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For observational studies, we study the sensitivity of causal inference

when treatment assignments may depend on unobserved confounders. We

develop a loss minimization approach for estimating bounds on the condi-

tional average treatment effect (CATE) when unobserved confounders have a

bounded effect on the odds ratio of treatment selection. Our approach is scal-

able and allows flexible use of model classes in estimation, including non-

parametric and black-box machine learning methods. Based on these bounds

for the CATE, we propose a sensitivity analysis for the average treatment

effect (ATE). Our semiparametric estimator extends/bounds the augmented

inverse propensity weighted (AIPW) estimator for the ATE under bounded

unobserved confounding. By constructing a Neyman orthogonal score, our

estimator of the bound for the ATE is a regular root-n estimator so long as the

nuisance parameters are estimated at the op(n−1/4) rate. We complement our

methodology with optimality results showing that our proposed bounds are

tight in certain cases. We demonstrate our method on simulated and real data

examples, and show accurate coverage of our confidence intervals in practical

finite sample regimes with rich covariate information.

1. Introduction. Consider a causal inference problem with treatment indicator Z ∈
{0,1} representing control or intervention, potential outcomes Y(1) ∈ R under intervention

and Y(0) ∈ R under control, and a set of observed covariates X ∈ X ⊆ R
d . Our interest is in

studying confounding bias in estimators of the conditional average treatment effect (CATE)

τ(x) := E
[
Y(1) − Y(0) | X = x

]
,

and estimation and inference of the average treatment effect (ATE)

τ := E
[
Y(1) − Y(0)

]

based on n i.i.d. observations {Y = Y (Z),Z,X}.1 Many methods provide consistent estima-

tors for the ATE [26] under the independence assumption

(1)
{
Y(1), Y (0)

}
⊥⊥ Z | X,

that all confounding factors are observed or equivalently, that observed covariates X account

for all dependence between the potential outcomes and treatment assignments. Estimation of

the CATE, τ(x), under the independence assumption (1) has recently generated substantial

interest [3, 22, 30, 38, 55].
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1Together, these imply the stable unit treatment value assumption, which will be assumed throughout.
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Confounding bias is ubiquitous in observational studies, and the assumption (1) is fre-

quently too restrictive: in practice, there is almost always an unobserved confounding factor

U ∈ U affecting both treatment selection and outcome. Consequently, we consider an unob-

served confounding factor U such that

(2)
{
Y(1), Y (0)

}
⊥⊥ Z | X,U.

This allows there to be a common cause U of the treatment Z and potential outcomes

{Y(0), Y (1)} that contains the relevant information about the potential outcomes that in-

fluence the treatment assignment. More abstractly, it allows the treatment assignment Z to

depend directly on the unobserved potential outcome; a multivariate unobserved confounder

U satisfying condition (2) always exists by letting U = (Y (1), Y (0)). Under this assumption,

neither the ATE τ nor the CATE τ(x) is identifiable, and traditional estimators can be arbi-

trarily biased [25, 41, 43]. Yet it may be plausible that there is not “too much” confounding,

so it is interesting to provide bounds on the possible range of treatment effects under such

scenarios. We take this approach to propose a sensitivity analysis linking the posited strength

of unobserved confounding to the range of possible values of the ATE τ and CATE τ(x).

We consider unobserved confounders that have bounded influence on the odds of treatment

assignment, following Rosenbaum’s ideas [43].

DEFINITION 1. A distribution P over {Y(1), Y (0),X,U,Z} satisfies the �-selection

bias condition with 1 ≤ � < ∞ if for P -almost all u, ũ ∈ U and X ∈ X ,

(3)
1

�
≤ P(Z = 1 | X,U = u)

P (Z = 0 | X,U = u)

P (Z = 0 | X,U = ũ)

P (Z = 1 | X,U = ũ)
≤ �.

Condition (3) limits departures from the independence assumption (1), and is equivalent

to a regression model for the treatment selection probability ([43], Proposition 12), where the

log odds ratio for treatment is

(4) log
P(Z = 1 | X,U)

P (Z = 0 | X,U)
= κ(X) + log(�)b(U,X),

for some function κ : X →R of observed covariates X and a bounded function b : U ×X →
[0,1] of the unobserved, and observed confounders, U and X, respectively. Such odds ratios

are common, for example, in medicine, where they reflect associations between risk factors

and outcomes [39]. Practice requires choosing a realistic value of � to interpret the sensitivity

analysis; we discuss this in more detail in Section 5. One common approach by practitioners

is to look at the level of � when bounds on the ATE τ crosses a certain level of interest (e.g.,

0), which measures the robustness of the findings to unobserved confounding [43], and then

consider how plausible that choice of � would be for the data generating process.

The ATE τ , and CATE τ(x), are partially identified under the �-selection bias condi-

tion (3), so we focus instead on estimating bounds for them. This perspective on sensitivity

to unobserved confounding traces to Cornfield et al.’s analysis demonstrating that if an un-

measured hormone can explain the observed association between smoking and lung cancer,

it would need to increase the probability of smoking by nine-fold (an unrealistic amount)

[15]. Contemporary medical informatics and epidemiological studies focusing on small ef-

fect sizes require a more nuanced approach for estimating the causal effect in the presence

of unobserved confounding than the simple one used by Cornfield et al. [15]. For example,

observational data is often used for post-market drug surveillance, but Bosco et al. [6] shows

that unobserved confounding presents a particularly high risk in these data, motivating the

need for sensitivity analysis to contextualize findings. Coloma et al. [14] show that effect

sizes are often small, as adverse events for approved drugs are relatively rare. Therefore,
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to draw confident and precise conclusions when there is mild confounding, it is important

to avoid applying an overly conservative sensitivity analysis. Motivated to provide the most

precise conclusions possible in the presence of confounding, we seek methods that provide

optimal (tight) bounds on the CATE and ATE under the �-selection bias condition (3).

1.1. Bounding treatment effects. In what follows, we bound the confounding bias us-

ing analogues of the plug-in treatment contrast estimator for the the CATE, and the aug-

mented inverse probability weighted (AIPW) estimator for the ATE [5]. We treat each po-

tential outcome separately, focusing on lower bounds on μ1 = E[Y(1)] (other cases are

symmetric). Based on observed data, all parameters necessary to estimate μ1 can be non-

parametrically identified, except the conditional mean of the unobserved potential outcome,

E[Y(1) | X,Z = 0]. Since this quantity is not identifiable in the presence of unobserved con-

founding, we develop a worst-case bound under the �-selection bias condition (3), and de-

velop estimators based on the observed data. Specifically, let

(5) θ1(x) := inf
{
EQ

[
Y(1) | X = x,Z = 0

]
: Q ∈ Qx

}
,

where Qx is the set of all distributions for (Y (0), Y (1),Z) conditional on X = x satisfying

the independence assumption (2) and the bound (3) for X = x, and matching the condi-

tional distributions that are identified in the observed data P : Q(Z = 1 | X) = P(Z = 1 | X)

and Q(Y(1) ∈ · | Z = 1,X) = P(Y (1) ∈ · | Z = 1,X). By definition, θ1(x) ≤ EP [Y(1) |
X = x,Z = 0] under the bounded unobserved confounding (�-selection bias condition (3)).

