
The importance of better models in
stochastic optimization
Hilal Asia,1 and John C. Duchia,b

aDepartment of Electrical Engineering, Stanford University, Stanford, CA 94305; and bDepartment of Statistics, Stanford University, Stanford, CA 94305

Edited by David L. Donoho, Stanford University, Stanford, CA, and approved October 1, 2019 (received for review May 8, 2019)

Standard stochastic optimization methods are brittle, sensitive

to stepsize choice and other algorithmic parameters, and they

exhibit instability outside of well-behaved families of objectives.

To address these challenges, we investigate models for stochastic

optimization and learning problems that exhibit better robustness

to problem families and algorithmic parameters. With appro-

priately accurate models—which we call the APROX family—

stochastic methods can be made stable, provably convergent, and

asymptotically optimal; even modeling that the objective is non-

negative is sufficient for this stability. We extend these results

beyond convexity to weakly convex objectives, which include

compositions of convex losses with smooth functions common

in modern machine learning. We highlight the importance of

robustness and accurate modeling with experimental evaluation

of convergence time and algorithm sensitivity.

stochastic optimization | large-scale optimization

A major challenge in stochastic optimization—the algorith-
mic workhorse for much of modern statistical and machine-

learning applications—is in setting algorithm parameters (or
hyperparameter tuning). This sensitivity causes multiple issues.
It results in thousands to millions of wasted engineer and com-
putational hours. It also leads to a lack of clarity in research and
development of algorithms—in claiming that one algorithm is
better than another, it is unclear whether this is due to judicious
choice of dataset or judicious parameter settings or whether
indeed the algorithm does exhibit new desirable behavior. Con-
sequently, in this paper we pursue 2 main thrusts: First, by
using models more accurate than the first-order models common
in stochastic gradient methods, we develop families of algo-
rithms that are provably more robust to input parameter choices,
with several corresponding optimality properties. Second, we
argue for a different type of experimental evidence in evaluat-
ing stochastic optimization methods, where one jointly evaluates
convergence speed and sensitivity of the methods.

The wasted computational and engineering energy is espe-
cially pronounced in deep learning, where engineers use models
with millions of parameters, requiring days to weeks to train a
single model. To get a sense of this energy use, we consider a
few recent papers we view as exemplars of this broader trend: In
searching for optimal neural network architectures and hyper-
parameters, the papers (1–3) used approximately 3,150 graphics
processing unit (GPU) days, 22,000 GPU days, and 750,000 cen-
tral processing unit (CPU) days of computation, respectively.
To put this in perspective, assuming standard CPU energy use
of between 60 and 100 W, the energy (ignoring network inter-
connect, monitors, etc.) for the paper (3) is roughly between
4 and 6 · 1012 J. At 109 J per tank of gas, this is sufficient to
drive 4,000 Toyota Camrys the 380 miles between San Francisco
and Los Angeles.

To address these challenges, we develop stochastic optimiza-
tion procedures that exhibit similar convergence to classical
approaches—when the classical approaches have good tuning
parameters—while enjoying better robustness, achieving this
performance over a range of parameters. We argue too for eval-
uation of optimization algorithms based not only on convergence

time but also on robustness to input choices. Briefly, a fast algo-
rithm that converges for a small range of stepsizes is too brittle;
we argue instead for (potentially slightly slower) algorithms that
converge for broad ranges of stepsizes and other parameters.
Our theory and experiments demonstrate the effectiveness of
our methods for applications including phase retrieval, matrix
completion, and deep learning.

Problem Setting and Approach

We begin by making our setting concrete. We study the stochastic
optimization problem

minimize
x

F (x ) :=EP [f (x ;S)] =

∫

S

f (x ; s)dP(s)

subject to x ∈X .

[1]

In problem 1, the set S is a sample space, X ⊂R
n is closed

convex, and f (x ; s) is the loss x suffers on sample s . In this
paper, we move beyond convex optimization by considering ρ(s)-
weakly convex functions f , meaning (cf. refs. 4 and 5) that

f (x ; s)+ ρ(s)
2

‖x‖22 is convex. We recover convexity when ρ(s)≤
0. Examples include linear regression, f (x ; (a, b))= (〈a, x 〉−
b)2, and phase retrieval, f (x ; (a, b))= |〈a, x 〉2 − b|, which is

