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Abstract

We lower bound the complexity of finding e-stationary points (with gradient norm
at most €) using stochastic first-order methods. In a well-studied model where algo-
rithms access smooth, potentially non-convex functions through queries to an unbiased
stochastic gradient oracle with bounded variance, we prove that (in the worst case) any
algorithm requires at least € ~* queries to find an e-stationary point. The lower bound
is tight, and establishes that stochastic gradient descent is minimax optimal in this
model. In a more restrictive model where the noisy gradient estimates satisfy a mean-
squared smoothness property, we prove a lower bound of € =3 queries, establishing the
optimality of recently proposed variance reduction techniques.
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1 Introduction

Stochastic gradient methods—especially variants of stochastic gradient descent
(SGD)—are the workhorse of modern machine learning and data-driven optimiza-
tion [10, 11] more broadly. Much of the success of these methods stems from their
broad applicability: any problem that admits an unbiased gradient estimator is fair
game. Consequently, there is considerable interest in understanding the fundamen-
tal performance limits of methods using stochastic gradients across broad problem
classes. For convex problems, a long line of work [1, 36, 37, 50] sheds lights on these
limits, and they are by now well-understood. However, many problems of interest
(e.g., neural network training) are not convex. This has led to intense development of
improved methods for non-convex stochastic optimization, but little is known about
the optimality of these methods. In this paper, we establish new fundamental limits
for stochastic first-order methods in the non-convex setting.

In general non-convex optimization, it is intractable to find approximate global
minima [36] or even to test if a point is a local minimum or a high-order saddle
point [34]. As an alternative measure of optimization convergence, we consider €-
approximate stationarity. That is, given differentiable F : R¢ — R, our goal is to find
a point x € R with

IVF(x)| < e. ey

The use of stationarity as a convergence criterion dates back to the early days of
nonlinear optimization [cf. 40, 48]. Recent years have seen rapid development of a
body of work that studies non-convex optimization through the lens of non-asymptotic
convergence rates to e-stationary points [14, 25, 26, 30, 32, 38, 56]. Another growing
body of work motivates this study by identifying sub-classes of non-convex problems
for which all stationary (or second-order stationary) points are globally optimal [28,
29, 33, 45].

We prove our lower bounds in an oracle model [36, 46], where algorithms access
the function F through a stochastic first-order oracle consisting of a gradient estimator
g :RY x Z — R and distribution P, on Z satisfying

E:lg(x,2)] = VF(x), and E:g(x,2) = VF)|? <o )
At the rth optimization step, the algorithm queries at a point x, the oracle draws
7z ~ P_, and the algorithm observes the noisy gradient estimate g(x®), z("). We

make the standard assumption that the objective F' has bounded initial subobtimality
and Lipschitz gradient:

Fx©)—inf Fx) <A and |VF(x)—=VFO)| <L-|x—y| Vx,ye R
X
3)

Following common practice, we refer to functions F with L-Lipschitz gradients as
“L-smooth.”
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Lower bounds for non-convex stochastic optimization

For problem instances (F, g) satisfying (2) and (3), given a tolerance €, SGD finds
a point x such that E||V F(x)| < € using O(ALe%(1 4+ o2¢~2)) oracle queries [30],
which reduces to O (ALo?e™4) in the typical regime where € < o. The literature on
variance reduction for finding stationary points [25, 32, 56] considers the following
additional assumptions:

1. The stochastic gradient g satisfies a mean-squared smoothness property
E:llgx,2) =g, DI> < L*- x = yI* Vx,y e R’ @)

2. The algorithm is allowed K simultaneous queries: at step ¢, the algorithm queries
x@D 0 x®K) and observes g(x@ D, z®), ., g(x@K) 7)) where the ran-
dom seed z\") ~ P, is shared.

Under the mean-squared smoothness assumption and using K = 2 simultaneous

queries the SPIDER [25] and SNVRG [57] algorithms find a point x such that

E|VF(x)| < € using 0(AZ0€‘3 + 0’26_2) oracle queries. This improvement over

the € ~* rate of SGD raises natural questions. Can we improve this rate further? Alter-

natively, can we improve the rate of SGD without the additional assumption (4)? We
settle both questions in the negative.

1.1 Contributions

We prove lower bounds for finding stationary points in the stochastic first-order oracle
model. Our main result is Theorem 3, which states:

1. There exists a distribution over instances (F, g) satisfying assumptions (2) and (3)
under which every randomized' algorithm requires atleast c-(ALo2e ~*+ALe~?)
oracle queries to find x satisfying E||VF(x)| < €, where ¢ > 0 is a universal
constant and where the expectation is taken over the randomness in both the oracle
and the algorithm.

2. When g also satisfies the mean-squared smoothness property (4), every randomized
algorithm requires c - (AI:oe’3 + ALe 2 + 626’2) oracle queries.

Both lower bounds hold for any number K of simultaneous queries, with the dimension
d of the hard instance depending polynomially on e ~! and at most logarithmically on
K (see expressions for d in Sect. 1.2 below).

Our lower bounds continue to hold when the oracle is subject to more stringent
assumptions. In particular, we show that gradient estimators of the form g(x,z) =
V, f(x, z) give rise to the same lower bounds; these gradient estimators arise in statis-
tical learning problems such as empirical risk minimization. Furthermore, our results
extend to active oracles where the algorithm may choose the seed z. This setting
includes the special case of finite sum minimization, where F(x) = % Z?:l fi(x),
each oracle query consists of point x and index i, and the oracle response is V f; (x).

The main implications of our results are as follows.

' As is common in the optimization literature, we describe algorithms which use random coins in their
execution as “randomized,” as opposed to “deterministic”’ algorithms which do not. Likewise, we distinguish
between “noiseless” and “stochastic” first-order oracles, which provide exact and noisy gradient information,
respectively.
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e Optimality of SGD and recent variance-reduction schemes Our € ~* lower bound
matches (up to a numerical constant) the rate of convergence of SGD [30] under
assumptions (2) and (3), thereby characterizing the optimal complexity and proving
that SGD attains it. Similarly, under the additional assumption (4) our € ~3 lower
bound matches the rates of [25] and [56], thereby proving their optimality.

e Separation between smoothness assumptions Our results highlight that the mean-
squared smoothness assumption (4) is critical for variance reduction: we prove
that in its absence, any scheme will require a number of queries that scales as € ~*
at least. These results are salient, as this assumption appears in numerous recent
works on non-convex optimization [25, 26, 55, 56].

e Separation between convex and non-convex stochastic optimization [27] show that
for convex functions satisfying assumptions (2) and (3), the optimal rate for finding
€-stationary points is @)(v ALe™2 + 02¢72). Our Q(ALo%e~*) lower bound
thus implies a gap between the convex and non-convex setting that scales as € 2.
Conceptually, both rates admit a simple interpretation. The convex complexity
is the sum of the noiseless convex optimization complexity v ALe~2 [16] and
the estimation complexity o> 2. In contrast, in the non-convex case the noiseless
complexity ALe ™2 [15] and the estimation complexity o 2e ~2 multiply rather than
add. This observation underpins our proofs.

1.2 Our approach

We build on the noiseless lower bound construction of [15], itself inspired by Nes-
terov’s notion of a chain-like function [37]. The key technique is to construct a
function such that any noiseless oracle query reveals the index of at most a single
“relevant” coordinate; the lower bound follows from the fact that any e-stationary
point is non-zero in € (L Ae~?) relevant coordinates. We amplify this lower bound by
designing a noisy oracle that reveals a relevant coordinate only with low probability
p = O(e?/o?). This increases the number of required queries by a factor propor-
tional to 1/p = ©(c2¢~2), giving our ¢ ~* lower bound. The main challenge lies in
making sure that the oracle is not too noisy, in the sense that the variance require-
ment (2) is met. To do so, we focus all of the noise on the single new coordinate i,
that the query x would discover next via the noiseless gradient. More specifically, we
let z ~ Bernoulli(p), and set g; (x,0) = 0 and g; (x, 1) to be such that g is unbiased.
By careful analysis of the noiseless construction of [15] we show that the variance
bound holds and we obtain our lower bound.

Proving the € ~3 lower bound requires additional nuance, as the “incoming coor-
dinate” index i, is not continuous in x, and so the gradient estimator above does not
satisfy the mean-square smoothness requirement (4). Leveraging the special structure
of the noiseless construction once more, we design a continuous surrogate for iy, and
arrive at a mean-square smooth construction for which g; (x, z) is again non-zero only
with probability p. Scaling this construction such that L = ©(Le /o) yields the € 3
lower bound.

For ease of exposition, we first carry out our proof strategy for the sub-class of
“zero-respecting” algorithms, whose queries are non-zero only in coordinates where
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previous oracle responses were not zero. We then lift our results to the class of all
randomized algorithms using the method of random rotations [15, 51]. On a high
level, we argue that in a random coordinate system, any algorithm operating on our
constructions is essentially zero-respecting.

Our lower bound constructions are high-dimensional. For zero-respecting algo-
rithms, the dimension we require is exactly the number of relevant coordinates:
dy = @(ALe’z) for the bounded variance case and dyy = @(Al:(r’le’l) for
the mean-square smooth case. To handle general, potentially randomized algorithms
that allow K simultaneous oracle queries for every random realization z ~ P, we
require a dimension that is larger by a modest logarithmic factor. Lower bound con-
structions with dimension that scales polynomially in e~ ! are common [27, 36, 37,
50], and natural for algorithms that (nominally) work in arbitrary Hilbert spaces.
In the noiseless setting, obtaining tight and algorithm-independent lower bounds on
dimension-independent convergence rates necessitates high-dimensional construc-
tions; see [15, Section 1.2] for additional discussion. Since the noiseless setting is
a special case of our noisy setting, it seems likely that here too high-dimensional con-
structions are to some extent unavoidable. While it is possible that faster rates could
be achieved in lower dimensions, our results answer the question of what can be guar-
anteed without explicitly taking advantage of the dimension being “sufficiently small”
in some sense. Finally, when o2 is of the order of AL, our lower bounds in Theorem
3 apply for dimensions roughly above the square root of the iteration complexity. In
many practical applications of non-convex optimization, e.g., training large machine
learning models, the dimension is often in the millions or billions which is much larger
than the square root of the number of iterations used. Therefore, we argue that our
theorem’s dimension requirement is not too stringent.

1.3 Related work

Lower bounds for first-order convex optimization in the noiseless setting are well-
studied [36, 37]. For L-smooth functions in the high-dimensional regime, it is well-
known that @(v D2Le*1) gradient evaluations are necessary and sufficient to find an
e-suboptimal point given x@ with [|x(®) — x*|| < D; Nesterov’s accelerated gradient
method [39] achieves this rate.

For smooth high-dimensional non-convex optimization in the noiseless setting,
[15] establish that © (ALe~2) gradient evaluations are necessary and sufficient for
finding e-stationary points; this rate is achieved by gradient descent. An earlier line of
work develops lower bounds for finding stationary points of non-convex functions in
the low-dimensional regime where d is constant, but they obtain either weaker lower
bounds [48] or tight bounds that hold only for specific algorithm classes [17-20].

A long line of work on lower bounds for stochastic convex optimization traces back
to Nemirovski and Yudin’s seminal information-based complexity [36]. Extensions
since then have allowed sharp dimension-dependent bounds viareductions to statistical
estimation problems [1, 41], as well as extension to structured problems common in
machine learning, such as finite sums, by restrictions on the form of the update rules
[7] and high-dimensional constructions [27, 50]. Our technique for proving stochastic
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lower bounds differs qualitatively from these methods in that we preserve the sequential
hardness of the noiseless non-convex lower bound construction of [15], and use the
noise in the stochastic setting to amplify the hardness of this construction.

For non-convex stochastic optimization, few lower bounds are known. [24] recently
showed that SGD itself cannot obtain a rate better than € ~* for finding e-stationary
points, even for convex functions. This is an algorithm-specific result, whereas we show
that no algorithm can improve over this rate. For finite sum problems where F(x) =
% Yoy fi(x),[25] show that Q (Aie‘zﬁ) stochastic gradient queries are required to
find a e-stationary point; SPIDER and SNVRG [25, 56] have matching upper bounds.
This lower bound is incomparable to ours: the stochastic gradient construction in
the paper [25] has unbounded variance, so it cannot imply results along the lines of
Theorem 3. Indeed, [25] leave obtaining the ¢ ~> lower bound we provide in Theorem
3 as an open problem.

We now turn to upper bounds for finding stationary points in the stochastic setting.
In the convex setting (where achieving approximate global optimality is possible and
hence usually the goal) [2] proposes algorithms with rates for finding stationary points
improving over SGD, and [27] give improvements on these bounds and establish their
optimality. For the non-convex setting, [30] establish an O (A Lo2e~*) upper bound
for SGD, and a large body of recent work attempts to improve this rate. These attempts
roughly divide into two categories: variance reduction and high-order information.