Lower bounds on E[Y(1) | X = x] and E[Y(1)] follow from plugging in θ1(x) in place of the

unknown EP [Y(1) | X = x,Z = 0].
Our first main result (Section 2) shows that θ1(x) can be expressed as the solution to the

loss minimization problem with a reweighted squared loss

minimize
θ(·)

1

2
E

[(
Y(1) − θ(X)

)2
+ + �

(
Y(1) − θ(X)

)2
− | Z = 1

]
,

where a+ = a1{a > 0}, a− = −a1{a < 0}, a ∈ R and 1{·} is the indicator function. The scal-

able loss minimization approach allows us to use flexible model classes to estimate the lower

bound, including many nonparametric and machine learning methods. Intuitively, the preced-

ing display upweights the penalty for negative residuals, therefore increasing the impact of

smaller observed outcomes on the minimizer θ1(x), correcting for the fact that selection bias

from confounding may have decreased the frequency of smaller observed outcomes.

Our second main result defines a semiparametric estimator (29) for the lower bound on the

expected outcome Y(1) under the �-selection bias condition (3):

(6) μ−
1 := E

[
ZY(1) + (1 − Z)θ1(X)

]
≤ E

[
Y(1)

]
.

Our estimation approach (Section 3) builds out of a line of work [5, 13] for statistical in-

ference on τ when all confounders are observed (1); we adapt Chernozhukov et al.’s [13]

cross-fitting procedure to allow large model classes to estimate nuisance parameters. Our

semiparametric estimator satisfies Neyman orthogonality [37], and is insensitive to estima-

tion errors in nuisance parameters. By virtue of this orthogonality, our estimator is root-n

consistent and asymptotically normal so long as the nuisance parameters are estimated at a

slower-than-parametric op(n−1/4) rate of convergence. Our result gives asymptotically exact

confidence intervals (CIs) for the lower bound μ−
1 (6).

Coupling the asymptotic distribution for μ̂−
1 with the symmetrically defined upper and

lower bounds μ̂±
z for E[Y(z)], we can construct a CI for the ATE τ under the �-selection

bias condition (3). In general, the boundary of our interval never shrinks to τ even in the
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large sample limit due to unobserved confounding. However, when there is no unmeasured

confounding (� = 1), our method is equivalent to the AIPW estimator for the ATE τ .

Our population-level bound is unimprovable for bounding each expected potential out-

come and their conditional counterparts, E[Y(z)] and E[Y(z) | X = x], z ∈ {0,1}, but may

not be always optimal in bounding their difference, the ATE τ = E[Y(1)−Y(0)]. On the other

hand, when the potential outcomes are symmetric in the sense that Y(0)
d= C(1 − Y(1)) for

some constant C, then our bounds on the treatment effect are also unimprovable (Section 3.4),

thereby guaranteeing that our CI converges (in the large sample limit) to the smallest possible

interval containing τ under the �-selection bias condition (3).

Finally, we supplement our theoretical analysis with an experimental investigation of the

proposed approaches in Section 4. On both simulated and real-world data, we show that the

CIs have good coverage and reasonable length.

1.2. Related work. The semiparametric literature [5, 13] have shown that the augmented

inverse probability weighted (AIPW) estimator allows the use of flexible nonparametric and

machine learning models to estimate the nuisance parameters: conditional means E[Y(z) |
X], z ∈ {0,1}, and the propensity score P(Z = 1 | X). By exploiting certain orthogonality

properties, Chernozhukov et al. [13] showed how to obtain root-n consistency and asymp-

totic normality for estimated τ even when involved estimates of the nuisance parameters

converge at slower nonparametric rates. We generalize this approach under the �-selection

bias condition.

A number of authors have studied nonparametric and semiparametric models for sensitiv-

ity analysis. These works consider alternatives to our choice of model (3) in characterizing

the relationship between unobserved confounders, treatment and outcomes [8, 18, 40, 41, 50,

58]. We focus on the model of Rosenbaum [43] because of its appealing interpretation as a

regression model (4).

Imbens [24] derived a sensitivity analysis for the treatment effect in the presence of un-

observed confounding. His approach requires specifying parametric models for the effect of

an unobserved confounder on both the treatment selection and outcome. Specifically, the re-

lationship between the unmeasured confounder and treatment assignment is modeled via a

logistic regression, which is a special case of condition (3).

Aronow and Lee [2] and Miratrix, Wager and Zubizarreta [33] study the bias due to un-

known selection probabilities in survey analysis, with an approach similar to ours. In the

survey setting, only surveyed individuals provide covariates X, so the papers [2, 33] consider

a simplified model for selection bias,

(7)
1

�
≤ P(Z = 1 | U = u)

P (Z = 0 | U = u)

P (Z = 0 | U = ũ)

P (Z = 1 | U = ũ)
≤ �.

Zhao, Small and Bhattacharya [58] and Shen et al. [50] consider the sensitivity of inverse

probability weighted estimates of the ATE τ to unobserved confounding by varying the

propensity score estimates around their estimated values. Zhao, Small and Bhattacharya [58]

discuss the relationship between their model of bounded unobserved confounding—which

they call the marginal sensitivity model—and that based on the �-selection bias (3). Com-

pared to our semiparametric estimator, the complexity of the asymptotic distribution of their

estimator necessitates using a bootstrap method for inference. A interesting future direction

is to extend the methods in this paper to improve statistical inference under their model.

The most common approach to sensitivity analysis for the ATE under condition (3) is to

use matched observations [17, 43, 45–47]. Unfortunately, exactly matched pairs rarely exist

in practice, even for covariate vectors of moderate dimension; when considering continuous

covariates, the probability of finding exactly matched pairs is zero. Abadie and Imbens [1]
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show that under appropriate regularity conditions on the functions μz(x) and e1(x) (defined

in equations (8) and (11)), estimators of τ using approximately matched pairs can have a

bias of order �(n−1/d) for d-dimensional continuous covariates. For these data, the AIPW

method is a more appropriate statistical analysis tool. The AIPW estimator and other semi-

parametric methods can provide
√

n-consistent estimates of the ATE without unmeasured

confounding [13, 21, 25, 48]. The semiparametric approach for the lower bound on the ATE

that we present in Section 3 is
√

n-consistent under analogous regularity conditions. There-

fore, when analyzing an observational study using the AIPW estimator, one should perform

a sensitivity analysis using the semiparametric method we provide here. When finding good

matched pairs is feasible, many analysts prefer matching due to the transparency of the re-

sults and the simplicity of confounding adjustment. If analyzing an observational study using

matching methods, it would be natural to also use a matching-based method for sensitivity

analysis, such as the ones described above. In summary, our proposed method and matching

based sensitivity analysis approaches can be coupled with different main analyses in practice,

and are complementary to each other.

