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Abstract. We propose new sequential simulation–optimization algorithms for general
convex optimization via simulation problems with high-dimensional discrete decision
space. The performance of each choice of discrete decision variables is evaluated via sto-
chastic simulation replications. If an upper bound on the overall level of uncertainties is
known, our proposed simulation–optimization algorithms utilize the discrete convex struc-
ture and are guaranteed with high probability to find a solution that is close to the best
within any given user-specified precision level. The proposed algorithms work for any
general convex problem, and the efficiency is demonstrated by proven upper bounds on
simulation costs. The upper bounds demonstrate a polynomial dependence on the dimen-
sion and scale of the decision space. For some discrete optimization via simulation prob-
lems, a gradient estimator may be available at low costs along with a single simulation rep-
lication. By integrating gradient estimators, which are possibly biased, we propose
simulation–optimization algorithms to achieve optimality guarantees with a reduced
dependence on the dimension under moderate assumptions on the bias.
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1. Introduction
Many decision-making problems in operations
research and management science involve large-scale
complex stochastic systems. The objective function in
the decision-making problems often involves expected
system performances that need to be evaluated by dis-
crete event simulation or general stochastic simula-
tion. The decision variables in many of these problems
are naturally discrete-valued and multidimensional.
This class of problems is called discrete optimization
via simulation; see Hong et al. (2015). Typically, for
discrete optimization via simulation problems, contin-
uous approximations are either not naturally available
or may incur additional errors that are themselves dif-
ficult to accurately quantify; see Nelson (2010). This
work is centered around designing and proving theo-
retical guarantees for simulation–optimization algo-
rithms to solve discrete optimization via simulation
problems with multidimensional decision space.

In large-scale complex stochastic systems, one repli-
cation of simulation to evaluate the performance of a
single decision can be computationally costly. An
accurate evaluation of the expected performance asso-
ciated with a single decision needs many independent
replications of simulation. Running simulations for all
feasible choices of decision variables in a high-dimensional
discrete space to find the optimal is computationally
prohibitive. The use of parallel computing (e.g., Luo
et al. 2015) may alleviate the computation burden, but
to find the best decision in high-dimensional problems
can still be challenging. Fortunately, for a number of
applications, the objective function exhibits convexity
in the discrete decision variables, or the problem can
be transformed into a convex one. One such example
with convex structure comes from a bike-sharing sys-
tem (Singhvi et al. 2015, Jian et al. 2016, Freund et al.
2017). This problem involves around 750 stations and
25,000 docks. The goal is to find the optimal allocation
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of bikes and docks, which are naturally discrete deci-
sion variables. The performance of each allocation is
evaluated by the dissatisfaction function, which is
defined as the total number of failures to rent or return
a bike in a whole day. In the presence of nonstationary
exogenous random demands and travel patterns, the
evaluation of the dissatisfaction function for a given
allocation needs to be done by simulation. This simu-
lation is costly as it may need to simulate the full oper-
ation of the system over the entire day. In Freund et al.
(2017), the expected dissatisfaction function is proved
to be “convex” under a linear transformation if the
stochastic arrival processes are exogenous. For this
problem, running stochastic simulations for the entire
discrete and high-dimensional decision space is compu-
tationally prohibitive. It is, therefore, of interest to explore
how the convexity structure of the objective function may
help solve the simulation–optimization problem. In fact,
many performance functions in the operations research
and management science domain exhibit convexity in dis-
crete decision variables. For example, the expected cus-
tomer waiting time in a multiserver queueing network is
proved to be convex in the routing policy and staffing
decisions; see Altman et al. (2003) and Wolff and Wang
(2002). Shaked and Shanthikumar (1988) discuss a wide
range of stochastic systems, including queueing, reliabil-
ity, and branching systems and show the convexity of key
expected performance measures as a function of the asso-
ciated decision variable. In addition, a large variety of
problems in economics, computer vision, and network
flow optimization exhibit convexity with discrete decision
variables (Murota 2003).

Even in the presence of convexity, the nominal task in
discrete optimization via simulation—correctly finding
the best decision with high enough probability, which is
often referred to as the probability of correct selection (PCS)
guarantee—can still be computationally prohibitive. For a
convex problem without convenient assumptions, such as
strong and strict convexity, there may be a large number
of choices of decision variables that render very close
objective value compared with the optimal. In this case,
the simulation efforts to identify the exact optimal choice
of decision variables can be huge and practically unneces-
sary. Our focus, alternatively, is to find a good choice of
decision variables that is assured to render ε-close objec-
tive value compared with the optimal with high probabil-
ity, where ε is any arbitrarily small user-specified preci-
sion level. This guarantee is also called the probability of
good selection (PGS) or probably approximately correct (PAC)
in the literature. This paper adopts the notion of PGS as a
guarantee for simulation–optimization algorithm design.
We refer to Eckman and Henderson (2021, 2018) for thor-
ough discussions on settings when the use of PGS is pref-
erable compared with the use of PCS. In this work, we
propose simulation–optimization algorithms that achieve
the PGS guarantee for general discrete convex problems

without knowing any further information, such as strong
convexity, etc. Knowing strong convexity or a specific
parametric function form of the objective function, of
course, further enhances the simulation–optimization algo-
rithms. However, such fine structural informationmay not
be available a priori for large-scale simulation optimization
problems. The design of our simulation–optimization algo-
rithms utilizes the convex structure, and the intuition is
that the convex structure of optimization landscapes can
provide global information through local evaluations. Global
information helps the algorithm avoid evaluating all feasi-
ble choices of decision variables, which, therefore, avoids
spending simulation efforts that are proportional to the
number of choices of decision variables and are exponen-
tially dependent on the dimension in general. Our pro-
posed simulation–optimization algorithms are based on
stochastic gradient methods and discrete steepest descent
methods, which need to be designed as fundamentally dif-
ferent from continuous optimization algorithms. For high-
dimensional problems, gradient-based methods are pre-
ferred compared with strongly polynomial methods, such
as cutting-plane methods, because the simulation costs of
gradient-based methods usually have a slower growth
rate when the dimension increases.

In order to compare algorithms that all return a sol-
ution that achieves the PGS optimality guarantee, we
use the metric of expected simulation cost. Intuitively
here, but with exact definition to follow in the main
body of this work, the expected simulation cost is
described by the expected number of simulation repli-
cations that are run over the decision space in order to
achieve a solution with the PGS guarantee. We prove
upper bounds on the expected simulation cost for our
proposed simulation–optimization algorithms that
achieve the PGS guarantee. The proven upper bounds
show a low-order polynomial dependence on the
decision space dimension d. Note that the upper
bounds hold for any arbitrary convex problem. As a
comparison, if the convex structure is not present or
utilized, the expected simulation cost to achieve the
PGS guarantee can easily be exponential in the dimen-
sion d. We also provide lower bounds on the expected
simulation costs that are needed for any possible
simulation–optimization algorithm. The lower and
upper bounds of expected simulation costs imply the
limit of algorithm performance and provide directions
to improving existing simulation–optimization algo-
rithms. In general, we refer readers to Ma and Hen-
derson (2019) and Zhong and Hong (2021) for more
detailed discussions on the use of simulation costs
and upper/lower bounds on the order of simulation
costs to analyze and compare algorithms.

1.1. Main Results and Contributions
We design gradient-based simulation–optimization
algorithms that achieve the PGS guarantee for high-
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dimensional and large-scale discrete convex problems
with a known upper bound on the level of overall
uncertainties. We consider the decision space to be
{(x1,x2: : : ,xd) : xi ∈ {1, 2, : : : ,N}, i ∈ {1, 2, : : : ,d}} that has
in total Nd possible choices of decision variables. The
discrete convexity in high dimension that preserves the
midpoint convexity (namely, the midpoint has an objec-
tive value smaller than the average of objective values at
the two endpoints) is called L\-convexity (Murota 2003).
From the optimization perspective, our work addresses
the stochastic version of discrete convex analysis in Mur-
ota (2003). From the simulation–optimization perspective,
this work provides simulation–optimization algorithms
with optimality guarantee and polynomial dependence of
simulation costs on dimension for high-dimensional dis-
crete convex simulation optimization problems.

We categorize our simulation–optimization algo-
rithms to two classes. One class is the zeroth order algo-
rithm, for which the simulation is a black box, and one
run of the simulation can only provide an evaluation of
a single decision. The other class is the first order algo-
rithm, for which the neighboring choices of decision var-
iables can be simultaneously evaluated (possibly results
in a biased finite difference gradient estimator) within a
single simulation run for a given choice of decision vari-
ables. We develop simulation–optimization algorithms
with the PGS guarantee as a major focus, but we also
provide algorithms with the PCS-IZ guarantee for cases
when the indifference zone (IZ) parameter is known.
See Hong et al. (2021) for detailed discussions on the
PCS-IZ guarantee. We summarize our results in Table
1, in which algorithm performance is demonstrated by
the expected simulation cost. In this table, we omit
terms in the expected simulation cost that do not
depend on the failing probability δ, that is, the probabil-
ity that the solution does not satisfy the specified preci-
sion. Therefore, when δ is very small, the dominating
term in the expected computation cost is what we list in
Table 1. This comparison scheme is also considered in
Kaufmann et al. (2016). That being said, we provide all

terms in the upper bounds for expected simulation
costs in corresponding theorems.

For zeroth order algorithms, the Lovász (1983) exten-
sion is introduced to define a convex linear interpola-
tion of the original discrete function. Using properties
of the Lovász extension (Fujishige 2005), it is equivalent
to optimize the interpolated continuous function.
Therefore, the projected stochastic subgradient descent
method can be used to find PGS solutions. Moreover, the
truncation of stochastic subgradients is essential in
reducing the expected simulation costs, and we prove
that the dependence on the dimension d is reduced from
O(d3) toO(d2) using truncation. In the stochastic optimi-
zation literature, it is common to assume the stochastic
subgradient is bounded when deriving high-probability
bounds, and we also provide a theoretical guarantee
under the boundedness assumption. When the bounded-
ness assumption can be verified, the dependence on
dimension can be further reduced toO(d). When the indif-
ference zone parameter c is known, an accelerated algo-
rithm is proposed and is proved to reduce the dependence
on the scale N from O(N2) to O(log(N)). Finally, an
information-theoretical lower bound is derived to show
the limit of simulation–optimization algorithms.