Works in the variance reduction category make either the mean-squared smoothness
assumption (4) or a stronger variant wherein every g(-, z) is L-Lipschitz. The earliest
results consider only the finite sum setting, and establish improved dependence on
the number of summands [4, 42]. Under the bounded variance assumption (2), [32]
obtain arate of ¢ ~19/3, demonstrating that in the non-convex setting variance reduction
provides benefits beyond finite sum optimization. Subsequent algorithms by [25] and
[56] obtain an improved rate of €73, which we prove is optimal. Recent work [21, 49]
offers further refinements of these algorithms that also obtain the € ~3 rate.

Smoothness in higher derivatives, such as Lipschitz continuity of the Hessian,
allows additional possibilities [3, 5, 25, 52]. [47] provide a sub-sampled cubic reg-
ularization method that uses stochastic Hessian-vector products and attains a rate
of €73 without relying on mean-squared smoothness (4) or simultaneous gradient
queries. [26] show that it is possible to obtain the rate € 3= using SGD with perturbed
gradients and restarts without the need for Hessian-vector products. Most works that
assume Lipschitz Hessian also provide guarantees for finding second-order stationary
points.

1.4 Organization

Section 2 introduces the formal oracle model in which we prove our lower bounds.
In Sect. 3, we develop the ideas behind our main result by proving lower bounds for
the subclass of zero-respecting algorithms. In Sect. 4 we apply random rotations to
generalize the results from Sect. 3 into lower bounds for all randomized algorithms,
leading to our main result. Section 5 describes the extensions of our results to statistical
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learning and active oracles, and Sect. 6 concludes with discussion of some remaining
open problems.

Notation For a vector x € R4, we let support(x) = {ilx; # 0} and x<; :=
(x1,...,x:,0,. O)ERdWhllex>, =(0,...,0,xi,...,x7) € R Fora € [0, 1)
we define the ‘progress” of x as prog,(x) := max{i > O|[x;| > o}, where we

assume xog = l For a differentiable function f, we adopt the convention [V fx)]; =
Vif(x) = ax f(x) When f is twice-differentiable, we likewise define [V2 S =

Vl.zl. J&) =55 T a 7 f(x). Throughout, ||x|| denotes the Euclidean norm of x and ||x |0

denotes its £+, norm. For a matrix A € R4 %4, |Allop denotes the operator norm.
Given functions f,g : X — [0, 00) where X is any set, we use non-asymptotic
big-O notation: f = O(g) if there exists a numerical constant ¢ < oo such that
f(x) <c-gx)forallx € X and f = Q(g) if there is a numerical constant ¢ > 0
such that f(x) > ¢ - g(x). The 5(-) notation hides constants and factors logarithmic
in the problem parameters. f = 9] (g) to hide logarithmic . Finally, we write the
indicator of conditions cond as 1{cond}, i.e., 1{cond} = 1 if the cond holds, and
1{cond} = 0 otherwise.

2 Setup

We study the stochastic optimization problem of finding an e-stationary point through
the well-known framework of oracle complexity [36], which we set up formally in
this section.

Function class We develop lower bounds for algorithms that find stationary points
of functions in the set

F(A, L) = {F ‘RY 5 R st F(0) —inf F(x) < A,
IVF(x) — VF(y)|l < L|lx — yl|l forall x, y}.

We state explicitly the value of the dimension d required for each lower bound con-
struction; the reader may otherwise regard d as a free parameter.

Optimization protocol We consider algorithms that access an unknown function
F € F(A, L) through a stochastic first-order oracle O. Each oracle O consists of a
distribution P, on a measurable space Z and an unbiased mapping Or (x, z) = g(x, z)
such that for each F € F(A, L) and x, if z ~ P, then E[g(x,2)] = VF(x). We
consider a protocol in which algorithms interact with the oracle through multiple
rounds of batch queries. At each round i, the algorithm queries a batch

@D = (x(i’l), ...,x(i’K)), where x%% e R? and k € [K] (@)

of size K, and for each batch query x| the oracle O performs an independent draw
z® ~ P, and responds with

0r (@, 20) i= (0p (D, 20, . 0p (x00, 2.
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When K = 1 this is the classical first-order stochastic optimization framework. By
considering larger batches we can subsume variance-reduction methods such as SPI-
DER and SNVRG [25, 56], both of which query each stochastic gradient at K = 2
points.?

Optimization algorithms An algorithm A consists of a distribution Pr over a mea-
surable set R and a sequence of measurable mappings {A®)};_y such that A®) takes
in the firsti — 1 oracle responses and the random seed » € R to produce the ith query.
We let {x(’) } ;en denote the (random) sequence of queries resulting from applying
algorithm A Wlth O, defined recursively as

. 1 1 -
o _A(,)(r Or (x1h. 12 V)., Op (xtigh, 2 1>)), 6)

where r ~ Pr is drawn a single time at the beginning of the protocol (this is no loss
of generality [36]). We define Aanq(K) to be the class of all algorithms that follow
the protocol (6) with K batch queries per round.

Oracle classes We consider two natural classes of oracles. For the bounded variance
class, denoted O(K, 02), we require that the stochastic gradient be unbiased and
have the bounded variance property (2), but otherwise allow arbitrary g(x, z). This
well-studied setting subsumes the standard analysis of stochastic gradient descent for
finding approximate stationary points [30].

The bounded variance setting places few restrictions on the stochastic gradient
function g(x, z), but there are many applications in which the stochastic gradients
may have additional structure. In the mean-squared smooth setting, we require that
in addition to the bounded-variance property (2), the stochastic gradient satisfies the
mean-squared smoothness property (4). We use O(K, o2, L) to denote the class of
all such oracles. By Jensen’s inequality, any function that admits an L-mean-squared
smooth oracle must itself be L-smooth.

Our results also extend to more structured oracles appearing in the statistical
learning and/or finite-sum settings, as well as to oracles that provide zeroth-order
information on F. We defer the details to Sect. 5.

Complexity measures Our main results are tight lower bounds on the distributional
complexity [12, 36, 53] of finding e-stationary points. Let P[F (A, L)] be set of all
distributions over F (A, L); the distributional complexity in the bounded variance
setting 1s

mzand(K, A,L,0c% = sup sup inf
0eO(K,02) PFePIF(A,L)] AeArand(K)
mf{TeN E|VF(x (Tl))||<g} 7

where the expectation is over the sampling of F from P, the randomness in the oracle
O, and the randomness in the algorithm A, though randomization in A does not affect
distributional complexity [36, 53]. The distributional complexity for the mean-squared
smooth setting is

2 See also the K -parallel model of [35].
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MK, A, L,o%) =  sup sup inf
0eO(K,02,L) PreP[F(A,L)] AEArand(K)
mf{TeN E|VF(xsio)| <e} ®)

Lower bounds on distributional complexity imply lower bounds on minimax com-
plexity [cf. 12, 36]. That is, m?”d(K, A,L,0%) > T implies that there exists
0 € O(K, o%) such that for every A € Aang(K) there exists a function F € F(A, L)
for which E |V F (xy (o )| > €. where here the expectation is over randomness in A
and O

3 Lower bounds for zero-respecting algorithms

Before presenting our results in full generality, we first develop the key components
of our technique by proving lower bounds for a restricted class of zero-respecting
algorithms [15]. The class of zero-respecting algorithms generalizes the well-known
linear span-assumption [see 37, Section 2.1.2], and encompasses many standard opti-
mization algorithms. More importantly, the lower bound instances we introduce in
this section form the core of our lower bounds for general algorithms via a reduction
in the next section.

An algorithm A is zero-respecting if its queries at each round have support in the
supports of all previous oracle responses:

Definition 1 A stochastic first-order algorithm A is zero-respecting if for any oracle O

and any realization of z(V, z® .. forallr > 1 and k € [K],
k . /
support (x (t[ )]) - U support (g("k)), )
i<t,k'e[K]

where (f@D, gDy . (f@0K) @K = Of (x,&t[)o 2 z{0) denote the oracle
responses for round 7.

We let A, (K) denote the class of all zero-respecting algorithms. Our main result
for this section is to establish tight lower bounds on the minimax oracle complex-
ity for zero-respecting algorithms, which we denote by mZ'(K, A, L, o?) for the
bounded variance setting and mZ' (K, A, L, 02) for the mean-squared smooth set-
ting; these complexities are as in (7) and (8), with A (K) replacing Aang(K). The
zero-respecting structure allows us to attain tight lower bounds using Pr supported
on a single hard function.
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3.1 Probabilistic zero-chains

At the core of our development is an embedding of the task of finding a stationary
point into that of finding a point x with high coordinate progress, which we define as

prog, (x) := max{i > O||x;| > a} (where xo = 1), (10)

i.e., prog, (x) is the highest index whose entry is a-far from zero, for some thresh-
old € [0, 1). The starting point for our lower bounds is the notion of a first-order
zero-chain [15], which is a function F that satisfies prog,(V F(x)) < progy(x) + 1
for all x, generalizing Nesterov’s concept of a “chain-like” function [37]. In the
noiseless case (g = VF(x!)), zero-chains control the rate of progress of zero-
respecting algorithms: every query can “discover” at most one coordinate, and
therefore progy(x ) < T foralli < T.

Our key insight is that in the stochastic setting noise can amplify progress control:
we construct stochastic gradient functions for which any zero-respecting algorithm
requires many queries in order to activate one coordinate. We call such functions
probabilistic zero-chains. For the formal definition recall the truncation notation
[x<jli =% 1{i < j}.

Definition 2 A stochastic gradient function g(x, z) is a probability-p zero-chain if
P(Vx : progy(g(x, 2)) < prog (x) and g(x, 2) = g(X<prog, (1), 2)) = 1 — p, (11)
by
and

P(Vx : progy(g(x,2)) < 1 +progy (x) and g(x,2) = g(X<14prog; (x). 7)) = 1.
4
(12)

The constant 1/4 in (11) is only used in our lower bound for general algorithms, and
any non-zero constant would suffice in its place. Even the constant zero is sufficient for
the constructions in this section; we keep prog (x) in the definition only for notational
consistency. Moreover, since X = X<prog,(x) for all x, the requirements on invariance
of g(-, z) under truncations of x are only necessary in the next section. We also note that
the requirement (12) implies that any F for which g is an unbiased gradient estimator
must itself be a (robust) zero-chain.

The next lemma formalizes the idea that any zero-respecting algorithm interacting
with a probabilistic zero-chain requires many rounds to discover all coordinates.

Lemma 1 Let g(x, z) be a probability-p zero-chain gradient estimator for F : RT —
R, and let O be any oracle with Op(x,z) = (F(x), g(x, z)). Let {xﬁ(‘t[g;]} be the
queries of any A € Az (K) interacting with Of. Then, with probability at least 1 — §,

T —log(1/8)

max prog (xﬁ‘t[’cl;;]) <T, forallt < 2

kelK]
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The intuition behind Lemma 1 is that any zero-respecting algorithm must activate
coordinates in sequence, and must wait at least €2 (1/p) rounds between activations on
average, leading to a total waiting time of €2 (7 / p) rounds. The proof below makes this
intuition formal; note that throughout the proof we use that prog,, is non-increasing in
.

Proof For brevity, we omit the subscript A[Of] from {xg[’g)ﬂ}. Let

7@ = max max progy(x®*) = max{j < T|x"® 0 forsomei <,k € [K]}
i<t ke[K] J

and

ryom | Tl |

2p
so the lemma is equivalent to ]P’(rr(TP) >T) <6.

Recall that z(1, 2| . isthe sequence of oracle randomness values, and for every
t > 1 define the binary random variable

BW .= 1{3x :prog()(g(x; z(’))) =1 +prog%(x)}. (13)

Note that {B"},~; are i.i.d. Bernoulli with probability of success at most p due
to Definition 2. Moreover, they are independent of any randomization in the algorithm
A.

With notation, we have that, for every 7 and k € [K],

(i) / (i)
progo(x(t’k)) < max max progo(g(x(“’k),z(s))) < max{B(S) —l—n(‘v)}, (14)
s<t k'e[K] s<t

where (i) follows from Definition 1 of zero-respecting algorithms and (ii) follows
from the definition of B) and Eq. (12), which together imply that prog, (g (x, z*)) <
B® 4 progi (x) < BY® 4+ prog, (x) for all x and all s. From the bound (14) it follows

by straightforward induction that

7 <3 BO

s<t

forall ¢+ > 1. We can therefore control deviations of 7 with the Chernoff method:

s (s)
]P)(TI,'(TP) Z T) S ]P) Z B(S) E T — I[D(EZS<TI; B() Z €T> S e—TE€Zs<T,; B

s<Tp
(*)
< T —ptpolr < <, (15)
where (%) uses the fact that { B} are i.i.d. Bernoulli with P(B®) # 0) < p. O
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3.2 Lower bound for the bounded variance setting

Lemma 1 suggests a natural lower bound strategy:

i. Construct a function F € (A, L) whose gradients are large for all x € R” with
progo(x(’)) <T.
ii. Construct g, a probability-p zero chain gradient estimator for F'.

