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Abstract—The fundamental communication problem in the
wireless Internet-of-Things (IoT) is to discover a massive number
of devices and to provide them with reliable access to shared
channels. Oftentimes these devices transmit short messages
randomly and sporadically. This paper proposes a novel signaling
scheme for grant-free massive access, where each device encodes
its identity and/or information in a sparse set of tones. Such
transmissions are implemented in the form of orthogonal
frequency-division multiple access (OFDMA). Under some mild
conditions and assuming device delays to be bounded unknown
multiples of sampling intervals, sparse OFDMA is proved to
enable arbitrarily reliable asynchronous device identification and
message decoding with a codelength that is O(K(logK+log S+
logN)), where N denotes the device population, K denotes the
actual number of active devices, and logS is essentially equal
to the number of information bits each device can send. The
computational complexity for discovery and decoding can be
made to be O(K(logK)(logK + logS + logN) + K2 logK).
As a proof of concept, a specific design is proposed to identify
up to 200 active devices out of N = 296 possible devices with
up to 20 samples of delay, moderate signal-to-noise ratios, and
fading. If the device population is N = 248 instead, each active
device can also transmit 48 bits to the access point at the same
time. The codelength compares much more favorably with those
of standard slotted ALOHA and carrier-sensing multiple access
(CSMA) schemes.

Index Terms—Asynchrony, Internet-of-Things, multiaccess,
mutiple-access, OFDM, sparse bipartite graph.

I. INTRODUCTION

BY some estimate [1], there will be well over one hundred
billion connected devices world-wide in the Internet of

Things (IoT) by year 2030. There can be over a million
low-cost, battery-powered IoT devices within 500 meter range
in a densely populated area. The general term of massive
access describes the setting where a large number of devices
need to access a shared medium in the uplink to send messages
to some access points. Wireless IoT devices typically transmit
short messages randomly and sporadically. If an access point
only needs to decode the messages but not the corresponding
devices’ identities, the setting is referred to as unsourced
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random access [2], [3]. At the other extreme where the sole
purpose is to detect and identify active devices within range,
the setting is often referred to as neighbor discovery or device
identification. Whereas neighbor discovery is a special case of
massive access, the latter can also be regarded as the former
if the transmitted data are regarded as all or a segment of the
device identities.

Most IoT access solutions in practice either orthogonalize
transmissions or suffer from collisions over the air. In
particular, using a naive time division multiple access
(TDMA) scheme to schedule densely deployed devices
would incur large latency. So would a random access
mechanism based on classical ALOHA. Since the number
of devices far exceeds the frame length, it is also
impossible to assign nearly orthogonal sequences to all the
devices to support code-division multiple access (CDMA),
especially due to device asynchrony. Moreover, massive access
using conventional multiuser detection approaches generally
involves a polynomial complexity in the number of devices [4],
which is also impractical.

Lower frequencies (under 2 GHz) are often used to provide
wide coverage and combat blockage for IoT applications.
At lower frequencies, the number of antennas that can be
deployed is limited by the wavelength. In this paper, we
assume all devices and access points are equipped with a single
antenna for simplicity.

If a common timing reference such as a beacon signal is
available, the relative delays between devices can be made to
be quite small. It is, however, hard to eliminate the relative
delays, in part because of their different distances to the same
access point. For example, a difference of 300 meters implies a
free space propagation delay of one microsecond, which spans
20 samples at 20 million samples per second.

A successful massive access solution for the IoT should be
ultra-scalable to support a massive number of devices, incur
low latencies, and allow for some asynchrony between devices.

A. Related Work

To detect and/or decode messages from many transmitters
sharing a common medium is a problem in the well established
area of multiuser detection. A small-scale neighbor discovery
problem is studied as a multiuser detection problem in [4].
In a more challenging case where the device population
is several orders of magnitude larger than the number of
active devices, schemes inspired by the compressed sensing
literature have been proposed in [5]–[13]. In fact, decoding
the uncoordinated massive access is closely related to the
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problem of support recovery, which is a special case of
compressed sensing. In concept, identifying K active devices
out of a total of N devices can be regarded as finding
a K-sparse support of an unknown vector of length N .
Results in compressed sensing indicate that the codelength
L needs to be at least O(K log(N/K)) to allow reliable
identification of an arbitrary subset of K active devices among
N devices [14]. However, a standard compressed sensing
solution is computationally intractable for a very large N .
Moreover, while such schemes can reduce the codelength
substantially when compared with 802.11 type protocols, they
mostly require synchronous transmissions.

Using many antennas at the access point may overcome the
preceding fundamental limits on synchronous massive access.
In particular, [9] shows that reliable activity detection can be
achieved in the asymptotic regime where K,N,L → ∞, as
long as L and K are linear in N , and the number of antennas
is sufficiently large. It is thus possible to have perfect activity
detection with K ≥ L. Furthermore, [15] proves that the
accurate activity detection for K = O(L2/ log2(N/K)) can
be obtained when the number of antennas scales faster than
K. This is also the best possible identifiability upper bound.
However, the complexities of the proposed algorithms in [9]
and [15] are at least linear in device population. A convex
optimization based algorithm is proposed to detect active
devices using asynchronous CDMA random access [16], but
the polynomial complexity scales poorly for massive access.

Compressed sensing algorithms with sublinear complexity
for finite discrete alphabets are proposed in [17]–[22], and
the algorithms are further extended to handle continuous
alphabets in [23]. In [23], it is shown that a codelength
of L = O(K log(N/K) log log(N/K)) and a computational
complexity of O

(
K log1+r(N/K)

)
, where r is an arbitrarily

small positive constant, is needed for synchronous active
device identification. The proposed scheme and analysis
in [23] work for identifying an arbitrarily large fraction of
active devices, while this paper aims to correctly identify
the whole set of devices. Moreover, this paper considers the
asynchronous multiaccess setting and develops a specific code
to accommodate a massive number of devices.

Non-orthogonal multiple access (NOMA) allows multiple
devices to share the time and frequency resources via power
domain or code domain multiplexing [24], [25], where
successive interference cancellation is used to cancel multiuser
interference at the receiver. NOMA’s decoding algorithms
(e.g., message passing [26]) have in general polynomial
complexities in the device population. However, whether
NOMA is resilient to imperfect channel state information in
massive access is not well understood.

The information-theoretic limits of uplink and downlink
massive access are studied in [27] and [28], respectively,
where the number of devices scales with the codelength in
general. It is shown therein that separate device identification
and message decoding achieves the capacity. The degree
of freedom of massive access fading channels is analyzed
in [29]. The capacity of a particular asynchronous set-up
is studied in [30]. Successive interference cancellation does
not achieve the boundary of the capacity region in the

case of asynchronous NOMA [31]. Low-complexity schemes
have been proposed for unsourced multiple access [32]–[35].
Specifically, [32] proposes T -fold ALOHA, [33] uses
compressed sensing and a tree-code to recover and then stitch
sub-blocks, a sparse regression code is used in [34] as an
inner code with approximate message passing decoding, and
a binary chirp coding scheme is studied in [35]. Unsourced
random access has also been extended to the massive
MIMO setting [36]. These schemes assume fully synchronous
transmissions and the effectiveness of the schemes on
asynchronous transmissions is yet to be investigated. There
have been various studies on asynchronous transmissions
[37]–[41]. Nonetheless, the algorithm proposed in [37] has
a linear computational complexity in the device population.
Pilot sequence designs were discussed in [38]–[40] with
no theoretical guarantees on detection and data transmission
performance. The scheme proposed in [41] fits in the context
of unsourced random access without activity detection.

The idea of codes on graph has also been applied in
random access [42]–[44]. One notable scheme is coded slotted
ALOHA, in which transmitters repeat their packets several
times in random slots and the access point decodes them
using successive cancellation. The scheme is studied in the
asynchronous setting in [45]–[47] under the assumption of
perfect cancellation. Rateless codes have been proposed for
multiple access in machine-to-machine communications [48],
where the channel gains are assumed to be known. The
preceding schemes suffer from the accumulation of channel
estimation errors during successive cancellation, so they do
not directly scale to a massive number of users.

B. Contributions

The goal of this work is to develop a suitable signaling
scheme for grant-free transmissions by a large number of
devices with delay uncertainties. The main contributions of
this paper are summarized as follows:

1) We propose a novel signaling scheme, referred to as
sparse OFDMA, where a device encodes its information
and/or identity onto a sparse set of orthogonal tones. We
exploit the fact that the tones’ frequencies are invariant
to delays. Sparse OFDMA is highly effective in an
asynchronous setting, which is particularly appealing in
the IoT.

2) With a codelength that is essentially sublinear in
the device population, all active devices are correctly
detected with high probability in the asymptotic regime
where the number of active devices and the maximum
delay are sublinear relative to the device population.
With a bounded maximum delay, under a mild condition
on the number of active devices, the computational
complexity is also sublinear in the device population
(due to a sparse Fourier transform).

3) The proposed signaling and decoding method are
demonstrated to be effective under some practical
scenarios using simulations. In one case with moderate
signal-to-noise ratios and fading, where the device
delays are within 20 samples, we can identify up to 200
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Fig. 1. Illustration of signals from three sample-synchronous,
frame-asynchronous users.

active devices out of N = 296 possible devices with
99% accuracy. In this case, if the device population is
N = 248 instead, each active device can also transmit
48 bits to the access point at the same time.

C. Paper Organization and Notations

The rest of the paper is organized as follows. Section II
presents the system model and main results. Section III
describes the signalling scheme of sparse OFDMA.
Section IV presents the asynchronous massive access
algorithm. Sections V and VI prove theoretical performance
guarantees for synchronous and asynchronous transmissions,
respectively. Some technical details are relegated to
appendices. Section VII presents some numerical results
on a practical design. Section VIII concludes the paper.

For ease of notation, the index of a vector or each dimension
of a matrix starts from 0 throughout the paper. The elements
of a B × C matrix are denoted as ycb , where c = 0, · · · , C −
1 and b = 0, · · · , B − 1. We write the b-th row vector as
yb =

(
y0
b , · · · , yC−1

b

)
and the c-th column vector as yc =(

yc0, · · · , ycB−1

)T
. We denote the real and imaginary parts and

the amplitude of a complex-valued variable X as XR, XI ,
and |X|, respectively. For a set K, we use |K| to denote its
cardinality. By default, all logarithms are base 2.

II. SYSTEM MODEL AND MAIN SCALING RESULTS

We focus on the uplink access problem in a system
consisting of one access point and N potential devices in
total. Let {0, · · · , N − 1} denote the set of device indices.
An arbitrary subset of devices are within the range of the
access point and active, whose indices form the set K ⊆
{0, · · · , N − 1}. Let K = |K| denote the number of active
devices. Each device has a message set with no more than S
messages. One of the messages is transmitted when the device
is active. For tractability, we assume sample synchrony without
frame synchrony, i.e., the delay of each device’s signal at the
access point is an integer multiple of sampling intervals. We
further assume the delay of any device relative to a reference at
the access point be no more than M sampling intervals. For a
small M , this can be accomplished by using a common beacon
to trigger transmissions. Fig. 1 illustrates a small example with
three devices with different delays.

As a convention, we refer to the time-domain symbols at a
transmitter as chips and refer to the time-domain symbols at
an access point as samples. We introduce frequency-domain
OFDM symbols in Section III. Let sk = (sk,0, . . . , sk,L−1)
denote the L-chip codeword transmitted by device k. In the

absence of frequency selectivity, the received signal at time i
is given by

xi =
∑

k∈K
aksk,i−mk + wi (1)

for every integer i, where ak ∈ C is the channel
coefficient, mk is the transmission delay of device k,
and wi ∼ CN (0, 2σ2) are independently and identically
distributed (i.i.d.) circularly-symmetric complex Gaussian
random variables. The discovery scheme is based on a single
frame of received signal, so we assume sk,i = 0 if i < 0 or
i ≥ L.

