1
such that

k-1

dk.-i-TkEZTJ- )]

=1

In this case, there exists at least one vertex j in U;"ZZS; with a
self-loop in 27°; otherwise, by the definition, all these vertices
in UF_,S; should belong to Sy, which is not possible.

Now, we investigate two scenarios. If the strongly connected
component Sy, is a singleton, then

k
Y E(S) > di+1

=2

where the additional “1” above counts for the self-loop of the
vertex j. By (8), (9), and the aforementioned inequality, one can
write

|12 ES) > de+14 Y m
=2

I=k+1

which is a contradiction.
For the scenario in which Sy, is not a singleton, since Sy, is
strongly connected, it holds that

k
Y E(S) >dp+ri+1.
=2

Similar to the previous scenario, one can write

|9°1>) E(S) >de+re+14+ Y 7

=2 I=k+1
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w
Z rm=n—Tr+1

k-1
> Yo dALE
=1 I=k+1

> n — max{r, 2}

which is also a contradiction. O
Remark 1: For each pattern £ whose complement graph Z2°

is acyclic,” Theorem 7 implies that 2 is stably expandable as

long as | 9| < n — 2. This bound is tight. The n x n pattern

[ ¥ % 0]
P = * * *x 0
* * ok
E * x 0]

has an acyclic .2#° with | 97°| = n — 1, but the corresponding
feasible region D for the case A = 0is not connected. The reason
is that the stable matrices

[—1 -1

Algorithm 2: Generating Patterns With Connected Feasible
Regions

P diag(*, *).

for: < 3 ton do
Add one row and column at the bottom and right side of

0.

Fill the newly added entries with
Choose at most ¢ — 3 elements from {1,...,7 —1}.
For each chosen element j, set 22;; < 0.
Optionally set #2;; + 0.
Optionally set & < "

end for

[T
* .

—1

e |
1

-1

0

—1

—~1i

= i

conform with the pattern 22, while any path within 22 between
these matrices must pass through an unstable matrix whose last
column is all zero.

Remark 2: For random patterns subject to the distribution
given by (6) with a parameter ¢ < 1, [23] has proven that with
high probability the largest strongly connected component of
Z° is of size O(logn). Therefore, as long as n is sufficiently
large such that

| 2| = cn < n— O(logn),

Theorem 7 implies that the feasible region D associated with the
pattern is connected. This explains why most patterns in Fig. 3(a)
with ¢ < 1 are certified.

B. Constructing Patterns With Connected Feasible
Regions

According to the numerical result in Fig. 3(b), Algorithm 1
cannot certify the connectivity for many sparse patterns. This
is not surprising since the complement graphs of most of these
patterns are strongly connected and cannot be decomposed as
required in Corollary 4. However, using Theorem 3, one can
still construct an exponential class of desirable patterns with
up to approximately half of entries being “0.” The construction
procedure is provided in Algorithm 2.

The next theorem shows that the number of favorable patterns
generated by Algorithm 2 is roughly the square root of 2"*™ or
the total number of possible patterns. Although the constructed
patterns only account for some proportion of all patterns, they

THere, we allow acyclic graphs to contain self-loops.

are abundant enough to be used for approximations of other
ODC problems.

Theorem 8: Given a system with an arbitrary matrix
AeR™™ and B = C = I,,, there are at least 2"(n-1)/2-1
patterns whose corresponding feasible regions D are connected.

Proof: Let f(n) be the number of different n x n patterns
that can be generated by Algorithm 2. Note that f(2) = 1. For
n > 3, the algorithm essentially allows us to arbitrarily choose
“0” or “x” for the entries Py, ..., Z(,,_1)n, €xcept the cases
that all these entries are “0” or only one of them is “+.” Based
on this observation, one can write

f)=fn-1)x@"1-1-(n—-1))x2x2

where the second last “2” counts for the choice of 2, and the
last “2” counts for the choice of using a transpose. Since

2" 1 —1-(n—-1)>2"" ¥n>3
it holds that
f(n) > f(n—1) x 2"! V¥n>3.
By induction, f(n) > 2n(n—1)/2-1, ]