Together with Lemma 1, these steps guarantee that any zero-respecting algorithm
interacting with g will take at least €2(7"/ p) rounds to make the gradient of F small.
We first execute our strategy for the bounded variance setting (2).

We choose the underlying function F to be the construction of [15]. Foreach T € N,
we define

T

Fr(x) := =¥ (1)®(x;) + Z[‘P(—xi—l)q)(—xi) —V(x_D®@x)],  (16)
i=2

where the component functions W and & are

07 tS 1/27 d \/_ ! ITZd
V() = an D(t) = 4e e 2" dt.(17

The function Fr is a (deterministic) zero-chain, and has large gradient unless all
coordinates are large (prog; (x) > T'). We enumerate all the relevant properties of Fr
in the following.

Lemma 2 (Carmon et al. [15]) The function Fr satisfies:

Fr(0) —infy Fr(x) < Ag- T, where Ag = 12.
The gradient of Fr is £1-Lipschitz continuous, where £1 = 152.
Forall x € R, |[VF7(x)|loo < Voo, Where yso = 23.

For all x € RT, progy(VFr(x)) < prog1 (x) + 1.
Forall x € RT and i = prog) (x), VF(x) = VF(x<14;) and [VF(x))<i =

[VF(x<i)]<i.
6. Forall x € RT, ifprog;(x) < T then |[VFr(x)|| = [Vprog,x)+1Fr(x)| > 1.

A e e

Parts 1-3 of the lemma follow from [15, Lemma 3] and its proof; we derive the precise
value £; = 152 in Appendix A.1. Parts 4 and 5 follow from [15, Observation 3] and
part 6 is [15, Lemma 2].

We now turn to the construction of a probabilistic zero-chain for Fr. The main
technical difficulty in the construction lies in keeping the variance of the stochastic
gradient function bounded and, in particular, independent of the dimension 7. Indeed,
consider a naive construction that when queried at point x, returns O with probability
1 — p and returns % - VFr(x) with probability p. While this is clearly a probability-

p zero-chain, the variance at point x is Q(||V Fr (x)|3/p), which can be as large as
T /p. As welet the dimension 7" depend polynomially on 1 /€, removing this dimension
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dependence from the variance is critical for making the oracle belong to O(K, 0%)
after rescaling.

Our key observation is that, since |V F7(x)|lcc < 23 by Lemma 2.3, we can keep
the variance bounded if, instead of deleting all coordinates uniformly, we delete only
a single important coordinate. Since our goal is to construct a probabilistic zero-chain,
and since Fr is itself a deterministic zero-chain, a natural choice of coordinate is
progi (x) + 1. This leads to the following stochastic gradient function:

. z
[gr(x,2)]; == ViFr(x)- (1 + 1{i > progi(x)}(; - 1>> (18)
where z ~ Bernoulli(p). Note that for all i > progi (x)+ 1, ViFr(x) = 0, so only
the specific coordinate prog 1 (x) + 1 is noisy.

Lemma 3 The stochastic gradient estimator gt is a probability- p zero-chain, is unbi-
ased for V Fr, and has variance

I—p

Elgr(x,z) — VFr(x)|*> < ¢%- forall x € RT | where ¢ = 23.

Proof First, we observe that E[g7(x,z)] = VFr(x) for all x € RT by the defini-
tion (18) and the fact E[%] = 1, so any O with Of,(x,2) = (Fr(x), gr(x,z)) is
indeed a stochastic first-order oracle.

Second, we argue that the probability-p zero-chain property (Definition 2) holds.
Recall that prog, (x) is non-increasing in «, so prog 1 (x) > prog 1 (x). Therefore,
by Lemma 2.4, [gr(x,2)]; = ViFr(x) = 0 for all i > prog%(x) + 1, implying
that prog,(gr(x,z)) < 1+ prog%(x) for all x € R” and z € {0, 1}. Moreover, for
x = X<l+prog (x), Lemma 2.5 implies that V F (x) = V F(x'), and since prog% (x) =
prog (x") we c4onclude that g7 (x, z) = gr(x’, z) for all x and z, giving Eq. (12).

To show that Eq. (11) holds, note that for i >

RHS of Eq. (18) is 0. Consequently, g7(x,0) = [VFr (¥)]<prog ; (x) for all x € RT,
implying that prog,(gr(x,0)) < prog%(x) and (by Lemma 2.45) that g7 (x,0) =

1+ progi (x) and z = 0, the

87 (X<prog| (v)» 0). Since P(z = 0) = 1 — p, we obtain Eq. (11) and establish the

probabilistic zero-chain property.
Finally, we bound the variance. Note that the error term g7 (x,z) — VFr(x) is
non-zero only in the coordinate i, := prog 1 (x) + 1. Therefore,

2
|V,‘XFT(x)|2E(£ — 1)
p

Enwwm&a—mSBM—m’
)4 )4

Ellgr(x,z) — VFr(x)|?

where the last inequality follows from Lemma 2.3. O

@ Springer



Y. Arjevani et al.

With the construction in hand, we prove our first lower bound.

Theorem 1 There exist numerical constants c, ¢’ > 0 such that for all L, A, 62>0

and e < '/ LA,

o ) ALo? AL
mg(K’A9Lva)zc' —4+'_2 .
€ €
Constructions of dimension d = (éL) realize the lower bound.

Before giving the proof, let us make a few remarks.

e The bound is tight, in that it matches (up to a numerical constant) the convergence
rate for SGD (which is zero-respecting) [30, Eq. (2.13)]. Note that the restriction
that € < ¢//LA is without loss of generality, since for ¢ > ¢’~/LA we have
IVF()| = OC(e) for all functions F € F(A, L), so an e-stationary point is
trivial to find.

e When € < o, the optimal complexity @(A

) is the product of the first-order
oracle complexity for the noiseless setting, Wthh is O(%) [15], and the sample

complexity of estimating a single gradient to precision €, which is ®(‘:—22). This is
the first setting we are aware of where the product of these respective complexities
characterizes the stochastic first-order complexity. Contrast to the convex setting,
where the complexity scales with the sum [27].

e The lower bound does not depend on K, meaning that additional batch queries
cannot by themselves improve on the rate obtained by SGD. While at first glance
this may seem like a strange consequence of the zero-respecting assumption, we
will show that the same holds true for arbitrary algorithms, provided the dimension
is sufficiently large.

Proof of Theorem 1 Let A, £1 and ¢ be the numerical constants in Lemmas 2.1, 2.2
and 3, respectively. Given accuracy parameter €, initial suboptimality A, smoothness

parameter L and variance parameter o2, we define
FA(x) Lx o (x) here 3= .2
X)=——o0 —), where = — - 2¢,
T o T\ L

A LA
and T = = ,
LAO(LKZ/ZI)J {Aoﬁl(Zé)ZJ

where we assume 7' > 3, or equivalently € < /57— 12 Ao 151 Let

LA
gr(x,2) = o - gr(x/h,2) =2€ - gr(x/1, 2)

denote the corresponding scaled stochastic gradient function. Now, by Lemmas 2.1
and 2.2, we have that F7} is e -£1 = L-smooth and has initial suboptimality bounded
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by A. Likewise, by Lemma 3,

siej e ~vrior = () e () o7 )]
< w
a p

. 2 .
Therefore, setting % = —2 4 1 guarantees a variance bound of o',

T (2ge)?
Next, Let O be any oracle in O(K, %) for which OF; (x,2) = (Fp(x), gr(x, 2)).
Instantiating Lemma 1 for § = 1/2, we have that with probability at least 1/2,

maxge[K ] Prog (xf\t[’é)ﬂ) < Tforallt < (T —1)/2p and k € [K]. Now, by Lemma
2.6, for every x € R” such that progy(x) < T, it holds that

IVEzo)| = QHVFT ()] = Lr e,
' A 0

So with probability at least 1/2, we have for all t < (T — 1)/2p and k € [K] that

| VEz(efish || > 2e. Therefore,

E|VF; (xi\l[’é)p])” =& (19)
by which it follows that

WK, A. L oY) T—1_ LA | o? L]
LA, L, 0%) > > || —— | - — 4
€ 2p 4A0l €2 22¢€)? 2

- 1 LAc? N 1 LA
T 2001Apc? € 240Ny €2’

where the last inequality uses that [x| — 1 > x/2 whenever x > 3. O

3.3 Lower bound for the mean-squared smooth setting

We now turn to lower bounds for the mean-squared smooth setting. Here, we must
ensure that in addition to the variance constraint, our stochastic gradient function
satisfies the mean-squared smoothness constraint (4). This requires a more sophisti-
cated construction than before, as the use of the indicator function 1{i > prog 1 (x)}
makes the stochastic gradient g7 discontinuous. Indeed, let x = (1, 1/4 — 4, 0) and
y = (1, 1/4,0). Then prog%(x) =1<2= prog%(y), and for any § € (0, 1/2) we
have
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E.llgr(x, 2) — gr(y, I > Ec|lgr(x, )1 — [gr (v, |

2
= (L= WD (1/4 =8 + p| L)@/ (1/4 =) — W' (1/4)] |

which does not approach zero as § — 0.

To overcome this issue, we replace the indicator 1{i > prog 1 (x)} with a smooth
surrogate. Let I' : R — R be any smooth non-decreasing Lipschitz function with
') =0foralls < 1/4and I'(t) = 1 for all + > 1/2. For each i, we define the
following smoothed version of 1{i > prog 1 (x)}:

T 1/2
O;j(x):=T[1- (Z F2(|xk|)> =T (1= [ (lx=il) ). (20)

k=i

where F(‘xzi |) is a shorthand for a vector with non-zero entries I' (|x; ), I (|xj+11), - - .,
I'(Jx7]). Observe that ®; indeed acts as a smoothed indicator: We have ®;(x) = 1 for
alli > progi (x) and ®;(x) =0 foralli < progi (x), and therefore

{i > progi(x)} <0;x) <1{i > prog%(x)}.

We define a new stochastic gradient function g7 by replacing the indicator function
in gr with the smoothed indicator ©;:

(87 (x, 2)]; := ViFr(x) - vi(x, 2),

where v;(x,z) =1+ @i()c)(5 - 1), 2D
V4

and z ~ Bernoulli(p). To fully specify the construction, we take

@) = —flt“ Aodr
fll/f A(t/)dt”
0, t<jort> 3,
where A(t) = (22)

1 1 1
eXp(——]()O(t_%)(%_t)), Z<t<§

This is simply an integrated bump function construction; see Fig. 1.

Observation 1 The function I" satisfies

1. I'(t) =0forallr € (—o0, 1/4].
2. T'(t) =1forallt € [1/2, 00).
3. T € C®, with0 < T'(r) < 6and [T(r)| < 128 forall t € R.
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I I I
1.001 6.0 198
0.75 1 4.5 64
0.501 3.01 01
0.25 L5 —64
0.00 1 0.0 —1281
0.25 0.50 0.25 0.50 0.25 0.50

Fig.1 The construction I" in Eq. (22) and its derivatives; Observation 1 is evident

With these properties established, we prove the following mean-squared smooth ana-
logue of Lemma 3.

Lemma4 The stochastic gradient estimator g is a probability-p zero-chain, is unbi-
ased for V Fr, and satisfies

2
_ (1-=p)
Ellgr(x.2) — VFr ()] < %
= - 2 Z% 2
and B|gr(x.2) = g0 I < v =yl (23)

forall x,y € RT, where ¢ = 23 and £1 = 328.

We defer the proof of Lemma 4 to Appendix A.2. The proofs for the probability-p
zero-chain property and variance bound are similar to Lemma 3. For the mean-squared
smooth property, we show that for any x, the vector §(x, z) = gr(x,z) — VFr(x)
has at most one non-zero coordinate, given by prog 1 (x) + 1. If we denote i, =

prog%(x) +landi, = prog%(y) + 1, then we can bound E||g7(x, 2) — gr (v, 2) |
by first appealing to smoothness of F7, and then using the Lipschitz property of ®;
to bound E[8; (x,2) — 8. (y, z)|2 and E|8;, (x,z) — 8, (y, z)|2.

Our lower bound for the mean-squared smooth setting now follows from another
simple scaling argument.