Most work [3, 22, 30, 38, 55] directly studies estimation of the CATE τ(x) = μ1(x) −
μ0(x) assuming that all confounders are observed. More recently, Kallus and Zhou [28]

present an approach to learning personalized decision policy in the presence of unobserved

confounding, and a contemporaneous work with this paper [27] derive bounds on the CATE;

their methods are based on the marginal sensitivity model of Zhao, Small and Bhattacharya

[58].

Notation. We use Pn and Pn(· | Z = z) to represent the empirical probabilities of

{(Yi(Zi),Xi,Zi)}ni=1 and {(Yi(Zi),Xi) | Zi = z}, respectively, and En[· | Z = z] is the ex-

pectation with respect to Pn(· | Z = z) for z = 0,1. We let nz = ∑n
i=1 1{Zi = z} be the count

of observations with Zi = z, where 1{·} is the indicator function. For a distribution P and

function f : X → R, we use ‖f ‖2,P = (
∫
X

f 2(x)dP(x))1/2. For functions f : � → R and

g : � → R with arbitrary domain �, we write f � g if there exists constant C < ∞ such

that f (t) ≤ Cg(t) for all t ∈ �, and f 
 g if g � f � g. We use Pz and Ez to denote the

conditional distribution P(· | Z = z) and associated expectation, respectively. We write EQ

for the expectation under the probability Q, and omit the subscript under the data-generating

distribution P .

2. Bounds on conditional average treatment effect. To bound the CATE τ(X) =
E[Y(1) − Y(0) | X], we begin by separately bounding

(8) μ1(X) = E
[
Y(1) | X

]
and μ0(X) = E

[
Y(0) | X

]
.

We focus on μ1(·) as these two cases are symmetric. Henceforth, our statements hold for

P -almost every X and Pz-almost every Y (where z should be inferred from context).

2.1. Bounding the unobserved potential outcome. Decompose μ1(·) into observed and

unobserved components

(9) μ1(X) = E
[
Y(1) | Z = 1,X

]
P(Z = 1 | X) +E

[
Y(1) | Z = 0,X

]
P(Z = 0 | X).

The mean functions and the nominal propensity score,

μz,z(X) = E
[
Y(z) | Z = z,X

]
,(10)

ez(X) = P(Z = z | X),(11)

are standard regression functions estimable based on observed data [25, 38, 48, 56]. The key

difficulty in estimating the CATE is that one potential outcome is always unobserved; we

never observe data to directly estimate E[Y(1) | Z = 0,X].
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We begin by reformulating the worst-case lower bound (5), θ1(·), based on the likelihood

ratio between the observed and unobserved potential outcomes. We take a worst-case opti-

mization approach over likelihood ratios to bound the unobserved conditional mean. Using

Lemma 2.1 to come, the conditional distribution P(Y (1) ∈ · | X,Z = 1) is absolutely contin-

uous with respect to P(Y (1) ∈ · | X,Z = 0) under condition (3), so

(12) E
[
Y(1) | Z = 0,X

]
= E

[
Y(1)L

(
Y(1),X

)
| Z = 1,X

]
,

where L is the likelihood ratio

(13) L(y, x) = dP(Y (1) ∈ · | Z = 0,X = x)

dP(Y (1) ∈ · | Z = 1,X = x)
(y).

While L is unknown, the �-selection bias condition (3) constrains it, inducing a lower bound

on the unobserved quantity (12).

LEMMA 2.1. Let P satisfy the �-selection bias condition (3), and the conditional inde-

pendence (2). Then PY (1)|Z=0,X=x is absolutely continuous with respect to PY (1)|Z=1,X=x ,

and the likelihood ratio (13) satisfies 0 ≤ L(y, x) ≤ �L(ỹ, x) for almost every y, ỹ and x.

Furthermore, for any likelihood ratio L satisfies 0 ≤ L(y, x) ≤ �L(ỹ, x) for almost every

y, ỹ and x, there is a distribution P satisfying the �-selection bias condition (3), and the

independence assumption (2), such that equation (13) holds.

See Appendix A.1 for a proof of the absolute continuity. The rest of the results are illumi-

nating, so we provide them here, assuming absolute continuity.

PROOF. For simplicity in notation and without loss of generality, we assume there are

no covariates x. Define the likelihood ratio for the unobserved U by r(u) := q0(u)
q1(u)

, where

qz(u) is the probability density function for U | Z = z. Note that by applying Bayes rule in

the inequality (3), for any u, ũ,

(14) r(u) ≤ �r(ũ).

Then, for any set B ∈ σ(Y (1)), the sigma algebra of Y(1), we have

E
[
1{B} | Z = 0

]
= E

[
E

[
r(U) | Y(1),Z = 1

]
1{B} | Z = 1

]
,

so that almost everywhere, the likelihood ratio L(y) = dPY(1)|Z=0

dPY(1)|Z=1
(y) satisfies

(15) L(y) = E
[
r(U) | Y(1) = y,Z = 1

]

by the Radon–Nikodym theorem. Now, for an arbitrary ε > 0, and y, ỹ satisfying the equality

(15), let u0 be such that r(u0) ≤ infu r(u) + ε. Then

L(y)
(i)= E

[
r(U) | Y(1) = y,Z = 1

]
= r(u0)E

[
r(U)

r(u0)

∣∣∣ Y(1) = y,Z = 1

]
(ii)
≤ �r(u0),

where equality (i) is simply equation (15) and inequality (ii) follows from the bound (14).

We also have L(ỹ) ≥ infu r(u) ≥ r(u0)− ε by equality (15). Consequently, L(y) ≤ �r(u0) ≤
�(L(ỹ) + ε), and as ε was arbitrary, this completes the proof.

The converse follows easily as well: given a likelihood ratio satisfying the above constraint,

the �-selection bias (3) condition and the independence {Y(1), Y (0)} ⊥⊥ Z | X, U is satisfied

for U := (Y (1), Y (0)), and P(Z = 1 | Z = z,U = u) only depending on the Y(1) component

of U , and defined by applying Bayes rule to the likelihood ratio. �
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Lemma 2.1 implies that the lower bound θ1(x) from equation (5) on the unobserved con-

ditional expectation E[Y(1) | X,Z = 0] is

θ1(X) = inf
{
E

[
Y(1)L

(
Y(1)

)
| Z = 1,X

]
: L ∈ L

}
,(16)

where

L =
{
L :R →R measurable :

0 ≤ L(y) ≤ �L(ỹ) for all y, ỹ,

E
[
L

(
Y(1)

)
| Z = 1,X

]
= 1

}
.