For first order algorithms, we have available gra-
dient information at a cost as a constant multiplying
the cost of one simulation run for which the constant
does not depend on the dimension. This gradient
information is regarded as a subgradient estimator. In
practice, the subgradient estimator can be biased, and
there is no convergence guarantee for any optimiza-
tion algorithm in general. However, under a moderate
assumption on the bias, we are still able to develop
simulation–optimization algorithms that achieve the
PGS guarantee through a stochastic version of the
steepest descent method. The associated simulation
cost does not scale up with d, but the memory cost
and the number of arithmetic operations can be much
larger than those of simulation–optimization algo-
rithms designed for the unbiased gradient estimators.

Table 1. Upper and Lower Bounds on Expected Simulation Cost for the Proposed Simulation–Optimization Algo-
rithms That Achieve the PGS and the PCS-IZ Guarantees

Algorithms PGS
PCS-IZ

(known IZ parameter c)

Zeroth order algorithm
(Gaussian noise)

Õ(d2N2ε−2log(1=δ))
(Lower bound: Õ(dε−2log(1=δ)))

Õ(d2log(N)c−2log(1=δ))

Zeroth order algorithm
(Assumption EC.1 in the supplementary material)

Õ(dN2ε−2log(1=δ)) Õ(dlog(N)c−2log(1=δ))

Lower bound Õ(dε−2log(1=δ)) Õ(dc−2log(1=δ))

Biased first order algorithm
(Assumption 5)

Õ(N3ε−2log(1=δ))
(requires additional memory cost)

Õ(Nc−2log(1=δ))

Notes. Constants and terms that do not depend on δ are omitted in the Õ(·) notation. In comparison, the expected simulation cost
without L\-convexity is Õ(Ndε−2log(1=δ)). Here, d and N are the problem dimension and scale, the feasible set is {1,: : : ,N}d, constants ε
and δ are the precision and failing probability of algorithms.
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Finally, utilizing the indifference zone, the expected
simulation cost can be reduced from O(N3) to O(N) in
terms of dependence on N.

1.2. Literature Review
The problem of selecting the best or a good choice of
decision variables through simulation is widely
studied in the simulation literature. The problem is
often called ranking-and-selection (R&S). We refer to
Hong et al. (2021) for a recent review of this literature.
There are two approaches to categorize the R&S litera-
ture. One approach is differentiating the frequentist
and the Bayesian views when describing the probabil-
ity models and procedures in R&S; see Kim and Nelson
(2006) and Chick (2006). The other approach differenti-
ates fixed confidence and fixed budget procedures; see
Hunter and Nelson (2017) and Hong et al. (2021). In
particular, the PCS of the best choice of decision
variables is a widely used guarantee for both types of pro-
cedures. Generally, in R&S problems, there is no struc-
tural information such as convexity that is considered.

A large number of R&S procedures based on the
PCS guarantee adopt the indifference zone formula-
tion called PCS-IZ. The PCS-IZ guarantee is built
upon the assumption that the expected performance
of the best choice of decision variables is at least c > 0
better than all other choices of decision variables. This
IZ parameter c is typically assumed to be known,
whereas Fan et al. (2016), as a notable exception, pro-
vides selection guarantees without the knowledge of
the indifference zone parameter. In practice, for some
problem settings, this IZ parameter may be unknown
a priori. When many choices of decision variables
have close performance compared with the best, it is
practically inefficient to select the exact best. In this
case, choices of decision variables that are close
enough to the best are referred to as “good choices,”
and any one of them can be satisfying. This naturally
gives rise to a notion of PGS. Eckman and Henderson
(2021, 2018) thoroughly discuss settings in which the
use of PGS is preferable to the use of PCS-IZ.

Discussions on discrete optimization via simulation
can be found in Fu (2002), Nelson (2010), Sun et al.
(2014), Park et al. (2014), Park and Kim (2015), Hong
et al. (2015), and Chen et al. (2018), among others. Hu
et al. (2007, 2008) discuss model reference adaptive
search algorithms in order to ensure global conver-
gence. Hong and Nelson (2006), Hong et al. (2010), and
Xu et al. (2010) propose and study algorithms based on
the convergent optimization via most promising area
stochastic search that can be used to solve general
simulation–optimization problems with discrete deci-
sion variables. The proposed algorithms are computation-
ally efficient and are proven to converge with probability
one to optimal points. Lim (2012) studies simulation–
optimization problems over multidimensional discrete

sets in which the objective function adopts multimodu-
larity, which is equivalent to the submodularity under a
linear transform; see two equivalent definitions of mul-
timodular functions in Altman et al. (2000) and Murota
(2003). They propose algorithms that converge almost
surely to the global optimal. Wang et al. (2013) discuss
stochastic optimization problems with integer-ordered
decision variables. Eckman et al. (2022) discuss a statis-
tically guaranteed screening to rule out decisions based
on initial simulation experiments utilizing the convex
structure.

When a simulation problem involves a response sur-
face to estimate or optimize over, gradient information
may be constructed and used to enhance simulation.
Chen et al. (2013) constructs a gradient estimator to
enhance simulation metamodeling. Qu and Fu (2014)
propose a new approach called gradient extrapolated
stochastic kriging that exploits the extrapolation struc-
ture. Fu and Qu (2014) discuss the use of Monte Carlo
gradient estimators to enhance regression. See also
L’Ecuyer (1990) for a review of Monte Carlo gradient
estimators. Eckman and Henderson (2020) discuss the
use of possibly biased gradient estimators in continu-
ous stochastic optimization by assuming that the bias is
uniformly bounded. Wang et al. (2021) consider a set-
ting in which the response surface is a quadratic func-
tion and gradient information is available and discuss
optimal budget allocation to maximize the probability
of correct selection. In general simulation–optimization
problems, when the decision variables are discrete, the
gradient with respect to the decision variable may not
be appropriately defined. Instead, the difference of per-
formance between two neighboring choices of decision
variables contains gradient-like information. Jian (2017)
uses this information to guide the search for the opti-
mal choices of decision variables.

Discrete optimization via simulation is also formu-
lated as the best-arm identification problem or the
pure exploration multiarmed bandit problem. The
best-arm identification literature usually does not con-
sider the problem structure or the high-dimensional
nature of an arm. More recent works focus on general
distribution families and utilize techniques from infor-
mation theory. Informational upper bounds and lower
bounds for exponential bandit models are established
by the change-of-measure technique in Kaufmann
and Kalyanakrishnan (2013) and Kaufmann et al.
(2016). In Garivier and Kaufmann (2016), a transporta-
tion inequality is proved and a general nonasymptotic
lower bound can be formulated thorough the solution
of a max-min optimization problem. Agrawal et al.
(2020) show that restrictions on the distribution family
are necessary and generalize the algorithm to models
with milder restriction than an exponential family.

Discrete optimization via simulation problems fall into
the more general class of problems called discrete
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stochastic optimization. In contrast to continuous optimi-
zation, most works on discrete stochastic optimization
(Futschik and Pflug 1995, 1997; Gutjahr and Pflug
1996; Kleywegt et al. 2002; Semelhago et al. 2020) do
not consider the convex structure. The main obstacle
to the development of discrete convex optimization
lies in the lack of a suitable definition of the discrete
convex structure. A natural definition of the discrete
convex functions is functions that are extensible to
continuous convex functions. However, for that class
of functions, the local optimality does not imply the
global optimality, and therefore, it is not suitable for
the purpose of optimization. An example with spuri-
ous local minima is given in Section 2.3. Later, Favati
(1990) proposes a stronger condition, named integral
convexity, that ensures the local optimality is equiva-
lent to the global optimality. On the other hand, after
Lovász (1983) shows the equivalence between the sub-
modularity of a function and the convexity of its
Lovász extension, submodular functions are viewed
as the discrete analogy of convex functions in the field
of combinatorial optimization. The Fenchel-type
min-max duality theorem (Fujishige 1984) and the sub-
gradient (Fujishige 2005) of submodular functions pro-
vide a good framework of applying the gradient-based
method to the submodular function minimization
(SFM) problem. The SFM problem has wide applica-
tions in computer vision, economics, and game theory
and is well-studied in literature (Lee et al. 2015, Axel-
rod et al. 2020, Zhang et al. 2020). In contrast, the sto-
chastic SFM problem is less understood, and Ito (2019)
gives the only result on the stochastic SFM problem, in
which they provide upper and lower bounds for find-
ing solutions with a small error bound in expectation.
In Murota (2003), a generalization of submodular func-
tions, called the L\-convex functions, are defined
through the translation submodularity. The L\-convex
functions are equivalent to functions that are both sub-
modular and integrally convex on the integer lattice.
In addition, the L\-convex function has a convex exten-
sion that shares similar properties as the Lovász exten-
sion, and therefore, gradient-based methods are also
applicable for L\-convex function minimization.

1.3. Notation
For N ∈ N, we define [N] :� {1, 2, : : : ,N}. For a given
set S and an integer d ∈ N, the product set Sd is
defined as {(x1,x2: : : ,xd) : xi ∈ S, i ∈ [d]} in which
[d] � {1, 2, : : : ,d}. For example, if S � [N], then
Sd � {(x1,x2: : : ,xd) : xi ∈ [N], i ∈ [d]}. For two vectors
x,y ∈ R

d, we use (x�y)i :�min{xi,yi} and (x�y)i :�
max{xi,yi} to denote the component-wise minimum
and maximum. Similarly, the ceiling function �·� and
the flooring function �·� round each component to an
integer when applied to vectors. We denote ξx as the
random object associated with the stochastic system

labeled by the choice of decision variables x. The fail-
ing probability of simulation–optimization algorithms
is denoted as δ. The notation f �O(g) (respectively,
f �Θ(g)) means that there exist absolute constants
c1, c2 > 0 such that f ≤ c1g (c1g ≤ f ≤ c2g). Similarly, the
notation f � Õ(g) ( f � Θ̃(g)) means that there exist
absolute constants c1, c2 > 0 and constant c3 > 0 inde-
pendent of δ such that f ≤ c1g+ c3 (c1g ≤ f ≤ c2g+ c3).