Theorem 1 (Synchronous massive access): Suppose each
device’s message set contains no more than S messages.
Suppose, out of N devices, an unknown subset of devices
transmit. Suppose the maximum delay M = 0, so the signals
from all transmitting devices are perfectly aligned at the access
point. Suppose also the noise variance is fixed and the received
signal amplitude of every active device is at least a. Then for
every a, ε > 0, there exist α0, α1,K0 > 0 such that for every
N and K satisfying N ≥ K ≥ K0, there exists a code of
length

L ≤ α0K(logN + logS + logK) (2)

such that as long as no more than K devices transmit,
all their identities and messages will be decoded correctly
with probability no less than 1 − ε. Moreover, this can be
accomplished using fewer than α1K(logK)(logN + logS +
logK) arithmetic operations.

Theorem 2 (Asynchronous massive access): Suppose each
device’s message set contains no more than S messages.
Suppose, out of N devices, an unknown subset of devices
transmit. Suppose the delay of every active device is an
integer number of sampling intervals no greater than M ≥ 0.
Suppose also that the noise variance is fixed and the received
signal amplitude of every active device is bounded between
a and ā. Then for every a, ā, ε > 0 with a ≤ ā, there
exist α0, α1,K0 > 0 such that for every N and K satisfying
N ≥ K ≥ K0, there exists a code of length

L ≤ α0 ((K +M)(logN + logS + logK) +K log(M + 1))
(3)

such that as long as no more than K devices transmit,
all their identities and messages will be decoded correctly
with probability no less than 1 − ε. Moreover, this can be
accomplished using fewer than α1(K(logK)(logN +logS+
logK) +KM2 +K2M log(KM + 1)) arithmetic operations.

It is practical to let the decoder assume the amplitudes of the
fading coefficients to be within the interval (a, ā). Violations of
the bound can be treated as outage. The outage probability can
be made arbitrarily small by setting the interval accordingly.

Theorems 1 and 2 provide a scaling law for the complexity
and codelength in terms of the device population, the number
of active devices, and the delay bound. Synchronous massive
access, i.e., M = 0, requires a smaller codelength and fewer
arithmetic operations than the asynchronous case. Theorem 2
reduces to Theorem 1 in the special case of M = 0. It
requires a codelength of K(logN + logS) for the K devices
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to transmit their identities and messages. Thus, Theorem 1 has
an information-theoretically optimal scaling.

With fixed maximum delay M , when the codebook size
S = O(N) and the number of active users K satisfies
K logK = o(N), the codelengths for both the synchronous
and asynchronous schemes are sublinear in the device
population N according to Theorems 1 and 2. Furthermore,
with fixed M , if K2 logK = o(N), the number of arithmetic
operations involved in the asynchronous scheme is also
sublinear in N .

III. SPARSE OFDMA SIGNALING

In this section, we construct a concrete signaling scheme for
asynchronous massive access in several incremental steps. Let
the spectrum be divided into B orthogonal subcarriers, where
B is much smaller than the device population N . It is not
possible to design mutually orthogonal OFDM symbols for all
N devices. We let each active device transmit several OFDM
symbols on a sparse subset of the subcarriers. The scheme is
thus referred to as sparse OFDMA. We shall show that sparse
OFDMA of moderate symbol duration can accommodate a
large number of devices with bursty transmissions.

In Section III-A, we design signals for noiseless device
identification with fewer devices than the number of
subcarriers, i.e., N ≤ B. In Section III-B, we augment the
signals to enable noiseless device identification where N > B
and a single device is active. In Section III-C, we extend to
noisy device identification, where N > B and K � N devices
are active. At last, we fully describe sparse OFDMA signaling
for simultaneous device identification and message decoding
in Section III-D.

A. Noiseless Device Identification with N ≤ B
The key idea for addressing arbitrary delays is to use the

fact that the frequency of a sinusoidal signal is invariant to the
delay, which causes merely a phase shift. Since the delay is
bounded by M , we include M chips in the OFDM symbol as
a cyclic prefix. Hence, each OFDM symbol contains B +M
chips. Since N ≤ B, device k can be assigned the unique
subcarrier k. The transmitted discrete-time signal structure is
given by

sk,i = gk exp

(
ι2πki

B

)
, i = 0, · · · , B +M − 1, (4)

where gk ∈ R is a known design parameter of unit amplitude
and ι2 = −1.

At the receiver side, the signals from all the neighbors
arrive after a reference frame start point. The receiver discards
the first M samples of each sparse OFDMA symbol and
collect the next B samples as y = (y0, · · · , yB−1), where
yi = xi+M , i = 0, · · · , B − 1. If each device is assigned
a unique subcarrier, performing B-point discrete Fourier
transform (DFT) on y yields nonzero at the k-th subcarrier if
and only if device k is active. The delay mk only affects the
phase of the DFT value. Therefore, the signaling scheme (4) is
sufficient to detect the active devices in a noiseless case with
computational complexity of O(B logB) needed by the Fast
Fourier Transform (FFT) algorithm.

B. Noiseless Single Device Identification with N > B

Let each device use a single subcarrier. Let bk ∈
{0, · · · , B − 1} denote the index of the subcarrier used by
device k. With N > B, it is impossible to assign a distinct
subcarrier to each device. So bk = bk′ for some k 6= k′. If the
signaling scheme given by (4) is applied, devices k and k′ are
not distinguishable based on the active subcarrier. We resolve
this ambiguity by including several OFDM symbols in a frame
and embedding the device’s identity through coefficient gk
in (4) across the OFDM symbols for transmission.

Let J = dlogNe and let (k)2 = (k1, · · · , kJ) denote the
binary representation of device index k. We simply adopt
the design of

(
g0
k, g

1
k, · · · , gJk

)
=
(
1, (−1)k1 , · · · , (−1)kJ

)
.

We let device k transmit
(
s0
k, · · · , sJk

)
, where sjk =

(sjk,0, · · · , s
j
k,B+M−1) and

sjk,i = gjk exp

(
ι2πbki

B

)
, (5)

for i = 0, · · · , B+M − 1 and j = 0, · · · , J . The code length
is thus (J + 1)(B + M) chips. For the j-th OFDM symbol,
we discard the first M samples and use the next B samples
to form a vector yj = (yj0, · · · , yjB−1), where

yji = xi+j(B+M)+M (6)

= aks
j
k,i+M−mk , (7)

i = 0, · · · , B − 1. Performing B-point DFT on yj yields

Y jb =
1

B

B−1∑

i=0

exp

(
− ι2πbi

B

)
aks

j
k,i+M−mk (8)

=

{
0, if b 6= bk

Ak,bg
j
k, if b = bk,

(9)

where

Ak,b = ak exp

(
ι2πb(M −mk)

B

)
. (10)

As in the B ≥ N case, the delay mk only affects the phase
of the received signal from device k.

Subcarrier b is associated with a length-(J+1) vector Y b =
(Y 0
b , · · · , Y Jb ). It can be seen that g0

k serves as a reference
symbol capturing the channel coefficients. In our setting, Y 0

b =
Ak,b. Therefore, the j-th bit of the binary representation of k
can be estimated as kj = 0 if Y jb /Y

0
b = 1 and kj = 1 if

Y jb /Y
0
b = −1.

Together, bk (frequency) and g0
k, . . . , g

J
k (gains) carry the

device index.
When there is a single active device in the noiseless setting,

the signaling of sparse OFDMA consists of dlogNe OFDM
symbols. Therefore, the active device can be identified with
code length of O((B + M) logN) chips and computational
complexity of O(B(logB)(logN)).

C. Identification of Multiple Active Devices With and Without
Noise

When multiple devices are active, the active devices may
use colliding subcarriers, so that the device information cannot
always be directly recovered from Y jbk/Y

0
bk

. We propose to let
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Subcarrier 0

Subcarrier 1

Subcarrier 2

Subcarrier 3

Subcarrier 4

Device 0

Device 1

Device 2

Device 3

Fig. 2. Bipartite graph representation of sparse OFDMA. Left nodes represent
devices and right nodes represent subcarriers. The active devices are marked
in red. Subcarriers 0, 1 and 4 are zerotons, subcarrier 3 is a singleton, and
subcarrier 2 is a multiton.

subframe 0
(B+M)C0 chips

subframe 1
(B+M)C1 chips

subframe 2
(B+M)C2 chips

subframe 3
C3 chips

OFDM symbol 0 OFDM symbol 1 ...... OFDM symbol C0-1

M chips (CP) B chips (B-point IFFT)

Fig. 3. Frame structure of sparse OFDMA. A frame consists of four
subframes. Subframes 0, 1 and 2 have C0, C1 and C2 concatenated OFDM
symbols, respectively. After taking B-point IFFT of each OFDM symbol and
adding M chips as cyclic prefix, each OFDM symbol will correspond to
B +M chips in time domain. In the synchronous case, M = 0.

each device transmit on multiple subcarriers. As in the case
of a single active device, we first identify active devices from
the singletons. The identified device information is then used
to bootstrap the detection of other devices.1

The correspondence between the device indices and the
subcarriers can be represented by a bipartite graph with N left
nodes and B right nodes. The n-th left node is connected with
the b-th right node if device n transmits on the b-th subcarrier.
We now introduce the following notion:

Definition 1: [Bipartite graph induced by active devices
in the sparse OFDMA] The bipartite graph induced by the
active devices in sparse OFDMA consists of K left nodes,
corresponding to K active devices, and B right nodes,
corresponding to B subcarriers, where the k-th left node is
connected to the b-th right node if device k transmits on
subcarrier b.

We call a subcarrier a zeroton, singleton, or multiton, if
no device, a single device, or multiple devices transmit on
the subcarrier, respectively. Fig. 2 illustrates an example of
bipartite graph with B = 5 subcarriers and N = 4 devices,
K = 3 of which are active. In the example, subcarriers 0, 1,
and 4 are zerotons, subcarrier 3 is a singleton, and subcarrier
2 is a multiton.

The presence of noise raises additional questions: 1) How
can we reliably estimate the channel coefficients? 2) How
can we robustly estimate the device information in the noisy

1A related, simpler setting for device activity detection is group testing,
e.g., in [49], devices who do not violate the energy levels of all subcarriers
are declared to be active.

setting? 3) How can we determine whether a subcarrier
is a zeroton, singleton, or multiton? In the following, we
further enhance the signaling scheme to address those three
challenges. Specifically, a frame consisting of four subframes
is described in Fig. 3, where subframes 0, 1, and 2 are used
for device identification and message decoding, and subframe
3 is used for delay estimation.

We first introduce the signaling of the first three subframes,
which consist of C0, C1, and C2 OFDM symbols, respectively.
Let C = C0 + C1 + C2. Device k is assigned a fixed set of
subcarriers, denoted as Bk ⊆ {0, · · · , B − 1}. Specifically,
we let device k transmit

(
s0
k, · · · , sC−1

k

)
, where sck =

(sck,0, · · · , sck,B+M−1) and

sck,i = gck
∑

b∈Bk
exp

(
ι2πbi

B

)
, (11)

for i = 0, · · · , B +M − 1 and c = 0, · · · , C − 1.
For the c-th OFDM symbol, as in the previous cases, we

discard the first M samples and obtain the remaining B
samples as yc. Under the noisy setting, performing B-point
DFT on yc yields

Y cb =
∑

k∈K:b∈Bk
Ak,bg

c
k +W c

b , b = 0, · · · , B − 1, (12)

where Ak,b is given by (10), and W c
b are i.i.d. complex

Gaussian variables with distribution CN (0, 2σ2/B). The
factor B in the noise variance is due to the integration of
B samples in the DFT operation.