The first constraint in L comes from the �-selection bias condition (Lemma 2.1), and the

second normalization constraint guarantees that L is a likelihood ratio; the objectives and

constraints are linear in L. Applying Lagrangian duality to these constraints and simplifying

the resulting dual problem shows that the solution to this optimization problem is the solution

to an estimating equation in terms of the function

(17) ψθ (y) := (y − θ)+ − �(y − θ)−.

LEMMA 2.2. Let θ1(X) be defined as in (16). If |θ1(X)| < ∞, then θ1(X) solves

E
[
ψθ1(X)

(
Y(1)

)
| Z = 1,X

]
= 0

whenever this solution is unique. If the solution is not unique,

(18) θ1(X) = sup
{
μ ∈ R : E

[
ψμ

(
Y(1)

)
| Z = 1,X

]
≥ 0

}
.

While θ1(·) could be estimated using a local estimating equation approach (e.g., as in [34]

and [4]) for the equations E[ψθ1(X)(Y (1)) | Z = 1,X] = 0 for each X, we go further to pro-

vide an alternative loss minimization method to estimate θ1(·). This enables the application

of a broad class of computationally and statistically efficient estimators.

The lower bound θ1(·) is the solution to the convex loss minimization problem

(19) minimize
θ(·)

E
[

�

(
θ(X),Y (1)

)
| Z = 1

]
,

where 
� is the weighted squared loss

(20) 
�(θ, y) := 1

2

[
(y − θ)2

+ + �(y − θ)2
−

]
,

illustrated in Figure 1. Noting that d
dθ


�(θ, y) = −ψθ (y), we have the following lemma on

the uniqueness properties and structure of θ1 solving the optimization problem (19).

FIG. 1. Loss function (20) to minimize to lower bound conditional mean of unobserved potential outcome under

the �-selection bias condition. Illustrated here for � = 2. This loss penalizes negative residuals more than positive

residuals, to account for the the fact that confounding could be already up-weighting positive residuals.
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LEMMA 2.3. Assume (t, x) �→ E[
�(t, Y (1)) | X = x,Z = 1] is continuous on R × X .

If E1[
�(θ1(X),Y (1))] < ∞, then θ1(·) solves E[ψθ (Y (1)) | X = x,Z = 1] = 0 for almost

every x if and only if it solves (19). Such a minimizer θ1(·) : X → R exists and is unique up

to measure-0 sets.

See Appendix A.3 for proof. Our approach allows both classical techniques, such as sieves,

and flexible use of modern machine learning methods to estimate θ1(x); in our experiments,

we demonstrate how to approximately solve the loss minimization problem (19) using gradi-

ent boosted decision trees.

2.2. Nonparametric estimation with sieves. To obtain concrete nonparametric guaran-

tees, we consider the method of sieves [19], which considers an increasing sequence �1 ⊂
�2 ⊂ · · · ⊂ � of spaces of (smooth) functions, where � denotes all measurable functions.

Here, for a sample size n, we take the estimator θ̂1(·) solving

(21) minimize
θ∈�n

En

[

�

(
θ(X),Y (1)

)
| Z = 1

]
.

With appropriate choices of the function spaces �n, it is possible to provide strong approx-

imation and estimation guarantees. As the loss θ �→ 
�(θ(x), y) is convex, the empirical

optimization problem (21) is convex when �n is a finite-dimensional linear space (e.g., poly-

nomials, splines), which facilitates efficient computation [7].

In Appendix B, we adapt results for sieve estimators [10] to show convergence rates for

the solution θ̂1(·) to the empirical problem (21). When θ1(X) belongs in a p-smooth Hölder

space, in Theorem B.1 of the Supplementary Material [57], we prove that the empirical so-

lution θ̂1(·) is consistent and achieves the following convergence rate (up to logarithmic fac-

tors):

∥∥θ̂1(·) − θ1(·)
∥∥

2,P1
= OP

((
logn

n

) p
2p+d

)
.

In the interest of space, we defer a comprehensive treatment to Appendix B.

2.3. Bounding the CATE. Since θ1(·) satisfies θ1(X) ≤ E[Y(1) | X,Z = 0] under the

�-selection bias condition, altogether μ−
1 (·) defined below provides the lower bound

μ−
1 (X) = μ1,1(X)e1(X) + θ1(X)e0(X) ≤ μ1(X).

By symmetry, letting μ+
0 (X) = μ0,0(X)e0(X) + θ0(X)e1(X) where

θ0(X) = sup
L measurable

E
[
Y(0)L

(
Y(0)

)
| Z = 0,X

]

s.t. 0 ≤ L(y) ≤ �L(ỹ) all y, ỹ,E
[
L

(
Y(1)

)
| Z = 0,X

]
= 1,

(22)

we have the parallel conclusion that μ+
0 (X) ≥ μ0(X) holds under �-selection bias condition.

Similar to the above, θ0(·) is a unique minimizer of E[
�−1(θ(X),Y (0)) | Z = 0].2
Thus, under the �-selection bias condition (3), a valid lower bound on the CATE is simply

(23) τ−(X) = μ−
1 (X) − μ+

0 (X).

We summarize our developments in the theorem below.

2Convergence results for sieve estimators of θ0(·) again fall out of our results in Section B.
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THEOREM 2.1. Let � ≥ 1 and {Y(1), Y (0),Z,X,U} satisfy condition (3) and the con-

ditional independence assumption (2). Let τ−(X) in (23) use θ1(X) and θ0(X) solving the

optimization problems (16) and (22) with the same �. When E[|Y(z)| | X] < ∞ for z = 0,1

and 0 < e1(X) < 1,

τ−(X) ≤ E
[
Y(1) − Y(0) | X

]
.