2. Model and Framework
The model in consideration contains a complex stochas-
tic system whose performance depends on discrete
decision variables that belong to a discrete feasible set
X ⊂ Z

d. From a modeling perspective, in a stochastic
system, the system performance may depend on three
elements: the decision variable x ∈ Z

d, a random object
ξx supported on a proper space (Y,BY) that summa-
rizes all the associated random quantities and processes
involved in the system when the decision x is taken,
and a deterministic function F : X × Y→ R that takes
the value of decision variables and a realization of the
randomness as inputs and outputs the associated sys-
tem performance. Specifically, the deterministic func-
tion F captures the full operations logic of the stochastic
system, which can be complicated. The objective func-
tion with decision variable x is given by

f (x) :� E[F(x,ξx)]:
We consider scenarios when f(x) does not adopt a
closed-form representation and can only be evaluated
by averaging over simulation samples of F(x,ξx).
More specifically, we write ξx,1,ξx,2, : : : ,ξx,n as inde-
pendent and identically distributed copies of ξx. We
use F̂n(x) :� 1

n
∑n

j�1 F(x,ξx,j) to denote the empirical
mean of the n independent evaluations for the choice
of decision variables x. The selection of the optimal
choice of decision variables is through the selection of
a choice of decision variable x that renders the best
objective value f(x). Denote x∗ as any choice of deci-
sion variable that renders the optimal objective value,
such that

f (x∗) �min
x∈X f (x): (1)

Note that we fix the use of minimum operation to rep-
resent the optimal. Our general goal is to develop
simulation–optimization algorithms that select a good
choice of decision variable x, such that

f (x) − f (x∗) ≤ ε,

where ε > 0 is the given user-specified precision level.
In this paper, we consider this selection problem in a
large decision space with high dimension.

Because f does not have a closed-form representa-
tion and has to be evaluated by simulation, we take
the view that no further structure information is

Zhang, Zheng, and Lavaei: Convex Discrete Optimization via Simulation
Operations Research, Articles in Advance, pp. 1–20, © 2022 INFORMS 5

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

60
7:

f1
40

:8
00

:1
::2

c4
] o

n 
30

 N
ov

em
be

r 2
02

2,
 a

t 1
4:

24
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



available in addition to the convex structure. For
instance, for a real-world model, f may have a very
flat landscape around the minimum, which may not
be known a priori. In this case, there may be a number
of choices of decision variables that render objective
value that is at most ε apart from the optimal. This also
motivates our goal to select a good choice of decision vari-
ables instead of the best because too much computational
resource may be needed to identify exactly the best when
the landscape around the minimum is flat. Therefore, our
general goal is to develop simulation–optimization algo-
rithms that are expected to robustly work for any convex
model without knowing further specific structure.

Because the precision level ε cannot be delivered
almost surely with a finite computational budget for
simulation, we consider a selection optimality guaran-
tee called the probability of good selection; see Eck-
man and Henderson (2021, 2018) and Hong et al.
(2021).

• PGS: With probability at least 1− δ, the solution x
returned by an algorithm has objective value at most ε
larger than the optimal objective value.
This PGS guarantee is also called the PAC guarantee in
the literature (Even-Dar et al. 2002, Kaufmann et al.
2016, Ma andHenderson 2017). Whereas our focus is to
design algorithms that satisfy the PGS optimality guar-
antee, we also consider the optimality guarantee of the
probability of correct selection with indifference zone
as a comparison.

• PCS-IZ: The problem is assumed to have a unique
solution that renders the optimal objective value. The
optimal value is assumed to be at least c > 0 smaller
than other objective values. The gap width c is called
the indifference zone parameter in Bechhofer (1954).
The PCS-IZ guarantee requires that, with probability at
least 1− δ, the solution x returned by an algorithm is
the unique optimal solution.

By choosing ε < c, algorithms satisfying the PGS guar-
antee can be directly applied to satisfy the PCS-IZ guar-
antee. On the other hand, counterexamples in Eckman
and Henderson (2021) show that algorithms satisfying
the PCS-IZ guarantee may fail to satisfy the PGS guaran-
tee. This phenomenon is further explained from the
hypothesis-testing perspective in Hong et al. (2021). The
failing probability δ in either PGS or PCS-IZ is typically
chosen to be very small to ensure a high-probability
result. Hence, we assume in the following that δ is small
enough and focus on the asymptotic expected simula-
tion cost.

To facilitate the construction of simulation–optimization
algorithms that can deliver the PGS guarantee for gen-
eral convex problems, we specify the composition of
simulation–optimization algorithms in the next section.
In addition, we assume that the probability distribution
for the simulation output F(x,ξx) is sub-Gaussian.

Assumption 1. The distribution of F(x,ξx) is sub-Gaussian
with known parameter σ2 for any x ∈ X .

The sub-Gaussian distributional assumption part in
Assumption 1 is standard in the simulation–optimization
literature; see, for example, the discussions in Zhong and
Hong (2018). One special case is that the probability distri-
bution for the simulation output at a choice of decision
variables x is Gaussian with variance σ2x. However, it is
indeed possible that these variances for different x’s are
unknown in advance, therefore posing a challenge. In
that regard, one may consider using the system structure
to provide a generic upper bound σ2 ≥maxx∈Xσ2x, partic-
ularly when the maximum possible level of uncertainties
associated with a system is available. In practice, if the
decision maker knows in advance what specific
extreme choices of decision variables lead to the highest
achievable variance of the system, that would be signif-
icantly valuable to find the upper bound. In general,
when the variances are not known in advance, such a
generic upper bound can sometimes be loose and,
therefore, is conservative. In this work, we take the
view that an upper bound (maybe a loose one) is known
in advance and focus on the algorithm design to search
for a good solution that has light dependence on the
dimension. Note that our analysis under Assumption 1
can be naturally extended to models whose randomness
distribution satisfies certain concentration inequalities.
For example, when the randomness is subexponential
(which may have heavier tails than Gaussian), one can
apply the Hoeffding–Azuma inequality for subexponen-
tial tailed martingales to achieve provably efficient
algorithms.

2.1. Simulation–Optimization Algorithms
In this section, we define different classes of simulation–
optimization algorithms. We hope to design simulation–
optimization algorithms that can deliver a certain
optimality guarantee, say, PGS, for any convex model
without knowing further structure. A broad range of
sequential simulation–optimization algorithms con-
sists of three parts.

• The sampling rule determines which choice of
decision variables to simulate next based on the history
of simulation observations up to the current time.

• The stopping rule controls the end of the simulation
phase and is a stopping time according to the filtration
up to the current time. We assume that the stopping
time is finite almost surely.

• The recommendation rule selects the choice of deci-
sion variables that satisfies the optimality guarantee
based on the history of simulation observations.

The model of Problem (1) consists of the decision
set X , the space of randomness (Y,BY), and the func-
tion F(·, ·).
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Next, we define the class of simulation–optimization
algorithms that can deliver solutions satisfying a certain
optimality guarantee for a given set of models.

Definition 1. Suppose the optimality guarantee O and the
set of models M is given. A simulation–optimization
algorithm is called an (O,M)-algorithm if, for any model
M ∈M, the algorithm returns a solution to M that satis-
fies the optimality guaranteeO.

We define the set of all models such that the objec-
tive function f (·) is convex (defined in the next section)
on the discrete set X as MC(X ) or, simply, MC. Using
this definition, a (PGS,MC)-algorithm is one that
guarantees the finding of a solution that satisfies the
PGS guarantee for any convex model without know-
ing further structure.

2.2. Simulation Costs
In the development of simulation–optimization
algorithms that satisfy a certain optimality guarantee,
especially for large-scale problems, the performance of
different algorithms can be compared based on their
computational costs to achieve the same optimality
guarantee. We take the view that the simulation cost of
generating replications of F(x,ξx) is the dominant con-
tributor to the computational cost associated with a
simulation–optimization algorithm. See also Luo et al.
(2015), Ni et al. (2017), and Ma and Henderson (2019).
Therefore, we quantify the computational cost as the
total number of evaluations of F(x,ξx) for all x ∈ X . In
some simulation problems, but not all, we may also
have access to noisy and possibly biased estimates of
f (·) near point x along with an evaluation of F(x,ξx).
The simulation cost in this case is discussed in Section
6. For all simulation–optimization algorithms proposed
in this paper, we provide upper bounds on the
expected simulation cost to achieve a certain optimality
guarantee. Note that these upper bounds do not rely on
the specific structure of the problem in addition to con-
vexity. The expected simulation cost serves as a meas-
urement to compare different algorithms and provide
insights on how the computational cost depends on the
scale and dimension of the problem.

Now, we define the expected simulation cost for a
given set of models M and given optimality guaran-
teeO.

Definition 2. Given the optimality guarantee O and a
set of models M, the expected simulation cost is
defined as

T(O,M) :� inf
A is (O,M)

sup
M∈M

E[τ],

where A is a simulation–optimization algorithm and τ
is the stopping time of the algorithm A, which is also
the number of simulation evaluations of F(·, ·).

The notion of simulation cost in this paper is largely
focused on

T(ε, δ,MC) :� T((ε, δ)-PGS,MC),
T(δ,MCc) :� T((c, δ)-PCS-IZ,MCc):

Note that the (ε,δ) -PGS refers to the PGS optimality
guarantee with user-specified precision level ε > 0
and confidence level 1− δ. The notion (c,δ)-PCS-IZ
refers to the PCS-IZ optimality guarantee with confi-
dence level 1− δ and IZ parameter c. The class of
models MC include all convex models, whereas MCc
include all convex models with IZ parameter c. In
addition, we mention that all upper bounds derived
in this paper are actually almost sure bounds of the
simulation cost, whereas lower bounds only hold in
expectation.