Let the design vector for device k be

gk =




1
g̃k
ġk


 (13)

where the all-one vector 1 of length C0, g̃k ∈ RC1 , and
ġk ∈ RC2 are the design vectors for the first C0, next C1, and
the remaining C2 OFDM symbols, respectively. The values
of C0, C1, and C2 will be specified in Section V-A. The
all-one segment is used for robust estimation of the channel
coefficients. The g̃k segment is used to encode the device
index information. We let the entries of ġk be generated
according to i.i.d. ±1 BPSK symbols, with P{ġck = ±1} =
1/2, c = 0, · · · , C2 − 1. The ġk segment is used to mitigate
possible false alarms.

In the absence of noise, we let g̃k =(
1, (−1)k1 , · · · , (−1)kdlogNe

)
, which carries the device

information. In the noisy setting, the received symbols
corresponding to g̃k are corrupted in general. In order to
robustly estimate the information bits, which is the binary
representation of the device’s index k, we apply a linear
error-control code of length C1 = ddlogNe/Re symbols,
where R < 1 is the code rate. Let G ∈ FdlogNe×C1

2

be the generator matrix of the error-control code. Let
(rk,0, · · · , rk,C1−1) =

(
k1, · · · , kdlogNe

)
G, where the

operation is over the binary field. We construct C1 OFDM
symbols with g̃ck = (−1)rk,c , c = 0, · · · , C1 − 1. A good
set of codes are the low-complexity capacity approaching
codes introduced in [50] (more on this in Section V-E). Other
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Fig. 4. Bipartite graph representation of sparse OFDMA with T = 3.

capacity-achieving codes can be considered, like polar codes
[51], but they will yield the same scaling result as described
in Theorems 1 and 2.

For device k, we let |Bk| = T and the set of subcarriers is
equally likely to be any T -element subset of {0, · · · , B − 1}.
In other words, every device transmits on exactly T out of B
subcarriers. Fig. 4 illustrates an example for the case of T = 3.
Because an individual device employs a small constant number
of subcarriers, the relatively low peak-to-average power ratio
of the OFDMA scheme presents much less challenge than
standard OFDM to the power amplifier.

The last subframe consists of C3 chips with low
auto-correlation, which are used to estimate device delays.
Delays may be estimated by performing the correlation
between the received signal and the pilot samples. In
particular, the pilot samples are i.i.d. BPSK symbols with
length greater than M . Each device employs a random pilot
sequence known to the receiver.

Note that a constant number (T ) of subcarriers are
employed by an individual device, i.e., each device transmits a
superposition of several sinusoids. Consequently, the average
energy per chip in (11) is equal to T , so the received SNR of
each device at the chip level is O(1) and not dependent on
N,K, and B. This ensures that every device’s received SNR
remains practical even as we send N , K, and B to infinity.

D. Massive Access with Device Identification and Message
Decoding

Similar to embedding the device index information through
g̃k, each device can encode both a dlogNe-bit device index
information and a dlogSe-bit message information through g̃k.
With a code rate of R, we have C1 = d(dlogNe+dlogSe)/Re
OFDM symbols to carry both the device index and the
message. The overall design vector of device k is given
by (13). The DFT values at the b-th subcarrier Y b is a vector

TABLE I
NOTATION

Symbol Description
K Number of active devices
N Total number of devices
M Maximum delay in samples
S Number of messages in a device’s

message set
B Total number of subcarriers
T Number of subcarriers used by each

device
C0 Number of OFDM symbols used for

channel coefficient estimations
C1 Number of OFDM symbols used for

encoding a message
C2 Number of OFDM symbols used for

singleton verification
C3 Number of time-domain chips used for

delay estimation
C Sum of C0, C1, C2, i.e., C = C0+C1+C2

g̃k Vector of C1 bits encoding the transmitted
message of device k

ġk Vector of C2 bits for mitigating false
alarm of device k

η Fixed energy threshold

of length C and can be written as

Y b =




Ȳ b

Ỹ b

Ẏ b


 (14)

=
∑

k∈K:b∈Bk
Ak,b




1
g̃k
ġk


+




W̄ b

W̃ b

Ẇ b


 (15)

where the dimensions of signals Ȳ b, Ỹ b, and Ẏ b are C0,
C1, and C2, respectively, so are the dimensions of the noise
vectors W̄ b, W̃ b, and Ẇ b.

This work differs from the unsourced random access
paradigm of [2] in that each device here employs a unique
pilot sequence and the code design depends explicitly on the
device population N as well as the maximum number of
active devices K. In contrast, in unsourced random access
all devices use the same codebook, where what matters is
the number of active devices in lieu of the device population.
Sparse OFDMA has similarities to coded slotted ALOHA, in
which a slot may contain zero, one, or multiple transmissions.
While coded slotted ALOHA typically supports only a few
users, sparse OFDMA is proposed here to support a massive
number of devices without full synchronization.

Some frequently used notation is listed in Table I.

IV. DEVICE IDENTIFICATION AND MESSAGE DECODING

In this section, we first describe a robust subcarrier detection
scheme that can: 1) determine whether a subcarrier is a
zeroton, a singleton, or a multiton (as defined in Section III-B);
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2) detect the device index reliably for singleton subcarriers. We
then describe the overall identification and decoding scheme.

A. Robust Subcarrier Detection

In this subsection, we focus on a certain device k that is
hashed to subcarrier b. The corresponding frequency-domain
values are decomposed into three segments as in (14).
We propose the subcarrier detection scheme illustrated as
Algorithm 1:

Algorithm 1 Robust-Subcarrier-Detect (Y )

Input: Subcarrier values Y =
(
Ȳ
†
, Ỹ
†
, Ẏ
†)†

, where

Ȳ ∈ CC0 , Ỹ ∈ CC1 and Ẏ ∈ CC2 .
Output: Declaration of zeroton/singleton/multiton, and
estimates of index and data if applicable.
if ‖Ẏ ‖2 < η then

declare zeroton and return.
end if
θ̂ ← phase

(
1T Ȳ /C0

)
.

Z̃ ← Re{Ỹ e−ιθ̂}.
(k̂, ˆ̃gk̂)← Decode(Z̃).

Ȧk̂ ← ġ†
k̂
Ẏ /C2.

if ‖Ẏ − Ȧk̂ġk̂‖2 ≤ η then
declare singleton and return

(
k̂, ˆ̃gk̂

)
.

else
declare multiton and return.

end if

Algorithm 1 includes the following steps:
1) Zeroton detection: Let ‖ · ‖ denote the `2-norm, which

represents the energy in a signal. We declare subcarrier b to be
a zeroton if ‖Ẏ b‖2 < η, where η is some constant threshold.

2) Channel phase estimation: If subcarrier b is not declared
to be a zeroton, we estimate the phase of Ak,b as

θ̂b = ∠

(
1

C0

C0−1∑

c=0

Ȳ cb

)
. (16)

Suppose device k transmits on a singleton subcarrier and C0

is large enough, we can obtain sufficiently accurate estimate
of the channel phase.

3) Device identification and message decoding: With the
phase estimation θ̂b, we can compensate for the phase of
Ak,b and then try to decode the device index information,
assuming it is a singleton (which we shall verify later
in Algorithm 1). We perform (hard) binary decision on
Re
{
Ỹ cb e

−ιθ̂b
}

for all C1 symbols, and then decode the index
and message. The singleton assumption allows us to apply
the well-studied point-to-point capacity approaching codes.
While more sophisticated multiuser decoding methods may
apply to multitons to improve the performance, we show
that single-user decoding is sufficient to establish the desired
scaling laws in Section V.

4) Singleton verification: Suppose k̂ is the decoded index.
We estimate the nonzero signal as

Ȧk̂,b =
1

C2
ġ†
k̂
Ẏ b, (17)

where ġck, c = 0, · · · , C2−1, are as described in Section III-C.
Then we declare that subcarrier b is a singleton if and only if
it passes the energy threshold test, i.e.,

‖Ẏ b − Ȧk̂,bġk̂‖2 ≤ η. (18)

The preceding verification scheme is similar to that used for
sparse DFT and sparse Walsh-Hadamard transform (WHT),
where the singleton verification approach has been proved to
be correct with high probability for signal amplitudes lying
in a known discrete alphabet [52], [53]. In this paper, we
further show that it can effectively identify the singletons for
arbitrary analog amplitudes that are bounded away from zero,
as specified in Theorems 1 and 2.

B. Overall Identification and Decoding Scheme

Algorithm 2 Asynchronous Massive Access via Sparse
OFDMA

Input: Subcarrier values Y b, b = 0, · · · , B − 1.
Output: Detected active device set K̂ and their messages.
Initialize: Set B to be the set of all subcarriers. Set K̂ and
L to be the empty set.
for every subcarrier b do

if Robust-Subcarrier-Detect (Y b) declares a singleton(
k̂, ˆ̃gk̂

)
then

Add k̂ to L.
end if

end for
while fewer than K iterations and L is not empty do

Pick arbitrary k ∈ L, remove k from L, and add k to
K̂ .
Estimate m̂k and âk according to (22) and (23).
Set S to be the set of subcarriers in B that are connected
with k.
for every subcarrier b′ ∈ S do

Cancel the signal of device k from subcarrier b′ using
(24).
if Robust-Subcarrier-Detect (Y b′) declares a zeroton
or a singleton

(
k̂, ˆ̃gk̂

)
then

Remove b′ from B.
Add k̂ to L (if a singleton is declared).

end if
end for

end while

Once a device index is estimated based on a singleton, its
contributions to all its connected subcarriers are canceled out,
which may result in new singleton subcarriers. For example, in
Fig. 4, device 1 is first detected from the singleton subcarrier 0
and its values are subtracted from subcarrier 2. Then subcarrier
2 becomes a singleton subcarrier and device 2 can be detected
from it. There is, however, one challenge. The DFT values
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from each device at a subcarrier depends on its delay due to
(10). We estimate the delay using subframe 3 of the received
signal in order to perform successive cancellation.

Subframe 3 consists of C3 chips. Let s′k =
(s′k,0, · · · , s′k,C3−1) denote the transmitted chips of device k
corresponding to subframe 3. The receiver discards the first
M samples of subframe 3 and collects the remaining samples
as y′ = (y′M , · · · , y′C3−1). Let

I = {M, · · · , C3 − 1} (19)

denote the time-domain indices corresponding to subframe 3
with the first M samples skipped. For i ∈ I,

y′i = x(B+M)C+i. (20)

Define the decision statistic based on I as:

Tk(m) =
∑

i∈I
y′i+m(s′k,i)

∗. (21)

Discarding the first M samples in the last subframe guarantees
that the cross-correlation of the pilot sequences between
different users is performed entirely on the BPSK symbols.
We estimate the delay of device k as

m̂k ∈ arg max
m=0,··· ,M

|Tk(m)|. (22)

The channel coefficient ak, which is a deterministic parameter,
is then estimated as

âk =
1

C
g†kY b exp

(
− ι2πb(M − m̂k)

B

)
. (23)

Note that g†kgk = C due to (13). The DFT values of
a connected unprocessed subcarrier b′ are then updated
according to

Y b′ ← Y b′ − âk exp

(
ι2πb′(M − m̂k)

B

)
gk. (24)

The overall massive access scheme is described in
Algorithm 2. Throughout the algorithm, we maintain three
lists: K̂ is a list storing the estimated device indices, L is
a list of detected devices for cancellation, and B is a list of
surviving subcarriers. We first detect all singleton subcarriers
and identify their corresponding devices using Algorithm 1.
Then we successively cancel each identified device, potentially
exposing more singletons along the way to allow more devices
to be identified. This process continues until no subcarrier
declared as singleton is left.