A natural estimator for τ−(x) is the difference in conditional expected potential outcomes

τ̂−(x) = μ̂−
1 (x) − μ̂+

0 (x),

μ̂−
1 (x) = μ̂1,1(x)̂e1(x) + θ̂1(x)̂e0(x) and

μ̂+
0 (x) = μ̂0,0(x)̂e0(x) + θ̂0(x)̂e1(x),

where êz(·) and μ̂z,z(·) are suitable estimators for the nominal propensity score ez(·) and

the observed potential outcome’s mean function μz,z(·), respectively. A variety of classical

nonparametric methods and machine learning methods can estimate these regression func-

tions [12, 13, 56]. To understand convergence of τ̂−(·), consider the convergence of these

regression estimates. Specifically, assume that the estimators ê1(·) and μ̂z,z(·) satisfy that

∥∥ê1(·) − e1(·)
∥∥

2,P = OP (rn,1),
∥∥μ̂1,1(·) − μ1,1(·)

∥∥
2,P1

= OP (rn,2),

∥∥μ̂0,0(·) − μ0,0(·)
∥∥

2,P0
= OP (rn,3),

∥∥θ̂1(·) − θ1(·)
∥∥

2,P1
= Op(rn,4),

∥∥θ̂0(·) − θ0(·)
∥∥

2,P0
= Op(rn,5),

where rn,j depend on the model assumptions and estimation method. We assume 0 < ε ≤
e1(x) ≤ 1 − ε, so ‖ · ‖2,P1


 ‖ · ‖2,P0

 ‖ · ‖2,P . Then τ̂−(·) is a consistent estimator, and

∥∥τ̂−(·) − τ−(·)
∥∥

2,P = Op(rn,1 + rn,2 + rn,3 + rn,4 + rn,5).

Under assumptions stated in Appendix B (A4–A6, including that θz belongs in a p-smooth

Hölder space), our sieve estimators (21) for θz achieves the asymptotic convergence rate

‖θ̂z − θz‖2,Pz = ÕP

(
n

− p
2p+d

)
z ∈ {0,1},

where the notation ÕP (·) hides logarithmic factors. Under similar smoothness and regularity

assumptions, Chen and White [12] establish that sieve estimators êz(·) and μ̂z,z(·) for ez and

μz,z can also achieve a convergence rate of rn,j = Õ(n
− p

2p+d ). Consequently,

∥∥τ̂−(·) − τ−(·)
∥∥

2,P = ÕP

(
n

− p
2p+d

)
,

where the convergence rates reflect typical behavior of (minimax optimal) nonparametric

estimators of a regression function [36, 51]. These constitute the high order terms of the

approximation error for estimating the CATE τ(x) without unobserved confounding [30], if

the smoothness of the CATE τ(·) is of a similar order to the individual parameters θz(·), μz(·)
and ez(·). Interesting future work would be to develop a method that adapts to the complexity

of τ−(·), itself, as done by Nie and Wager [38] and Kennedy [29].
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3. Bounds on the average treatment effect. Given the bounds developed in Section 2

for the conditional average treatment effect τ(·), we now turn to bounding the average treat-

ment effect (ATE) τ by marginalizing over X,

τ− := E
[
τ−(X)

]
= E

[
μ−

1 (X) − μ+
0 (X)

]
.(24)

Because τ−(x) ≤ τ(x) for any x, τ− ≤ τ is a lower bound of the ATE. Rewriting τ− as

(25) τ− = μ−
1 − μ+

0 where

{
μ−

1 = E
[
μ−

1 (X)
]
= E

[
ZY(1) + (1 − Z)θ1(X)

]
,

μ+
0 = E

[
μ+

0 (X)
]
= E

[
(1 − Z)Y (0) + Zθ0(X)

]
,

we estimate μ−
1 and μ+

0 separately and combine the resulting estimators.

In Section 3.1, we construct a semiparametric estimator for the bound τ− that is concep-

tually similar to the AIPW estimator under unconfoundedness. We show in Section 3.2 that

it achieves
√

n-consistency even when (nonparametric) estimates of the nuisance parameters

(e.g., ez(·), μz,z(·), θ1(·)) only converge at slower rates. We focus on lower bounds for the po-

tential outcome Y(1) as other cases are symmetric. We conclude our theoretical discussion by

complementing our methodological developments with optimality guarantees (Section 3.4).

We show that our approach is asymptotically unimprovable for testing a null of no treat-

ment effect and unobserved confounding satisfying the �-selection bias condition against a

positive alternative.

3.1. Estimation procedure. We construct a score T (V ;η) to estimate μ−
1 similar to the

AIPW estimator of the ATE in the absence of unobserved confounding, where V = (X,Y,Z)

and η represents a set of nuisance parameters defined below. The score T (V ;η) comes from

calculating the semiparametric influence function for μ−
1 from representation in (25) using

the method described by Newey [35], and augmenting the representation with the influence

function. To this end, by computing the pathwise derivative of the functional in (25) with

respect to a parametric subfamily of the nonparametric model, and matching to the form

derived by Newey [35], we see that the remaining term in the influence function is

α1(V ; θ1, e1, ν1) = Z
ψθ1(X)(Y )(1 − e1(X))

ν1(X)e1(X)
,

which depends on the nuisance parameters θ1(x) and e1(x), and a new nuisance parameter,

(26) ν1(x) = P
(
Y ≥ θ1(x) | Z = 1,X = x

)
+ �P

(
Y < θ1(x) | Z = 1,X = x

)
,

which serves as a weight normalization factor. In this, the function ψθ (y) refers to the one

defined in equation (17). Adding the term α1(V ;η) to the representation in (25) gives the

augmented score

(27) T (X,Y,Z; θ1, e1, ν1) := ZY + (1 − Z)θ1(X) + Z
ψθ1(X)(Y )(1 − e1(X))

ν1(X)e1(X)
,

that we use for estimation. We have EP [T (X,Y,Z; θ1, e1, ν1)] = μ−
1 since EP [ψθ1(X)(Y ) |

Z = 1,X] = 0. By virtue of its augmented form, the score T (·; ·) is insensitive to estimates

in the nuisance parameters, formalized by the Neyman orthogonality condition [37].

DEFINITION 2. Let Q,η �→ EQ[S(V ;η)] be a statistical functional with Q a distribution

over V , and nuisance parameter η ∈ �, where we take � to be a subset of a normed vector

space containing the true nuisance parameter η0. The score S is Neyman orthogonal at P if

for all η ∈ �, the derivative d
dr

S(P ;η0 + r(η − η0)) exists for r ∈ [0,1), and is zero at r = 0.
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As Chernozhukov et al. ([13], Section 2.2.5) shows, a score formed by adding the influ-

ence function adjustment α1(v) from the pathwise derivative as in Newey [35] is Neyman

orthogonal. Therefore, we expect Neyman orthogonality of the functional (27) constructed in

this way; we verify this formally in the proof of Theorem 3.2 in the Supplementary Material.

We construct a semiparameteric plug-in estimator for the augmented functional, and show

that estimation errors of the nuisance parameters multiply to reduce their influence on our

final estimator. Concretely, we prove that our augmented esitmator preserves
√

n consis-

tency provided that our nuisance estimates converge at a rate of oP (n−1/4) in ‖ · ‖2,P norm.