2.3. Discrete Convex Functions in
Multidimensional Space

In contrast to the continuous case, the discrete convex-
ity has various definitions, for example, convex extensi-
ble functions and submodular functions. Although
these concepts coincide for the one-dimensional case,
they have essential differences in the multidimensional
case. In this work, we consider L\-convex functions
(Murota 2003), which are defined by the midpoint
convexity (defined later in this section) for discrete vari-
ables. Considerably many discrete optimization via
simulation problems have a L\-convex structure. For
example, the expected customer waiting time in a mul-
tiserver queueing network is proved to be a separated
convex function (Wolff and Wang 2002, Altman et al.
2003) and, therefore, is L\-convex. In addition, the dis-
satisfaction function of a bike-sharing system is shown
to be multimodular in Freund et al. (2017), which is
L\-convex under a linear transformation. More exam-
ples of L\-convex functions are given in Murota (2003).
On the other hand, the minimization of an L\-convex
function is equivalent to the minimization of its linear
interpolation, which is continuous and convex. Com-
bined with the closed-form subgradient, L\-convex
functions provide a good framework for studying dis-
crete convex simulation optimization problems.

Before we give the definition of L\-convexity, we first
show that it is not suitable to define discrete convex
functions just as functions that have a convex extension.
The main problem of this definition based on extension
is that the “local optimality” may not be equivalent to
the global optimality, which is one of the important
properties used in convex optimization. In the discrete
case, we say a point x̄ is a local minimum of f (·) if f (x̄) ≤
f (x) for all feasible x such that ||x− x̄||∞ ≤ 1. Without
this property, algorithms may get stuck at spurious
local minima and fail to satisfy the optimality guaran-
tee. We give an example to illustrate the failure.
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Example 1. We consider the case when n� 4 and d� 2.
The objective function is given as

f (x, y) :� 4|2x + y − 8| + |x − 2y + 6|:
The function f(x, y) is a convex function on the set [1, 4]2,
and the unique global minimizer is (2,4). When
restricted to the integer lattice {1, 2, 3, 4}2, the global min-
imizer is still (2, 4). We consider the point (3,2) with
objective value f (3, 2) � 5. In the local neighborhood
{2, 3, 4} × {1, 2, 3}, which contains points that have
ℓ∞-distance at most 1 from (3, 2), the objective values are

f (2, 1) � 18, f (3, 1) � 11, f (4, 1) � 12, f (2, 2) � 12,
f (4, 2) � 14, f (2, 3) � 6, f (3, 3) � 7, f (4, 3) � 16:

Thus, the point (3, 2) is a spurious local minimizer of
the discrete function. This shows that local optimality
cannot imply global optimality.

On the other hand, the L\-convexity ensures that
local optimality implies global optimality. Similar to
the continuous case, L\-convex functions can be char-
acterized by the midpoint convexity property.

Definition 3. A set S ⊂ Z
d is called a L\-convex set if it

holds that

x,y ∈ S ⇒ �(x+ y)=2�, �(x+ y)=2� ∈ S:

A function f (x) : X �→ R is called a L\-convex function
if X is a L\-convex set and the discrete midpoint con-
vexity holds:

f (x) + f (y) ≥ f (�(x+ y)=2�) + f (�(x+ y)=2�), ∀x,y ∈ X :

The set of models such that f(x) is L\-convex on X is
denoted as MC(X) or, simply, MC. The set of models
such that f(x) is L\-convex with indifference zone
parameter c is denoted asMCc(X ) or, simply,MCc.

We assume that the objective function is L\-convex
in the remainder of this work.

Assumption 2. The objective function f(x) is an L\-convex
function on the L\-convex set X .

Before proceeding to the properties, we provide a few
examples of L\-convex sets and L\-convex functions.

Example 2. Examples of L\-convex sets include the
whole space Z

d and the hypercube [N1] × [N2] × : : :
× [Nd], where d and Ni are positive integers for all
i ∈ [d]. Another important example of L\-convex sets is
the linearly transformed capacity-constrained hyper-
cube; see the derivation in Section 7. Specifically, for
positive integers d, N, and M ≤N, the following set is
L\-convex:

{x ∈ Z
d | x1 ∈ [N], xi+1 − xi ∈ [N], ∀i ∈ [d− 1], xd ≤M}:

Examples of L\-convex functions include the indica-
tor function of any L\-convex set, linear functions,
and separably convex functions, namely, functions

having the form

f (x) �∑d
i�1

f i(xi),

where f i(·) is a convex function for all i ∈ [d]. See Mur-
ota (2003) for more examples.

In the following lemma, we list several properties of
L\-convex functions.

Lemma 1. Suppose that the function f (x) : X �→ R is
L\-convex. The following properties hold:

• There exists a convex function f̃ (x) on the convex hull
conv(X ) such that f̃ (x) � f (x) for all x ∈ X .

• Local optimality is equivalent to global optimality:

f (x) ≤ f (y), ∀y ∈ X�f (x) ≤ f (y), ∀y ∈ X

s:t: ||y − x||∞ � 1:

• Translation submodularity holds:

f (x) + f (y) ≥ f ((x − α1)� y) + f (x� (y + α1)),
∀x, y ∈ X , α ∈ N s:t: (x − α1)� y, x� (y + α1) ∈ X :

The L\-convexity can be viewed as a combination of
submodularity and integral convexity (Murota 2003,
theorem 7.20). Intuitively, the submodularity ensures
the existence of a piecewise linear convex interpola-
tion in the local neighborhood of each point, whereas
the integral convexity ensures that the piecewise lin-
ear convex interpolations can be pieced together to
form a convex function on [1,N]d. In addition, we can
calculate a subgradient of the convex extension with
O(d) function value evaluations. Hence, L\-convex
functions provide a good framework for extending
continuous convex optimization theory to the discrete
case.

3. Simulation–Optimization Algorithms
and Expected Simulation Costs for a
Special Case

In this and the following section, we propose
simulation–optimization algorithms that achieve the
PGS guarantee for any simulation optimization prob-
lem with a L\-convex objective function. We prove
upper bounds on the expected simulation costs. To
better present the dependence of expected simulation
costs on the scale and dimension of the problem, we
assume that the feasible set is the hypercube [N]d in
complexity analysis.

Assumption 3. The feasible set of decision variables is
X � [N]d, where N ≥ 2 and d ≥ 1.

In large-scale simulation problems, either N or d or
both N and d can be large. We note that, if the feasible
set X is a general L\-convex set, the construction of the
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convex extension and the analysis are still valid by
replacing N with maxx,x′∈X ||x− x′||∞. Moreover, our
algorithms are directly applicable to the case in which
X is a general L\-convex set, which is also the minimal
requirement on the feasible set for the definition of
L\-convexity. In this section, we start with a special
case in which the decision space is {0, 1}d for a large d.
We defer the discussions for general N to Section 4. The
simulator may have a general complex and discontinu-
ous structure that no unbiased gradient estimator is
available within the replication of simulation. For sce-
narios in which a single replication of simulation can
also generate gradient information at very low costs,
we propose and analyze simulation–optimization algo-
rithms in Section 6.

The general idea of designing simulation–optimization
algorithms in the multidimensional case is to construct
subgradients of the convex extension with O(d) function
value evaluations on the neighboring choices of a deci-
sion. Hence, the stochastic subgradient descent (SSGD)
method can be used to solve Problem (1). Compared with
the bisection method and general cutting-plane methods,
gradient-based methods have two advantages in our
case. First, as pseudo-polynomial algorithms, gradient-
based methods usually have lighter dependence on the
problem dimension d compared with strongly or weakly
polynomial algorithms. For example, the deterministic
integer-valued submodular function minimization (SFM)
problem can be solved with Õ(d), Õ(d2), Õ(d3) function
value evaluations usingpseudo-polynomial (Axelrod et al.
2020), weakly polynomial and strongly polynomial (Lee
et al. 2015) algorithms, respectively. Usually, gradient-
based methods have extra polynomial dependence on the
Lipschitz constant of the objective function, in exchange
for the reduced dependence on d. However, for a large
group of problems, the Lipschitz constant may be esti-
mated a priori. Moreover, we can design algorithms
whose expected simulation cost does not critically rely on
the Lipschitz constant, in the sense that the Lipschitz con-
stant only appears in a smaller order term in the expected
simulation cost. Hence, gradient-based methods are pre-
ferred for high-dimensional problems. On the other hand,
ordinary cutting plane methods are not robust to noise
and problem-specific stabilization techniques should be
designed for stochastic problems (Sen and Higle 2001), or
complicated robust scheme should be constructed (Nem-
irovskij and Yudin 1983, Agarwal et al. 2011). Considering
these two advantages of gradient-based methods, we
focus on the SSGD method in designing our simulation-
optimization algorithms and make the assumption that
an upper bound of the ℓ∞-Lipschitz constant is known a
priori.

Assumption 4. An upper bound on the ℓ∞-Lipschitz con-
stant of f(x) is known to be L a priori. Namely, we know

beforehand that

| f (x) − f (y)| ≤ L, ∀x,y ∈ X s:t: ||x− y||∞ ≤ 1:

We remark that this constant L, in the general
decision-making contexts, reflects the impact on the
objective function by a small change in the value of
the high-dimensional decision variable. For example,
in bike-sharing applications, this L may reflect the
impact of allocating one more bike to a station.
Whether the objective function being revenue or num-
ber of dissatisfied customers, the upper bound on the
impact of allocating one more bike can be quantified.
The estimation of L usually relies on the domain
knowledge about the problem. For example, the user
dissatisfaction function in the bike-sharing application
takes values in {0, 1, : : : ,M}, where M is the expected
number of users each day. Then, an estimate of the
Lipschitz constant is L ≤M.

When the decision space is X � {0, 1}d, L\-convex
functions are equivalent to submodular functions, and
therefore, Problem (1) is equivalent to the stochastic
submodular function minimization (stochastic SFM)
problem. To prepare the design of simulation algo-
rithms, we first define the Lovász extension of sub-
modular functions and give an explicit subgradient of
the Lovász extension at each point.