2 ‖a‖22-weakly convex.
Most optimization methods iterate by making an approxima-

tion—a model—of the objective at the current iterate, minimiz-
ing this model and reapproximating. Stochastic (sub)gradient
methods (6, 7) instantiate this approach using a linear approx-
imation; following initial work of our own and others (5, 8, 9),
we study the modeling approach in more depth for stochastic
optimization. Thus, the APROX algorithms we develop iterate
as follows: For k =1, 2, . . ., we draw a random Sk ∼P and then
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update the iterate xk by minimizing a regularized approximation
to f (·;Sk ), setting

xk+1 := argmin
x∈X

{

fxk (x ;Sk )+
1

2αk

‖x − xk‖
2
2

}

. [2]

We call fx (·; s) the model of f at x , where fx satisfies 3 conditions
(cf. refs. 5, 8, and 9):

C.i) (Model convexity): The function y 7→ fx (y ; s) is convex and
subdifferentiable.

C.ii) (Weak lower bound): The model fx satisfies

fx (y ; s)≤ f (y ; s)+
ρ(s)

2
‖y − x‖22 for all y ∈X .

C.iii) (Local accuracy): We have fx (x ; s)= f (x ; s).

The containment ∂y fx (y ; s) |y=x⊂ ∂x f (x ; s) is immediate
from condition C.iii. We provide examples presently.

We show that models slightly more accurate than the first-
order model used by the stochastic gradient method—sometimes
as simple as recognizing that if f is nonnegative, we should
truncate the approximation at zero—achieve substantially bet-
ter theoretical guarantees and practical performance. While the
iterates of gradient methods can (superexponentially) diverge for
misspecified stepsizes, our methods guarantee the iterates never
diverge. Even more, this stability guarantees convergence and,
in convex cases, optimal asymptotic normality of the averaged
iterates. Finally, we evaluate the performance of our methods,
validating our theoretical findings on convergence and robust-
ness for a range of problems, including matrix completion,
phase retrieval, and classification with neural networks. We defer
proofs to SI Appendix.

In optimization broadly, proximal point methods and their
related robust convergence are classical (10–12), and their role
in smoothing and Moreau–Yosida regularization is also central
in convex and variational analysis (13–15). In signal processing,
least-mean squares for adaptive filtering is an important instance
of the stochastic proximal point method (16, 17). More recent
work in large-scale optimization and machine learning revisits
Moreau smoothing and regularization, extending acceleration
and stability properties of proximal-point-type methods to finite
sum and stochastic problems (18–20).

Notation and Basic Assumptions

For a weakly convex function f , we let ∂f (x ) denote its Fréchet
subdifferential at the point x , and f ′(x )∈ ∂f (x ) denotes an
arbitrary element of the subdifferential. Throughout, we let
x? denote a minimizer of problem 1 and X ? =argminx∈X F (x )
denote the optimal set for problem 1. We let Fk :=σ(S1, . . . ,Sk )
denote the σ field generated by the first k random variables Si .
Note that xk ∈Fk−1 for all k . Unless stated otherwise, we assume
that the function f (x ; s) is ρ(s) -weakly convex for each s ∈S.
Finally, the following assumption implicitly holds throughout.

Assumption A1. The set X ? := argminx∈X{F (x )} is nonempty,

and there exists σ2 <∞ such that for each x? ∈X ? and selection

f ′(x?; s)∈ ∂f (x?; s), we have E[‖f ′(x?;S)‖
2
2]≤σ2.

Methods

To make our approach more concrete, we identify several models that fit

into our framework. These have appeared in refs. 5, 8, and 9, but we believe

a self-contained presentation is beneficial. Each one satisfies our conditions

C.i to C.iii. The most common model in stochastic optimization is the first-

order model.

Stochastic Subgradient Methods. The stochastic subgradient method uses

the model

fx(y; s) := f(x; s) + 〈f ′(x; s), y − x〉. [3]

Proximal Point Methods. In the convex setting (8, 20, 21), the stochastic prox-

imal point method uses the model fx(y; s) := f(y; s); in the weakly convex

setting, we regularize and use

fx(y; s) := f(y; s) +
ρ(s)

2
‖y − x‖2

2 . [4]

Other models require less knowledge than proximal model 4 but preserve

structural properties in the original function.

Prox-Linear Model. Let the function f have the composite structure f(x; s) =

h(c(x; s); s), where h(·; s) is convex and c(·; s) is smooth. The stochastic prox-

linear method applies h to a first-order approximation of c, using

fx(y; s) := h(c(x; s) +∇c(x; s)
T
(y − x); s). [5]

In the nonstochastic setting, these models are classical (22), while recent

work establishes convergence and convergence rates in restrictive stochastic

settings (5, 9). When h is Lh Lipschitz and c has an Lc-Lipschitz gradient, then

f is ρ= Lh · Lc-weakly convex.