V. CONNECTIVITY PROPERTIES OF DynAMIC ODC
PROBLEMS

As discussed in the preceding sections, the feasible region
of static ODC problems may or may not be connected. It turns
out that this is due to using static controllers. In this section,
we aim to show that dynamic ODC problems have a highly
desirable connectivity property. However, such connectivity
property is not directly possessed by the original feasible region
of the dynamic ODC problem, i.e., the set H; of all stabiliz-
ing decentralized controllers. Instead, we first parametrize the
feasible region into a parameter space on which optimal control
problems can be equivalently recast. The formal definition of a
parameterization is stated in Definition 2, and the constructed
parameterization is given in Proposition 10, which is based on
the Youla parameterization. Finally, we embed the parameter
space into a larger metric space and prove in Theorems 11 and
13 that its closure is connected under mild conditions. This
unique feature of dynamic ODC problems directly affects the
performance of local search methods.
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Youla parameterization.

Fig. 5.

A. Parameterization of Dynamic Stabilizing Controllers

The constraint on the feasible region H, is that the decen-
tralized controller must stabilize the system, which is difficult
to analyze because it depends on both the controller and the
system. To simplify the structure of H,, it is beneficial to first
parametrize this set based on the Youla parameterization, which
transforms the original constraint to a new one on the (internal)
stability of some controller in the parameter space. The latter
only depends on the controller itself and is easier to handle. We
start with a general definition.

Definition 2: A set S together with a mapping

f:8S—=H,

iscalled a parameterization of H if f has the following property:
for any controller H € H,, there exists a point Q € S such that
f(Q) and H have the same transfer function.

In other words, every controller in #, is the image of at least
one point in & under the parameterization mapping f (up to
the equivalence of having the same transfer function). It is not
important that multiple points in S can be mapped to the same
controller in H, since, for example, any transfer function could
have many time-domain representations obtained via a similarity
transformation. The intuition behind the aforementioned defini-
tion is that when solving an ODC problem, one can optimize
over the parameter set S instead of directly optimizing over the
set H . of controllers.

Theorem 9 (Youla parameterization): Assume the system
(1) is stabilizable and detectable. Let F' and L be arbitrary
matrices such that A+ BF and A + LC are stable. For any
controller QQ for the system (1), define ¢(Q, F, L) to be the
controller described by the block diagram in Fig. 5, in which the
block J is given by

i(t) = (A + BF + LC)i(t) — Ly(t) + Bw(t)
u(t) = F2(t) + w(t)
0(t) = —C(t) + y(t).

Then, the mapping g(-, F, L) has the following properties:
1) For any stable controller Q, g(Q, F, L) stabilizes the
system (1).
2) For any stabilizing controller H for the system (1),
there exists some stable controller Q such that H and
g(Q, F, L) have the same transfer function.
Proof: See [24, Th. 12.8]. O
In the following, we write a decentralized controller H € H
as H = (H, H,.) with the partial controller H defined as

H=(H,...,H, 1).

Similar to Example 2, after applying the partial controller H to
the original system (4), one can obtain a partially closed-loop
system with the input ..(¢) and the output y,.(¢), which will be
denoted as G (H), and the corresponding matrices of this system
will be called A(H), B(H), and C(H), respectively. Note that
a decentralized controller H stabilizes the original system if and
only if G(H) is stabilizable and detectable, while the last local
controller H, stabilizes G (H). In the next proposition, the Youla
parameterization is applied based on the latter viewpoint instead
of using the Youla parameterization on the entire decentralized
controller, since otherwise the diagonal structure constraint on
the decentralized controller cannot be nicely transferred to an
equivalent constraint in a simple form on the parameter space.

Proposition 10: Let Q be the set of all decentralized con-
trollers (H, Q) € H such that Q is a stable controller and
the partially closed-loop system G (H) is both stabilizable and
detectable. Then, there exists a mapping f : @ — H, being a
parameterization for the set H..

Proof: For each H whose corresponding partially closed-
loop system G (H) is stabilizable and detectable, choose F'(H)
and L(H) such that both A(H)+ B(H)F(H) and A(H) +
L(H)C(H) are stable. For each (H, Q) € Q, define

f(H,Q) = (H,¢(Q, F(H), L(H))).

By Theorem 9, g(Q, F(H), L(H)) stabilizes the system G (H),
and thus, f(H, Q) € H..