Definition 4. Suppose that function f (x) : {0,1}d �→ R is
a submodular function, that is, it holds that

f (x) + f (y) ≥ f (x�y) + f (x�y), ∀x,y ∈ {0,1}d:
For any x ∈ [0,1]d, we say a permutation αx : [d] �→ [d]
is a consistent permutation of x if

xαx(1) ≥ xαx(2) ≥ : : : ≥ xαx(d):

We define Sx,0 :� (0, : : : , 0). For each i ∈ {1, : : : ,d}, the
ith neighboring point of x is defined as

Sx,i :�∑i

j�1
eαx( j) ∈ X ,

where vector ek is the kth unit vector of Rd. We define
the Lovász extension f̃ (x) : [0,1]d �→ R as

f̃ (x) :� f (Sx,0) +∑d
i�1

[f (Sx,i) − f (Sx,i−1)]xαx(i): (2)

We note that the value of the Lovász extension does
not rely on the consistent permutation we choose. A
numerical illustration of the Lovász extension is pro-
vided in the online appendix. We list several well-
known properties of the Lovász extension and refer
their proofs to Lovász (1983) and Fujishige (2005). We
note that the subdifferential at point x ∈ [0,1]d is
defined as the set

∂f̃ (x) � {g ∈ R
d : 〈g,x− y〉 ≥ f̃ (x) − f̃ (y), ∀y ∈ [0,1]d}:
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Lemma 2. Suppose that Assumptions 1–4 hold. Then, the
following properties of f̃ (x) hold.

i. For any x ∈ X , it holds that f̃ (x) � f (x).
ii. The minimizers of f̃ (x) satisfy arg minx∈[0,1]d

f̃ (x) � arg minx∈{0,1}d f (x).
iii. Function f̃ (x) is a convex function on [0,1]d.
iv. A subgradient g ∈ ∂f̃ (x) is given by

gαx(i) :� f (Sx,i) − f (Sx,i−1), ∀i ∈ [d]: (3)

v. Subgradients of f̃ (x) satisfy
||g||1 ≤ 3L=2, ∀g ∈ ∂f̃ (x), x ∈ [0,1]d:

To apply the SSGD method to design simulation–
optimization algorithms for Problem (1), we need to
resolve the following two questions:

•How to design an unbiased subgradient estimator.
• How to round an approximate solution in [0,1]d to

an approximate solution in X � {0,1}d.
For the first question, we consider the subgradient

estimator at point x as

ĝαx(i) :� F(Sx,i, ξ1i ) − F(Sx,i−1, ξ2i−1), ∀i ∈ [d], (4)

where ξ
j
i are mutually independent for i ∈ [d] and

j ∈ [2]. By definition, we know the components of ĝ
are mutually independent and the simulation cost of
each ĝ is 2d. Using the subgradient defined in (3), we
have

E[ ĝαx(i)] � E[F(Sx,i,ξi) − F(Sx,i−1,ξi−1)]
� f (Sx,i) − f (Sx,i−1)
� gαx(i), ∀i ∈ [d],

which means that ĝ is an unbiased estimator of g.
Next, we consider the second question. We define

the relaxed problem as

f ∗ :� min
x∈[0,1]d

f̃ (x): (5)

Properties (i) and (ii) of Lemma 2 imply that the origi-
nal Problem (1) is equivalent to the relaxed Problem
(5). In the deterministic case, suppose we already
have an ε-optimal solution to Problem (5), that is, a
point x̄ in [0,1]d such that f̃ (x̄) ≤ f ∗ + ε. Then, we
rewrite the Lovász extension in (2) as

f̃ (x̄) � [1− x̄αx̄ (1)] f (Sx̄ ,0) +
∑d−1
i�1

[x̄αx̄ (i) − x̄αx̄ (i+1)] f (Sx̄,i)

+ x̄αx̄ (d) f (Sx̄ ,d), (6)

which is a convex combination of f (Sx̄,0), : : : , f (Sx̄,d).
Hence, there exists an ε-optimal solution among the
neighboring points of x̄. This means that we can solve
a subproblem with d + 1 points to get the ε-optimal
solution among neighboring points. For the stochastic
case, a similar rounding process can be designed, and

we give the pseudo-code in Algorithm 1. The round-
ing process for the (c,δ)-PCS-IZ guarantee follows by
choosing ε � c=2.

Algorithm 1 (Rounding Process to a Feasible Solution)
Input:ModelX ,BY,F(x,ξx); optimality guarantee param-

eters ε,δ, (ε=2,δ=2)-PGS solution x̄ to Problem (5).
Output: An (ε,δ)-PGS solution x∗ to Problem (1).

1: Compute a consistent permutation of x̄, denoted
as α.

2: Compute the neighboring points of x̄, denoted as
S0, : : : ,Sd.

3: Simulate at Si until the 1− δ=(4d) confidence half-
width of F̂n(Si) is smaller than ε=4 for all i.

4: Return the optimal point x∗ ← arg minS∈{S0,: : : ,Sd}F̂n(S).
The following theorem proves the correctness and

estimates the simulation cost of Algorithm 1. Note
that all the upper bound results on simulation costs in
this paper are proved to hold both almost surely and
in expectation. We do not differentiate the use of simu-
lation costs and expected simulation costs in upper bound
results.

Theorem 1. Suppose that Assumptions 1–4 hold. The solu-
tion returned by Algorithm 1 satisfies the (ε,δ)-PGS guar-
antee. The simulation cost of Algorithm 1 is at most

O
d
ε2

log
d
δ

( )
+ d

[ ]
� Õ

d
ε2

log
1
δ

( )[ ]
:

Proof of Theorem 1. The proof of Theorem 1 is given in
the supplementary material. w

We note that the simulation cost in the Õ notation
gives the asymptotic simulation cost when δ is small
enough. After resolving these two problems, we can
first use the SSGD method to find an approximate sol-
ution to Problem (5) and then round the solution to
get an approximate solution to Problem (1). Hence,
the focus of the remainder of this section is to provide
upper bounds of simulation cost to the SSGD method.
The main difficulty of giving sharp upper bounds lies
in the fact that the Lovász extension is neither smooth
nor strongly convex. This property of the Lovász
extension prohibits the application of Nesterov accel-
eration and common variance reduction techniques.

Now, we propose the projected and truncated
SSGD method for the (ε,δ)-PGS guarantee. The
orthogonal projection onto the convex hull conv(X ),
which is defined as

PX (x) :� arg min
y∈conv(X )

||y− x||2, ∀x ∈ R
d,

is applied after each iteration to ensure the feasibil-
ity of iteration point. Because the convex hull is a
convex set, the projection is well-defined. For the
case in which the feasible set is {0,1}d, the projection
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is given by

PX (x) :� (x�1)�0, ∀x ∈ R
d:

In addition to the projection, componentwise trunca-
tion of stochastic subgradient is critical in reducing
expected simulation costs. The truncation operator
with thresholdM > 0 is defined as

T M( g) :� ( g�M1)� (−M1), ∀g ∈ R
d:

The pseudo-code of the projected and truncated SSGD
method is listed in Algorithm 2.

Algorithm 2 (Projected and Truncated SSGD Method for the
PGS Guarantee)
Input: Model X ,BY,F(x,ξx); optimality guarantee

parameters ε,δ; number of iterations T; step size η;
truncation thresholdM.

Output: An (ε,δ)-PGS solution x∗ to Problem (1).
1: Choose an initial point x0 ∈ X .
2: for t � 0, : : : ,T− 1 do
3: Generate a stochastic subgradient ĝt at xt.
4: Truncate the stochastic subgradient g̃t ← T M(ĝt).
5: Update xt+1 ← PX (xt − ηg̃t).
6: end for
7: Compute the averaging point x̄ ← (∑T−1

t�0 xt
)
=T.

8: Round x̄ to an integral point by Algorithm 1.

The analysis of Algorithm 2 fits into the classical con-
vex optimization framework. With a suitable choice of
step size, truncation threshold, and number of iterations,
Algorithm 2 returns an (ε,δ)-PGS solution, and the
expected simulation cost has O(d2) dependence on the
dimension.

Theorem 2. Suppose that Assumptions 1–4 hold and the
subgradient estimator in (4) is used. If we choose

T � Θ̃
d
ε2

log
1
δ

( )[ ]
, M � Θ̃













log

dT
ε

( )√[ ]
, η � 1

M



T

√ ,

then Algorithm 2 returns a (ε,δ)-PGS solution. Further-
more, we have

T(ε,δ,MC) �O
d2

ε2
log

1
δ

( )
+ d3

ε2
log

d2

ε3

( )
+ d3L2

ε2

[ ]
� Õ

d2

ε2
log

1
δ

( )[ ]
:

Proof of Theorem 2. The proof of Theorem 2 is given in
the supplementary material. w

Although independent of δ, we note that the last
two terms in the expected simulation cost may be
comparable to the first term when δ is not that small.
We can prove that, without the truncation step (i.e.,

M �∞), the expected simulation becomes

Õ
d3

ε2
log

1
δ

( )[ ]
:

Hence, the truncation of the stochastic subgradient is
necessary for reducing the asymptotic expected simu-
lation cost. In addition, we note that the Lipschitz con-
stant L is required in determining the truncation
threshold M; see Lemma EC.3 for more details.
Whereas the error of the normal SSGD method only
contains the optimization residual and the variance
terms, the residual of the truncated SSGD method has
an extra bias term. We note that the bias term can be
made arbitrarily small with high probability by choos-
ing large enough M and utilizing the tail bound for
sub-Gaussian random variables, and therefore, the
total error can be controlled similarly as with the nor-
mal SSGD method. By choosing ε � c=2, Algorithm 2
returns a (c,δ)-PCS-IZ solution, and the expected sim-
ulation cost for the PCS-IZ guarantee is

T(δ,MCc) � Õ
d2

c2
log

1
δ

( )[ ]
:

We note that the expected simulation cost for both
guarantees does not critically depend on the Lipschitz
constant L. As an alternative to Estimator (4), one may
consider generating a stochastic subgradient by randomly
choosing a subset of components and only estimating the
chosen components of subgradients. However, using this
estimator, we cannot achieve better simulation cost, and
the expected simulation cost may be critically dependent
on L.