Example 1 (phase retrieval): In phase retrieval (23), we wish to recover an

object x? ∈C
n from a diffraction pattern Ax?, where A ∈C

m×n, but physical

sensor limitations mean we observe only amplitudes b = |Ax?|2. A natural

objective is

minimize
x∈Cn

1

m

m
∑

i=1

f(x; (ai , bi)), f(x; (ai , bi)) =
∣

∣

∣
|〈ai , x〉|2 − bi

∣

∣

∣
.

This is the composition of h(z) = |z| and c(x; (ai , bi)) = |〈< ai , x〉|2 − bi , so

f(·; (ai , bi)) is 2 ‖ai‖2
2-weakly convex (24). ♦

Example 2 (matrix completion): In the matrix completion problem (25),

which arises (for example) in the design of recommendation systems, we

have a matrix M ∈R
m×n with decomposition M = X?YT

? for X? ∈R
m×r and

Y? ∈R
n×r . Based on the incomplete set of known entries Ω⊂ [m]× [n], our

goal is to recover the matrix M, giving rise to the objective

minimize
X∈Rm×r ,Y∈Rn×r

1

|Ω|
∑

(i,j)∈Ω

f(xi , yj ; Mi,j),

where f(x, y; z) := |〈x, y〉− z| and xi , yj are the (i, j) rows of X and Y . This

is the composition of h(z) = |z| and c(x, y, z) = 〈x, y〉− z, so that f = h ◦ c is

1-weakly convex. ♦

Truncated Models. The prox-linear model 5 may be challenging to imple-

ment for complex compositions (e.g., deep learning). If instead we know a

lower bound on f , we may incorporate this into the model

fx(y; s) := max

{

f(x; s) + 〈f ′(x; s), y − x〉, inf
z∈X

f(z; s)

}

. [6]

In our examples—linear and logistic regression, phase retrieval, and matrix

completion (more generally, typical loss functions in machine learning)—

we have infz f(z; s) = 0. The assumption that we have a lower bound is thus

rarely restrictive. This model satisfies the conditions C.i to C.iii, also satisfying

the following condition.

C.iv) (Lower optimality): For all s ∈S and x, y ∈X ,

fx(y; s) ≥ inf
z∈X

f(z; s).

As we show, condition C.iv is sufficient to derive several optimality and

stability properties.

Stability and Its Consequences
In our initial study of stability in optimization (8), we defined an algorithm

as stable if its iterates remain bounded and then showed several conse-

quences of this in convex optimization (which we review presently). Here,

we develop 2 important extensions. First, we show that any model satis-

fying condition C.iv has stable iterates under mild assumptions, in strong

contrast to models (e.g., linear) that fail the condition. Second, we develop

an analogous stability theory for weakly convex functions, proving that

accurate enough models are stable. In parallel to the convex case, stabil-

ity suffices for more: It implies convergence (with an asymptotic rate) to

stationary points for any model-based method on weakly convex functions.

Let us formalize stability (8). A pair (F , P) is a collection of problems if P
consists of probability measures on a sample space S and F of functions

f :X ×S →R.

Asi and Duchi PNAS | November 12, 2019 | vol. 116 | no. 46 | 22925
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Definition 1. An algorithm generating iterates xk according to the model-

based update 2 is stable in probability for the class of problems (F , P) if for

all f ∈F , P ∈P defining F(x) =EP[f(x; S)], and X? = argminx∈X F(x),

sup
k

dist(xk, X?
) <∞ with probability 1. [7]

Typically, stability 7 requires the standard assumptions

αk > 0,
∑

k≥1

αk =∞, and
∑

k≥1

α
2
k <∞. [8]

Even under these, models such as the linear model 3 and consequent sub-

gradient method are unstable (ref. 8, section 3). They may even cause

superexponential divergence.

Example 3 (divergence): Let F(x) = ex + e−x , p <∞, and α0 > 0, and

let αk satisfy αk ≥α0k−p. Let xk+1 = xk −αkF′(xk) = xk −αk(exk − e−xk ) be

generated by the gradient method. For large x1, log
xk+1

xk
≥ 2k for all k. ♦

The Importance of Stability in Stochastic Convex Optimization. To set the

stage for what follows, we begin by motivating the importance of stable

procedures. Briefly, any stable APROX model converges for any convex func-

tion under weak assumptions, which we now elucidate. First, we make an

assumption.