Theorem 2 There exist numerical constants c, ¢’ > 0 such that for all LA, c2>0

and e < /LA,

= 2 o o

zr AL AL

m IK,A,L,O— C - .
e( )>—

@ tTata
Constructions of dimension d = O(1 + ﬁ—f) realize the lower bound.

Theorem 2 is tight, since the upper bounds for SPIDER [25] and SN VRG? [56] match
it up to constants. As with Theorem 1, the restriction ¢ < O (v LA) is essentially

3 The iterates of SPIDER and SNVRG are a linear combination of previously computed gradients, and
therefore these algorithms are zero-respecting.

@ Springer



Y. Arjevani et al.

without loss of generality. Theorem 2 leaves open the possibility that there exists an
algorithm that achieves O (¢ ~?) in the mean-squared smooth setting using K = 1; see
Sect. 6 for further discussion.

We defer the proof of Theorem 2 to Appendix A.3, as it is very similar to that
of Theorem 1. In particular, it uses the same scaling argument and replaces L with

roughly l_,e/o. This results in the final instance scaled as Fj (x) o eoL™! FT(L;—)‘).

The new scaling introduces an additional restriction that e < O (%). When this does
_ 5 .
not hold, one has % >c- ‘Z—Z, and the claimed lower bound follows from a standard

estimation lower bound (see Lemma 10 in Appendix A.1).

4 Lower bounds for randomized algorithms

We now extend our lower bound construction for zero-respecting algorithms into a
lower bound for arbitrary, potentially randomized algorithms. Our main theorem pro-
vides optimal lower bounds on the minimax complexities (7) and (8) for the bounded
variance and mean-squared smooth settings.

Theorem 3 There exist numerical constants ¢, ¢’ > 0 such that for all L, A, 5> > 0

and € < c'N/LA,

ALo?> AL
mé"”"(K,A,L,a%zo(—f + =5 ) 24)
€ €

and for all L>0ande < VLA, we have

(25)

- ALc AL o2
w9 K, A L o%) >c- < >

- 4+ — 4+ —
€3 €2 €2

Constructions of dimensiond = O (% log %{;02) realize the lower bound (24), and
constructions of dimensiond = O (1 + ﬁ—f log %{”) realize the lower bound (25).

In the remainder of the section we outline the proof of Theorem 3; we defer all formal
proofs to Appendix B. Our approach is to lift the single hard instance developed
in the previous section to a distribution over functions such that for any randomized
algorithm a random function drawn from this distribution is hard with high probability.
This approach closely follows [15, 51], though the analysis differs in a few technical
points.

Given a function F(x) and a gradient estimator g(x, z), we define the rotated
instance

Fy(x):=F(U'x), and guy(x,2):=Ug(U x,2),
where U € Ortho(d, T) := (U € R*T|UTU = Ir} is a matrix with orthogonal unit

norm columns. For any such U we define an oracle for the rotated function according
to
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O, (x,2) = gu(x,2). (26)

When U is drawn uniformly from Ortho(d, T), any algorithm interacting with O Fu

produces queries {x*©} such that the sequence {U " x*-¥)} behaves essentially like
the queries of a zero-respecting algorithm interacting with of O r. More precisely, for
sufficiently large d we can guarantee that every entry of U T x (%) that is significantly
far from zero (say, with absolute value > 1/4) is in the support of a previous oracle
response g(UTx@ k) 20Dy for somet’ < tand k' € [K]. This follows because oracle
responses provide essentially no information on coordinates outside that support, and
therefore, these coordinates of U " x*-¥) behave roughly as coordinates of a spherically
uniform vector in dimension d — ¢, and we can obtain a high probability bound on
their magnitude that scales as [|x®| /v/d; the precise argument requires careful
handling of the information leaked at each step. By assuming that the queries are
bounded and choosing sufficiently large d, we guarantee that coordinates outside the
support are smaller than 1/4 and therefore that the zero-respecting structure obtains.
Combining this structure with Definition 2 of probabilistic zero-chains implies control
over prog | (U Tx"P), as we state formally in the following generalization of Lemma

1, whose proof we provide in Appendix B.1.

Lemma5 Let F : RT — Randlet g : RT x Z — RT be probability-p zero chain.
Let R > 0,68 € (0,1), and A € Aigng(K) be any algorithm that produces queries

with norm bounded by R. Additionally let d > [T + 32R?log 21;—;21, U be uniform
on Ortho(d, T), and Oﬁy be as in (26). Then with probability at least 1 — 8,*

T —log 2
max prog; (U x5 ) < T forall 1 < ng'
U

27
ke[K] 7)

Applying Lemma 5 to the hard instance (Fr, gr) defined in Eq. (18) and (21)
provides the lower bound we want, but restricted to algorithms with bounded iterates.
To handle unbounded iterates, we follow [15] and compose the construction with a
soft projection to a ball centered at the origin. Our final (unscaled) construction is

- n X
Fry() = FrUTp() + x|, where p(x) = ————.
2 V14 IxII7/R
R =230~T, and n = 1/5. (28)
The corresponding stochastic gradient estimator is
Sru=Jm Vg U pG).)+n-x, (29)

where J(x) = [W’T(;C)]i ; is the Jacobian of p. The next lemma shows that this new
construction is difficult for any algorithm in A34. The lemma has two components:

4 The event holds with probability at least 1 — § with respect to the random choice of U and the oracle
seeds {zm }, even when conditioned over any randomness in A.
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First, since the iterates always satisfy || p(xTR) | < R, we can apply Lemma 5 to
this sequence to control progress. Second, the additional regularization term in (28)
ensures that we cannot make the gradient small by increasing the norm, so low progress
indeed implies large gradient.
Lemma 6 Let O be any oracle with OF (x,2) = gr.ux, z), where FT U Is the
compressed and rotated hard instance (28) and gr.u isthe correspondmg probability-
p zero chain (29). Let 6 € (0, 1),d > [(32- 2302+ DT log 2KT ===—1, and U be uniformly
distributed on Ortho(d, T). Then for any A € Aand(K), wzthprobabllzz‘y atleast1—34,
T —log 2
2—g5. (30)

min HVFT U(xA[oA ])H > — forall t <
p

ke[K]

(See Appendix B.2 for a proof.)

All that remains is to verify that the final constructions (28) and (29) still satisfy the
various boundedness properties required for the lower bound. The following bounds
are a consequence of a generic result about rotation and soft projection, which we
prove in Appendix B.3.
Lemma 7 The function F, .U and stochastic gradient function gr vy satisfy the follow-
ing properties for all U € Ortho(d, T).
1. Fry(0) —infy Fr.y(x) < AoT, where Ag = 12.
2. The first derivative of Fr y is €1 Lipschitz continuous, where £1 = 155.
3. B|gru(x,2) - VEry|* < € “ SU=D) forall x € R, where ¢ = 23.

4. Elgr.u(x,2) —gr.u(, 2l < ||x — Yl forall x, y € RY, where £, = 336.

5 Extensions

While Theorem 3 constitutes our main technical result, implying lower bounds for
methods using stochastic first-order information, it is interesting to extend the bounds
to allow more sophisticated querying strategies and more informative oracles.

5.1 Statistical learning oracles

To this point, our assumptions on the stochastic gradient function g (x, z) concern only
its first and second moments (requirements (2) and (4)). Yet the oracles in statistical
learning and stochastic approximation problems often have the common structural
property that g(x, z) is the gradient of a function. Here we show that this property
does not improve the worst-case complexity of stochastic optimization. Specifically,
we consider oracles specified by a function f : R? x Z — R for which

F(x)=E[f(x,2)] and g(x,z2) = Vi f(x,2). €1y

All of the lower bounds in this paper extend to this setting, at the cost of a slightly
more involved construction. The idea is the same as in the preceding construction, but
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to construct a valid function f (x, z) with F(x) = E[ f(x, z)] we apply the smoothed
progress function to the function value for Fr rather than the gradient. Letting Z =
{0, 1} be the oracle seed space, we define

T
fr(x,2) = =)@ E)Vix,2) + Y
i=2

[W(—xi )P (—x;) = W (xi- DD ()] i (x, 2), (32)

where v; (x, z) the smoothed indicator (21) and the random seed z ~ Bernoulli(p). It
is immediate that E[ f7(x, z)] = Fr(x). The stochastic gradient function V, fr(x, )
has a similar form to our previous construction gr (x, z), but with nuisance terms
arising from the gradient of the soft progress function itself. The thrust of the analysis
for the new construction is to show that these nuisance terms do not spoil the key
properties of gr.

Lemma8 The stochastic gradient function Vy fr is a probability-p zero-chain, is
unbiased for V Fr, and there exist numerical constants ¢ and €1 independent of p and
T such that

2
E|V fr(x,z) — VFr(x)|* < % (33)
and
EZ
EIV fr(x,2) = Vr(, ol < ;‘nx —yI? (34)

forallx,y e RT.

We prove Lemma 8 in Appendix C. With the lemma in hand, all that is required to prove
the Q(Aﬁf 2) lower bound for the bounded variance setting and the Q(% + ‘:—22)
lower bound for the mean-squared smooth setting is to compose the instance with a
rotation and soft projection as in (28), then rescale as in Theorem 3. This leads to the
following result.

Proposition 1 Theorem 3 holds (with different numerical constants) even when
restricting the oracle class to statistical learning-type stochastic gradient functions of

the form (31).

5.2 Active oracles

Our main results consider a model in which the algorithm performs batches of K simul-
taneous queries, but the random seed z is drawn i.i.d. once per batch. Another stronger
model allows active oracles, where the queries consist of both a point x and a seed
z [22, 25, 32, 43, 44, 50, 56]. Active oracles are essential to finite-sum optimization
problems where F(x) = Z?:l fi(x) and are more general than our K -query oracles,
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since a randomized algorithm can simulate a K-query oracle using an active oracle
by drawing z ~ P. and querying (x1, z), ..., (x*®), ). For convex finite-sum mini-
mization problems, stochastic oracles are significantly weaker than active oracles [6].
Nevertheless, in this section we show that our € ~* lower bound for zero-respecting
algorithms (Theorem 1) extends to active oracles, even with additional finite-sum
structure (Z is finite, P, is uniform). We believe further extensions for randomized
algorithms, mean-squared smooth gradient estimators and statistical learning oracles
are straightforward, but we omit them for brevity.

The precise active oracle model we consider is as follows: at round i, the algorithm
proposes a point x) and seed z'/) and receives an oracle response Op (x®, 7)) =
g(x @ Ll )). As before, we assume that, when z( ~ P, the stochastic gradients are
unbiased and have variance bounded by o2, and we allow the algorithm to know the
distribution P;.

The key step in converting our basic probabilistic zero-chain construction (18) to
achieve a lower bound for the active finite-sum setting is to allow for independent
randomness in each of the chain coordinates; this safeguards against algorithms that
“abuse” the active oracle by repeatedly querying the same (informative) value of z.
More formally, we take {0, 1} to be the oracle seed space and consider the stochastic
gradient function g5°¢ : RT x {0, 1}7 — R,

I:g%cvord(x’ Z)] =V, Fr(x) - (] + 1{i > prog% (X)}<% - 1)); (35)

i

the only difference compared to the passive construction (18) is that the seed z =

(z1,--.,2r) 1s now a vector of T bits, and we use the ith bit only for coordinate i
of the stochastic gradient function. If we draw the bits of z i.i.d. from a Bernoulli(p)
coord

distribution, then g7>°™ is unbiased for V Fr and satisfies the variance bound in Lemma
3.

The next step is to convert the distribution over z € {0, 1}7 into a uniform dis-
tribution over a larger set, so that the instance has finite-sum structure. To do so, we
assume without loss of generality that p = 1/N for N € N (we can always round
1/p = ¢ - 0% /e? appropriately). We choose Z = {1, ..., N7} as the seed space and
define ¢ : Z — {0, 1}7 as

¢j(k) := 1{the j th digit of k in the N -ary basis is 0}.
To obtain the hard active oracle construction, we take

g (x; ) 1= g (x, ¢ (7w (i),

where 7 is any permutation of N7 elements. Note that for any choice of the permutation
7, the random function g (-; i) with i uniform in Z has the same distribution as
g‘}"ord (+; z) with the elements of z i.i.d. Bernoulli(p), and therefore g, is also unbiased
for V Fr and satisfies the variance bound in Lemma 3. By choosing 7 to be a random
permutation, the active oracle corresponding to g satisfies a progress bound analogous
to Lemma 1.
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Lemma9 Letd € (0, 1), let N, T > 1 be integers, let ® be a random permutation of
NT elements and consider the active oracle O}T,T (x,i) = gx(x;0). Let {x®} be the
iterates of any zero-respecting algorithm interacting with O7;T. Then, for p = 1/N,
with probability at least 1 — § over the random choice of 7,

T —log(1/6)

prog()(x(t)) <T, forall t < 2

We prove Lemma 9 in Appendix C.2 and sketch the intuition behind the result here. Let
DMy (x® i) be the algorithm’s queries and gV, ..., g be the oracle
responses up to some iteration z. Let y = max, -, prog, (g(’/)), so that prog (x 0y < y
by the zero-respecting assumption. For an algorithm to guarantee prog, @) =1+y
(and thereby make progress in x), the (14 y)th coordinate of ¢ (7 (i ®Y)) must be 1. The
key observation is that the algorithm’s previous queries provide very little information
on {14 (7 (+)). In particular, we argue that after # — 1 queries, the most we can possibly
know is a set of # — 1 indices i for which ¢, (7 (i)) = 0. Since all other indices are
identically distributed, any query i ”) has probability at most N7 1 /(NT — (t — 1))
of satisfying &1, (7 (i) =1.Sincet < T/p < NT /2, the probability of making a
unit of progress at any iteration is no more that 2/N = 2p, which gives the result via
the same arguments that prove Lemma 3.