Before finishing the discussion of the stochastic
SFM problem, we note that the expected simulation
cost in Theorem 2 may be improved if we further
assume the stochastic subgradient is bounded almost
surely. We provide a detailed analysis in the online
appendix.

4. Simulation–Optimization Algorithms
and Expected Simulation Costs for the
General Case

In this section, we extend to the general L\-convex
function minimization problem with decision space
[N]d for general large N and d. We design simulation–
optimization algorithms that achieve the PGS guaran-
tee and prove upper bounds on the simulation costs.

As an extension to the methodology in Section 3,
we first show that the Lovász extension in the neigh-
borhood of each point can be pieced together to form
a convex function on conv(X ) � [1,N]d. We define the
local neighborhood of each point y ∈ [N − 1]d as the
hypercube

Cy :� y+ [0,1]d,
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where the Minkowski sum of a point y ∈ R
d and a set

C ⊂ R
d is defined as

y+ C :� {y+ x | x ∈ C}:
We denote the objective function f(x) restricted to Cy ∩
X as fy(x). For point x ∈ Cy, we denote αx as a consis-
tent permutation of x – y in {0,1}d, and for each
i ∈ {0, 1, : : : ,d}, the corresponding ith neighboring
point of x is defined as

Sx,i :� y+∑i

j�1
eαx(j):

By the translation submodularity property of L\-con-
vex functions, we know function fy(x) is a submodular
function on y+ {0,1}d, and its Lovász extension in Cy
can be calculated as

f̃ y(x) :� f (Sx,0) +∑d
i�1

[f (Sx,i) − f (Sx,i−1)]xαx(i):

Now, we piece together the Lovász extension in each
hypercube by defining

f̃ (x) :� f̃y(x), ∀x ∈ [1,N]d, y ∈ [N − 1]d s:t: x ∈ Cy:

(7)

The next theorem verifies the well definedness and
the convexity of f̃ .

Theorem 3. The function f̃ (x) in (7) is well-defined and is
convex on X .

Proof of Theorem 3. The proof of Theorem 3 is given in
the supplementary material. w

A numerical verification of the results of Theorem 3
is provided in the online appendix. Properties of the
Lovász extension in Lemma 2 can be naturally
extended to the convex extension f̃ (x).
Lemma 3. Suppose that Assumptions 1–4 hold. Then, the
following properties of f̃ (x) hold.

• For any x ∈ X , it holds that f̃ (x) � f (x).
• The minimizers of f̃ satisfy arg miny∈[1,N]d f̃ (y) �

arg miny∈[N]d f (y).• For a point x ∈ Cy, a subgradient g ∈ ∂f̃ (x) is given by

gαx(i) :� f (Sx,i) − f (Sx,i−1), ∀i ∈ [d]: (8)

• Subgradients of function f̃ (x) satisfy
||g||1 ≤ 3L=2, ∀g ∈ ∂f̃ (x), x ∈ X :

Similar to the proof of Theorem 3, the subgra-
dient given in (8) does not depend on the hyper-
cube and the consistent permutation we choose.
The subgradient estimator defined in (4) is still
valid in the general case. Thus, changing the orthogonal

projection to be

PX (x) :� (x�N1)� 1, ∀x ∈ R
d,

Algorithm 2 can be applied to the general case, and
we get the counterpart to Theorem 2.

Theorem 4. Suppose that Assumptions 1–4 hold and the
subgradient estimator in (4) is used. If we choose

T� Θ̃
dN2

ε2
log

1
δ

( )[ ]
, M� Θ̃















log

dNT
ε

( )√[ ]
, η� N

M



T

√ ,

then Algorithm 2 returns an (ε,δ)-PGS solution. Further-
more, we have

T(ε,δ,MC) �O
d2N2

ε2
log

1
δ

( )
+ d3N2

ε2
log

d2N
ε3

( )
+ d3N2L2

ε2

[ ]
� Õ

d2N2

ε2
log

1
δ

( )[ ]
:

Proof of Theorem 4. The proof of Theorem 4 is given in
the supplementary material. w

We reiterate that the results also apply to the gen-
eral L\-convex set case by replacing the scale N with
maxx,x′∈X ||x− x′||∞. Similarly, the expected simulation
costs in Theorem 4 can be improved under the
bounded stochastic subgradient assumption, and we
defer the discussion to the online appendix. For the
PCS-IZ guarantee, we can choose ε � c=2, and Algo-
rithm 2 returns a (c,δ)-PCS-IZ solution. Hence, these
asymptotic simulation costs also hold for the PCS-IZ
guarantee. However, with the a priori knowledge
about the indifference zone parameter, we can design
an acceleration scheme similar to Xu et al. (2016),
which is based on the weak sharp minimum condi-
tion. The acceleration scheme reduces the dependence
on N from O(N2) to O(log(N)), and we provide details
in the online appendix.

5. Lower Bound on Expected
Simulation Cost

We derive lower bounds on the expected simulation
cost for any simulation–optimization algorithm that
can achieve the PGS guarantee. In this section, we
prove that the expected simulation cost is lower
bounded by O(dε−2log(1=δ)). We acknowledge that
the lower bound may not be tight, but the proven
lower bound results suggest the limits for all
simulation–optimization algorithms to achieve the
PGS guarantee for general simulation optimization
problems with convex structure.

To prove lower bounds, basically, we construct sev-
eral convex models that are “similar” to each other,
but they have distinct optimal solutions, in which the
difference between two models is characterized by the
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Kullback–Leibler (KL) divergence between their distri-
butions. Hence, any simulation–optimization algorithms
need a large number of simulation runs to differenti-
ate these models. More rigorously, the information-
theoretical inequality in Kaufmann et al. (2016) provides
a systematic way to prove lower bounds of zeroth order
algorithms. Given a zeroth order algorithm and a model
M, we denote Nx(τ) as the number of times that F(x,ξx)
is sampled when the algorithm terminates, where τ is
the stopping time of the algorithm. Then, it follows from
the definition that

EM[τ] �
∑
x∈X

EM[Nx(τ)],

where EM is the expectation when the model M is
given. Similarly, we can define PM as the probability
when the model M is given. The following lemma is
proved in Kaufmann et al. (2016) and is the major tool
for deriving lower bounds in this paper.

Lemma 4. For any two models M1, M2 and any event
E ∈ F τ, we have∑

x∈X
EM1[Nx(τ)]KL(ν1,x,ν2,x) ≥ d(PM1(E),PM2(E)), (9)

where d(x,y) :� xlog(x=y) + (1− x)log((1− x)=(1− y)), KL(·, ·)
is the KL divergence and νk,x is the distribution of model
Mk at point x for k � 1, 2.

The information-theoretical Inequality (9) is our
major tool for deriving lower bounds. We first reduce
the construction of L\-convex functions to the con-
struction of submodular functions. Then, using the
family of submodular functions defined in Graur et al.
(2020), we can construct d + 1 submodular functions
that have different optimal solutions and have the
same value except on d + 1 potential solutions. Hence,
the algorithm has to simulate enough samples on the
d + 1 potential solutions to decide the optimal solu-
tion, and the simulation cost is proportional to d.

Theorem 5. Suppose that Assumptions 1–3 hold. We have

T(ε, δ,MC) ≥ Θ
d
ε2

log
1
δ

( )[ ]
:

Proof of Theorem 5. The proof of Theorem 5 is given in
the supplementary material. w

We note that this lower bound is also true when
Assumption 4 holds with L ≥ ε=N. In addition, a simi-
lar construction to Theorem 5 leads to a lower bound
on the expected simulation cost for the PCS-IZ
guarantee.

Theorem 6. Suppose that Assumptions 1–3 hold. We have

T(δ,MCc) ≥ Θ
d
c2
log

1
δ

( )[ ]
:

Proof of Theorem 6. The proof of Theorem 6 is given in
the supplementary material. w

6. Simulation–Optimization Algorithms
with Biased Gradient Information

In large-scale discrete optimization via simulation,
during a simulation run for performance evaluation at
a given value of the d-dimensional decision variable x,
it is sometimes possible that the neighboring values of
decision variables (those very close to x) can be eval-
uated simultaneously within the same simulation run
for x at marginal costs. See Jian et al. (2016) and Jian
(2017) for a bike-sharing discrete optimization via sim-
ulation problem that adopts this feature. When the
decision variable x is in continuous space, this simul-
taneous simulation approach is called the infinitesimal
perturbation analysis or forward/backward automatic dif-
ferentiation, in which a gradient estimator at x can be
obtained within the same simulation run for evalua-
tion of x. In the continuous decision space, such
gradient estimators can be unbiased under Lipschitz
continuity regularity conditions though no general
guarantees on unbiasedness exist when continuity
fails. In contrast, for discrete optimization via simula-
tion problems, in particular for those for which
discrete decision variables do not easily relax to con-
tinuous variables, the difference of function value on
x and function value on the neighboring points of x
can be viewed as an approximate directional deriva-
tive. This approximate gradient information (i.e., the
difference of objective function values) is very diffi-
cult, if not impossible, to estimate without bias using
only a single simulation run. In general, the system
dynamics and logic are different for two different dis-
crete decision variables even when they differ in only
one coordinate. Therefore, in the simulation run for
some choice of the decision variable x, the simultane-
ous evaluation for neighboring choices of the decision
variable may incur a bias. See chapter 4 of Jian (2017)
for a detailed discussion on bike-sharing optimization
as an example. Despite the bias, the availability of
such gradient information can potentially be benefi-
cial when d is large because only one simulation run is
needed to evaluate a biased version of a d-dimension
gradient estimator. The gradient estimator can be usu-
ally obtained at a marginal cost that does not depend
on the dimension d, which is much lower than the
cost of constructing a finite difference gradient
estimator.