Assumption A2. There exists Gbig :R+ → [0, ∞) such that for all x ∈X and

each measurable selection f ′(x; s) ∈ ∂f(x; s),

E

[

∥

∥f
′
(x; S)

∥

∥

2

2

]

≤ Gbig(‖x‖2).

Assumption A2 is equivalent to assuming E[
∥

∥f ′(x; S)
∥

∥

2

2
] is bounded on com-

pact sets; it allows arbitrary growth as long as the subgradients have second

moments.

Proposition 1 [Asi and Duchi (8), proposition 1]. Assume that f(·; s) is convex

for each s ∈S and let Assumption A2 hold. Let the iterates xk be gener-

ated by any method satisfying conditions C.i to C.iii and [8]. On the event

supk ‖xk‖<∞,
∑

k αk(F(xk) − F(x?)) <∞ and dist(xk, X?)
a.s.→ 0.

Proposition 1 establishes convergence of stable procedures and also (via

Jensen’s inequality) provides asymptotic rates of convergence for weighted

averages
∑

k αkxk/
∑

k αk.

Stability is additionally important when the functions f are smooth: Any

stable APROX method achieves asymptotically optimal convergence. In par-

ticular, let us assume F is C2 near x? = argminX F(x) with ∇2F(x?) � 0, and

the f(·; s) have an L(s) -Lipschitz gradient near x? with E[L(S)2]<∞.

Proposition 2 [Asi and Duchi (8), theorem 2]. In addition to the conditions

of Proposition 1, let the conditions of the previous paragraph hold. Then

xk =
1
k

∑k
i=1 xi satisfies

√
k(xk − x

?
)

d→ N
(

0, ∇2
F(x

?
)
−1

Cov(∇f(x
?

; S))∇2
F(x

?
)
−1

)

.

This convergence is optimal for any method (26).

Stability of Lower-Bounded Models for Convex Functions. With these conse-

quences of stability in hand—convergence and asymptotic optimality—it

behooves us to provide conditions sufficient to guarantee stability. To that

end, we show that lower-bounded models satisfying condition C.iv are sta-

ble in probability (Definition 1) for functions whose (sub)gradients grow at

most polynomially. We begin with an assumption.

Assumption A3. There exist C <∞, 2 ≤ p <∞ such that

E

[

∥

∥f
′
(x; S)

∥

∥

2

2

]

≤ C(1 + dist(x, X?
)
p
), all x ∈X ,

and E[(f(x?; S) − infz∈X f(z; S))p/2]≤ C for all x? ∈X?.

The analogous condition (27) for stochastic gradient methods holds for

p = 2, or quadratic growth, without which the method may diverge. In

contrast, Assumption A3 allows polynomial growth; for example, the func-

tion f(x) = x4 is permissible, while the gradient method may exponentially

diverge even for stepsizes αk = 1/k. The key consequence of Assumption A3

is that if it holds, truncated models are stable:

Theorem 1. Assume the function f(·; s) is convex for each s ∈S. Let Assump-

tion A3 hold and αk =α0k−β with p+2
p+4 <β< 1. Let xk be generated by the

iteration 2 with a model satisfying conditions C.i to C.iv. Then

sup
k∈N

dist(xk, X?
) <∞ with probability 1.

Theorem 1 shows that truncated methods enjoy the benefits of stabil-

ity we outline in Propositions 1 and 2 above. Thus, these models, whose

updates are typically as cheap to compute as a stochastic gradient step

(especially in the common case that infz f(z; s) = 0) provide substantial

advantage over methods using only (sub)gradient approximations.

Stability and Its Consequences for Weakly Convex Functions. We continue our

argument that—if possible—it is beneficial to use more accurate models,

even in situations beyond convexity, investigating the stability of proxi-

mal models (Eq. 4) for weakly convex functions. Establishing stability in the

weakly convex case requires a different approach to the convex case, as the

iterates may not make progress toward a fixed optimal set. In this case,

to show stability, we require an assumption bounding the size of f ′(x; S)

relative to the population subgradient F′.

Assumption A4. There exist C1, C2 <∞ such that for all measurable

selections f ′(x; s) ∈ ∂f(x; s) and F′(x) ∈ ∂F(x),

E

[

∥

∥f
′
(x; S) − F

′
(x)

∥

∥

2

2

]

≤ C1

∥

∥F
′
(x)

∥

∥

2

2
+ C2.