We next prove that the preceding sparse OFDMA signaling
and detection scheme can efficiently identify the active devices
and decode their messages. We treat the synchronous case
(M = 0) in Section V and then the asynchronous case in
Section VI.

V. PROOF OF THEOREM 1 (THE SYNCHRONOUS CASE)

A. Key Parameters and Propositions

For codeword construction, we choose integer constants

T ≥ 3 (25)

and

β0 ≥ T (T − 1) + 1, (26)

e.g., by letting T = 3 and β0 = 7. We also set the following
parameters as

B = β0K (27)
C0 = dlogNe (28)
C1 = d(dlogNe+ dlogSe)/Re (29)
C2 = dβ1 logKe (30)

where β1 > 0 and R < 1 are constants to be specified
later in the development. Specifically, R is the constant
rate of a low-complexity capacity-achieving code for the
binary-symmetric channel (BSC) to be further explained in
Appendix C. The total number of OFDM symbols is

C ≤ (1 + d1/Re)dlogNe
+ d1/RedlogSe+ dβ1 logKe. (31)

The codelength L = BC = β0KC thus satisfies (2) as long
as β0, β1, and R are positive constants, and by letting

α0 = 2β0(1 + d1/Re+ dβ1e). (32)

In this proof, we shall invoke several results about
hypergraphs. A hypergraph is a generalization of a graph in
which an edge can join any number of vertices. An edge
in a hypergraph is also called a hyperedge. A hypergraph
is a hypertree if the graph is a tree, i.e., no cycle exists. A
hypergraph is a unicyclic component if the graph contains only
one cycle. A T -uniform hypergraph is a hypergraph where all
the hyperedges have degree-T . Here we let the device nodes
be hyperedges and the subcarriers be hypergraph vertices to
form a hypergraph. A hyperedge is incident on a vertex in the
hypergraph if the corresponding device node is connected to
the corresponding subcarrier.

Let G denote the bipartite graph induced by the active
devices (see Definition 1). We now characterize the probability
that G is such that no two active devices share the same set of
subcarriers, so that it is convertible to an equivalent hypergraph
(denoted as G ∈ Ĝ). Let d =

(
B
T

)
. Then (25) and (27) imply

that d > (β0K)T

2T ! for sufficiently large K. Since there are d
distinct subsets of T subcarriers, we have

P{G ∈ Ĝ} = d(d− 1) · · · (d−K + 1)/dK (33)
≥ 1− ζ/K (34)

with some constant ζ [54, The birthday problem] for
sufficiently large K.

By the construction of the sparse OFDMA in Section III-C,
every device is associated with exactly T subcarriers, so
the hypergraph induced by the active devices is a (random)
T -uniform hypergraph.

Definition 2: [An ensemble of hypergraphs G] Let G denote
the ensemble of T -uniform hypergraphs with K hyperedges
and B vertices that consist of components each of which
is either a hypertree or a unicyclic component, where no
component has more than αT log(β0K)/(T − 1) hyperedges
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with some constant α > 0.
In the following, we will first show that there exists α

such that G is convertible to a hypergraph in G (denoted
as G ∈ G) with high probability (Proposition 1). We then
characterize the error propagation effects in the case of
G ∈ G (Proposition 3) and show that Algorithm 1 makes
the correct decision with high probability (Proposition 4). It
follows then that synchronous massive access via Algorithm 2
succeeds with high probability (Proposition 2). The following
propositions will be proved in Sections V-B to V-E.

Proposition 1: Under (25)-(30), there exist constants K ′0 >
0 and ν > 1, such that for every K ≥ K ′0, we have

P
{
G ∈ G|G ∈ Ĝ

}
≥ 1− ν/K. (35)

Proposition 2: If G ∈ G, then Algorithm 2 will detect all
active devices and decode their messages correctly as long as
during its execution Algorithm 1 always makes the correct
decision.

Let S(t−1) be the set of recovered devices in the previous
t− 1 iterations during the execution of Algorithm 2. For each
device ` ∈ S(t− 1) decoded from a singleton bin b`, define

e` = C−1g†`W b` . (36)

Evidently, e` ∼ CN (0, 2σ2/(BC)). In iteration t, the DFT
value at subcarrier b can be expressed as

Y b =
∑

k∈K\S(t−1):b∈Bk
Ak,bgk + W b + V b, (37)

where the sum is over the set of active devices that are hashed
to subcarrier b and not yet recovered, and V b is due to the
residual channel estimation errors from the recovered devices.

Proposition 3: Suppose (25)-(30) hold and G ∈ G. Suppose
also Algorithm 1 always makes the correct decision and for
every ` ∈ S(t−1), the amplitude of the error is upper bounded
by

|e`| ≤ τ(logK)−2, (38)

where

τ =
(T − 1)

√
η

8αβ1(1 + log β0)T
. (39)

Then, every entry of V b is bounded by

|V cb | ≤
√
η

4β1 logK
. (40)

Proposition 4: Suppose (25)-(30) hold and G ∈ G. For
large enough K, there exists a constant η such that for every
t = 1, 2, · · · , conditioned on that Algorithm 1 makes correct
decisions in the first t − 1 iterations during the execution
of Algorithm 2, and e` is upper bounded by (38) for each
decoded device ` in the first t − 1 iterations, Algorithm 1
makes a wrong decision with probability no greater than 7K−2

in the t-th iteration. Moreover, if device k is decoded from a
singleton bin bk in the t-th iteration, then |ek| ≥ τ(logK)−2

with probability smaller than K−2.
Assuming Propositions 1-4 hold, we upper bound the

massive access error probability Ps as follows. Let E denote
the event that Algorithm 1 makes at least one wrong decision

during the execution of Algorithm 2. By Proposition 2,
massive access succeeds if G ∈ G and that E does not occur.
Evidently,

Ps ≤ P{E ∪ (G /∈ G)} (41)
≤ P{E ∩ (G ∈ G)}+ P{G /∈ G} (42)

≤ P{E|G ∈ G}+ P{G /∈ G|G ∈ Ĝ}+ P{G /∈ Ĝ}. (43)

Every time a device is recovered, Algorithm 1 is performed
on its connected subcarriers. Since there are K active devices
and each of them is connected to T subcarriers, Algorithm 1
runs for at most KT times throughout the detection process.
By the union bound and the result of Proposition 4,

P{E|G ∈ G} ≤ KT
(

7

K2
+

1

K2

)
(44)

= 8T/K. (45)

Plugging (34), (35), and (45) into (43), we have that massive
access fails with probability

Ps ≤ (8T + ν + ζ)/K. (46)

Therefore, given the choice of T , B, and C, massive access
fails with probability less than ε as long as K ≥ max{(8T +
ν + ζ)/ε,K ′0}.

B. Proof of Proposition 1

Throughout the proof, we assume G is a hypergraph, i.e.,
G ∈ Ĝ. For ease of notation, we omit conditioning on G ∈ Ĝ.

Let G0 denote the ensemble of T -uniform hypergraphs with
K hyperedges and B vertices consisting of only hypertrees
and unicyclic components. For a given constant α, let
G1 denote the ensemble of hypergraphs with the largest
component containing fewer than αT log(β0K)/(T − 1)
hyperedges, and G2 denote the ensemble of hypergraphs
with the largest component containing fewer than αT logB
vertices. Evidently, G = G0 ∩ G1.

Due to our choice of K and B, the T -uniform hypergraph
is in the so-called subcritical phase, which guarantees some
simple structural properties. In particular, [55, Theorem 4]
establishes that the hypergraph is entirely composed of
hypertrees and unicyclic components with high probability.
To be precise, the proof in [55] implies that

P{G ∈ G0} ≥ 1− ν − 1

K
(47)

for some constant ν > 1 dependent on β0.
We next show that there exists a constant α, such that G ∈
G2 with high probability. The size of a hypergraph is defined
as the number of hyperedges K in the graph. The number of
vertices in the hypergraph is B. The average vertex degree
of a vertex v is defined as the expected number of pairs of
(vi, ei), where vi and ei are some vertex and hyperedge in the
graph, such that (v, vi) are connected via hyperedge ei.

Lemma 1: G has an average vertex degree of KT (T−1)/B.

Proof: Consider a subcarrier b (a vertex). Let Xk = 1 if
device k uses subcarrier b, and Xk = 0, otherwise. Device
k has

(
B
T

)
equally likely choices for its subcarriers, where
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(
B−1
T−1

)
of those choices include subcarrier b. The average

vertex degree is thus calculated as

E

{∑

k∈K
(T − 1)Xk

}
= K(T − 1)E {Xk} (48)

= K(T − 1)

(
B−1
T−1

)
(
B
T

) (49)

=
KT (T − 1)

B
. (50)

Hence the lemma is proved.

Consider a random hypergraph with B vertices and range
T .2 Since B>KT (T − 1) due to (26) and (27), the average
vertex degree is less than 1 by Lemma 1. Then it has been
shown in [56, Theorem 3.6] that, since G’s average vertex
degree is less than 1, for K ≥ K ′0 with a large enough K ′0,
there exists a constant α, such that

P{G ∈ G2} ≥ 1− 1

K
. (51)

Let r and s be the number of vertices and hyperedges of
a connected component, respectively. If the component is a
hypertree, r = (T − 1)s + 1. If the component is a unicyclic
component, r = (T − 1)s. Therefore, when G ∈ G0 and G ∈
G2, the number of hyperedges in the largest component is
upper bounded by

s ≤ r/(T − 1) (52)
≤ αT logB/(T − 1) (53)
= αT log(β0K)/(T − 1). (54)

It implies

(G0 ∩ G2) ⊂ G1. (55)

Therefore, we have

P {G ∈ G} = P {G ∈ (G0 ∩ G1)} (56)
≥ P {G ∈ (G0 ∩ G2)} (57)

≥ 1− ν

K
, (58)

where (56) follows from Definition 2 and definitions of G0

and G1, (57) is due to (55), and (58) is due to (47) and (51).
Hence the proof of Proposition 1.

C. Proof of Proposition 2

Every graph in G consists of only hypertrees and unicyclic
components. By [57, Lemma 3.4], every hypertree has a
hyperedge (device node) incident on at least T − 1 singleton
subcarriers. Every unicyclic component has a hyperedge that
is incident on either T − 1 or T − 2 singleton subcarriers.
When T ≥ 3, every hypergraph in G always has singleton
subcarriers. Assuming Algorithm 1 correctly detects the
singleton subcarriers and estimates the devices’ indices, the
detected devices will be removed from the hypergraph. Since
removing any device node or hyperedge in G ∈ G still yields

2The size of the largest edge is called range of the hypergraph. A T -uniform
hypergraph has a range of T .
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Fig. 5. Error propagation graph for device 2. Device 0 is detected from
subcarrier-a in iteration t = 1, device 1 is detected from subcarrier-b in
iteration t = 2, and device 2 is detected from subcarrier-c in iteration t = 3.

a hypergraph in G, Algorithm 2 will continue until all active
devices are correctly detected.