To show that the mapping f is indeed a parameterization, con-
siderany (H, H,.) € H,. Then, H, stabilizes the system G (H),
and thus, G(H) is both stabilizable and detectable. Moreover,
by Theorem 9 again, there exists some stable controller Q such
that H, and g(Q, F(H), L(H)) have the same transfer function,
which further implies that (H, H,.) and f(H, Q) also have the
same transfer function. O

After Proposition 10 is applied, a dynamic ODC problem
can be equivalently formulated as an optimization problem over
the parameter set Q. Similar to the ODC problem with static
controllers, the converted optimization problem may be solved
effectively using local search methods if @ is a connected set.

To study the connectivity properties of the set @, it is neces-
sary to introduce some topology on this set. In the following,
we will first define a metric on the superset H and view Q
as a subspace. Because H contains decentralized controllers of
arbitrarily high degrees, the metric must be defined in some
special way to handle controllers of different degrees. For two
decentralized controllers H, H' € H with

H=(H,,...,H,), H;=(A;B;,C;,D;)
H = (Hy,...,H;), H;=(4],B,C; D)
define
p(H,H') = max max(|4; — Aj]x,

|B§ = B;|UO',| |Ci T C§|001 |D1 = D;|°0)

where Ag, fi;, Bg, E’;, C‘i, é;, Di, and D; are infinite matrices
obtained from padding zeros on the right and below sides of
Aq, A}, By, B, C;, C}, D;, and D], respectively. This enables
computing the norm between two matrices of different sizes.
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Here, other norms can be also used, and the choice of norm will
not affect the connectivity properties.

B. Connectivity of the Parameter Space

As mentioned previously, it is favorable to have a dynamic
ODC problem with a connected feasible set Q in the parameter-
ized space. Unfortunately, the set @ is not always connected due
to the existence of some partial controller H whose correspond-
ing partially closed-loop system G(H) is not stabilizable or
detectable. However, under some mild conditions on the system
(4), one can prove that the closure of Q is always connected.
This weaker connectivity property is still useful for many local
search methods, such as the stochastic gradient method, because
in this case, the infeasible region is infinitesimally small and the
introduced noise in the algorithm would allow the trajectory to
cross different connected components freely.

Theorem 11: Assume that for any nonnegative integer ng,
there exists a partial controller H* = (H3,. .., H}_;) such that
the degree of each local controller H} is at least ng and that
the partially closed-loop system G (H*) is both controllable and
observable. Then, the closure of the feasible set Q of the dynamic
ODC problem is connected.

Before proceeding with the proof, we need to state a basic
topological property.

Lemma 12: Given a topological space 7 and one of its dense
subspace &, if any two points in S can be connected by a path
in 7, then T is connected.

Proof: Select = € S and let &' be the set of points in T
reachable from z using paths in 7. By definition, S C &’ and &’
is path connected. Being a closure of &', T must be connected.[]

Proof of Theorem 11: By Lemma 12, we only need to prove
that any two controllers

H = (Hy,...
H =,..

;HT—].)Q) e Q
gt ;“—b Q’) € Q

can be connected by a path in the closure of Q. Let ng be
the largest degree of all the local controllers H; and H for
i=1,...,7 — 1,and H* be the corresponding partial controller
given by the assumption of the theorem. First, we consider the
special case in which

1) H;, H; and H; have the same degree for all i =

L jpe—=ls
2) Q and Q' have the same degree.
Let

Q == (AT:ET:CW';DT): Q’ = ("i;:g;:é:-:ﬁ:")

Since the set of stable matrices is connected by Proposition 2, a
path A, () between A, and A, can be found such that A, (7)
is a stable matrix when 0 < 7 < 1. We connect the remaining
matrices B, and By, C; and Cy, and D, and D, arbitrarily to
obtain the paths B,.(7), Cr(7), and D, (1), respectively. Then,

Q(7) = (Ar(7), Br(7), Cy(7), Dr(7))

is a path of stable local controllers between QQ and Q'.

Similarly, one can expand
Hf = {Ami:‘éi:éi:ﬁi)a H; — (‘i;'!'é;}'!é;:!ﬁ;)v
H; = (4}, B},C], D).

For each i =1,...,r — 1, define a path fii('{) of matrices
passing through the three matrices A;, A}, and A} as follows:

A1) =21 —7)(1/2 = 7)A; + 4r(1 — 7) A
+ 27 (T — 1/2) A,

Note that the aforementioned path is allowed to contain unstable
matrices. Define B;(7), C;(7), and D;(7) similarly, which give
rise to the path of local controllers

H;(r) = (Ai(7), Bi(r), Ci(r), Di(7))

with H;(1/2) = HE Let H{r) = (Hi(r);: - s By 1(7)). The
next step is to prove that the partially closed-loop system
G(H(7)) is controllable and observable except at a finite num-
ber of points 7.