By providing a relative noise condition on f ′, Assumption A4 allows for more

than the typical class of functions with global Lipschitz properties (cf. ref.

5), such as the phase retrieval and matrix completion objectives (Examples 1

and 2). It can allow exponential growth, addressing the challenges in Exam-

ple 3. For example, let f(x; 1) = ex and f(x; 2) = e−x , where S is uniform in

{1, 2} so that F(x) = 1
2 (ex + e−x); then E[f ′(x; S)2] = 2F′(x)2 + 1.

To describe convergence and stability in nonconvex (even nonsmooth)

settings, we require appropriate definitions. Finding global minima of non-

convex functions is computationally infeasible (28), so we follow established

practice and consider convergence to stationary points via the Moreau enve-

lope (5, 29). To formalize, for x ∈R
n and λ≥ 0, the Moreau envelope and

associated proximal map are

Fλ(x) := inf
y∈X

{

F(y) +
λ

2
‖y − x‖2

2

}

and

proxF/λ(x) := argmin
y∈X

{

F(y) +
λ

2
‖y − x‖2

2

}

.

For large λ, the minimizer xλ := proxF/λ(x) is unique whenever F is weakly

convex. Adopting the techniques Davis and Drusvyatskiy (5) pioneer for

weakly convex problems, we rely on the Moreau envelope’s connections to

(near) stationarity:

∇Fλ(x) =λ(x − x
λ

), F(x
λ

) ≤ F(x),

dist(0, ∂F(x
λ

)) ≤‖∇Fλ(x)‖2 .
[9]

The 3 properties in [9] imply that any nearly stationary point x of Fλ—when

‖∇Fλ(x)‖2 is small—is close to a nearly stationary point xλ of F. To prove

convergence for weakly convex F, then, it suffices to show ∇Fλ(xk) → 0.

Using full proximal models guarantees convergence.

Theorem 2. Let Assumption A4 hold, let λ<∞ satisfy E[ρ(S)]<λ, and

assume infx∈X F(x) >−∞ and E[ρ(S)2]<∞. Let xk follow the iteration 2

with proximal model 4 and stepsizes 8. Then there exists a random variable

Gλ <∞ satisfying

Fλ(xk) → Gλ and
∑

k

αk ‖∇Fλ(xk)‖2
2 <∞ w.p. 1.

Theorem 2 shows that Fλ(xk) is bounded almost surely. Thus, if F is coercive,

meaning F(x) ↑∞ as ‖x‖→∞, the Moreau envelope Fλ is coercive, yielding

the following.

Corollary 1. Let the conditions of Theorem 2 hold and let F be coercive. Then

sup
k∈N

dist(xk, X?
) <∞ with probability 1.

22926 | www.pnas.org/cgi/doi/10.1073/pnas.1908018116 Asi and Duchi
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Fig. 1. The number of iterations to achieve ε accuracy versus initial step-

size α0 for phase retrieval with n = 50, m = 1,000. SGM, stochastic gradient

method.

In parallel with our development of the convex case, stability is suffi-

cient to develop convergence results for any APROX method, highlighting

its importance. Indeed, we can show that stable methods guarantee con-

vergence, although for probability 1 convergence of the iterates, we

require a slightly elaborate assumption (cf. refs. 9 and 30), which rules out

pathological limits.

Assumption A5 (Weak Sard). Let Xstat = {x | 0 ∈ ∂F(x)} be the collection of

stationary points of F over X . The Lebesgue measure of the image F(Xstat)

is zero.

Under this assumption, APROX methods converge to stationary points

whenever the iterates are stable.

Proposition 3. Let Assumption A2 hold and the iterates xk be generated by

any method satisfying conditions C.i to C.iii and [8]. Assume that λ is large

enough that E[ρ(S)]<λ. There exists a finite random variable Gλ such that

on the event that supk ‖xk‖2 <∞, with probability 1 we have

∑

k

αk ‖∇Fλ(xk)‖2
2 <∞ and Fλ(xk) → Gλ. [10]

Under Assumption A5, then dist(xk, Xstat)
a.s.→ 0 and ‖∇Fλ(xk)‖2

a.s.→ 0.

The condition 10 is enough to develop a conditional `2-convergence

guarantee similar to what stochastic (sub)gradient methods achieve to sta-

tionary points for Lipschitz F (5, 31). Indeed, assume αk =α0k−β for some

β ∈ ( 1
2 , 1) and that the iterates xk are stable; choose Ik ∈{1, . . . , k} with

probability P(Ik = i) =αi/
∑k

j=1 αj . Then inequality 10 shows

lim sup
k

k
1−β

E

[

∥

∥

∥
∇Fλ(xIk

)
∥

∥

∥

2

2
| Fk

]

<∞ with probability 1.