D. Proof of Proposition 3

We make use of the error propagation graph proposed in
[20] to characterize the residual channel estimation errors.
The error propagation graph is a directed subgraph induced
by the device identification Algorithm 2. It begins from
some singleton subcarriers. Every singleton subcarrier points
to the device node that should be detected based on it.
Every device node in the graph points to all subcarriers it
is then cancelled from. Fig. 5 illustrates the error propagation
subgraph concerning device 2. In the error propagation graph,
device 0 is estimated from singleton subcarrier-a and its
values are cancelled from the connected subcarrier-b and
subcarrier-c. In a subsequent iteration, subcarrier-b becomes a
singleton. Device 1 can be detected and its values are cancelled
from subcarrier-c. In a third iteration, subcarrier-c becomes a
singleton and device 2 is detected.

Let bk be the singleton subcarrier used to recover the device
k. Let Ak be the channel estimation error of device k defined
as

Ak = Âk,bk −Ak,bk , (59)

where Ak,bk is given by (10) and

Âk,bk = g†kY bk/C (60)

is the estimate according to (23) with no delay in this case.
We will keep track of the errors using the graph in Fig.

5. The error Ak causes cancellation error Akgk to every
downstream subcarrier node. The errors accumulated by a
singleton subcarrier adds to the estimation errors of its
downstream device nodes.
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Consider the first iteration and a singleton subcarrier bk due
to device k. The DFT value of subcarrier-bk is given by

Y bk = Ak,bkgk + W bk , (61)

so the residual estimation error is given by

Ak = C−1g†kW bk . (62)

In iteration t ≥ 2, with successive cancellation, the updated
frequency value at subcarrier b is

Y b =
∑

k∈K\S(t−1):b∈Bk
Ak,bgk + W b

+
∑

`∈S(t−1):b∈B`

(
A`,b` − Â`,b`

)
g` (63)

=
∑

k∈K\S(t−1):b∈Bk
Ak,bgk + W b −

∑

`∈S(t−1):b∈B`
A`g`.

(64)

Suppose now some subcarrier bk is a singleton due to device
k in some iteration and is used to recover the index, then the
channel estimation error is calculated as

Ak = C−1g†kY bk −Ak,bk (65)

= C−1g†k

(
Ak,bkgk + W bk −

∑

`∈S(t−1):bk∈B`
A`g`

)

−Ak,bk (66)

= C−1g†kW bk −
∑

`∈S(t−1):bk∈B`
C−1A`g

†
kg` (67)

where we use the fact that g†kgk = C to obtain (67).
Using recursion, the estimation error of Ak,b for k ∈

S(t)\S(t− 1) is calculated as

Ak = ek +
∑

(`0,··· ,`i)∈P(k),`0∈S(t−1)

e`0(−g†kg`i/C)

· (−g†`ig`i−1
/C) · · · (−g†`1g`0/C), (68)

where P(k) = {(`0, · · · , `i) : `0, · · · , `i, k is a path of
devices in the error propagation graph}, and e`0 is given by
(36).

In Fig. 5, for instance, when calculating the estimation error
A2 for device node 2, we take into account device nodes
0 and 1 that have been recovered. In particular, P(2) =
{(0, 2), (1, 2), (0, 1, 2)}. For path (0, 2), the product term in
the summation is −e0g

†
2g0/C. For path (1, 2), the product

term in the summation is −e1g
†
2g1/C. For path (0, 1, 2),

the product term in the summation is e0g
†
2g1g

†
1g0/C

2.
Consequently, we have A2 = e2 + e0(−g†2g0/C +
g†2g1g

†
1g0/C

2)− e1g
†
2g1/C.

Therefore, the DFT value at subcarrier b is calculated as Y b

given by (37), where

Vb = −
∑

(`0,··· ,`i)∈P′(b),`0∈S(t−1)

e`0

· (−g†`ig`i−1
/C) · · · (−g†`1g`0/C)g`i (69)

where P ′(b) = {(`0, · · · , `i) : `0, · · · , `i is a path of
devices leading to subcarrier b in the error propagation

graph}.
Suppose G ∈ G, then |P ′(b)| ≤ 2. Moreover, by

Proposition 1, the number of left nodes in each component
is less than αT log(β0K)/(T − 1), which indicates that
|S(t − 1)| ≤ αT log(β0K)/(T − 1) ≤ αT logK/(T − 1) +
2α log β0. Since the entries of the design parameter g` are
i.i.d. BPSK symbols and g` ∈ RC , | − g†`ig`i−1

/C| ≤ 1.
Thus, for each entry of V b, e`0 has the coefficient satisfying
|(−g†`ig`i−1

/C) · · · (−g†`1g`0/C)gc`i | ≤ 1. Combining with
the assumption that e` is upper bounded by (38), each entry
of V b is upper bounded by

|V cb | ≤ |P ′(b)||S(t− 1)||e`| (70)

≤ 2αT log(β0K)

T − 1

τ

(logK)2
. (71)

Plugging (39) into (71) and using the fact log(β0K) ≤ (1 +
log β0) logK yield (40).

Hence the proof of Proposition 3.

E. Proof of Proposition 4

As described in the proof of Proposition 3, the frequency
domain signal in subcarrier-b can be written as (37). The
detection error depends on V b and hence on the number of
devices that cause interference. We denote the interference plus
noise as

Zb = W b + V b. (72)

The analysis here is similar to that in [23].
1) Zeroton error detection: Suppose subcarrier b is a

zeroton. The DFT values in Y b are composed of purely noise
and interference, i.e., Y b = Zb. Let Żb and V̇ b be C2-vectors
defined in the same manner as Ẏ b and Ẇ b in (14) and (15).
The zeroton error E0 occurs only if ‖Ẏ b‖ is greater than the
threshold η. Conditioned on each element of V b is bounded
by (40), we have

‖V̇ b‖ ≤
√
C2

√
η

4β1 logK
(73)

≤
√
η

2
. (74)

By the triangle inequality ‖Żb‖ ≤ ‖Ẇ b‖ + ‖V̇ b‖, the
probability of error satisfies

P {E0} = P{‖Żb‖2 ≥ η} (75)

≤ P{‖Ẇ b‖2 ≥ η/4} (76)

= P

{
Q ≥ Bη

4σ2

}
(77)

where Q ∼ χ2(2C2) is a standard χ2 random variable with
2C2 degrees of freedom. We then utilize the following lemma
proved in [58] to bound the tail probability of Q.

Lemma 2: Let Q be a χ2 random variable with D degrees
of freedom. For any positive x,

P(Q > D + 2
√
Dx+ 2x) ≤ exp(−x). (78)
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Hence, choosing x = Bη
16σ2C2

and letting D = 2C2 yield

P {E0} ≤ P

{
Q ≥ 2C2 +

√
Bη

2σ2
+

Bη

8σ2C2

}
(79)

≤ exp

(
− Bη

16σ2C2

)
(80)

where (79) is because 2C2 +
√

Bη
2σ2 + Bη

8σ2C2
≤ Bη

4σ2 for
sufficiently large K with B and C2 chosen according to (27)
and (30), respectively, and with η being a constant. Moreover,
if we pick η as a constant that satisfies

η ≥ 32σ2dβ1 logKe loge(K)

β0K
, (81)

then the error probability satisfies

P{E0} ≤ K−2. (82)

Note that the right hand side of (81) vanishes as K → ∞.
Hence, there exists such a constant η.

2) Singleton error detection: Suppose subcarrier b is a
singleton due to device k. Let E1 denote the subcarrier
detection error. A singleton detection error occurs due to
one or more of three events: (1) E1,0 =

{
‖Ẏ b‖2 < η

}
;

(2) Not E1,0 and E1,1 =
{

ˆ̃gk 6= g̃k

}
; (3) E1,2 ={

‖Ẏ b − Ȧk,bġk‖2 > η
}

. We prove

P {E1,0} ≤ 2K−2, (83)

P {E1,1} ≤ K−2, (84)

P{E1,2} ≤ K−2. (85)

in Appendices B, C, and D, respectively, using the tools in
Appendix A. We thus conclude

P {E1} ≤ P {E1,0}+ P {E1,1}+ P{E1,2} (86)

≤ 4K−2. (87)

3) Multiton error detection: Let E2 denote the multiton
subcarrier detection error. It is proved in Appendix E that

P {E2} ≤ 2K−2. (88)

Combining (82), (86), and (88), we conclude that the
robust subcarrier detection makes the correct decision with
probability higher than 1− 7K−2.

Note that all devices are decoded from distinct singleton
bins subject to independent noise. Consider the decoding of
device k from a singleton bin bk in iteration t. Conditioned
on that every device ` ∈ S(t − 1) is decoded correctly and
the residual error due to e` is upper bounded by (38), the bin
error ek is a Gaussian variable, i.e., ek ∼ CN (0, 2σ2/(BC)).
We have

P

{
|ek| ≥ τ/ log2K

∣∣∣
⋂

`∈S(t−1)

{
(|e`| ≤ τ/ log2K)

∩ (device ` is correctly decode)
}}

≤ exp

(
− τ2BC

2σ2 log4K

)
(89)

where (89) is due to the fact that |ek|2 is independent of
the decoding of other devices ` ∈ S(t − 1) and follows the
exponential distribution with mean 2σ2

BC . With the choice of B
given by (27) and C given by (31), the probability is smaller
than K−2 for large enough K.

We have thus established Propositions 1-4.

F. Complexity

We perform B-point DFT for C symbols. The
computational complexity is O(K(logK)(logN + logS +
logK)) using FFT operations. In robust subcarrier detection
implemented after initialization of Algorithm 2, for
each subcarrier, the phase estimation involves O(logN)
operations, the device identification and message decoding
involves O(logN + logS) operations, and the singleton
detection and verification involves O(logK) operations.
The while loop of Algorithm 2 will be implemented no
more than K times. In each while loop, delay estimation
is neglected when M = 0. For every subcarrier b′ ∈ S ,
where |S| ≤ T , the cancellation of signal of the detected
device involves O(logN + logS + logK) operations.
The robust subcarrier detection for subcarrier b′ involves
O(logN+logS+logK) operations. Since T is a constant, the
while loop involves no more than O(K(logN+logS+logK))
operations. As a result, the complexity of DFT dominates,
leading to the total computational complexity of
O (K(logK)(logN + logS + logK)). Constant α1 is
introduced as the leading constant, which depends on the
O(K logK) FFT operations.

Hence the proof of Theorem 1.

VI. PROOF OF THEOREM 2 (THE ASYNCHRONOUS CASE)

In the asynchronous massive access case, we choose the
parameters according to (25)–(30). The last subframe in Fig. 3
consists of

C3 = M + dβ2K log(KM + 1)e (90)

chips, where β2 ≥ 256ā2/a2. The total codelength in
transmitted chips is thus

L = (B +M)C + C3 (91)

≤ (β0K +M)
(
(1 + d1/Re)dlogNe+ d1/RedlogSe

+ β1dlogKe
)

+M + dβ2K log(KM + 1)e (92)

where (92) is due to (31) and (90). Therefore, the codelength
satisfies (3) if we choose

α0 = 2
(
β0(1 + d1/Re+ β1) + β2

)
. (93)

The FFT operation and channel estimation involve the
same number of operations as the synchronous case. In
addition, each device needs to estimate its delay once by
taking M correlations. The complexity of delay estimation
is O(M(M + K log(KM + 1)). Up to K devices
need to estimate their delays. The total computational
complexity is thus O (K(logK)(logN + logS + logK)) +
O
(
KM2 +K2M log(KM + 1)

)
.
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Lemma 3: Suppose the conditions specified in Theorem 2
hold. Suppose the bipartite graph G ∈ G and the parameters
are chosen according to (25)–(30). Suppose β2 ≥ 256ā2/a2

and is chosen to be an integer, and C3 = M+dβ2K log(KM+
1)e chips are used for delay estimation, the delay of a device
estimated according to (22) is correct with probability no less
than 1− 16/K2.