In this section, we provide simulation–optimization
algorithms to achieve the PGS guarantee for discrete
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convex simulation optimization problems when the gra-
dient information is available (but possibly biased) within
a simulation run at a cost that does not depend on dimen-
sion. We call this class of simulation–optimization algo-
rithms, which utilize the available gradient information,
first order algorithms. We show how the use of the gra-
dient information reduces the expected simulation cost
and how the bias existing in the gradient information
affects the results. We first rigorously define the gradient
information that can be obtained in simulation with dif-
ferent choices of decision variables. The gradient informa-
tion that can be obtained within one simulation run is
generally biased and has correlated components. The
existence of correlation may increase the difficulty of ana-
lyzing the performance of simulation–optimization algo-
rithms. Moreover, the correlation could contribute to a
larger overall variance of the norm of the subgradient
estimator, which may adversely affect the simulation–
optimization algorithm.

On the bias side, if the bias in the subgradient esti-
mator can be arbitrarily large, the sign of a subgra-
dient estimator can even be flipped (see an example in
Eckman and Henderson 2020). In those cases, there is,
in general, no guarantee for gradient-based algo-
rithms even for convex problems. Examples in Ajal-
loeian and Stich (2020) also show that the biased
gradient-based methods may not converge to the opti-
mum or even dramatically diverge. To circumvent
this challenge, some existing works on biased
gradient-based methods require the objective function
to be smooth and have additional benign geometrical
properties, for example, strong convexity or the
Polyak–Łojasiewicz condition (Devolder et al. 2014,
Chen and Luss 2018, Ajalloeian and Stich 2020, Hu
et al. 2020). Because the convex extension of a general
L\-convex function is a piecewise linear function and
is neither smooth nor strongly convex, these methods
that require benign structure cannot be applied to our
case.

In the special case when the biased subgradient esti-
mator of f(x) is the unbiased subgradient estimator of
another function h(x), we can view h(x) as a perturbed
version of f(x). We define the Lovász extension of h(x)
in the same way and equivalently minimize the
Lovász extension via the SSGD method. However,
because function h(x) may not be L\-convex, its Lovász
extension is a nonsmooth and nonconvex function,
and there is no guarantee on the complexity of the
SSGD method (Daniilidis and Drusvyatskiy 2020,
Davis et al. 2020). In Zhang et al. (2020), the authors
propose a stochastic normalized subgradient descent
method with sample complexity O(ε−4) for finding a
point with a subgradient with norm smaller than ε.
Under the assumption of weak convexity, algorithms
with sample complexity of O(ε−2) are proved in Davis
and Drusvyatskiy (2019), Zhang and He (2018), and

Mai and Johansson (2020). On the other hand, to
achieve the same sample complexity as convex opti-
mization, it is proved that the perturbation h(x) − f (x)
should have order O(1=d) for all feasible x (Belloni
et al. 2015, Jin et al. 2018, Mangoubi and Vishnoi
2018). However, the existence of the perturbed func-
tion h(x) does not always hold, and therefore, we may
not use these methods.

This discussion shows that some regularity assump-
tions on the bias are necessary for the applicability of
gradient information to achieve the PGS guarantee.
Now, we describe a formal definition of a biased sub-
gradient estimator along with the assumption on bias.
The key in the assumption is to regulate the relative
magnitude of the bias so that, in expectation, the bias
does not flip the sign of any components of the true
subgradient at any choices of decision variables, that is,
the magnitude of any component of the bias is
bounded by the magnitude of this component of the
true subgradient. The use of common random variables
whenever available, in general, can contribute to the
validity of this assumption. As a comparison, Eckman
and Henderson (2020) regulate the norm of the bias to
provide guarantees for continuous stochastic optimiza-
tion problems. To prepare notation, the set of neighbor-
ing choices of decision variable x ∈ X is defined as

N x :� {x6 eS : S ⊂ [d]} ∩ X :

Here, ei is the ith unit vector of Rd and eS is the indica-
tor vector

∑
i∈S ei. The following assumption describes

the case that allows the gradient information to have
bias and correlation among different directions.

Assumption 5 (Subgradient Estimator with Bias and
Correlation). Given the bias ratio a ∈ [0, 1), for any point
x ∈ X , there exists a deterministic function Hx(y,ηy) :
N x × Z �→ R such that

|E[Hx(y,ηy)] − [f (y) − f (x)]| ≤ a · | f (y) − f (x)|, ∀y ∈N x,

(10)

where N x is the set of neighboring points of x and (Z,BZ)
is a proper space that summarizes the randomness of
G(x,ηx). Moreover, the marginal distribution for each
Hx(y,ηy) is sub-Gaussian with parameter σ̃2, and the simu-
lation cost of evaluating Hx(y,ηy) for all y ∈N x is at most
γ, multiplying the simulation cost of evaluating F(x,ξx).

Under Assumption 5, E[Hx(y,ηy)] has the same sign
as f (y) − f (x) and, using theorem 7.14 in Murota
(2003), point x ∈ X is a minimizer of f(x) if and only if

E[Hx(y,ηy)] ≥ 0, ∀y ∈N x:

Therefore, it is still possible to check the global optimality
by merely comparing the differences with neighboring
points. A similar optimality condition can be established
for the PGS guarantee. Using this observation, we give an
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algorithm for the PGS guarantee using the biased subgra-
dient estimator Hx(y,ηy). The algorithm can be seen as a
stochastic version of the steepest descent method in Mur-
ota (2003) and is listed in Algorithm 3.

Algorithm 3 (Adaptive Stochastic Steepest Descent Method
for the PGS Guarantee)
Input: Model X ,BY,F(x,ξx); optimality guarantee para-

meters ε,δ; biased subgradient estimator Hx(y,ηy);
bias ratio a.

Output: A (ε,δ)-PGS solution x∗ to Problem (1).
1: Choose the initial point x0,0 ← (N=2,: : : ,N=2)T.
2: Set the initial confidence half-width threshold

h0 ← (1− a)L=12.
3: Set maximal number of epochs E← �log2(NL=ε)�.
4: Set maximal number of iterations T← (1+ a)=

(1− a) · 6N.
5: for e � 0, 1, : : : ,E− 1 do
6: for t � 0, 1, : : : ,T− 1 do
7: repeat simulateHxe,t(y,ηy) for all y ∈N xe,t

8: Compute the empirical mean Ĥxe,t(y)
using all simulated samples for all
y ∈N xe,t .

9: Compute the 1− δ=(ET) one-sided confi-
dence interval

[Ĥxe,t(y) − hy,∞)
, ∀y ∈N xe,t :

10: until the confidence half-width hy ≤ he for all
y ∈N xe,t .

11: if Ĥxe,t(y) ≤ −2he for some y ∈N xe,t then
. This takes 2d+1 arithmetic operations.

12: Update xe,t+1 ← y.
13: else if Ĥxe,t(y) > −2he for all y ∈N xe,t then
14: break
15: end if
16: end for
17: Set xe+1,0 ← xe,t and he+1 ← he=2.
18: end for
19: Return xE,0.

The following theorem verifies the correctness of
Algorithm 3 and estimates its simulation cost.

Theorem 7. Suppose that Assumptions 1–5 hold. Algo-
rithm 3 returns an (ε,δ)-PGS solution, and we have

T(ε,δ,MC) �O
γN3

(1− a)3ε2 log
1
δ

( )
+ γN
1− a

log
N
ε

( )[ ]

� Õ
γN3

(1− a)3ε2 log
1
δ

( )[ ]
:

Proof of Theorem 7. The proof of Theorem 7 is given in
the supplementary material. w

We note that Algorithm 3 requires 2d+1 arithmetic
operations for each iteration. Even though they share

the same simulation logic, the memory cost may not be
negligible, which may also incur additional computa-
tional cost of keeping track of large-scale vectors. There
is then a trade-off between simulation costs and mem-
ory in general, which we do not exactly model in this
work. To avoid exponentially many arithmetic opera-
tions and memory occupation in the steepest descent
method, the comparison-based zeroth order method in
Agarwal et al. (2011) can be extended to our case and
reduce the number of arithmetic operations to a poly-
nomial in d. In addition, we may consider using the fol-
lowing stochastic coordinate steepest descent method
as a simple and fast implementation of Algorithms 3
and Algorithm 5, which is defined in the supplemen-
tary material. Let xt be the current iteration point, and
we update by two steps.

1. Simulate Hxt(y,ηy) for all y ∈ {xt6 ei, i ∈ [d]} until
the confidence interval is small enough.

2. If, for some y ∈ {xt6ei, i ∈ [d]}, we know f (y) <
f (xt) holds with high probability, then update xt+1 � y;
otherwise, if f (y) ≥ f (xt) −O(ε) holds for all y ∈
{xt6ei, i ∈ [d]} with high probability, then we termi-
nate the iteration and return xt as the solution.

We can see that the number of arithmetic operations
for each iteration isO(d). Moreover, an analogous method
utilizing O(d) neighboring points in the constructing gra-
dient is shown to have good empirical performance in
Jian (2017). However, theoretically, without extra assump-
tions on the problem structure, the stopping criterion
f (y) ≥ f (x) −O(ε) for all y ∈ {xt6ei, i ∈ [d]} cannot ensure
the approximate optimality of solution x. We give a coun-
terexample to show that f (y) ≥ f (x) for all y ∈ {xt6ei, i ∈
[d]} cannot ensure the optimality of solution x.

Example 3. We consider the case when d� 2 and n� 3.
Define the objective function as

f (x, y) :� 2|x − y| − |x + y − 2|, ∀(x, y) ∈ {1, 2, 3}2:
We can verify that f(x, y) is a L\-convex function and
its minimizer is (3, 3) with optimal value –4. Consider-
ing point (2, 2), we can calculate that

f (2,2)�−2, f (1,2)�1, f (3,2)�−1, f (2,1)�1, f (2,3)�−1:
Hence, the guarantee is satisfied at (2, 2), but the point
is not a minimizer of f(x).

Finally, in the case when the indifference zone
parameter c is known, we can prove that choosing ε �
Nc is enough for the (c,δ)-PCS-IZ guarantee. We pro-
vide the algorithm and its complexity analysis in the
online appendix.