Let A(H*), B(H*), and C(H*) be the matrices describing
the system G(H*), and A(H(7)), B(H(7)), C(H(7)) be the
matrices for the system G(H(7)). By assumption, the pair
(A(H*), B(H")) is controllable, and therefore, there exist some
matrix M and vector v such that the single-input system
(A(H*) + B(H*)M, B(H*)v) is controllable [24, Sec. 3.4].
Note that the pair (A(H(7)) + B(H(7))M, B(H(7))v) is con-
trollable if and only if the determinant of the corresponding
controllability matrix is nonzero. Since this determinant is a
polynomial of 7 that is nonzero at T = 1/2, it is always nonzero
except at a finite number of points 7,...,7.. Hence, the
pair (A(H(7)) + B(H(7))M, B(H(7))v), and thus, the pair
(A(H(r)), B(H(7))) are controllable except at the aforemen-
tioned points. By the same argument, one can also prove that
the pair (A(H(7)), C(H(7))) is observable except at a finite
number of points 7, 4,..., 7.

Finally, define H(7) = (H(7), Q(7)). This is a path from
H to H' within the set 4. Furthermore, since H(7) € Q for
all 0 < 7 <1 except when 7 equals to 71,...,7, H(7) must
belong to the closure of Q for every 7.

In the case when the degree of some local controller H; is
smaller than the degree of H; or the degree of Q is smaller than
the degree of ', one can first promote the degree of H; or Q by
padding zeros in the corresponding matrices such that the new
local controller has the same degree of H} or Q. Let H be the
controller obtained by replacing the local controllers in H with
these new local controllers with promoted degrees, and let ﬂ(r)
be the path starting from H constructed by the aforementioned
procedure. Then,

H, if =0
H(T):{I:I('r), if 0<r<1

is continuous, and thus, it gives the desired path from the original
controller H since p(H, H) = 0. The cases when the degrees of
H, or Q' are smaller can be handled similarly. O

Remark 3: In practice, the degree of controllers in the parame-
ter space @ should be limited, say at most /g, to make the search
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(a) System S;, with inputs uf,...,u}. and outputs v}, ..., y. (drawn solely in solid lines) and the partially closed-loop system S (K(¥))

(drawn in both solid and dashed lines) used in the proof of Theorem 13. (b) Final partial controller H* = (Hi,...,H;_,) for the original system S

constructed by the proof of Theorem 13.

space finite dimensional. Assume that H is the initial point in
the search space and H' is the optimal one. Since the degree
of each controller in the path between H and H' constructed
in the proof of Theorem 11 is upper bounded, this path is still
within the limited finite-dimensional search space as long as my
is sufficiently large, which means that local search algorithms
can still possibly find the optimal solution without leaving the
closure of the feasible region.

Theorem 11 presumes the existence of partial controllers
with arbitrarily high degrees that make the partially closed-loop
system controllable and observable. The next theorem shows
that such an assumption will be further implied by certain mild
conditions. Here, we define the structural graph of the system to
be a direct graph with r vertices that has edge (z, 7) if the transfer
function from input u; to output y; is not constantly zero. The
system is said to be strongly connected if its structural graph is
strongly connected [25].

Theorem 13: The assumption in Theorem 11 holds if the
system is strongly connected and does not have decentralized
fixed modes.

For systems satisfying the conditions in Theorem 13, [26,
Th. 4] proves that it is relatively easy to find a partial controller
(Hi,...,H! ;) guaranteeing the controllability and observ-
ability of the partially closed-loop system with each local con-
troller H; being a static feedback controller. Our Theorem 13 can
be regarded as a generalization of this result to higher degrees.
The proof of Theorem 13 also depends on the aforementioned
result, which is stated as follows for convenience.

Lemma 14 ([26, Th. 4]): Assume that the system is strongly
connected and does not have decentralized fixed modes. Given a
partial controller H* = (H3,...,H}_,),ifeachlocal controller
H; is a static controller described by a matrix Kj;, then the
partially closed-loop system G(H*) is controllable and observ-
able unless the matrices K; belong to some low-dimensional
hypersurfaces.