The proof of Lemma 3 is relegated to Appendix F.
Denote by V the event that the delay estimation of all

devices based on the signal in subframe 3 is correct. Then
we have

P{V̄|G ∈ G} ≤ 16/K (94)

by the union bound and Lemma 3. Conditioned on that the
device delays are correctly detected, the residual channel
estimation errors can be characterized in the same manner
as in the synchronous case. Recall from (43) that the error
probability can be upper bounded by

Ps ≤ P{E|G ∈ G}+ P{G /∈ G|G ∈ Ĝ}+ P{G /∈ Ĝ}, (95)

where

P{E|G ∈ G} ≤ P{V̄|G ∈ G}+ P{E|V , G ∈ G}P {V|G ∈ G}
(96)

≤ 16/K + P{E|V , G ∈ G} (97)
≤ 16/K + 8T/K, (98)

where (94) is used to obtain (97), and (98) is due to (45). We
thus have

Ps ≤ (16 + 8T + ν + ζ)/K (99)

according to (34), (58), (95), and (98).
Hence Theorem 2 is proved with K0 = max{(16 + 8T +

ν + ζ)/ε,K ′0} and α1 being some constant due to the FFT
operation.

VII. SIMULATION RESULTS

As discussed in Section I, massive access can be regarded
as device identification if the transmitted data are regarded
as a segment of the identities. Without loss of generality,
we focus on the performance of device identification via
sparse OFDMA throughout all simulations. The performance
of sparse OFDMA will be compared with two random access
schemes, namely slotted ALOHA and CSMA. Throughout
the simulation, the channel coefficient amplitude is uniformly
randomly generated from [1, 2] and the phase is uniformly
randomly generated from [0, 2π]. The received SNR is defined
as SNR = 10 log(1/(2σ2)), where σ2 is the noise variance per
dimension.

A. Synchronous device identification

We first investigate the error probability of synchronous
device identification via sparse OFDMA. Let the total number
of devices be N = 238, which is over 274 billion.
(Alternatively, one can have one million devices where each
active device can transmit log(274000) ≈ 18 bits). We choose
the parameters as B = d2.5Ke, C0 = C2 = 4. The code

Fig. 6. Error probability of device identification in the case of synchronous
transmission, where N = 238.

Fig. 7. Rate of missed detection in the case of synchronous transmission,
where is N = 238.

rate R = 0.5 is used to encode the device index, and thus
C1 = 2dlogNe. The number of subcarriers assigned to each
device is T = 3.

Fig. 6 shows the error probability of synchronous device
identification. In each simulation, if there exists missed
detection or false alarm, an error is registered. Throughout
the simulation, the false positive rates is smaller than 10−5

for the SNRs in the region of interest, and thus we do not plot
the results here.

Fig. 7 shows the miss rate, defined as the average number
of misses normalized by the number of active devices K.
Simulation shows that with a code length of 10500, sparse
OFDM can achieve a miss detection rate lower than 10−3 at
SNR=−10 dB. In the case of a 20 MHz channel bandwidth,
the transmission time is approximately 0.5 ms.
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Fig. 8. Error probability of device identification in the case of discrete delay.
The device population is N = 238 and the maximum delay is M = 20.

Fig. 9. Rate of missed detection in the case of discrete delay. The device
population is N = 238 and the maximum delay is M = 20.

B. Asynchronous device identification

We next investigate the error probability of asynchronous
device identification. We choose the parameters as B =
d2.5Ke, C0 = C2 = 4. The code rate R = 0.5 is used
to encode the device index, and thus C1 = 2dlogNe. The
number of time-domain samples used for delay estimation
is C3 = 1000 for both cases of K = 10 and K = 50,
and C3 = 2000 for K = 100. The device population is
N = 238 and the maximum delay in terms of transmit samples
is M = 20. Fig. 8 shows the error probability of asynchronous
device identification. Fig. 9 shows the missed detection rate
(per active user), respectively. As in the synchronous setting,
the error probability is low under moderate SNR. In Figs. 6
and 8, we observe error floors which are due to accumulated
estimation errors. It would be interesting to investigate how
to choose system parameters and the component error-control
code to improve the error floor.

We further plot in Fig. 10 the required codelength to achieve

Fig. 10. Required code length to achieve error probability of 10−2 at SNR
= −10 dB. The black solid curve plots α((K + M)(logN + logK) +
K log(M + 1)), where α is some constant to fit the curve on the required
codelength.

a fixed error probability at a fixed SNR for different number of
active users. In particular, we change the number of subcarriers
B and the length of the synchronization subframe C3 such
that the signaling scheme is sufficient to achieve at least an
error probability of 10−2 at −10 dB SNR. It can be seen
that the proposed signaling scheme can even handle a device
population of N = 296 with up to K = 200 active devices,
with a maximum delay of 20 samples. Note that the 96 bits
recovered per active device can be split, e.g., into a 48-bit
identity and a 48-bit message. We also plot a curve scaling as
(K+M)(logN+logK)+K log(M+1), which is the scaling
result as in Theorem 2 for asynchronous massive access. It
can be seen that as K increases, e.g., K ≥ 50, the required
codelength is aligned with the scaling as shown in the theorem.

C. Comparison with random access

1) Slotted ALOHA: First, consider slotted ALOHA,
where every device transmits a frame with probability p
independently in each slot over an Ns-slot period. The
probability of one given neighbor being missed is equal to
the probability that the device is unsuccessful in all Ns slots:

Pmiss,aloha =
(
1− (1− p)K−1p

)Ns
. (100)

Setting p = 1/K minimizes Pmiss,aloha.
2) CSMA: It is challenging, if not impossible, to implement

CSMA-based wireless access. Due to the power asymmetry
between devices and access points, a device may not be
able to sense another device’s transmission in the same cell.
Suppose, nonetheless, devices can sense each other and CSMA
is used. When the channel is idle, the devices start their timers.
The device whose timer expires the first transmits. When the
channel becomes busy, the devices stop their timers. Device i
has a chance to transmit if its timer is the minimum in some
slot. The probability that a given device never gets a chance
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to transmit is

Pmiss,csma = (1− P {T1 < min{T2, · · · , TK}})Ns . (101)

In order to reliably transmit the device index logN bits,
the number of chips required in each frame is at least
dlogNe/ log(1 + SNR). Therefore, the total number of chips
required is NsdlogNe/ log(1 + SNR), where Ns depends on
the target miss rate. Under SNR = -10 dB, it can be seen from
Fig. 9 that sparse OFDMA can achieve missed detection rate
low than 10−3 for K = 10, 50 or 100. We can calculate the
number of chips required by slotted ALOHA and CSMA to
achieve a comparable miss detection rate of 10−3 at SNR =
-10 dB. When K = 50, the code length of sparse OFDMA
is around 10,500, while slotted ALOHA and CSMA requires
more than 90,000 chips to achieve a missed detection rate of
10−3. Sparse OFDMA can effectively reduce the code length
by over 80%. Moreover, the code length reduction is even
greater for larger K and a lower error probability requirement.
When K = 100, the code length of sparse OFDMA is around
21,000, while slotted ALOHA and CSMA requires more than
180,000 chips to achieve a missed detection rate of 10−3.
Sparse OFDMA can effectively reduce the code length by over
85%. The significant reduction of the code length required by
sparse OFDM is due to the code design, which utilizes the
sparsity of the active users among the total number of users.

VIII. CONCLUSION

We have proposed a low-complexity asynchronous neighbor
discovery and massive access scheme for very large
networks with billions of nodes. The scheme may be
suitable for applications in the Internet of Things. The
scheme, referred to as sparse OFDMA, applies the recently
developed sparse Fourier transform to compressed device
identification. Compared with random access schemes, sparse
OFDMA requires much shorter code length by exploiting the
multiaccess nature of the channel and the multiuser detection
gain. Sparse OFDMA is a divide-and-conquer approach of low
complexity, where only point-to-point capacity approaching
codes are adopted. It provides practical physical layer
capability for multipacket reception.

This paper makes the widely adopted assumption that the
system is sample-synchronous but not frame-synchronous. It
would be interesting to extend the signalling scheme to the
fully asynchronous setting. Another interesting direction is to
consider multiple antennas or push to a massive number of
antennas at the access point. Finally, extending this work to
multi-path setting is also important for practical applications
in wireless communication systems.

APPENDIX A
AUXILIARY RESULTS ON SUB-GAUSSIAN VARIABLES

We introduce the definition of sub-Gaussian variables,
which will be used in the proof of the main theorems.

Definition 3: X is σ-subGaussian if there exists σ > 0 such
that

E {exp(tX)} ≤ exp(σ2t2/2), ∀t ≥ 0. (102)

Definition 4 (subGaussian norm): The subGaussian norm
of the random variable X is defined as

‖X‖φ2 = sup
p≥1

p−1/2 (E|X|p)1/p
. (103)

The following three lemmas, which are established in [59],
will be used in the proof.

Lemma 4: Suppose X is σ-subGaussian, then aX is
|a|σ-subGaussian.

Lemma 5: Suppose X1 is σ1-subGaussian, X2 is
σ2-subGaussian. Moreover, they are independent. Then X1 +
X2 is

√
σ2

1 + σ2
2-subGaussian.

Lemma 6: If a random variable X is σ-subGaussian with
zero mean, then for any t > 0, the following holds

P{|X| > t} ≤ 2e−
t2

2σ2 . (104)

The following theorem characterizes the properties of
subGaussian variables [59].

Theorem 3 (Characterization of subGaussian variables):
Let EX = 0. The following are equivalent:

1) E(etX) ≤ e t
2

4 .
2) ∀p ≥ 1, (E|X|p)1/p ≤ √2p.
The following theorem is on the concentration of

subGaussian random variables.
Theorem 4 (Hanson-Wright inequality [60]): Let Z =

(Z1, · · · , Zn) ∈ Rn be a random vector with independent
components Zi which satisfy EZi = 0 and the subGaussian
norm ‖Zi‖φ2 ≤ K. Let A be a deterministic n × n matrix.
Then, for every t ≥ 0,

P
{
|ZTAZ − E

{
ZTAZ

}
| > t

}

≤ 2 exp

[
−ς min

(
t2

K4‖A‖2F
,

t

K2‖A‖op

)]
,

(105)

where the operator norm of A is

‖A‖op = max
x6=0

‖Ax‖
‖x‖ , (106)

the Frobenius norm of A is ‖A‖F = (
∑
i,j |Ai,j |2)1/2 and ς

is an absolute constant that does not depend on K,A and t.

APPENDIX B
PROOF OF SINGLETON ERROR E1,0 (83)

We first establish the following lemma, which is key to the
proof of (83).

Lemma 7: Let B = β0K be given by (27). Let c ∈ [0, C2)
be a fixed constant. Let Z = W + V be a vector of
length C2, where ‖V ‖ ≤ √η/2 and the entries of W are
i.i.d. CN (0, 2σ2/B) random variables. Let Q = UΛΛΛU † be
a deterministic matrix, where U is a real-valued orthogonal
matrix and ΛΛΛ = diag{0, · · · , 0, 1, · · · , 1} is a diagonal matrix
with c zeros and C2 − c ones. Let

S =

k0∑

k=1

Ak,bġk, (107)

where k0 ≥ 1, the entries of ġk are i.i.d. BPSK symbols, and
Ak,b are deterministic variables with |Ak,b| ≥ a. Moreover,

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3224951

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Northwestern University. Downloaded on November 30,2022 at 20:32:40 UTC from IEEE Xplore.  Restrictions apply. 



16

S,W , and V are mutually independent variables. Then there
exists some β1 such that, for large enough K,

P
{
‖QS + Z‖2 ≤ η

}
≤ 2

K2
, (108)

where C2 = dβ1 logKe by (30) and η is the constant energy
threshold.