Using the same scaling arguments as in the proof of Theorem 1, Lemma 9 implies an
analogous lower bound for the active setting. However, the distributional complexity
we now lower bound is slightly different, because we randomize over the choice of
oracles instead of choosing a fixed oracle. Consequently, we let the supremum in Eq.
(7) be over all distributions Po on O(K, 62), and take the expectation also with respect
to a draw of O ~ Pg. (For zero-respecting lower bounds, we still replace Ayang(K)
with A (K) and it still suffices to consider point masses for Pr).

Proposition 2 Theorem 1 also holds in the active oracle model, with the above com-
plexity measure, finite Z, and uniform P,.

This lower bound has the following implication on minimax complexity: For every
zero-respecting algorithm there exists a “hard” active oracle (corresponding to some
permutation of the coordinates) for a scaled version of Fr such that finding an e-
stationary point requires at least €2 (¢ ~#) iterations.

Using the techniques of Sect. 4 we can lift these results to finite sum active oracle
lower bounds for randomized algorithms. Moreover, the “different bit per coordinate”
approach extends straightforwardly the mean-square smooth construction (21) as well
as the “statistical learning” construction (32).

The set Z in the lower bounds described above is very large—since N scales as
02/€? and T is polynomial in 1/e, the cardinality | Z| = N is super-exponential in
1 /€. Designing lower bound constructions with smaller cardinality | Z| = n remains an
open problem. We note that for the mean-square smooth setting, the smallest possible
value for n is Q(02/€?), since for n = o(c%/€?) the upper bound O(ﬁl_,Ae_2)
attained by SPIDER [25] will be smaller than the desired n-independent lower bound
Q(LAce3). We also remark that [25] prove a lower bound of Q(\/ﬁI:Ae’z) for
active oracles, but their construction does not keep the variance o2 bounded.
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5.3 Oracles with zero-order information

Our lower bounds continue to hold for oracles of the form Oz (x, z) = (f(x, 2), g(x, 2))
that provide, in addition to the gradient estimator g(x, z), a function value estimator
f(x,z) € R satisfying Ef (x,z) = F(x) for all x. Indeed, it is straightforward to
extend the notion of a probabilistic zero-chain to such oracle by adding the require-
ment f(x,z) = f(X<prog, (x), 2) to the probability bound (11), i.e., requiring that

1

P(Vx : progy(g(x, 2)) < progi (x) and OF (x, 2) = OF (X<prog, (+):2)) = 1 — p,
P
and analogously extending the requirement (12) to
]P’(Vx : progy(g(x,z)) <1+ prog%(x) and Ofp(x, z) = OF(xSHProng{(x), z)) =1.

With this modified definition, it is straightforward to confirm that that Lemma 5 contin-
ues to hold for stochastic zero-order information. Moreover, the “statistical learning”
oracle construction fr in Eq. (32) satisfies the modified probabilistic zero-chain defi-
nition for O (x, z) = (fr(x, 2), Vi fr(x, 2)); we show this in the proof of Lemma 8.
Calculating the variance of fr and following the re-scaling argument in the proof of
Theorem 3 reveals that the variance E( f (x, z) — F (x))? of the resulting hard instance
is of the order 02¢2 L~ in the basic smooth setting, and o* L~ in the mean-squared
smooth setting. Therefore, the conclusion of Theorem 3 continues to hold even for
oracles with quite accurate stochastic zero-order information.

It is possible to take one step further and extend our lower bounds to oracles that
provide exact zero-order information, i.e., that return Or (x, z) = (F(x), g(x, z)). For
zero-respecting algorithms this is trivial, since for such oracles the proof of 1 goes
through unchanged, and consequently Theorems 1 and 2 hold as well. It is possible to
also extend these lower bounds to general randomized algorithm, but only with higher-
dimensional constructions. Specifically, in an earlier manuscript of this paper> we show
lower bounds for oracles with exact zero-order information matching those of Theorem
3 but with domain dimension O (K A2L20’2€_6) in the smooth case (compared to
5(AL€‘2) in Theorem 3) and 5(KA2Z26_4) in the mean-squared smooth case
(compared to 0 (AZJ e l) in Theorem 3). The difference in dimensionalities stems
from a difference in proof strategies for Lemma 5: our earlier proof worked with a
more relaxed notion of probabilistic zero-chains which allowed for exact zero-order
information, but required random projection to a much higher-dimensional space.

At least part of that higher dimension, namely the linear dependence on K, is a
necessary cost for obtaining lower bounds valid against exact zero-order oracles. To
see why this is so, note that—for any smooth function F—using K = d + 1 parallel
exact function value queries we can compute V F' at a single point to arbitrarily high
precision via finite differences, thus simulating a noiseless gradient oracle for F.
Therefore, any instance with dimension sublinear in K cannot show a lower bound

5 Available at arxiv.org/abs/1912.02365v2.
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better than the noiseless optimal rate of @ (A Le ~2). In particular, such hard instances
cannot exhibit the additional complexity incurred by noisy gradient oracles.

6 Discussion

We have established tight lower bounds on the stochastic first-order complexity of
finding stationary points for non-convex functions, with and without mean-squared
smoothness. We hope that the basic ideas behind our lower bound constructions will
find further use in non-convex stochastic optimization. A few natural open questions
and future directions along these lines are as follows.

Lower bounds for mean-squared smooth oracles with a single queryln the mean-
squared smooth setting, all known algorithms that achieve the optimal O (e ~3) oracle
complexity (SPIDER [25], SNVRG [56]) require K = 2 simultaneous queries. With
K =1, the best result known for the mean-squared smooth setting is still the standard
O(ALo?e*) rate obtained by SGD. However, under additional higher-order smooth-
ness assumptions, perturbed SGD can achieve convergence O (¢ ~3) with K = 1[26].
It remains an open question whether any algorithm can achieve complexity scaling as
€3 when K = 1, or whether the ¢ ~* rate of SGD is optimal.

Lower bounds under additional oracle assumptions Rather than assuming a mean-
squared smooth oracle, one can make the stronger assumption that the stochastic
gradient function g(-, z) is smooth almost surely, or assume that the error ||g(x, z) —
V F(x)| is bounded by o almost surely. We are not aware of any algorithms that
leverage such stronger assumptions, and yet extending our lower bounds to handle them
seems non-trivial. Resolving the importance of these assumptions therefore remains
an interesting topic for future work.

Lower bounds for higher-order algorithms Our results resolve the complexity of
finding first-order stationary points with stochastic first-order methods, but we have
not addressed the oracle complexity of other basic non-convex stochastic optimization
problems, such as finding first-order stationary points with higher-order smoothness
(possibly with stochastic access to Hessian, Hessian vector-products, or other higher-
order derivatives) or finding second-order stationary points. Building on our work,
[8] provide upper and lower bounds for finding first- and second-order stationary
points using stochastic pth-order gradient information. In particular, they show that
when the objective is second-order smooth, an algorithm using stochastic gradients
and stochastic Hessian-vector products can find an e-stationary point using order € ~3
queries. They also show lower bounds proving that this is unimprovable, even when
using pth order derivative information for any p > 2, and even when the objective is
pth order smooth.
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Appendix
A Proofs from Section 3
A.1 Basic technical results

Before proving the main results from Sect. 3, we first state two self-contained technical
results that will be used in subsequent proofs. The first result bounds component
functions W and @ and gives the calculation for the parameter £; in Lemma 2.2.

Observation 2 The functions W and @ in (17) and their derivatives satisfy

0<W<e 0<V <.54/e, W' <325 0<®<+2rme,
0<® <.4fe and |®"] < 1. (36)

Proof of Lemma 2.2 We note that the Hessian of Fr is tridiagonal. Consequently, for
any x € R?,

V2Fr(x < max |V2. Fr(x + max V2. Fr(x + max V2, Fr(x
IV2Fr (0l = max [ V7 Fr (0] + max [V2 . Fr(0)| + max [V, Fr ()]

(i)
< sup |®"(z)| sup |¥(z)| 4 sup |P(z)| sup |¥" (z)]
zeR zeR zeR zeR

(i1)
+25up | &' () sup | W' ()] < 152,

zeR zeR

where (i) is a direct calculation using the definition (16) of Fr and (ii) follows
from (36). O

The second result is an Q(:—ZZ) lower bound on the sample complexity of finding

stationary points whenever € < O(+/AL). This result handles an edge case in the
proof of Theorem 2. A similar lower bound appeared in [27], but the result we prove
here is slightly stronger because it holds even for dimension d = 1.

Lemma 10 There exists a number cy > 0 such that for any number of simultaneous

queries K, dimension d and € < ./ %, we have

2
F(K, A, L 0% = @K, A, Lo = co- 25 (37)
€

Our approach for proving Lemma 10 is as follows. Given a dimension d, we con-
struct a function F : RY — R, a family of distributions P;, and a family of functions
f(x, z) for which F(x) = E,[ f(x, z)], and for which the initial suboptimality, vari-
ance, and mean-squared smoothness are bounded by A, o' and L, respectively. We
then prove a lower bound in the global stochastic model in which at round ¢ the
oracle returns the full function f (., z(’)), rather than just its value and derivatives at
the queried point. The global stochastic model is more powerful than the K-query
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stochastic first-order model (with g(x, z) = V, f(x, z)) for every value of K, so this
will imply the claimed result as a special case.

Lemma 11 Whenever € < ZTA, the number of samples required to obtain an €-
stationary point in the global stochastic model defined above is (1) - :—22
Proof of Lemma 11 The proof follows standard arguments used to derive information-

theoretic lower bounds for statistical estimation [31, 54].
We consider a family of functions f : R? x R — R given by

fea =5 (1P =200 +77), (8)

where r € (0,+/2A/L) is a fixed parameter. We take P, to have the form P} =
N(rs, ‘z—i), where s € {—1,1}, and let 6y := (rs,0,...,0) € R9. Then, when

P, = P}, we have F;(x) = E;[f(x,2)] = %le — 6|1, and furthermore for any
x,y € R? we have

E. [V f(x,2) = VE )21 =L -E[(z — rs)*] = 02,
and
E.[IVs f(x,2) — Vo f (3, DII*1 = L* - lx — ylI%

Note that Fy is indeed an L-smooth, and has initial suboptimality at x() = 0 bounded
as Fy(0) — inf  cga Fy(x) = Lr?/2 < A.