Fast Convergence for Easy Problems
In many engineering and learning applications, solutions interpolate the

data. Consider, for example, signal recovery problems with b = Ax? or mod-

ern machine-learning applications, where frequently training error is zero

(32, 33). We consider such problems here, showing how models that sat-

isfy the lower-bound condition C.iv enjoy linear convergence, extending our

earlier results (8) beyond convex optimization.

Definition 2. Let F(x) :=EP[f(x; S)]. Then F is easy to optimize if for each

x? ∈X? and P almost all s ∈S,

inf
x∈X

f(x; s) = f(x
?

; s).

For such problems, we can guarantee progress toward minimizers for

appropriate f , as the following lemma shows.

Lemma 1. Let F be easy to optimize (Definition 2). Let xk be generated

by the updates 2 using a model satisfying conditions C.i to C.iv. Then for

any x? ∈X?,

∥

∥xk+1 − x
?∥
∥

2

2
≤ (1 +αkρ(Sk))

∥

∥xk − x
?∥
∥

2

2

− [f(xk; Sk) − f(x
?

; Sk)] min

{

αk,
f(xk; Sk) − f(x?; Sk)

‖f ′(xk; Sk)‖2
2

}

.

Lemma 1 allows us to prove fast convergence as long as f grows quickly

enough away from x?; a sufficient condition for us is a sharp growth condi-

tion away from the optimal set X?. To meld with Lemma 1, we consider the

following:

Assumption A6 (Expected Sharp Growth). There exist constants λ0, λ1 > 0

such that for α∈R+, x ∈X , and x? ∈X?,

E

[

min

{

α,
f(x; S) − f(x?; S)

‖f ′(x; S)‖2
2

}

(f(x; S) − f(x
?

; S))

]

≥ dist(x, X?
) min

{

λ0α, λ1 dist(x, X?
)
}

.

Assumption A6 is tailored to Lemma 1, so we discuss a few situations where

it holds. One sufficient condition is the small-ball condition that there

A B

Fig. 2. Number of iterations to achieve ε accuracy versus initial stepsize α0 for matrix completion with m = 2,000, n = 2,400, r = 5. Shown are estimated

ranks (A) r̂ = 5 and (B) r̂ = 10.
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A B

Fig. 3. (A) The number of iterations to achieve ε test error versus initial stepsize α0 for CIFAR10. (B) The best achieved accuracy after T = 50 epochs.

exists C such that P(f(x; S) − f(x?; S) ≥ ε dist(x, X?)) ≥ 1 − Cε for ε> 0 and

E[
∥

∥f ′(x; S)
∥

∥

2

2
]≤ C(1 + dist(x, X?)2). We can be more explicit:

Example 4 (Example 1 continued): Consider the (real-valued) phase

retrieval problem with objective f(x; (a, b)) = |〈a, x〉2 − b|. Assume the vec-

tors ai ∈R
n are drawn from a distribution satisfying the small-ball condition

P(|〈ai , u〉| ≥ ε ‖u‖2) ≥ 1 − ε for ε> 0 and any u ∈R
n and additionally that

E[‖ai‖2
2]≤ M2n and E[〈ai , x〉2]≤ M2 ‖x‖2

2 for some M <∞. For a sample of

size m, Assumption A3 holds with high probability for the objective F(x) =
1
m

∑m
i=1 f(x; (ai , bi)) with λ0 = c ‖x?‖2, and λ1 =

c

16M4n
, for a numerical

constant c > 0. The full calculation is in SI Appendix. ♦
The following proposition is our main result in this section, showing

lower-bounded models may enjoy linear convergence.

Proposition 4. Let Assumption A6 hold and xk be generated by the stochas-

tic iteration 2 using any model satisfying conditions C.i to C.iv, where the

stepsizes αk satisfy αk =α0k−β for some β ∈ (0, 1). If f(·; Sk) is ρ(Sk)-weakly

convex with E[ρ(Sk)] = ρ, then for any m ∈N and ε> 0, there exists a finite

random variable V∞,m <∞ such that

dist(xk, X?)2

(1 −λ1)k
· 1

{

max
m≤i≤k−1

dist(xi , X?
) ≤ λ0

(1 + ε)ρ

}

a.s.→ V∞,m.