Proof: In the following proof, we use
∑
k as a shorthand

for
∑k0
k=1. The expectation of ‖QS‖2 is easily obtained as

ϑ = (C2 − c)
∑
k |Ak,b|2. We have

P
{
‖QS + Z‖2 ≤ η

}

≤ P

{
‖QS + Z‖2 ≤ η

∣∣∣∣‖QS‖2 ≥ ϑ/2
}

+ P
{
‖QS‖2 ≤ ϑ/2

}
. (109)

To bound the first term on the right hand side of (109),
we use the triangle inequality ‖Z‖+ ‖QS + Z‖ ≥ ‖QS‖ to
obtain

P

{
‖QS + Z‖2 ≤ η

∣∣∣∣‖QS‖2 ≥ ϑ/2
}

≤ P

{
‖QS‖ − ‖Z‖ ≤ √η

∣∣∣∣‖QS‖2 ≥ ϑ/2
}
.

(110)

For large enough K, η can be chosen to be an arbitrarily
small constant to satisfy (81). For every fixed c, we have ϑ ≥
(C2 − c)a2, which is greater than 8η for large enough K.
Therefore, for large enough K,

P

{
‖QS‖ − ‖Z‖ ≤ √η

∣∣∣∣‖QS‖2 ≥ ϑ/2
}

≤ P

{
‖Z‖ ≥ √η

∣∣∣∣‖QS‖2 ≥ ϑ/2
}

(111)

≤ P

{
‖W ‖ ≥ √η/2

∣∣∣∣‖QS‖2 ≥ ϑ/2
}

(112)

= P {‖W ‖ ≥ √η/2} (113)

≤ 1/K2, (114)

where (111) follows because conditioned on ‖QS‖2 ≥ ϑ/2,
‖QS‖ − ‖Z‖ ≤ √η implies that ‖Z‖ ≥ √η; (112) follows
because conditioned on ‖V ‖ ≤ √η/2, ‖Z‖ ≥ √η implies
‖W ‖ ≥ √η/2; (113) follows because QS is independent of
W , and (114) follows from (75) and (82).

The second term on the right hand side of (109) is derived
in the following steps using the tools in Appendix A. First,
using Lemma 4 and Lemma 5 in Appendix A, we show
that the real and imaginary parts of S given by (107) are
subGaussian variables. Then, by Definition 3 and Theorem 3
in Appendix A, we obtain the upper bounds of the subGaussian
norms of the real components and imaginary components of
S. Finally, we apply Theorem 4 in Appendix A to show that
‖QS‖22 are concentrated around (C2−c)

∑
k |Ak,b|2 with high

probability. In order to achieve that, it suffices to show that
the operator norm of Q is 1 and the Frobenius norm of Q is
C2 − c.

Lemma 8: Let SR = (S0,R, · · · , SC2−1,R) and SI =
(S0,I , · · · , SC2−1,I) be the real and imaginary components
of S, respectively. Let u =

√∑
k

(Re{Ak,b})2 and v =

√∑
k

(Im{Ak,b})2. Then Sc,R are i.i.d. u-subGaussian random

variables with ESc,R = 0 and the subGaussian norm satisfies
‖Sc,R‖φ2

≤ 2u. Similarly, Sc,I are i.i.d. v-subGaussian
random variables with ESc,I = 0 and the subGaussian norm
satisfies ‖Sc,I‖φ2 ≤ 2v.

Proof: Since ġck is BPSK symbol, it is 1-subGaussian with
zero mean. Thus, ESc,R = 0. Moreover, ġck are independent
across k. According to Lemma 4 and Lemma 5, Sc,R =∑
k Ak,Rġ

c
k is u-subGaussian. {Sc,R}C2−1

c=0 are independent,
because ġck are independent across c = 0, · · · , C2 − 1.

By Definition 3, E {exp(tSc,R)} ≤ exp
(
u2t2/2

)
. Let

X = Sc,R/
√

2u. Then E {exp(tX)} ≤ exp(t2/4). According
to Theorem 3, for all p ≥ 1, (E|X|p)1/p ≤ √2p, which yields

(E|Sc,R|p)1/p ≤ 2u
√
p. (115)

By (103), the subGaussian norm of Sc,R is upper bounded as
‖Sc,R‖φ2

≤ 2u. The statement for the imaginary parts follow
similarly.

In order to apply Theorem 4 to provide a concentration
result on ‖QS‖, we need to first derive the Frobenius norm
and the operator norm of Q. The Frobenius norm of Q is
calculated as

‖Q‖2F = tr{QQ†} (116)
= tr{Q} (117)
= C2 − c, (118)

where (117) follows by QQ† = Q, and (118) follows because
the sum of the eigenvalues of Q is C2 − c.

Since the largest eigenvalue of Q is 1, the operator norm
of Q defined by (106) is calculated as

‖Q‖op = 1. (119)

Moreover, we have

E
{
‖QSR‖2

}
= E

{
S†RQQ†SR

}
(120)

= E
{
S†RQSR

}
(121)

= E{S2
c,R} tr{Q} (122)

= (C2 − c)u2, (123)

where (122) follows because {Sc,R}C2−1
c=0 are i.i.d. distributed.

Similarly, E
{
‖QSI‖2

}
= (C2 − c)v2.

Applying (119), (123) and Theorem 4 with Z = SR, A =
Q with ‖Q‖op = 1, ‖Q‖2F = C2 − c and K = 2u yields

P

{∣∣∣∣‖QSR‖2 − (C2 − c)u2

∣∣∣∣ > t

}

≤ 2 exp

(
−ς min

(
t2

16(C2 − c)u4
,
t

4u2

))
,

(124)

where ς is a constant introduced in Theorem 4 in Appendix A.
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Letting t = (C2 − c)u2/2, we have

P

{
‖QSR‖2 ≤

(C2 − c)u2

2

}
= P

{
‖QSR‖2 ≤ t

}
(125)

≤ P

{∣∣∣∣‖QSR‖2 − 2t

∣∣∣∣ > t

}

(126)

≤ 2 exp
(
− ς

64
(C2 − c)

)
,

(127)

where (127) is due to (124). Similarly, we have

P

{
‖QSI‖2 ≤

(C2 − c)v2

2

}
≤ 2 exp

(
− ς

64
(C2 − c)

)
.

(128)

Since Q is a real-valued matrix, ‖QS‖2 = ‖QSR‖2 +
‖QSI‖2. Moreover,

∑
k |Ak,b|2 = u2 + v2. Combining (127)

and (128), we have

P

{
‖QS‖2 ≤ (C2 − c)

∑
k |Ak,b|2

2

}

≤ P

{
‖QSR‖2 ≤

(C2 − c)u2

2

}

+ P

{
‖QSI‖2 ≤

(C2 − c)v2

2

}
(129)

≤ 4 exp
(
− ς

64
(C2 − c)

)
. (130)

Combining (109), (114) and (130), there exists some large
enough β1 such that for C2 = dβ1 logKe,

P
{
‖QS + Z‖2 ≤ η

}
≤ 2

K2
. (131)

The probability that a singleton is declared to be a zeroton
is calculated as

P {E1,0} = P
{
‖Ak,bġk + Żb‖2 ≤ η

}
. (132)

Therefore, we can apply Lemma 7 with S = Ak,bġk, Q = I ,
Z = Żb, k0 = 1, and c = 0 to obtain (83). In this
case, β1 can be chosen to satisfy β1 ≥ 192/ς such that
4 exp

(
− ς

64dβ1 logKe
)
≤ K−2.

APPENDIX C
PROOF OF SINGLETON ERROR E1,1 (84)

We first show that the phase compensation is accurate
with high probability. Second, we show that the interference
only causes a slight degradation of signal strength with high
probability. Third, the device index recovery can be regarded
as transmission over a BSC channel and a large enough C1

can help recover the index information.
We estimate the phase of θ = ∠Ak,b according to (16). The

estimate can be expressed as

θ̂ = ∠
(
Ak,b + Z̄

)
, (133)

where Z̄ =
C0−1∑
c=0

(
W̄ c
b + V̄ cb

)
/C0. From the geometric

interpretation, the maximum phase offsets occurs when the

noise is orthogonal to the measurement. Suppose each entry
of V cb is upper bounded by v̄ given by (40). We choose a small
θ0 such that θ0 <

π
3 and sin θ0 > θ0/2, then

P
{
|θ̂ − θ| > θ0

}

≤ P

{
arcsin

|Z̄|
|Ak,b|

> θ0

}
(134)

≤ P
{
|Z̄| > a sin θ0

}
(135)

≤ P

{
|Z̄| > aθ0

2

}
(136)

≤ P

{∣∣∣∣∣
1

C0

C0−1∑

c=0

W̄ c
b

∣∣∣∣∣ >
aθ0

2
− v̄
}

(137)

≤ 2P

{∣∣∣∣∣
1

C0

C0−1∑

c=0

Re(W̄ c
b )

∣∣∣∣∣ >
aθ0

4
− v̄

2

}
(138)

≤ 4 exp

(
− (aθ0/4− v̄/2)2BC0

2σ2

)
, (139)

where (139) is because 1
C0

∑C0−1
c=0 Re(W̄ c

b ) ∼
N (0, σ2/(BC0)).

For |θ̂ − θ| ≤ θ0, considering that |V cb | ≤ v̄, we have

Re
{
Ak,be

−ιθ̂ + Ṽ cb e
−ιθ̂
}
≥ a/2− v̄, (140)

Re
{
−Ak,be−ιθ̂ + Ṽ cb e

−ιθ̂
}
≤ −a/2 + v̄. (141)

Thus,

Re
{
Ak,be

−ιθ̂ + g̃ckṼ
c
b e
−ιθ̂
}
≥a/2− v̄. (142)

Hence,

P
{

Re
{
Ak,be

−ιθ̂ + g̃ckṼ
c
b e
−ιθ̂
}
≤ a/2− v̄

}

≤ P
{
|θ̂ − θ| > θ0

}
(143)

≤ 4 exp

(
− (aθ0/4− v̄/2)2BC0

2σ2

)
. (144)

To predict g̃ck, we make hard binary decision on

Re
{
Ỹ cb e

−ιθ̂
}

= Re
{
Ak,bg̃

c
ke
−ιθ̂ + Ṽ cb e

−ιθ̂
}

+ Re
{
W̃ c
b e
−ιθ̂
}

(145)

= g̃ck Re
{
Ak,be

−ιθ̂ + g̃ckṼ
c
b e
−ιθ̂
}

+ Re
{
W̃ c
b e
−ιθ̂
}
. (146)

The prediction error occurs when g̃ck Re
{
W̃ c
b e
−ιθ̂
}

<

−Re
{
Ak,be

−ιθ̂ + g̃ckṼ
c
b e
−ιθ̂
}

. The flip rate can be upper
bounded by

P
{

Re
{
Ak,be

−ιθ̂ + g̃ckṼ
c
b e
−ιθ̂
}
≤ a/2− v̄

}
+

P
{

Re
{
Ak,be

−ιθ̂ + g̃ckṼ
c
b e
−ιθ̂
}
≥ a/2− v̄,

g̃ck Re
{
W̃ c
b e
−ιθ̂
}
< −Re

{
Ak,be

−ιθ̂ + g̃ckṼ
c
b e
−ιθ̂
}}

.