Now, we provide a distribution over the underlying instance by drawing S uniformly
from {%1}, and consider any algorithm that takes as input samples zy, ..., z7 ~ PZS s
and returns iterate x. To bound the expected norm of the gradient at X (over the
randomness of the oracle, the randomness of the algorithm, and the choice of the
underlying instance S), we define S = argming . _py |[VFy (x) ||, with ties broken
arbitrarily. Observe that we have

O - R G - A
E[|VFs(®)[] = rLP (|[VFs@)| = rL) = rLP(S #S), (39)

where (i) follows by Markov’s inequality and (ii) follows because when S # S, the
definition of § implies

2-|IVFs®)l = inéd{IIVFfl(X)ll + IVF (o)}

=L inf {|lx — 61 + llx — 611} > LII6y — 6_1]| = 2rL.
xeRd
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Next, fors € {£1}let Py = N®T (s, %—z) denote the law of (z1, ..., z7) conditioned
on § = 5. We have

PE#£S)=1-PE=5>1-1+ sup (Pi(A)+P_ (A%

A is measurable

sup  {P1(A4) —P_1(A)}

2 A is measurable

N = N = =

{1 =P =P}

1
{1 —,IEDKL(IPHIIPO}
1 { rI:\/T
2\ o ’

where the penultimate step follows by Pinsker’s inequality and the last step uses that
Py = N®T (rs, %—z). Combining this lower bound with (39) yields

Bl Pl = 2 (1 - rLﬁ) .
2 o
Finally, setting r = min{#, ZTA}, implies
1
max {E[|| Fi (D) |1, ELI F-1 (D) (11} = 3 (EF1 ]+ ELF-1 (X))
B[ Fs() 1] = minl %, [ Z2)
= X i g —1
SR =TTV 8

Stated equivalently, whenever € < \/ZA /8, there exists s € {—1, 1} such that the
number of oracle calls T required to ensure E[||V Fy(%)||] < € satisfies

concluding the proof. O

A.2 Proof of Lemma 4

First, we note that E[v; (x, z)] = 1 forall x and i, and therefore E[g7 (x, 2)] = VFr(x).
To show the probabilistic zero-chain property, note that, due to Observation 1.1, we
have v; (x, z) = v (X<prog | (x), 2) for all x and z. Moreover, fori > 1 + prog%(x) we

have I'(|x>;|) = 0 and therefore ®;(x) = I'(1) = 1 and v;(x,0) = 0.
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With these observation, the proof of the zero-chain property is analogous its
proof in Lemma 3: for all x and z we have progy(gr(x,z)) < 1+ prog%(x) (from

Lemma 2.4) and g7 (x,z) = gr (x§1+pr0g1 x)> z) (from Lemma 2.5 and v; (x, z) =
Vi (X<prog; (x)» 2))> giving Eq. (12); for z 2(= 0 we further have prog,(gr(x,z)) <
prog%(x)z(from vi(x,0) = 0) and g7(x,2) = gr (xsprog%(x), z) (from Lemma 2.5
and v; (x, z) = Vi (X<prog (x)» 2)), giving Eq. (11).

To bound the variance é)f the gradient estimator we observe that foralli < prog 1 (x),
IT(Jx=i DIl = I'(1/2) = 1 and therefore ®; (x) = 0 and v; (x, z) = 1, so that

[gr(x,2)]; = ViFr(x) Vi < PrOg%(X)-
On the other hand, Lemma 2.4 gives us that
[gr(x,2)]i =ViFr(x) =0 Vi > 1 +Pr0g%(X)-

We conclude that § (x, z) = g7 (x, z) — VFr(x) has at most a single nonzero entry in
coordinate iy = prog 1 (x) + 1. Moreover, for every i

§i(x.2) = Vi Fr(x)(vi(x,2) — 1) = viFT<x>®,-(x)<§ - 1).

Therefore,

_ 2
P _ (I—-p)23
p

)

- 1—
Ellgr (x, 2) — VFr (0| = Bs2(x, 2) = | Vi, Fr(x)|” ©2(x) >

where the final transition used Lemma 2.3 and @iz(x) < 1 for all x and i, establishing
the variance bound in (23) with ¢ = 23.

To bound E||g7(x,2) — g7 (y, z)||2, we use that E[§(-, z)] = 0 and that §(-, z) has
at most one nonzero coordinate to write

Ellgr(x,2) — gr(v, DI* = EI8(x, 2) — 8(y, 2> + IVFr(x) — VFr ()2
= > E@i(x.2) = 8. 20) + IVFr(x) = VEr )|,

iliv.iy)

(40)

where i, = prog%(y) + 1 is the nonzero index of §(y, z). Forany i < T, we have

E(8 (x, 2) — 8i (v, 2))?

2
— (ViFr(0)®; (x) - V,'FT(y)®,»(y))2E<§ _ 1)
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1 —
= (Vi Fr(0)(©;(x) — ©;(») + (V; Fr (x) — Vi Fr (5))0:()> —~

1
= (2% Fr ()X (©,(0) = ©:(0)? + 2(Vi Fr(x) = Vi Fr(:))*0}()) .

By Observation 1.3, I'; is 6-Lipschitz. Since the Euclidean norm ||-|| is 1-Lipschitz,
we have

10i(x) = ©;(MI < 6] [T(x=iD| — [TUy=iD| | <6 T(x=il) = T(y=il) |
<67 | lxxil = [y=il | < 6% x — yl.

That is, ©; is 6>-Lipschitz. Since ®7(y) < 1 and (V; Fr(x))? < 23? by Lemma 2.3,
we have
(23-6)*[|lx — y||* +2(Vi Fr(x) — Vi Fr(y))*

p

(6i(x,2) — 8i(y,2))* <

for all i. Substituting back into (40) we obtain

2-(23-6)%|x — ylI? + 2IIVFr(x) — VEr (y)|?
p

Ellgr(x,2) — gr(y, Dl <
+IVFr(x) = VFr ().

Recalling that |VFr(x) — VFr(y)|| < €1]lx — y|| by Lemma 2.2, establishes the
mean-square smoothness bound in (23) with £; = /2 - (¢ - 6)2 + 3@.

A.3 Proof of Theorem 2

Let Ag, £1, ¢ and l 1 be the numerical constants in Lemmas 2.1, 2.2 and 4, respec-
tively. Let the accuracy parameter €, initial suboptimality A, mean-squared smoothness
parameter L, and variance parameter o2 be fixed, and let L < L be specified later. We
rescale Fr as in the proof of Theorem 1,

2

F () LA P (x)
X)) = —— -,
r 0 T A
£q A LA
where A= —-2¢, and T = = .
L Ao(LA2/Ly) Aol (2¢)?

This guarantees that F7. € F (A, L) and that the corresponding scaled gradient esti-
mator g7 (x, z) = (LA/€1)gr(x/X, z) is such that every zero respecting algorithm A
interacting with OF; (x,2) = (F7.(x), g7 (x, 2)) satisfies

B[V (g )] > e
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forallt < (T —1)/2p and k € [K]. It remains to choose p and L such that OF*

belongs to O(K, o2, L). As in the proof of Theorem 1, setting » = Geo? + 1 and

(2ge
using Lemma 4 guarantees a variance bound of o2, Moreover, by Lemma 4 we have

Ellg}(x, 2) — g5 (v, 2> = (5)21& |&r (72)-ar (32) H2
(¢ ) H-—-H

Therefore, taking

guarantees membership in the oracle class and implies the lower bound

- T—1 LA 1
m¥(K, A, L,o%) > ST (LﬁJ — 1) TS
1820

LA L
We consider the cases 0] Afz > 3 and yrs Afz < 3 separately. In the former case

(which is the more interesting one), we use ij — 1 > x/2 for x > 3 and the setting
of p to write

LA 1 LAc 1 LA
. @n

_Zr(K AL o ) = et o= )
1661A0€2\/_ 6401 Ao € 3201A¢ €

Moreover, we choose ¢/ = 12¢ 1Ap so that € < 12%1AA0 < ZTA holds. By Lemma
11,
2
R (K, AL Lo%) > co- = (42)
< (K, AL, 0 2

where cg is a universal constant (this lower bound holds for any value of d). Together,

the bounds (41) and (42) imply the desired result when 0 A‘/Z > 3.
ZAﬁ

§ 401 Age
€=4/3 2’2 A precludes the option that p = 1 in this case. Therefore we must have

LAg o? s . LAo s
7 Agre < 3 or, equivalently, < 2Ry = Thus, in this case the bound (42)

implies (41) up to a constant, concludlng the proof.

Finally, we consider the edge case < 3. We note that the assumption
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B Proofs from Section 4
B.1 Proof of Lemma 5
The proof combines the techniques of the proofs of Lemma 1 and random-projection

based lower bounds on the sequential oracle complexity of optimization [15, 51] in

their refined form [13, 23] which yields _low-dimensional hard instances.
Let us adopt the shorthand x@ = xi\’[)o S which we recall is defined via
Fy

@) @) (1) )} i1 i-1)
X =A Oz (x ;.05 (x , )
A[OFU] <V, FU( A[OI_:U]’ z ) FU( A[OI_:U] z ))

where 7 is the algorithm’s random seed. Following the proof strategy of Lemma 1, we
define

70 = max; <, maxe(g] prog} (U Tx @0
=max {j < T||?, xP)| > { forsomei <1,k € [K]}
and

B .= 1{3x : pr0g0<g(x; z(’))) =1 +pr0g%(x)}, 43)

recalling that, due to Definition 2, {B(’)},Zl are i.i.d. Bernoulli with probability of
success at most p, and are independent of any randomization in the algorithm A. With
the shorthand

c =Y BO

s<t

We additionally define, for every ¢ > 1, the event

¢ .— m{n(s) < CWy.

s<t

Writing

T —1og(2/8)
- |y

the claim of the lemma is equivalent to the statement that IP’(JT(T/’) >T) <. Since
P = T) < P([e™] or €T = 7) < B[] ) + P(cTP = 7),
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it suffices to show that both

(44)

| o

P([e™]) =
and

u»(c“n) > T) < (45)

8
=5
The bound (45) follows identically to Eq. (15) in the proof of Lemma 1, and so the

remainder of the proof consists of establishing the bound (44).
We begin by rewriting the event [QE(TP)]C as follows

[e™] = | {,,(t) . C(r)} A et

1<T,
= U {max progi (U Tx®Ry > C([)} net=b
kelK] 1
1<T,

i 1
U {3" €K1, j > € :ud, x00)| = Z} e,

1<Ty
Define the o -field

F = O'(Z(l), e, Z(Tl’), r),

where we recall that r is the algorithm’s random seed, and note that C O e F for all
t < Tp. Conditioning on F and applying the union bound, we have

P([@(Tp>]c

T
.7—‘) <> > > ]P’<|(u(j),x("k))| > %, (S ’f) (46)

t<Tp kelK] j=14Cc®

Therefore, to estab}ish the bound (44) and with it the result, it suffices to prove that the
probability P(l(um,x(t’k)ﬂ > i , ¢t=D | .7) < ﬁ forevery t < T, k € [K]

and j > C. To do so, we leverage probabilistic zero-chain property in order show
the following.

Lemma 12 Fixt > 1, and condition on F. If@“‘l) holds, then for every s < t and
k € [K], x5 is measurable with respect to uld u €,

Proof Throughout the proof, we adopt the shorthand U<, for [u®: . u©;0,...,0],
i.e., a version of U where the last T — ¢ columns are replaced with zeros. We also
recall the notation x<; for the replacement of all but the first i coordinates of x with
Zeros.
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The crux of the proof is the following claim: for any s < ¢ and k € [K],
if x©-0 is measurable w.r.t. U_ce and prog%(UTx(s’k)) < C®), then the oracle

response to query x©%) is measurable w.r.t. U-ces+n. To see why this holds, let
g(S K = gU TxGR z(s)) and note that Definition 2 of the probabilistic zero chain,
along with definition (43) of the sequence (B®)), implies that

progg(¢*) < B + prog) (UTxY) and g
_ T.(s,k) (5)
- g<[U e ]SB(f)+prog1 (UTxshy £ ’ )
I

The assumption prog%(UTx(S’k)) < C® implies that B®) + prog%(UTx(s*k)) <
B® + C® = C+D, and—noting that [U Tv]<. = U;v—we consequently have

progy(g©P) < COFD and @0 = T, xR, 7).

SC(H'
Therefore, the oracle response to query x*%) has the form

05, 609,20y = gy (x®0, 20) = ygh

= U progy (s 8 = Uscern 8(U Loy xO0, 29,

so that if x©% is measurable w.r.t. U-cw,then Oz (x5 7)) is measurable w.r.t.
USC(H") .

From here the lemma follows by straightforward induction. The base case t = 1
is trivial, since the algorithm’s initial queries do not depend on U. For the induction
step, fix s and suppose that x6") is measurable w.r.t. U —cw) forall s < s < rand
k' € [K]. That ¢~ holds implies that progl(UTx(S/’k/)) < CH) forall s’ < t,and
hence by the discussion above we conclude tflat the oracle’s responses to all queries

at iterations 1, ..., s — 1 are measurable w.r.t. U_) . Since x60) s a (measurable)
function of r and the oracle responses up to iteration s, we conclude that it is measurable
w.rt. U_ce) as well. O

From Lemma 12, we conclude that there exists a function f©F : (R9)C” _
{x € RI|x| < R} (implicitly also dependent on F), such that x*"0 =

fER QM u€) Consequently,
() (k) 1 (t=1)
P x> 2 € F
_ P<I<u<f> 0G0 €y L ‘f)
s yeeey 4 )

- P(Hu(j) (0 ey L ' ]:)
< : 717
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Conditional on F and ™V, .. ., u(cm), we have that f-%) (u(l), el u(c(’))) is a fixed
vector with norm at most R, while for every j > C, the vector /) is uniformly
distributed on the (d — C®)-dimensional unit sphere. Therefore, concentration of
measure on the sphere (see, e.g., Lemma 2.2 of [9]) gives

1 1\? 8
<2expl—5- (=) - @-D} < :
2 \4R 2T,KT

where the last transition follows from our choice of d — T > 32R”log

32R? log MLKT Substituting back into Eq. (46), we obtain the bound (44) and con-
clude the proof of Lemma 5.