This draws important connections to the classical doubly-robust AIPW estimator under no

unobserved confounding. Recalling the definitions (10) and (11) of μz,z(x) and e1(x) (re-

spectively), the standard AIPW estimator for E[Y(1)] is

(28) μ̂1,AIPW = 1

n

n∑

i=1

[
μ̂1,1(Xi) + Zi

ê1(Xi)

(
Yi − μ̂1,1(Xi)

)]
.

Assuming all confounding variables are observed (1), the AIPW (28) is an asymptotically

efficient estimator of μ1 [23]. The AIPW also satisfies the Neyman orthogonality condition,

which Chernozhukov et al. [13] used to show that the AIPW estimator (28) with cross-fitting

(described below) enjoys the root n rate so long as the nuisance parameters can be estimated

at the rate op(n−1/4). Our approach generalize the AIPW estimator (28) under the �-selection

bias condition, and reduces to the AIPW when � = 1.

We use an efficient sample-splitting recipe for constructing an augmented estimator for μ−
1

by adapting Chernozhukov et al.’s [13] cross-fitting meta-procedure for Neyman-orthogonal

functionals to our augmented score T (·). Letting K ∈ N be the number of folds for cross-

fitting, randomly split the data into K folds of approximately equal size. With slight abuse of

notation, let Ik be the indices corresponding to the observations in the kth part as well as the

corresponding observation themselves.

For each k, using the sample I−k of observations not in the kth fold, we compute:

1. an estimator of θ1(x), denoted by θ̂1,k(x), using the procedure described in Section 2;

2. an estimator of e1(x), denoted by ê1,k(x), and let ê0,k(x) = 1 − ê1,k(x);

3. an estimator of ν1(·), denoted by ν̂1,k(·), using the procedure described in Section 3.3.

Estimating ν1(·) in the last step is more involved, as it depends on θ1(·), so we defer the

construction of ν̂1,k(·) to Section 3.3. Under appropriate regularity conditions—for example,

sufficient smoothness of θ1(x), e1(x) and ν1(x)—these estimators attain oP (n−1/4) conver-

gence in ‖ · ‖2,P . In the end, our proposed cross-fitting estimator of μ−
1 is

μ̂−
1 = 1

n

K∑

k=1

∑

i∈Ik

{
ZiYi + (1 − Zi)θ̂1,k(Xi) + Zi

ψθ̂1,k(Xi)
(Yi )̂e0,k(Xi)

ν̂1,k(Xi )̂e1,k(Xi)

}
,(29)

with an estimator μ̂+
0 for μ+

0 constructed similarly. This estimator is natural; when � = 1, we

recover the cross-fitting version of the standard doubly robust AIPW estimator (28). While

the estimator satisfies the orthogonality conditions of Chernozhukov et al. [13] that imply a

form of local robustness for θ̂1(·) near θ1(·), we explain below why it is not doubly robust.

3.2. Asymptotic properties and inference. To establish asymptotic normality of μ̂−
1 , we

require a few assumptions. Consistency of μ̂−
1 follows from weak regularity conditions and

the consistency of θ̂1(·), which we address via Assumption A1. Asymptotic normality re-

quires stronger conditions (Assumptions A2 and A3), in turn allowing us to establish Theo-

rem 3.2 on the asymptotic normality of μ̂1.
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ASSUMPTION A1. There exist ε > 0 and 0 < clow < chi such that (a) E[|Y(1)|] <

∞, (b) ‖θ̂1(·) − θ1(·)‖1,P
p→ 0, (c) e1(X) ∈ [ε,1 − ε] almost surely, (d) P([ess inf ê1(X),

ess sup ê1(X)] ⊂ [ε,1 − ε]) → 1 and (e) P(clow ≤ ν̂1(x) ≤ chi for all x) → 1.

Assumption A1(a)–(c) are slightly stronger than the usual assumptions for justifying con-

sistency of the AIPW estimator for the ATE τ in the absence of unobserved confounding

[5, 13]. When ‖ê1(·) − e1(·)‖∞,P
p→ 0, Assumption A1(c) implies Assumption A1(d), and

similarly when ‖ν̂1(·) − ν1(·)‖∞,P
p→ 0, ν1(x) ∈ [1,�] implies Assumption A1(e).

Assumption A1(b) is necessary, and cannot be removed by alternatively assuming con-

sistency of the other nuisance parameters. The α(V ;η) with the true θ1(·) plugged in has

mean zero regardless of the nominal propensity score used. In this case, the proposed esti-

mator is consistent in estimating μ−
1 . However, if an incorrect θ1(·) is plugged in to T (V ;η),

straightforward computation shows that E[T (V ;η)] depends on the θ1(·) plugged in, even

with the correct e1(·) and ν1(·). Therefore, μ̂−
1 is not globally doubly robust; the Neyman

orthogonality condition only guarantees a local form of robustness.

THEOREM 3.1. Under Assumption A1, the estimator (29) satisfies μ̂−
1

p→ μ−
1 .

See the Supplementary Material, Section 8.1, for the proof. We now turn to stronger regu-

larity assumptions for the weak convergence of μ̂−
1 .

ASSUMPTION A2. (a) There exist q > 2, and Cq < ∞ such that E[|Y(1)|q ] ≤ Cq , and

(b) Y(1) has a conditional density pY (1)(y | X = x,Z = 1) with respect to the Lebesgue

measure and supx,y pY (1)(y | Z = 1,X = x) < ∞.

ASSUMPTION A3. η̂1 = (θ̂1, ν̂1, ê1) is a consistent estimator of η1 := (θ1, ν1, e1) and (a)

‖η̂1(·) − η1(·)‖2,P = oP (n−1/4), (b) ‖η̂1(·) − η1(·)‖∞,P = OP (1).

Assumptions A2(a) is no stronger than the standard regularity conditions needed for exis-

tence of asymptotically normal estimators of the ATE without unobserved confounding [13].

Assumption A2(b) ensures that the term θ(·) �→ E[Zψθ(X){Y(1)} | X] is sufficiently smooth

to control fluctuations due to estimating θ1(·). Inspection of the proof of Theorem 3.2 to come

shows that we may relax Assumption A2(b): if θ1(x) and θ̂1(x) have range A1(x), we may

replace A2(b) with

(30) ess sup
X

sup
y∈A1(X)

pY (1)(y | Z = 1,X) < ∞,

which is satisfied, for example, when the outcome Y(z) is binary and P(Y (z) = y | Z =
z,X) < 1 for y ∈ {0,1}, because θ̂ (X) ∈ (0,1) eventually and p(y | Z = 1,X) = 0 for y /∈
{0,1}.