(147)

Since v̄ given by (40) vanishes as K goes to infinity, a/2−v̄
can be lower bounded by a constant arbitrarily close to a/2.
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The first term is upper bounded by (143), and the second term

P
{

Re
{
Ak,be

−ιθ̂ + g̃ckṼ
c
b e
−ιθ̂
}
≥ a/2− v̄,

g̃ck Re
{
W̃ c
b e
−ιθ̂
}
< −Re

{
Ak,be

−ιθ̂ + g̃ckṼ
c
b e
−ιθ̂
}}

≤ P
{
g̃ck Re

{
W̃ c
b e
−ιθ̂
}
< −(a/2− v̄)

}
(148)

≤ P
{
−|W̃ c

b | < −(a/2− v̄)
}

(149)

≤ exp

(
− (a/2− v̄)2B

2σ2

)
. (150)

The flip rate is upper bounded by
4 exp

(
− (aθ0/4−v̄/2)2BC0

2σ2

)
+ exp

(
− (a/2−v̄)2B

2σ2

)
. Given

B = β0K and C0 = dlogNe, the flip rate tends to
0 as K and N goes to infinity. By [50, Theorem 6.1],
there exists a code rate that depends only on the given
flipping rate of the binary symmetric channel, to encode the
(dlogNe + dlogSe)-bit information, such that the index can
be recovered correctly with probability at least 1 − 1/N2.
For large enough K, the flipping rate e−O(K) vanishes. Thus,
incorrect device identification and message decoding occurs
with probability

P {E1,1} ≤ N−2 ≤ K−2 (151)

with a certain fixed rate R.

APPENDIX D
PROOF OF SINGLETON ERROR E1,2 (85)

Let Ȧk,b = ġ†kẎ b/C2. We have

Ẏ b − Ȧk,bġk =

(
I − 1

C2
ġkġ

†
k

)
Żb. (152)

Let Q = I − 1
C2

ġkġ
†
k. Since ġ†kġk = C2, ġk is the

eigenvector of ġkġ
†
k/C2. Since ġkġ

†
k/C2 is a rank-1 matrix,

it has only a single nonzero eigenvalue which is 1. Therefore,
the eigenvalue decomposition of Q can be written as

Q = UΛU † (153)

= Udiag{0, 1, · · · , 1}U † (154)

where U is an orthogonal matrix. Then we have

‖Ẏ b − Ȧk,bġk‖22 = ‖QŻb‖2 (155)

= ‖ΛU †Żb‖2 (156)

=

C2−1∑

c=1

|Z ′c|2, (157)

where Z ′ = U †Żb and (157) is due to Λ = diag(0, 1, · · · , 1).
Since ‖Żb‖2 = ‖Z ′‖2, we have

P
{
‖Ẏ b − Ȧk,bġk‖22 ≥ η

}
= P

{
C2−1∑

c=1

|Z ′c|2 ≥ η
}

(158)

≤ P
{
‖Żb‖2 ≥ η

}
(159)

≤ K−2, (160)

where (160) follows from (75) and (82).

APPENDIX E
PROOF OF MULTITON ERROR (88)

We rewrite the subcarrier values as follows,

Ẏ b =
∑

k∈K:b∈Bk
Ak,bġk + Żb, (161)

where Żb = Ẇ b + V̇ b.
Suppose the incorrect estimate index from subcarrier-b is j.

We have

Ȧj =
∑

k∈K:b∈Bk

1

C2
Ak,bġ

†
j ġk +

1

C2
ġ†jŻb. (162)

Thus,

Ẏ b − Ȧj ġj =
∑

k∈K:b∈Bk
Ak,b

(
I −

ġj ġ
†
j

C2

)
ġk

+

(
I −

ġj ġ
†
j

C2

)
Żb. (163)

Let

S =
∑

k∈K:b∈Bk
Ak,bġk (164)

and Q = I − 1
C2

ġj ġ
†
j , then the first term in (163) can be

written as

∑

k∈K:b∈Bk
Ak,b

(
I −

ġj ġ
†
j

C2

)
ġk = QS. (165)

The multiton subcarrier cannot be detected when ‖Y b −
Ȧj,bġj‖2 ≤ η. In the following, we upper bound the error
probability assuming b /∈ Bj . A similar analysis can be carried
out for the case of b ∈ Bj . It is obvious that Q depends on gj
which is independent from S. Moreover, V are based on the
design parameters from the devices that have been recovered,
which are independent of Q and S. Conditioned on ġj , Q is
a deterministic matrix, we can apply Lemma 7 with c = 1,
k0 = |k ∈ K : b ∈ Bk| and Z = QŻb. The condition of the
lemma still holds because

‖QV̇ b‖2 = ‖V̇ b‖2 −
1

C2
V̇
†
bġj ġ

†
jV̇ b ≤ ‖V̇ b‖2. (166)

The error probability can be upper bounded as

P
{
‖Y b − Ȧj,bġj‖2 ≤ η|ġj

}
= P

{
‖QS + QŻb‖2 ≤ η|ġj

}

(167)

≤ 2K−2, (168)

where (168) directly follows from (108). Since (167) holds for
every ġj , we have

P
{
‖Y b − Ȧj,bġj‖2 ≤ η

}
≤ 2K−2. (169)

APPENDIX F
PROOF OF LEMMA 3

The lemma holds trivially in the degenerate case of M = 0,
so we assume M is a natural number in this proof. We focus on
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the delay estimation for device k. Without loss of generality,
we assume the delay is mk = 0. The device experiences the
interference from the other K − 1 devices and noise. The
received synchronization pilots in subframe 3 can be written
as

x(B+M)C+i = aks
′
k,i +

∑

p∈K\k
aps
′
p,i−mp + wi, (170)

where the time-domain samples of the pilots s′k,i are uniform
random from {+1,−1} and the noise wi ∼ CN (0, 2σ2).

Let I be defined as in (19). The number of samples
contained in I is

|I| = dβ2K log(KM + 1)e, (171)

where β2 ≥ 256ā2/a2. Since the random sequence has a
length greater than M and the delay is no greater than
M , without noise, correlating the second segment with the
received sequence will yield an auto-correlation of a sequence
with its cyclic shift version. The test metric in (21) is
calculated as

Tk(m) =





|I|ak +
∑
i∈I wis

′
k,i

+
∑
p∈K\k

∑
i∈I aps

′
p,i−mps

′
k,i

if m = 0∑
i∈I aks

′
k,i+ms

′
k,i +

∑
i∈I wi+ms

′
k,i

+
∑
p∈K\k

∑
i∈I aps

′
p,i+m−mps

′
k,i

if m 6= 0.

(172)

By the choice of the random sequence, when p 6= k,
s′p,i+m−mps

′
k,i are i.i.d. BPSK symbols, for all p and i ∈ I .

Moreover, when m 6= 0, s′k,i+ms
′
k,i are i.i.d. BPSK symbols

for all i ∈ I. We will show that with a large enough of β2,
the error probability can be lower than O(1/K2).

Define a threshold

T̄ = a|I|/2. (173)

If |Tk(0)| > T̄ and |Tk(m)| < T̄ for all m = 1, · · · ,M ,
the delay can be correctly estimated. Therefore, the error
probability can be upper bounded as

Pe ≤ P{|Tk(0)| ≤ T̄ }+
M∑

m=1

P{|Tk(m)| ≥ T̄ }. (174)

For m = 1, · · · ,M , we have

P
{
|Tk(m)| ≥ T̄

}

≤ P
{∣∣Re{Tk(m)}

∣∣+
∣∣ Im{Tk(m)}

∣∣ ≥ T̄
}

(175)

≤ P
{∣∣Re{Tk(m)}

∣∣ ≥ T̄ /2
}

+ P
{∣∣ Im{Tk(m)}

∣∣ ≥ T̄ /2
}
. (176)

We first derive the upper bound for the first term in (176). Let
rk,i be random i.i.d. BPSK symbols for all k ∈ K and i ∈ I.
Let zi = Re{wi} be the real part of the random noise wi. We

have

P

{∣∣∣∣Re{Tk(m)}
∣∣∣∣ ≥ T̄ /2

}

≤ P





∣∣∣∣
∑

p∈K

∑

i∈I
Re{ap}rp,i

∣∣∣∣ ≥ T̄ /4





+ P

{∣∣∣∣
∑

i∈I
zi+ms

′
k,i

∣∣∣∣ ≥ T̄ /4
}
. (177)

For the first term on the right hand side of (177), recall
that a BPSK symbol is a 1-subGaussian with zero mean.
According to Lemma 4 and Lemma 5 in Appendix A,∑
p

∑
i∈I Re{ap}rp,i is

√∑
p |I|(Re{ap})2-

subGaussian variables with zero mean. By Lemma 6 in
Appendix A, we have

P





∣∣∣∣
∑

p∈K

∑

i∈I
Re{ap}rp,i

∣∣∣∣ ≥ T̄ /4





≤ 2 exp

(
− T̄ 2

32|I|∑p(Re{ap})2

)
(178)

≤ 2 exp

(
− a2|I|

128Kā2

)
(179)

≤ 2 exp (−2 log(MK)) (180)

≤ 2

MK2
, (181)

where (180) is due to (171) with β2 ≥ 256ā2/a2.

For the second term on the right hand side of (177),
conditioned on s′k,i, k ∈ K and i ∈ I, the variables zi+ms′k,i
are i.i.d. Gaussian variables with zero mean and variance equal
to σ2. Therefore,

P

{∣∣∣∣
∑

i∈I
zi+ms

′
k,i

∣∣∣∣ ≥ T̄ /4
}

= 2Q

(
T̄

4
√
|I|σ2

)
(182)

≤ 2 exp

(
− T̄ 2

32|I|σ2

)
(183)

= 2 exp

(
− a2|I|

128σ2

)
(184)

≤ 2

MK2
, (185)

where (183) is due to Q(x) ≤ exp(−x2/2), and (185) follows
from (171).

Thus, by (177), (181) and (185), we have

P
{∣∣∣Re{Tk(m)}

∣∣∣ ≥ T̄ /2
}
≤ 4

MK2
. (186)

Following the similar derivations, we can obtain
P
{∣∣∣ Im{Tk(m)}

∣∣∣ ≥ T̄ /2
}
≤ 4/(MK2). It follows that

M∑

m=1

P
{
|Tk(m)| ≥ T̄

}
≤ 8

K2
. (187)
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For m = 0, given (172) on Tk(m), we have

P{|Tk(0)| ≤ T̄ }

= P





∣∣∣∣∣∣
|I|ak +

∑

p∈K\k

∑

i∈I
aprp,i +

∑

i∈I
wis
′
k,i

∣∣∣∣∣∣
≤ T̄





(188)

≤ P



|I||ak| −

∣∣∣∣∣∣
∑

p∈K\k

∑

i∈I
aprp,i +

∑

i∈I
wis
′
k,i

∣∣∣∣∣∣
≤ T̄




(189)

≤ P





∣∣∣∣∣∣
∑

p∈K\k

∑

i∈I
aprp,i +

∑

i∈I
wis
′
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
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≤ P
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
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
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
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
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
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Im



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p∈K\k

∑

i∈I
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i∈I
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′
k,i





∣∣∣∣∣∣
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2



 ,

(191)

where (190) is due to the assumption that |I||ak| > 2T̄ .
Following the similar derivations for

P
{∣∣∣Re{Tk(m)}

∣∣∣ ≥ T̄ /2
}
,m = 1, · · · ,M , we have

P




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4

}
(192)

≤ 4

K2
. (193)

It can also be verified that
P
{∣∣∣Im

{∑
p∈K\k

∑
i∈I aprp,i +

∑
i∈I wis

′
k,i

}∣∣∣ ≥ T̄2
}

≤ 4/K2. We thus have

P{|Tk(0)| ≤ T̄ } ≤ 8

K2
. (194)

Hence the proof of Lemma 3 by (174), (187) and (194).
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