When the functions f are convex, we have ρ= 0, so that Proposition 4 guar-

antees linear convergence for easy problems. In the case that ρ> 0, the

result is conditional: If an APROX method converges to one of the sharp

minimizers of f , then this convergence is linear (i.e., geometrically fast). In

the case of phase retrieval, we can guarantee convergence:

Example 5 (Example 4 continued): Let A ∈R
m×n be a matrix with rows

ai that satisfy the conditions of Example 4. For F(x) = 1
m

∥

∥

∥
|Ax|2 − |Ax?|2

∥

∥

∥

1

where m & n, the truncated model 6 requires overall computation time

O(mn log 1
ε ) to achieve an ε-accurate solution to phase retrieval, which is

the best-known time complexity. See proof in SI Appendix. ♦

Experiments
An important question in the development of any optimization method

is its sensitivity to algorithm parameters. Consequently, we conclude by

experimentally examining convergence time and robustness of each of our

optimization methods. We consider each of the models in this paper: the

stochastic gradient method (i.e., the linear model 3), the proximal model 4,

the prox-linear model 5, and the (lower) truncated model 6.

We test both convergence time and, dovetailing with our focus in

this paper, robustness to stepsize for several problems: phase retrieval,

matrix completion, and 2 classification problems using deep learning. We

consider stepsize sequences of the form αk =α0k−β and perform K iter-

ations over a wide range of different initial stepsizes α0. (For brevity,

we present results only for the power β= 0.6; experiments with varied

β ∈ ( 1
2 , 1) were similar.) For a fixed accuracy ε> 0, we record the number

of steps k to achieve F(xk) − F(x?) ≤ ε, reporting these times (where we ter-

minate each run at iteration K). We perform T experiments for each initial

A B

Fig. 4. (A) The number of iterations to achieve ε test error versus initial stepsize α0 for the Stanford dogs dataset. (B) The best achieved accuracy after

T = 30 epochs.
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stepsize choice, reporting median time to ε accuracy and 90% confidence

intervals.

Phase Retrieval. We start our experiments with the phase retrieval problem

in Examples 1 and 4, focusing on the real case for simplicity, where we are

given A ∈R
m×n with rows ai ∈R

n and b = (Ax?)2 ∈R
m
+ for some x? ∈R

n.

Our objective is the nonconvex and nonsmooth function

F(x) =
1

m

m
∑

i=1

∣

∣

∣
〈ai , x〉2 − bi

∣

∣

∣
.

We sample the entries the vectors ai and x? i.i.d. N(0, In).

We present the results in Fig. 1, comparing the stochastic gradient

method 3, the proximal method 4, and the truncated method 6 (whose

updates are identical to the prox-linear model 5 in this case). The plots

demonstrate the expected result that the stochastic gradient method has

good performance in a narrow range of stepsizes, α1 ≈ 10 in this case, while

better approximations for APROX yield convergence over a large range of

stepsizes. The truncated model 6 exhibits oscillation for large stepsizes, in

contrast to the exact model 4.

Matrix Completion. For our second experiment, we investigate APROX pro-

cedures for the matrix completion problem of Example 2. In this setting, we

are given M = X?YT
? , for X? ∈R

m×r and Y? ∈R
n×r , and a set of indexes

Ω⊂ [m]× [n]. We aim to recover M observing only {Mij}i,j∈Ω, so our

goal is to

minimize F(X, Y) :=
1

|Ω|
∑

i,j∈Ω

∣

∣

∣
X

T
i Yj − Mi,j

∣

∣

∣
.

We optimize over matrices X ∈R
m×r̂ and Y ∈R

n×r̂ , where the estimated

rank r̂ ≥ r. We generate X? and Y? by drawing their entries i.i.d. N(0, 1),

choosing Ω uniformly at random of size |Ω|= 5(nr + mr). We present the

timing results in Fig. 2, which tells a similar story to Fig. 1: Better approxi-

mations, such as the truncated models (which again yield identical updates

to the prox-linear models 5), are significantly more robust to stepsize spec-

ification. The proximal update requires solving a nontrivial quartic, so we

omit it.