Proof of Theorem 13: To construct a partial controller
(Hi,...,H; ;) that makes the partially closed-loop system
controllable and observable with the degree of H; being n;, we

will design a suitable subcontroller Py for k=1,...,r — L.
Define Si for K =1,...,r to be the system obtained by par-
allelly connecting the corresponding input and output of the
original system S and the subcontrollers Py, . .., Py_1 as shown
in Fig. 6(a). In what follows, we will prove by induction that each
system Sy, is strongly connected and does not have decentralized
fixed modes. The choice of P will also be described in the
corresponding inductive step.

The base step k =1 is directly from the assumption since
S, is the same as the original system S. For the inductive step,
given a system Sy, that is already strongly connected and without
decentralized fixed modes, one can apply Lemma 14 (on the
subsystem with the input u) and the output y,;. instead of wu/.
and /. as said in the statement of Lemma 14) to obtain a partial
controller

k k k
K® =(E®,, K2 .K5 .

. K®)
such that each local controller K%.(k) is static and the corre-
sponding partially closed-loop system Sy (K (*)) with the input
u}, and the output g}, as shown in Fig. 6(a) again, is both
controllable and observable. Next, choose an arbitrary strictly
proper subcontroller Py, of degree n;, whose input has the same
dimension as u}, and output has the same dimension as y;,, such
that

1) Py, is both controllable and observable;

2) Sx(K®)) and P}, do not have common modes.

Now, consider the partially closed-loop system Sy (K®*))
obtained by applying the aforementioned partial controller K (F)
to the system Sy 1, which can be viewed as the parallel combina-
tion of Sy(K(*)) and P. A standard application of the Popov—
Belevitch—Hautus test shows that the parallel combination of two
controllable and observable systems without common modes
is still controllable and observable. Therefore, one can find
a dynamic controller Q for the partially closed-loop system
Si+1(K™), or equivalently find a decentralized controller

k k k
(K](_ )'.! Al '.!K;E-_)]_a QJKIE-_|_)13" v ’Kik))
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for the system Sy, 1 to freely assign the poles of the result closed-
loop system. This means that the system Sz,; does not have
decentralized fixed modes. Moreover, since the off-diagonal
entries of the transfer matrix of S and those of the original
system S are the same, S is also strongly connected, which
completes the induction.

Finally, we arrive at the system S,. satisfying the assumption
of Lemma 14. We then apply Lemma 14 to S, again to find a
static partial controller

RO, B

ensuring the controllability and observability of the partially
closed-loop system S,.(K(™). For every i = 1,...,7 — 1, de-
fine a local controller H} by combining the subcontroller P; of
degree n; and the static controller K E.(r) as shown in Fig. 6(b).
Then, H* = (H3,...,H} ;) is the desired partial controller.
Each local controller H} has the desired degree n;, while the
partially closed-loop system S(H*) is the same as S, (K()
that is known to be controllable and observable. O

Example 3: To demonstrate the ideas developed in this sec-
tion, we will revisit Example 2 and illustrate how the introduc-
tion of dynamic controllers can solve the connectivity issue in
the static ODC problems. Assume that the goal is to find a path
between the static controllers

K(0) = diag(—3,2), K(1) = diag(12, —40).

As shown in Fig. 4, this is impossible because the aforemen-
tioned two static controllers are in different connected com-
ponents of the feasible region of the static ODC problem. In
the dynamic ODC problem, we can first compute the Youla
parameterization for two endpoints, and then, convert them
to the parameter space. For the controller K (0), consider the
partially closed-loop system with the input up and the output
2, and denote its matrices as (A(0), B(0), C(0)). According to
Theorem 9, we need to find the stabilizing matrices F'(0) and
L(0) for this system. For example, the following ones can be
used:

F(o)=[4 —4}, L(O):[_II].

After the Youla parameterization, the corresponding controller
in the parameter space is given by H(0) = (H1(0), Q(0)),
where H;(0) = —K(0);; = 3 is a static feedback controller
with a scalar gain (the sign difference here is due to the con-
vention of using negative feedback in static ODC problems) and
Q(0) = (A(0), B(0),C(0), D(0)) is a dynamic controller with
the matrices

A(0) = A(0) — B(0)K (0)22C(0) = l__; ;2]
D(0) = —K(0)g = —2

B(0) = B(0)D(0) — L(0) = [;4]

€(0) = D(0)C(0) — F(0) = [—4 2] .