The convergence rate conditions for estimating nuisance parameters in Assumption A3

are relatively standard in semiparametric estimation [13, 35], but nonetheless this theoreti-

cal requirement can be restrictive and hard to achieve to certain applications. For example,

while for e1(·), the conditional mean of observed random variables, a variety of methods

can provide oP (n−1/4) consistency, they still require the data generating distribution to meet

appropriate conditions and the sample size to be large relative to the dimension of covariate

[13, 55]. The estimators θ̂1(·) from Section 2 and ν̂1(·) from Section 3.1 achieve the conver-

gence rates in Assumption A3 under appropriate smoothness conditions on θ1(·) and ν1(·).
For instance, if Assumptions A4, A5 and A6 hold with p > d/2, then Theorem B.1 shows

that estimating θ1(x) as in Section 2 with linear sieves (see Examples 1 and 2) will satisfy
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Assumption A3. Section 3.3 provides an efficient enough estimator of ν1(·) when p > d/2.

Under these assumptions, the following theorem gives the asymptotic distribution of the es-

timator μ̂−
1 in (29), with asymptotic variance

σ 2
1 := Var

[
ZY + (1 − Z)θ1(X) + Z

ψθ1(X)(Y )(1 − e1(X))

ν1(X)e1(X)

]
.

We use the following consistent estimator of the asymptotic variance:

σ̂ 2
1 := 1

n

K∑

k=1

∑

i∈Ik

[
ZiYi + (1 − Zi)θ̂1,k(Xi) + Zi

ψθ̂1,k(Xi)
(Yi )̂e0,k(Xi)

ν̂1,k(Xi )̂e1,k(Xi)
− μ̂−

1

]2

.

THEOREM 3.2. Let Assumptions A1, A2 and A3 hold. Then μ̂−
1 given in equation

(29) is asymptotically normal with
√

n(μ̂−
1 − μ−

1 )
d→ N(0, σ 2

1 ). Furthermore, σ̂ 2
1

p→ σ 2
1 , and

√
n

σ̂1
(μ̂−

1 − μ−
1 )

d→ N(0,1).

See Section 8.2 in the Supplementary Material for a proof. To bound τ from below, let

τ̂− = μ̂−
1 − μ̂+

0 ,

where ψ̃θ (y) = �(y − θ)+ − (y − θ)−,

μ̂+
0 = 1

n

K∑

k=1

∑

i∈Ik

[
(1 − Zi)Yi + Zi θ̂0,k(Xi) + (1 − Zi)

ψ̃θ̂0,k(Xi)
(Yi )̂e1,k(Xi)

ν̂0,k(Xi )̂e0,k(Xi)

]
,

and ν̂0,k(·) is the nonparametric estimator of

ν0(X) = P
(
Y ≤ θ0(X) | Z = 0,X

)
+ �P

(
Y > θ0(X) | Z = 0,X

)

based on data in I−k . A simple extension of Theorem 3.2 shows

√
n
(
τ̂− − τ−)

→ N
(
0, σ 2

τ−
)
,

as n → ∞, where

σ 2
τ− := Var

[
ZY + (1 − Z)θ1(X) + Z

ψθ1(X)(Y )e0(X)

ν1(X)e1(X)

− (1 − Z)Y − Zθ0(X) − (1 − Z)
ψ̃θ0(X)(Y )e1(X)

ν0(X)e0(X)

]
.

(31)

Furthermore, a consistent estimator of the variance σ 2
τ− is

σ̂ 2
τ− = 1

n

K∑

k=1

∑

i∈Ik

[
ZiYi + (1 − Zi)θ̂1,k(Xi) + Zi

ψθ̂1,k(Xi)
(Yi )̂e0,k(Xi)

ν̂1,k(Xi )̂e1,k(Xi)

− (1 − Zi)Yi − Zi θ̂0,k(Xi)(32)

− (1 − Zi)
ψ̃θ̂0,k(Xi)

(Yi )̂e1,k(Xi)

ν̂0,k(Xi )̂e0,k(Xi)
− τ̂−

]2

and [τ̂− − z1−α/2σ̂τ−/
√

n, τ̂− + z1−α/2σ̂τ−/
√

n] is a 100(1 − α)% asymptotic confidence

interval for τ−. The proof is mutatis mutandis identical to that of Theorem 3.2.
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Importantly, our bounds define a confidence set for τ = E[Y(1) − Y(0)]. The same ap-

proach as in Section 2, but upweighting large values of Y(1) and small values of Y(0), pro-

vides an estimate τ̂+ of τ+ that upper bounds the ATE. The limiting distribution of τ̂+ is also

normal. With these estimators, we may construct a confidence interval for the ATE,

(33) ĈIτ =
[
τ̂− − z1−α/2

σ̂τ−√
n

, τ̂+ + z1−α/2
σ̂τ+√

n

]
,

where σ̂ 2
τ+ is a consistent estimator of the variance of

√
n(τ̂+ − τ+). Because τ− ≤ τ ≤ τ+,

this confidence interval has appropriate asymptotic coverage.

COROLLARY 3.1. Let P satisfy the �-selection bias condition (3), conditional indepen-

dence (2) and Assumptions A1–A3. Let ĈIτ be defined as in (33). For τ = E[Y(1) − Y(0)],
we have

lim inf
n→∞ P(τ ∈ ĈIτ ) ≥ 1 − α.

REMARK 1. It is possible to extend Theorem 3.2 to provide confidence intervals uniform

over P . In other words, the coverage probability of the relevant confidence intervals converge

to the desired level uniformly over all the distributions in P . To do so, Assumption A3 must be

uniform over a class of distributions P satisfying Assumption A2, for instance by assuming

there exists sequences �n → 0 and δn → 0 such that

sup
P∈P

P
(∥∥η̂1(·) − η1(·)

∥∥
2,P > n−1/4δn

)
< �n.

Previous work [11] shows that series estimators for the conditional regression function (ex-

ample 1 in Section 2) converge uniformly; extending these results to the estimation of θ1(·)
and ν1(·) is beyond the scope of the present work.

3.3. Construction of ν̂1,k(·) and its asymptotic properties. The above results assumed ac-

cess to a well-behaved estimate of the the weighted probability ν1(X) = 1+ (�−1)P(Y (1) ≥
θ1(X) | Z = 1,X). Here, we describe a nonparametric estimator via a loss function: defining


̄�(ν, θ, y) := 1

2

[
1 + (� − 1)1{y ≥ θ} − ν

]2
,

ν1 uniquely solves the optimization problem

(34) minimize
ν(·) measurable

E
[

̄�

{
ν(X), θ1(X),Y (1)

}
| Z = 1

]
.

The natural sieve estimator for ν1(·) minimizes the empirical version of (34) under finite-

dimensional sieves. However, this requires knowledge of θ1(·), which itself must be esti-

mated. Therefore, consider the following (nested) cross-fitting approach:

1. Partition the sample I−k into two independent sets, I−k,1 and I−k,2.

2. Let θ̂
ν1

1k (·) be an estimator of θ1(·) based on the first subset I−k,1.