Neural Networks. As one of our main motivations is to address the extraor-

dinary effort—in computational and engineering hours—spent carefully

tuning optimization methods, we would be remiss to avoid experiments on

deep neural networks. Therefore, in our last set of experiments, we test

the performance of our models for training neural networks for classifi-

cation tasks over the CIFAR10 dataset (34) and the fine-grained 128-class

Stanford dog multiclass recognition task (35). For our CIFAR10 experiment,

we use the Resnet18 architecture (36); we replace the rectified linear unit

(RELU) activations internal to the architecture with exponentiated linear

units (ELUs) (37) so that the loss is of composite form f = h ◦ c for h convex

and c smooth. For Stanford dogs we use the VGG16 architecture (38) pre-

trained on Imagenet (39), again substituting ELUs for RELU activations. For

this experiment, we also test a modified version of the truncated method,

TRUNCADAGRAD, which uses the truncated model in iteration 2 and a diag-

onally scaled Euclidean distance (40), updating at iteration k by setting xk

to minimize

[f(xk; Sk) + 〈gk, x − xk〉]+ +
1

2α0

(x − xk)
T
Hk(x − xk),

where Hk = diag(
∑k

i=1 gig
T
i )1/2 for gi = f ′(xi ; Si). This update requires no

more of standard deep-learning software than computing a gradient (back-

propagation) and loss. We also compare to ADAM, the default optimizer in

TensorFlow (41).

Figs. 3 and 4 show our results for the CIFAR10 and Stanford dogs datasets,

respectively. Fig. 3A and 4A give the number of iterations required to

achieve ε test-classification error (on the highest or “top-1” predicted class),

while Figs. 3B and 4B show the maximal accuracy each procedure achieves

for a given initial stepsize α0. The plots demonstrate the sensitivity of the

standard stochastic gradient method to stepsize choice, which converges

only for a small range of stepsizes, in both experiments. ADAM exhibits

better robustness for CIFAR10, while it is extremely sensitive in the second

experiment (Fig. 4), converging only for a small range of stepsizes—this dif-

ference in sensitivities highlights the importance of robustness. In contrast,

our procedures using the truncated model are apparently robust for all large

enough stepsizes. Figs. 3B and 4B show additionally that the maximal accu-

racy the 2 truncated methods achieve changes only slightly for α0 ≥ 10−1,

again in strong contrast to the other methods, which achieve their best

accuracy only for a small range of stepsizes.

These results reaffirm the insights from our theoretical results and exper-

iments: It is important and possible to develop methods that enjoy good

convergence guarantees and are robust to algorithm parameters.

Data Availability. All data discussed in this paper are available at

GitHub (https://github.com/HilalAsi/APROX-Robust-Stochastic-Optimization-

Algorithms) (42).

ACKNOWLEDGMENTS. H.A. and J.C.D. were supported by National Science
Foundation (NSF)-CAREER Award CCF-1553086, Office of Naval Research
Young Investigator Program Award N00014-19-2288, and the Stanford
DAWN Consortium.

1. E. Real, A. Aggarwal, Y. Huang, Q. V. Le, “Regularized evolution for image classifier

architecture search” in Proceedings of the Thirty-Third AAAI Conference on Artificial

Intelligence, P. Stone, Ed. (AAAI Press, Palo Alto, CA, 2019), vol. 33, pp. 4780–4789.

2. B. Zoph, Q. V. Le, “Neural architecture search with reinforcement learning” in

Proceedings of the Fifth International Conference on Learning Representations,

Y. Bengio, Y. LeCun, Eds. (ICLR, 2017).

3. J. Collins, J. Sohl-Dickstein, D. Sussillo, Capacity and trainability in recurrent neural

networks. arXiv:1611.09913 [stat.ML] (29 November 2016).

4. R. T. Rockafellar, R. J. B. Wets, Variational Analysis (Springer, New York, NY, 1998).

5. D. Davis, D. Drusvyatskiy, Stochastic model-based minimization of weakly convex

functions. SIAM J. Optim. 29, 207–239 (2019).

6. H. Robbins, S. Monro, A stochastic approximation method. Ann. Math. Stat. 22, 400–

407 (1951).

7. A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro, Robust stochastic approxi-

mation approach to stochastic programming. SIAM J. Optim. 19, 1574–1609

(2009).

8. H. Asi, J. C. Duchi, Stochastic (approximate) proximal point methods: Convergence,

optimality, and adaptivity. SIAM J. Optim. 29, 2257–2290 (2019).

9. J. C. Duchi, F. Ruan, Stochastic methods for composite and weakly convex optimiza-

tion problems. SIAM J. Optim. 28, 3229–3259 (2018).

10. B. Martinet, Regularisation d’inéquations variationelles par approximations succe-

sives. Revue Francaise d’Informatique et de Recherche Operationelle 4, 154–158

(1970).

11. R. T. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J.

Control Optim. 14, 877–898 (1976).
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