40 -
Au(r)
Ap(r)
20+ An(r) E
— Jalr) ///
— — eigenvalue ;

Fig. 7. Stable path between the two matrices A(0) and A(1) in Exam-
ple 3. The curve labeled “eigenvalue” shows the maximum real part of
the eigenvalues for the cormresponding matrices on the path.

Note that fi(O) is exactly the matrix of the closed-loop system
under the controller K (0). Similar computation can also be
worked out for K (1), which gives

FQ) = |20 12], L(1)=l:zzl, Hy(1) = —12
jo-[7, 2. s0- 4
@) = [—20 28], D(1) = 4o.

To find a path between H(0) and H(1), one can first connect
A(0) and A(1) by a path within the set of stable matrices (Fig. 7
illustrates one possible choice for such a path), and then connect
H,, B, C, D by arbitrary paths such as linear functions. The final
path H(7) is within the parameter space except when H, (7) is
—10.42 or 0.27 corresponding to the cases the partially closed-
loop system is not controllable or observable as computed in
Example 2.

VI. CONCLUSION

In this article, we studied the connectivity properties of the
feasible regions of ODC problems. For problems with static
controllers and identity matrices B and C, after introducing the
notion of stable expandability, we developed a novel criterion
together with an efficient algorithm to certify the connectivity of
the feasible region of a given ODC problem. Subsequently, we
proved that the feasible region of the ODC problem is connected
for most dense communication patterns as well as an exponential
class of patterns. In the presence of dynamic controllers, we
proved that the closure of the feasible region is connected in
some metric space for dynamic ODC problems under some mild
conditions.

REFERENCES

[1] A.N. Venkat, I. A. Hiskens, J. B. Rawlings, and S. J. Wright, “Distributed
MPC strategies with application to power system automatic generation
control,” JEEE Trans. Control Syst. Technol., vol. 16, no. 6, pp. 1192-1206,
Nov. 2008.

[2] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress
in the study of distributed multi-agent coordination.” IEEE Trans. Ind.
Inform., vol. 9, no. 1, pp. 427-438, Feb. 2013.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 30,2022 at 22-21:55 UTC from IEEE Xplore. Restrictions apply.



Bl AND LAVAEI: ON THE CONNECTIVITY PROPERTIES OF FEASIBLE REGIONS OF ODC PROBLEMS

549

31
[4]

[51

(6]

[7

o

(81

91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(7

[18]

[19]

H. S. Witsenhausen, “A counterexample in stochastic optimum control,”
SIAM J. Control, vol. 6, no. 1, pp. 131-147, Feb. 1968.

V. D. Blondel and J. N. Tsitsiklis, “A survey of computational complexity
results in systems and control,” Automatica, vol. 36, no. 9, pp. 1249-1274,
Sep. 2000.

M. Rotkowitz, R. Cogill, and S. Lall, “Convexity of optimal control
over networks with delays and arbitrary topology.” Int. J. Syst. Control
Commun., vol. 2, no. 1-3, pp. 30-54, Jan. 2010.

Y.-S. Wang, N. Matni, and J. C. Doyle, “A system-level approach to
controller synthesis,” IEEE Trans. Autom. Control, vol. 64, no. 10,
pp. 4079-4093, Oct. 2019.

P. Shah and P. A. Parrilo, “Hg-optimal decentralized control over posets:
A state-space solution for state-feedback,” IEEE Trans. Autom. Control,
vol. 58, no. 12, pp. 3084-3096, Dec. 2013.

A. Lamperski and J. C. Doyle, “The Hz control problem for quadratically
invariant systems with delays.” IEEE Trans. Autom. Control, vol. 60, no. 7,
pp. 19451950, Jul. 2015.

R. Madani, S. Sojoudi, G. Fazelnia, and J. Lavaei, “Finding low-rank
solutions of sparse linear matrix inequalities using convex optimization,”
SIAM J. Optim., vol. 27, no. 2, pp. 725-758, 2017.

M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi, “Global convergence of
policy gradient methods for the linear quadratic regulator,” in Proc. Int.
Conf. Mach. Learn. Res., 2018, vol. 80, pp. 1467-1476.