2
272K
ps =

B.2 Proof of Lemma 6

Before proving Lemma 6 we first list the relevant continuity properties of the com-
pression function

X

PO = e

T /p2
Lemma 13 Let J(x) = g—i(x) = =pp) /R g,y all x, y € RY we have

A/ 1+I1x117/ R

/() llop = M) = oW < llx =yl

1
V14l /R2 a
3
and ||J(x) = J(¥)llop = —IIx =yl 47)
Proof of Lemma13 Note that ||p(x)|| < R and therefore 0 < I — p(x)p(x) " /R?> < I.
Consequently, we have || J (x)|lop = (1 + ||x||2/R2)_1/2 < 1. The guarantee || p(x) —

pMI < |lx — y| follows immediately by Taylor’s theorem. For the last statement,
define h(t) = \/IT and note that |h(7)], \h (t)| < 1. By triangle inequality and the

aforementioned boundedness and Lipschitzness properties of 4, we have

||J(x) - J(y)Hop
< WY I/R) - [ oo /R = p(rp) /R

+ Hz - P(X)P(X)T/RZHOP AR N/R) = R(llyll/R)]
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< Hp(x)p(x)T/Rz - p(y)p(y)T/R2H0p

1= pepcT /R xR = iR

For the first term, observe that for any x, y we have x|, |y|| < 1, we have |xx "
¥y " llop < 2[lx—y|l; this follows because forany [|v|| = 1, we have || (xx —ny)v|| <
lx — ylll{v, ) + Iylll{v, x — ¥} < 2|lx — yl|. Since [[p(x)/R| < 1, it follows that

|ope /8 = 1o IR < 2l

For the second term, we again use that ||p(x)|| < R to write

T /p2 1 1
[ = pp@) /R - llxll/R = 1y 1/RT < el = Iyl < e =

O

Proof of Lemma 6 The argument here is essentially identical to [15, Lemma 5]. Define
yO = (@D yEE)Y where y@P = p(x@R). Observe that for each i and
k, the oracle response (F\T,U(x("’k)), §T,U(x("'k), zD)) is a measurable function of
x @K and (FT,U(y("’k)), gT,U(y("’k), z®)Y). Consequently, we can regard the sequence
yD oy as realized by some algorithm in Ayang(K) applied to an oracle with

FTU(y z7) = (FT v (), &r.u(y, z)). Lemma 5 then implies that as long as d >

[(32-230° + 1)T log ZKT 2127 > [T 4+ 32R% log 22 1= 2KT 1, we have that with probability
at least 1 — 6,

T (i,k)\y T.,@,k)
knel[a[g]prOg%(U px ))—krg[alg]prOg%(U yr) < T, (48)

aslongasi < (T —1log(2/68))/2p.

We now show that the gradient must be large for all of the iterates. Let i and k be
fixed. We first consider the case where [|x"¥)|| < R/2. Observe that (48) implies that
progl(UTy(i'k)) < T and so by Lemma 2.6, if we set j = progl(UTy(i’k)) + 1, we
have

@,y ) <1 and |,V Fr o) 2 1. (49)
Now, observe that we have
<u(/), Vfr,u(x(i’k))> = <u(f), J(x)TVF"T,U(y("’k))> + n<u(”, x(i’k)>.
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T /p2
Using that J(x) = 1220000 /RZ "hiq s equal to

VIHIxI2/RE

<u(f), VFT,U(y(i’k))> (u'?, y(i"‘))<y‘i'k), FT,U(y(i’k))>/R2
[+ IxCRIP/R I+ xTO /R
+{u?, y DN 502/ R,

Since ||y®® || < |x@R)| < R/2, this implies

K”(j)’ Vfr,uof("”‘)))\ . % Kum, va,U(ya,k)))‘ _ Kum, y<z‘,k>>‘ (FTUZ(;M))H n n*f)

By Lemma 2 we have ||FT v (YR | < 234/T. At this point, the choicen = 1/5 R =
2305/T, as well as (49) imply that [(u), VFp y(c@0)| = 2 — (4 + 512) = 4
Next, we handle the case where ||x"®)|| > R/2. Here, we have
[Pt 2 o]0 s )z &2 F
where the second inequality uses .that I (xRl op < m < 2/+/5 which
follows from Lemma 13 and | xR0 | > R/2. O

B.3 Proof of Lemma 7

To establish Lemma 7 we first prove a generic result showing that composition with
the compression function p and an orthogonal transformation U never significantly
hurts the regularity requirements in our lower bounds. In the following, we use the
notation a V b := max{a, b}.

Lemma14 Let F : RT — R be an arbitrary twice-differentiable function with
IVF)I = £o and |[VF(x) — VF()Il < £1 - llx — yll, and let g(x,z) and a
random variable 7 ~ P, satisfy for all x,y € R,

Elg(x,2)] = VF(x), Elgx,z)— Fx)|?
and Ellg(x,2) — gy, DII* < L*|lx — y|I*. (50)

LetR > ¢yVv 1,d >T,and U € Ortho(d, T). Then the functions

Fy(x) = F(U"p(x)) and
Sux,2) =J(x) UgU T p(x),2)

satisfy the following properties.
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1. Fy(0) — inf, Fy(x) < F(0) — inf F(x).
2. The first derivative of Fy is (£1 4 3)-Lipschitz continuous.

3. Elgux,2) - VIZV\U(JC)HZ < o2 forall x € R%.

4. E|gu(x,2) —8u (. D)I? < (L2 + 902 +9)||x — y| forall x, y € RY.

Proof of Lemma 14 Property 1 is immediate, since the range of p is a subset of R”.
For property 2, we use the triangle inequality along with Lemma 13 and the assumed

smoothness properties of F as follows:
|VEy (o) = VEu ()
= 1O TUVFWT p) = I TUVFWT p(v)|

+ |1 @UIFUT ) = S UV FUT o)
< |[VFW px) = VEWU o) + |[VEWUT o) - 17x) = T3 llop
<1 -lox) —pWIl+ Lo - 1T (x) — Il

(61 + —)IIx =l

For the variance bound (property 3), observe that we have

~ = 2 2
Egu (.2 = VR @[ =E|J0)TUgW p(x),2) = Jx) TUVFW T p(o)) |
2 2
< E[HJ(x)TUH N o). ) = VFWT o) ]
op
2
<E|sTp). )~ VFWTp)| = o
Here the second inequality follows from (47) and the fact that U € Ortho(d, T), and
the third inequality follows because the variance bound in (50) holds uniformly for all

points in the domain R” (in particular, those in the range of x - U Tp(x)).
Lastly, to prove property 4 we first invoke the triangle inequality and the elementary

inequality (a + b)? < 2a* + 2b°.

Ellgu(x.2) — gu (v, I
2
=E[/0)TUWTp@), ) = I VW p(1), )|

2
< 2IE”J(x)TUg(UTp(x), D= I U p(y), 2) H

+ 2] (16T~ 100U o). 2
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For the first term, we use the Jacobian operator norm bound from (47) and the assumed
mean-squared smoothness of g:

B[00 U ). 2) — 10 UsW (). 2|

<E|e@ . 0~ W o0 2|

< LElpx) — pOMI?
< L’E|lx — y|I*.

For the second term, we use the Jacobian Lipschitzness from (47):

2 9 2
E|(1e0T =I0T)UsWTp). 0| = z5lx = yIP - E[sW p). )]
We now use the assumed Lipschitzness of F and variance bound for g:

Elg(U " p(x), 2)I* = Ellg(U " p(x),2) = VFU  p(x)|I?
+IVFWUT p)|> <o + 63

Putting everything together, we have

Elgu(r, )~ 80, DIP < (L2 +90%/R? + 963/R?) - 1x — |12

Proof of Lemma 7 For property 1, observe that FT’U(O) = Fr(0), and

min Fr y(x) > min Fr (U p(x)) = min Fr(U "x) > min Fr(x).
X X X X

For properties 2, 3, and 4 we observe from Lemma 14 that F, 7.v and g7y, ignoring
the quadratic regularization term, satisfy the same smoothness, variance, and mean-
squared smoothness bounds as in Lemma 2/Lemma 4/Lemma 8 up to constant factors.
The additional regularization term in (28) leads to an additional n = 1/5 factor in the
smoothness and mean-squared-smoothness. O

B.4 Proof of Theorem 3

We prove the lower bound for the bounded variance and mean-squared smooth settings
in turn. The proofs follow the same outline as the proofs of Theorems 1 and 2, relying
on Lemmas 6 and 7 rather than Lemmas 1 and 4, respectively. Throughout, let Ag, £1, ¢
and | be the numerical constants in Lemma 7. Bounded variance setting setting Given
accuracy parameter €, initial suboptimality A, smoothness parameter L and variance
parameter o2, we define for each U € Ortho(d, T) a scaled instance
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2

P =2 (x) here & = 21 . 4
X)) = — =), where A = — - 4e,
.U 6 UL L

dT—L A J—L La J 51
M= L ao@mazzey | T L hdo@er || G

We assume 7" > 4, or equivalently € <,/ = Gt A 4 7. Ao Let gT (x, z) denote the correspond-

ing scaled version of the stochastic gradient function g7 y. Now, by Lemma 7, we
have that F}. ,, € (A, L) and moreover,

* * 2 L ?
Ellgr y(x,2) = VF7 g (0)I” = o

£l () - v () = 452022

Therefore, setting - » = Gco? + 1 guarantees a variance bound of o2

(4§6
Next, Let O be an oracle for which OF* (x z7) = (F U(x) gT U(x z)) for all
U € Ortho(d, T). Observe that for any A € Arand(K ), we may regard the sequence

{x (l[ k) N /A} as queries made by an algorithm A’ € Agng(K) interacting with the

unscaled oracle OFT y (2= (FT,U (x), gr.u(x, z)). Instantiating Lemma 6 for § =

%, we have that w.p. at least % minge(g] ||VFT)U( x/(,f[g)* )” > % forall t < Tz—;z.

Therefore,
. LA LA
E min |[VF7 y (o, )| = 7 B min [VFro Gy, )l = 37 =«

by which it follows that

T-2 LA 1 1 LAc?
mEM(K. AL L o?) > - Q J - 2) - s
P

2p 16¢1 Age? 21141 Agc et
n 1 LA
2701Ag €2’

where the second inequality uses that |x | — 2 > x/4 whenever x > 4.
Mean-squared smooth setting We use the scaling (51), choose p = min
{(45€)?/02, 1} as above, and let

Using Lemma 7 and the calculation from the proof of Theorem 2, this setting guar-
antees that O Fp (x z) is in the class O(K, 02, L). Consequently, the inequality (52)
implies the lower bound
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_ T2 LA 1
A A Lot s L2 ([ EAVP ) L
2p 1601 Age? 2p

When léﬁﬁz > 4, we have T > 4 and (53) along with [x] — 2 > x/4 forx > 4

gives

LA 1 LA 1 LA
c L2220 (53)

mPd (K AL o?) > — p— . +
e )z 27K1A062ﬁ ~ 2107, Agc €3 2801 A €2

Moreover, we choose ¢’ so that € < ./ ﬁ < % holds. Lemma 11 then gives
180
the lower bound

o2

ﬁlzand(Kv A’ 1:7 02) > Co - >
€

(54)

for a universal constant co. Together, the bounds (53) and (54) imply the desired result
% > 4. As we argue in the proof of Theorem 2, in the complementary
LAD

16€1 Age?

there as well.

when

case < 4, the bound (54) dominates (53), and consequently the result holds

C Proofs from Section 5
C.1 Statistical learning oracles

To prove the mean-squared smoothness properties of the construction (32) we must
first argue about the continuity of V®;, where ®; : R — R is the “soft indicator”
function given by

T 1/2
Oi(x) =T |1- (Z r2<|xk|)) =T(1 = [T (ki) ])-

k=i

Lemma 15 Foralli > j, V;0;(x) is well-defined with

T . LD e .
i > jand|T(Jx>;DI > 0,0, otherwise.

Vi®j(x)={

Moreover, ©; satisfies the following properties:

L IVO; ()] < 62
2. VO, (x) = VO;(Il < 10* - |lx — yl.
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Proof of Lemma 15 First, we verify that the function x; +— ||I'(|xx;|)|| is differ-
entiable everywhere for each i. From here it follows from Observation 1 that
®;(x) is differentiable, and (55) follows from the chain rule. Let i > j, and let

a = \/Zkzj’k#i I2(|xk)). Then |T'(|x=; DIl = va?+ T'(lx;]). This function is
clearly differentiable with respect to x; when a > 0, and when ¢ = 0 it is equal to
I"(Jx;]), which is also differentiable.