7. Numerical Experiments
In this section, we implement our proposed
simulation–optimization algorithms that are guaran-
teed to find high-confidence, high-precision PGS
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solutions. We first consider the optimal allocation prob-
lem of a queueing system, in which we show the advant-
age of using the truncation step. Next, we consider an
artificially constructed L\-convex function, in which more
details about the objective function landscape are avail-
able for the evaluation of the performance.

7.1. Optimal Allocation Problem
In the optimal allocation problem, we consider the
24-hour operation of a service system with a single
stream of incoming customers. The customers arrive
according to a doubly stochastic nonhomogeneous
Poisson process with intensity function

Λ(t) :� 0:5λN · (1 − |t − 12|=12), ∀t ∈ [0, 24],
where λ is a positive constant and N is a positive inte-
ger. Each customer requests a service with service time
independently and identically distributed according to
the log-normal distribution with mean 1=λ and var-
iance 0.1. We divide the 24-hour operation into d time
slots with length 24=d for some positive integer d. For
the ith time slot, there are xi ∈ [N] homogeneous serv-
ers that work independently in parallel, and the num-
ber of servers cannot be changed during the slot.
Assume that the system operates based on a first-come,
first-served routine with unlimited waiting room in
each queue and that customers never abandon.

The decision maker’s objective is to select the staffing
level x :� (x1, : : : ,xd) such that the total waiting time of
all customers is minimized. Namely, letting f(x) be the
expected total waiting time under the staffing plan x,
then the optimization problem can be written as

min
x∈[N]d

f (x): (11)

It is proved in Altman et al. (2003) that the function
f (·) is multimodular. We define the linear transforma-
tion

g(y) :� (y1,y2 − y1, : : : ,yd − yd−1), ∀y ∈ R
d:

Then, Murota (2003) proves that

h(y) :� f ◦g(y) � f (y1, y2 − y1, : : : , yd − yd−1)
is a L\-convex function on the L\-convex set

Y :� {y∈ [Nd]d | y1 ∈ [N], yi+1−yi ∈ [N], i� 1, : : : ,N−1}:
The optimization Problem (11) has the trivial solution
x1 � : : : � xd �N. However, in reality, it is also neces-
sary to keeping the staffing cost low. There are two
different approaches to achieve this goal. First, we can
constrain the total number of servers

∑d
i�1 xi to be at

most K, where K ≤Nd is a positive integer, and the
optimization problem can be written as

min
y∈Y h(y) s:t: yd ≤ K: (12)

On the other hand, we can add a regularization term
R(x1, : : : ,xd) :� C=d ·∑d

i�1 xi � C=d · yd to the objective
function, where C > 0 is a constant. The optimization
problem can be written as

min
y∈Y h(y) +C=d · yd: (13)

We refer to Problems (12) and (13) as the constrained
and regularized problems, respectively. Our algo-
rithms can be extended to this case by considering the
Lovász extension h̃(y) on the set

Ỹ :� {y ∈ [1,Nd]d | y1 ∈ [1,N], yi+1 − yi ∈ [1,N],
i � 1, : : : ,N − 1}:

We compare the performance of the projected SSGD
method (Algorithm 2) with truncation (M <∞) and
without truncation (M �∞) on both problems. In the
truncation-free case, the step size is chosen to be
η �O(N 







d=T
√ ). We first fix the dimension (number of

time slots) to be d�4 and compare the performance
when the scale N ∈ {10,20,30,40, 50}, and we then fix
the scale to be n�10 and compare the performance
when the dimension d ∈ {4, 8, 12,16,20,24}. The
parameters of the problem are chosen as λ�4, C�50,
and K � �Nd=3�, and the optimality guarantee param-
eters are ε �N=2 and δ � 10−6. For each problem
setup, we average the simulation costs of 10 inde-
pendent implementations to estimate the expected
simulation cost. Moreover, early stopping is used to
terminate algorithms early when little progress is
made after some iterations. More concretely, we main-
tain the empirical mean of stochastic objective func-
tion values up to the current iteration and terminate
the algorithm if the empirical mean does not decrease
by ε=





N

√
after O(dε−2log(1=δ)) consecutive iterations.

We first implement both algorithms on the trivial
Problem (11) for 10 times. Because the optimal solu-
tion is known, it is possible to verify whether the solu-
tions returned by algorithms are at most ε worse than
the optimum at a confidence that is larger than 1− δ.
In the experiment, we run a sufficiently large number
of simulation replications to verify the ε-optimality at
the selected solution with confidence higher than
1− δ′, where δ′ � δ.

Next, we consider the performance of algorithms
on Problems (12) and (13). We summarize the simula-
tion costs and the objective values in Table 2. We can
see that both algorithms return a similar objective
value, and the simulation cost grows when d becomes
larger. The growth rate is approximately quadratic.
The simulation cost becomes smaller when N gets
larger because we allow a larger suboptimality gap
(N=2) when N is larger. We note that the feasible set
of both problems is not a hypercube, and thus, the
dependence of simulation costs on d and N is not
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exactly quadratic as indicated by our theory. In addi-
tion, we can see that the truncation plays an important
role in reducing the simulation cost, especially when
the dimension is high.

7.2. Separable Convex Function Minimization
We consider the problem of minimizing a stochastic
L\-convex function whose expectation is a separable
convex function parameterized by a vector c ∈ R

d and
the optimal solution x∗ ∈ R

d:

fc,x∗ (x) :�
∑d
i�1

cig(x∗i ;xi),

where ci ∈ [0:75, 1:25], x∗i ∈ {1, : : : , �0:3N�} for all i ∈ [d]
and

g(y∗;y) :�





y∗

y

√
− 1 if y ≤ y∗














N + 1− y∗

N + 1− y

√
− 1 if y > y∗,

∀y,y∗ ∈ [N]:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

It is observed that the function fc,x∗ (x) is a separable con-
vex function and, therefore, is L\-convex. Moreover, the

function fc,x∗ (x) has the optimum x∗ associated with the
optimal value zero. For stochastic evaluations, we add
Gaussian noise with mean zero and variance one to each
point x ∈ X . Because of the O[(y∗)−3=2] growth rate, the
landscape of g(y∗;y) is flat around x∗. The advantage of
this numerical example is that the expected objective
function has a closed form, and we are able to verify the
ε-optimality of the solutions returned by the proposed
algorithms.

To analyze the effect of the dimension and the scale
on the expected simulation cost, we first fix d� 10 and
compare the performance when N � 30,60,90,120, 150;
then, we fix n�30 and compare the performance when
d � 10,20,30,40,50. The optimality guarantee parame-
ters are chosen as ε � (d!)1=d=5 and δ � 10−6. In the one-
dimensional case, this choice of ε ensures that the
ε-sublevel set of the objective function approximately
covers N=4 choices of decisions. We note that this
choice of ε is only for comparisons between different
(d, N), and our results can be extended to other choices
of ε. We compute the average simulation cost of 100
independently generated models to estimate the
expected simulation cost. Similar early stopping crite-
ria are also applied.

Table 2. Simulation Costs and Objective Function Values of Algorithm 2 on the Optimal Allocation Problem

Regularized Constrained

Parameters
Truncated Not truncated Truncated Not truncated

d N Cost Obj. Cost Obj. Cost Obj. Cost Obj.

4 10 2.99e5 2.10e2 6.56e5 2.11e2 3.00e5 4.76e1 4.99e5 4.97e1
4 20 1.21e5 3.53e2 2.61e5 3.53e2 1.14e5 5.23e1 1.77e5 5.38e1
4 30 8.85e4 4.75e2 1.68e5 4.76e2 7.38e4 5.24e1 1.23e5 5.21e1
4 40 6.25e4 5.91e2 1.34e5 6.07e2 5.28e4 5.31e1 9.24e4 5.28e1
4 50 5.34e4 7.07e2 1.08e5 7.07e2 4.66e4 5.64e1 6.61e4 5.51e1
8 10 1.19e6 1.75e2 3.80e6 1.76e2 1.20e6 3.11e1 2.23e6 3.02e1
12 10 2.68e6 1.59e2 9.48e6 1.59e2 2.69e6 1.87e1 5.36e6 1.86e1
16 10 6.35e6 1.49e2 1.31e7 1.50e2 4.78e6 1.49e1 1.08e7 1.41e1
20 10 9.91e6 1.43e2 2.09e7 1.46e2 9.43e6 1.17e1 1.70e7 1.28e1
24 10 1.50e7 1.35e2 3.09e7 1.41e2 1.36e7 9.43e0 2.10e7 1.17e1

Figure 1. (Color online) The Expected Simulation Costs of the Separable ConvexMinimization Problem

Notes. (a) Expected simulation costs with n � 30. (b) Expected simulation costs with d � 10.
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Figure 1 shows the results of fixed d and N. Because
the choice of ε is dependent on d, the relation between
the simulation costs and d is not clear. Therefore, we
compare the simulation costs to the theoretical bound
(up to a constant)

T(d,N) :� N2d2ε−2log1=δ:

More specifically, we compare the simulation costs to
0:87T(d,N) in this experiment, which corresponds to
the “theory” curve in the figure. We can observe from
the plotting that the growth of simulation costs
matches our theory very well. This implies that our
estimation on the performance of the truncated SSGD
algorithm is tight on this example. Moreover, the opti-
mality gap between the returned solutions and the
optimal solution is smaller than ε for all experiments,
which implies that the algorithm succeeds with high
probability.

8. Conclusion
We propose computationally efficient simulation–
optimization algorithms for large-scale simulation
optimization problems that have high-dimensional
discrete decision space in the presence of a convex
structure. For a user-specified precision level, the pro-
posed simulation–optimization algorithms are guaranteed
to find a choice of decision variables that is close to the
optimal within the precision level with desired high prob-
ability. We provide upper bounds on simulation costs for
the proposed simulation–optimization algorithms. In this
work, we mainly focus on algorithm design and theoreti-
cal guarantees. In future work, we seek to design better
simulation–optimization algorithms that provide simula-
tion costs withmatching upper and lower bounds.
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