L. Furieri and M. Kamgarpour, “First order methods for globally opti-
mal distributed controllers beyond quadratic invariance,” in Proc. Amer.
Control Conf., Jul. 2020, pp. 4588-4593.

L. Bottou, “Stochastic gradient learning in neural networks,” in Proc.
Neuro-Nimes, 1991.

S. Ma, R. Bassily, and M. Belkin, “The power of interpolation: Under-
standing the effectiveness of SGD in modern over-parametrized learning,”
in Proc. Int. Conf. Mach. Learn. Res., 2018, vol. 80, pp. 3325-3334.

C. Josz, Y. Ouyang, R. Zhang, J. Lavaei, and S. Sojoudi, “A theory on the
absence of spurious solutions for nonconvex and nonsmooth optimization,”
in Proc. Adv. Neural Inf. Process. Syst., 2018, vol. 31, pp. 2441-2449.

S. Fattahi and S. Sojoudi, “Exact guarantees on the absence of spurious lo-
cal minima for non-negative rank-1 robust principal component analysis,”
J. Mach. Learn. Res., vol. 21, no. 59, pp. 1-51, Mar. 2020.

H. Feng and J. Lavaei, “Connectivity properties of the set of stabilizing
static decentralized controllers,” SIAM J. Control Optim., vol. 58, no. 5,
pp. 2790-2820, 2020.

1. Bu, A. Mesbahi, and M. Mesbahi, “On topological properties of the set
of stabilizing feedback gains.” IEEE Trans. Automat. Cont., vol. 66, no. 2,
pp. 730-744, Feb. 2021.

M.-A. Belabbas, “Sparse stable systems,” Syst. Control Lett., vol. 62,
no. 10, pp. 981-987, Oct. 2013.

S.-H. Wang and E. J. Davison, “On the stabilization of decentralized con-
trol systems,” IEEE Trans. Autom. Control,vol. AC-18, no. 5, pp. 473478,
Oct. 1973.

[20]

[21]

[22]
[23]
[24]

[25]

[26]

J. Lavaei and A. G. Aghdam, “Control of continuous-time LTI systems by
means of structurally constrained controllers,” Automatica, vol. 44, no. 1,
pp. 141-148, Jan. 2008.

Y. Bi and J. Lavaei, “On the connectivity properties of feasible regions
of optimal decentralized control problems,” Tech. Rep., 2022. [Online].
Available: www.ieor.berkeley.edu/~lavaei/fODC_Dyn_1_2020.pdf

E. L. Lawler, “Optimal sequencing of a single machine subject to prece-
dence constraints,” Manag. Sci., vol. 19, no. 5, pp. 544-546, Jan. 1973.
R. M. Karp, “The transitive closure of a random digraph,” Random Struct.
Algorithms, vol. 1, no. 1, pp. 73-93, 1990.

K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.

1. P. Corfmat and A. S. Morse, “Decentralized control of linear multivari-
able systems,” Automatica, vol. 12, no. 5, pp. 479495, Sep. 1976.

J. Lavaei and A. G. Aghdam, “Decentralized pole assignment for intercon-
nected systems,” in Proc. Amer. Control Conf., Jun. 2008, pp. 3601-3607.

Yingjie Bi received the B.S. degree in mi-
croelectronics from Peking University, Beijing,
China, in 2014, and the Ph.D. degree in elec-
trical and computer engineering from Cornell
University, Ithaca, NY, USA, in 2020.

He is currently a Postdoctoral Scholar with
the Department of Industrial Engineering and
Operations Research, University of California,
Berkeley, CA, USA. His research interests in-
clude nonconvex optimization, machine learn-
ing, computer networks, and control theory.

Javad Lavaei (Senior Member, IEEE) received
the Ph.D. degree in control and dynamical sys-
tems from the California Institute of Technology,
Pasadena, CA, USA, in 2011.

He is an Associate Professor with the De-
partment of Industrial Engineering and Opera-
tions Research, University of California, Berke-
ley, CA.

Dr. Lavaei is an Associate Editor for IEEE
TRANSACTIONS ON AUTOMATIC CONTROL, |IEEE
TRANSACTIONS ON SMART GRID, and |IEEE CON-

TROL SYSTEMS LETTERS.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 30,2022 at 22-21:55 UTC from IEEE Xplore. Restrictions apply.