Property 1 follows because for all j,

6

R SE, (CAuD (D) < 6, (56)
=]

IVO; ) <

where we have used Observation 1.3.

To prove Property 2, we restrict to the case j = 1 so that x> ; = x and subsequently
drop the ‘> j’ subscript to simplify notation; the case j > 1 follows as an immediate
consequence. Define u(x) € R via i (x) = T(|lx; DT (|x;])sgn(x;). Assume without
loss of generality that O < ||[['(|x])]| < [IT'(|y])|- By triangle inequality, we have

[l e Ol
IT(xDl
px)  p@) H
CAxDI 1T AyDI

VO (x) = VO < |T/(1 = T (xDI) = T'( = [T yDID| -

+ (=T AxDI) - H ”

To proceed, we state some useful facts, all of which follow from Observation 1.3:

1. I is 6-Lipschitz.

2. T’ is 128-Lipschitz, and in particular I'(1 — ||[T(|x])||) < 128 - | (|x])| (since
r'(1) = 0).

3. @)l = 6+ IT (x|l for all x.

4 lpx) — I < (128 - 14 6%) - lx — y|| = 164 - ||x — y| for all x, y.

Using the first, second, and third facts, we bound the first term as

(el , /
e AU LY COTR R XY

< 6|01 —IT(xDI) = T'(1 = ITyDID|
< 128-6[IT(IxDIl — IT(yDII

< 128-6%[||x| — lIylll

< 5000 [|x — y].

For the second term, we apply the second fact and the triangle inequality to upper
bound by
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/ n(x) wu(y)
r'a—|r : B

(1= IT (DIl H ITDI AT dyDI H

j(x) 1) ”

128" : B
< 12811 (x| H Tl IT DI
< 128 DLy — o+ 128 Qe ol - | = |
< sl ITDI 1T AyDI

Using the fourth fact and the assumption that [|[I'(|x|)|| < [T'(]y])|l, we have

ITCAx DI
ITAyDI

Using the third fact and [T (|x) || < |[T(Iy])|l, we have

(x) = uIl = 164)x — yl|.

1
r . _
A el ‘ur(m)n ||F(|y|>||‘
< 61T (DI _ !
= IRCD IR
INCDY )
=6—— . ||I" I 6 —yll.
iFon DI QDI < 61 =1

Gathering all of the constants, this establishes that
IVO1(x) — VO (M < 10* - lx — y]|.

m}

We are now ready to prove Lemma 8. For ease of reference, we restate the con-
struction (32):

T
Jrx, 2) ==Y ()P (x)vi(x, z)+Z[\I'(—xl>1)<I>(—xi)—‘1’(xi71)<l>(xi)] Vi (x, 2),
i=2

where
Z
vi(x,z) =1+ @i(x)<— — 1).
p

Proof of Lemma 8 To begin, we introduce some shorthand. Define

H(s,t) = W(=5)P(—t) — V(s)P(1),
hi(s, 1) = W(—s)D' (—1) + W(s)D (1),
ha(s, 1) = W (=s)D(—t) + V' (s)D(1).
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The gradient of the noiseless hard function Fr can then be written as
ViFr(x) = —hi(xi—1, xi) — ha(xi, Xj41).
Next, define
gi(x,2) = —hi(xi—1, x;i) - vi(x, 2) — h2(xi, Xi41) - vi41(x, 2). (57)

With these definitions, we have the expression
i
z
Vifr(x,2) = gix,2) + (; - 1) D H(xjo1.x)-Vi®;(x).  (58)
j=1

We begin by noting that V f7 is unbiased for Fr: Since E[v;(x, z)] = 1 for all i
and IE(% — 1) = 1, it follows immediately from (58) that E[V f7(x, z)] = VF (x).

Next, we show that V fr is a probability-p zero chain. with an argument analogous
to the 4. First, we claim that [V fr(x,z)]; = 0, forall x,zand i > 1+ prog% (x),
yielding progy(V fr(x,z)) < 1 + prog%(x). Since |x;_1l, |xij| < 1/4, it follows
from (57) that g;(x,z) = 0 and from (55) that V;0;(x) = 0 for all j, establish-

ing the first claim. Now, consider the case i = prog 1 (x) + 1 and z = 0. Here
(since |x;| < 1/4) we still have V;©;(x) = 0 for all j, so V; fr(x,z) = gi(x, 2).
Since F(|x2,~|) = F(|x2,~+1|) = 0, we have v;(x,0) = vit1(x,0) = 0, so

gi(x,z) = 0. It follows immediately that prog,(V fr(x,0)) < prog 1 (x) for all
x. Finally, examining the definition (32) of f7, it is straightforward to verify that
Jr(y,2) = fr(¥<i+prog, (x)» 2) for all y in a neighborhood of x, and all x and z.

This implies fr(x,2) = fr(X<i+4prog, (x)» 2) and, via differentiation V fr(x, z) =
. . Z .
VfT(fopmgl(x), z). Similarly, one has fr(y,0) = fT(yfpmgl(x), 0) for y in a
7 1
neighborhood of x, concluding the proof of the probabilistic zero-chain property.

To bound the variance and mean-squared smoothness of V fr, we begin by analyz-
ing the sparsity pattern of the error vector

3(x,2) ==V fr(x,z) = VFr(x, 2).
Leti, = prog%(x) + 1. Observe that if j < i), we have ||F(|x2j|)|| > F(|x,'x_1|) >
'(/2)=1,andsoI"’(1 — ||F(|xzj‘)||) = 0 and consequently V;®;(x) = O foralli.

Note also that if j > i, we have H(x;_1, x;) = 0. We conclude that (58) simplifies
to

Vifr(x,z) =gi(x,2) + (% - 1) “H(xj -1, %) - V0, (x). (59)

As in Lemma 4, we have v;(x, z) = 1 forall i < i, and g;(x,z) = V; Fr(x) = 0 for
all i > iy. Thus, using the expression (57) along with (59), we have
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516, 2) = (5 = 1) Hxon ) - Vi0, 0 — (5 - 1)

ha(xi,—1, %) - ©; . (x), i=1iy—1,
hi(xi,—1, %) - ©;, (x), 1 =1y, (60)
0, otherwise.

It follows immediately that the variance can be bounded as

2
E|V fr(x,z) — VFr(@)|* < ;H(x,-x_l,xix)2||V®ix<x)||2

2
SRt x1,) - O, (0) 4 ;h%(x,'x_l, xi,) - O (x)2.

From (56) we have [V, (x)]| < 6%, and from (36) we have |H (x, y)| < 12, so the
2-144~64. Since |®;(x)| < 1, Lemma 2 implies that the

423

first term contributes at most

second and third term together contrlbute at most ==—. To conclude, we may take

EIV fr(x,2) = VFr ()| < =

where ¢ < 10°.
To bound the mean-squared smoothness E||V f7(x, z) — V fr (v, 2)||%, we first use
that E[§(x, z)] = 0, which implies

EIVfr(x,2) = Vr(y, DI = EI8(x, 2) — (v, 2)I* + | Fr(x) — Fr(»)II*.

We have |VFr(x) — VEr(y)|| < £1llx — y|| by Lemma 2.2. For the other term,
we use the sparsity pattern of §(x, z) established in (60) along with the fact that

z 2 1
E(; — 1) < > to show

Ena(x ) =8, DI

<3 D et x) - 0 () = i (ie1, 31) - ©i(»)°
plE{lx iy}
=&
D (ha(xicr, xi) - 05 () — ha(yie1, yi) - ©i(»)°
i€liy,iy}
=&
3 & 2
2 D (Hxi—1,x1) - Vi®i, (x) = H(yiy—1, i,) - Vi©i, (1),
i=1

=&
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where i, = prog%(y) + 1.
We bound & and &, using similar arguments to Lemma 4. Focusing on &1, and
letting i € {ix, iy} be fixed, we have

(h1 (i1, %) - ©;(x) — hy(Yi—1, i) - ©; (1))*
< 201 (xi—1, i) — h1(Yi—1, ))20; (1) + 2(0; (x) — ©; )1 (i—1, yi)*.

Note that by Lemma 15, (i) ®; is 62 Lipschitz and ®; < 1 and (ii) /1 is 23-Lipschitz
and |h1| <5 (from Observation 2 and Lemma 2). Consequently,

£1=2-10° - x — y|*.
Since hy is 23-Lipschitz and has |hy| < 20, an identical argument also yields that
£ =5-10° |x — y|*.
To bound &3, we use the earlier observation that for all i and j # i, we have

H(xj—1,x;)Vi®;(x) =0, and likewise that H(y; 1, y;)V;0;(y) = Oforall j # i,.
This allows us to write

2
T
=Y > H&j1.x)) Vi®j(x)— Hyj-1.y)) - Vi®;(y)
i=1 \j€liv.iy}
d 2
<2 ) Y (HGjo1.x)) - Vi® () — Hyjm1.y) - Vi®;(») .
jelix.iy} i=1

Letting j € {iy, 1y} be fixed, we upper bound the inner summation as

1

T
(H(xj_l,xj) . ViG)j(x) - H(yj—ls yj) : Vi®j(y))2
=1

T
<23 (Hxjo1.%) - (Vi®;(x) — Vi®; (1))’
i=1

+ ((H(xjo1, %)) — H(yj—1, y))) - Vi®; (1)’
=2H (xj_1, %)’ IVO; (x) — VO; (» |
+2(H(xj—1,x;) — H(yj—1, ) IVO; (01

We may now upper bound this quantity by applying the following basic results:

1. H(xj_1,xj) < 12 by (36).
2. |H(xj—1,x)) — H(yj-1,¥))| <20]x — y|, by (36).
3. IVO;(» | < 6% by Lemma 15.1.
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4. IVO;(x) — VO;(y)| < 10*- x — y||, by Lemma 15.2.

It follows that & < 3 - 1010 . lx — y||2. Collecting the bounds on &1, &, and &3, this
establishes that

5‘2
L lx —yl2
p

with ¢ < /101 + ¢2. o

C.2 Active oracles

EIV fr(x,2) = Vfr(y, 2l* <

Proof of Lemma 9 Denoting

G0 =o(r,g",...,g") and y© := max progy(g"),
i<t

we see that the equality P(y® — y@=D ¢ {0, 1}JG"~D) = 0 holds for our setting as
well. Moreover, we claim that

Py -y =1g""") <2p. (61)

Given the bound (61), the remainder of the proof is identical to that of Lemma 1,
with 2p replacing p. To see why (61) holds, let (xV, i), ..., x®,i®) e gt—D
denote the sequence of queries made by the algorithm. We first observe that, by the
construction ofgn,wehavey(l) = 1—}—)/(’_1) 0nlyif§1+y(t71)(rr(i(’))) = 1. Therefore,

Py =y =16 < P(¢yen @) =11g"7Y). (62)

Next, let b € {0, I}N ! denote a (random) vector whose ith entry is b; =
$1qy =) (7w (i)). The vector b has NT=! elements equal to 1 and its distribution
is permutation invariant. Note that, by construction, the vector b is independent
of {é'j(ﬂ(i))}j#l_’_y(t—l)’ieNT. Consequently, the gradient estimates g, ..., gt=D
depend on b only through their (1 4y “~D)th coordinate, which for iterate ¢’ < ¢ — 1
is

t /
g§+)y</—1) = I:Vl.;.y(t*l)FT (x(t ))]bi(,/).
From this expression we see that g/ ) depends on b only for index queries in the set
S = (i) <1 and V00 Fr(x™) #0) € GO0,

Moreover, for every i € SU=D we have that b; = 0, because otherwise there
exists t' < t such that gi;)y(,,l) # 0 which gives the contradiction y =D > @) >

progy(g“)) = 14y =D > =D In conclusion, we have for every i € N7

@ Springer



Y. Arjevani et al.

P(¢) 400 (@) = 11G"" V) = P(bi = 1]b; =0Vj € $“7)

NT-1 . -1
w8 (63)
Ootherwise,

where the last equality follows from the permutation invariance of b.

I

Combining the observations above with the fact that [SUD| <7 —1 < /] >

=<

%N T < %N T gives the desired result (61), since

_ G .
Py —yt=D =116 D) < P(¢) 400 (i)
©) NT-1 2

—11g¢-b) < L <«
g%77) = NT —t = N

We remark that the argument above depends crucially on using a different bit for

every coordinate. Indeed, had we instead used the original construction g7 in Eq. (18)
and set g (x; i) = gr(¢1(mw(i))), an algorithm that queried roughly N random indices
would find an index i* such that ¢{(7(i*)) = 1 and could then continue to query it
exclusively, achieving a unit of progress at every query. This would decrease the lower
bound from (T /p) = Q(NT) to Q(N + T). O
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