3. For a sequence of sieve parameter spaces �1 ⊆ · · · ⊆ �n ⊆ · · · ⊆ �, estimate ν̂1,k

minimizing the plug-in version of the population problem (34),

(35) minimize
ν(·)∈1+(�−1)�n

E
(k)
n,2

[

̄�

(
ν(X), θ̂

ν1

1k (X),Y
)
| Z = 1

]
,

where E
(k)
n,2 is the empirical expectation with respect to the second subset I−k,2.
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When ν1(X) belongs in a q-smooth Hölder space, in Proposition B.1 in the Supplemen-

tary Material, we prove that the empirical solution ν̂1,k(·) to the problem (35) achieves the

minimax optimal nonparametric rate (up to logarithmic factors)

∥∥ν̂1,k(·) − ν1(·)
∥∥

2,P1
= OP

((
logn

n

) q
2q+d

)
.

If q > d/2, then ‖ν̂1,k − ν1‖2,P = oP (n−1/4), satisfying the assumptions in Theorem 3.2. We

defer a rigorous treatment to Appendix B.2 as our results heavily build on the standard theory

of sieve estimation [10]. In Proposition B.1, we demonstrate sufficient conditions for the

convergence of ν̂1,k needed for the lower bound estimator (29) and its asymptotic normality

via Theorem 3.2: with sufficient smoothness of ν1, it is possible to efficiently estimate lower

and upper bounds on the average treatment effect.

3.4. Design sensitivity and optimality of our bound on the ATE. We complement our

methodological development so far with optimality results for our worst-case bounds. By

construction, our approach yields a tight bound on the mean of each unobserved potential

outcome. We extend these results to the ATE by constructing an instance where our bound is

tight. That is, we construct a family of data generating distributions such that whenever our

bounds cannot infer the sign of the ATE, the ability to test whether or not the ATE is positive

is intrinsically difficult. To this end, we study a pointwise asymptotic level α hypothesis test

for the composite null

(36) H0(�) : E
[
Y(1)

]
≤ E

[
Y(0)

]
and the �-selection bias condition (3) holds

under Assumptions A1–A3, and analyze its design sensitivity [45]. Let H1 : Q be an alterna-

tive with a positive average treatment effect τ = EQ[Y(1) − Y(0)] > 0 and no confounding

(� = 1 in equation (3)). Let t�n = t�n {(Yi,Zi,Xi)
n
i=1} ∈ {0,1} be a pointwise asymptotic level

α test for the null hypothesis (36), where t�n = 1, if the null hypothesis τ ≤ 0 is rejected. The

design sensitivity [45, 46] of the sequence {t�n } is the threshold �design such that the power

Q(t�n = 1) → 0 for � > �design and the power Q(t�n = 1) → 1 for � < �design. In other

words, if the selection bias satisfies � > �design, the test cannot differentiate the alternative

τ > 0 from the null τ ≤ 0 regardless of the sample size; if � < �design, the test always re-

jects the null under the alternative Q for sufficiently large n (we define �design = ∞ when no

such threshold exists). Given the confidence interval for τ described in Section 3.2, a natural

asymptotic level α test for H0(�), the hypothesis (36) is

(37) ψ�
n

{
(Yi,Zi,Xi)

n
i=1

}
:= 1

{
τ̂− > z1−α

σ̂τ−√
n

}
.

We consider the design sensitivity of ψ�
n in the simplified setting without covariates, which

allows us to demonstrate its optimality. In this case, {Y(0), Y (1)} ⊥⊥ Z | U , the simplified �-

selection bias condition (7) holds, {Y(0), Y (1)} ⊥⊥ Z under the alternative Q (recall equation

(1)) and θ1, θ0 ∈ R are constants defined in equation (16) and equation (22).

PROPOSITION 3.1. Let ψ�
n be defined as in equation (37), so that ψ�

n is asymptotically

level α for H0(�) in (36). For an alternative H1 = {Q}, define

τ−(�) := EQ

[
ZY(1) + (1 − Z)θ1 − (1 − Z)Y (0) − Zθ0

]
,

where θ1, θ0 solve (16) and (22), respectively, at level � for the distribution Q. Then either

the design sensitivity �design of ψ�
n is infinite or it uniquely solves the equation τ−(�) = 0.
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See Section 8.3 in the Supplementary Material for proof. While there is no simplified

expression for �design in general, it can be derived explicitly for some special alternatives Q.

For instance, in the Supplementary Material, Section 8.3.2, we prove the following result for

Gaussian alternatives.

COROLLARY 3.2. Let ψ�
n be as in equation (37). For the alternative H1(Q),

{
Y(1) ∼ N

(
τ

2
, σ 2

)
, Y (0) ∼ N

(
−τ

2
, σ 2

)
,Z ∼ Bernoulli

(
1

2

)}
,

ψ�
n has design sensitivity

(38) �
gauss
design := −

∫ ∞
0 y exp(− (y−τ)2

2σ 2 )dy
∫ 0
−∞ y exp(− (y−τ)2

2σ 2 )dy
=

φ( τ
σ
) + τ

σ
�( τ

σ
)

φ( τ
σ
) − τ

σ
�( τ

σ
)
,

where � and φ denote the standard Gaussian CDF and density, respectively.

The next proposition shows that the test ψ�
n is optimal for alternative H1(Q) given in

Corollary 3.2, as any asymptotic level α test of H0(�) has design sensitivity ≥ �
gauss
design (see

the Supplementary Material, Section 8.4, for proof).

PROPOSITION 3.2. Let H0(�) be as in (36). There exists a ∈ [1/(1 +
√

�),
√

�/(1 +√
�)] such that for the alternative H1(Q):

{
Y(1) ∼ N

(
τ

2
, σ 2

)
, Y (0) ∼ N

(
−τ

2
, σ 2

)
,Z ∼ Bernoulli(a)

}
,

if � ≥ �
gauss
design, there exists a probability measure P ∈ H0(�) for {Y(1), Y (0),Z,U}, such

that for all n ∈N, all tests tn, and (Yi,Zi) i.i.d.,

P
(
tn

{
(Yi,Zi)

n
i=1

}
= 1

)
= Q

(
tn

{
(Yi,Zi)

n
i=1

}
= 1

)
.

REMARK 2. Our proof uses a specific choice of a to simplify the algebra; solving a

system of nonlinear equations for the distribution of PZ|U allows for any marginal P(Z = 1).

REMARK 3. The above optimality results for ψ�
n extend to alternatives beyond Gaussian

distributions, so long as Y(0)
d= C(1 − Y(1)), for some constant C > 0. The proof relies on

this symmetry in the potential outcomes to construct a distribution under H0(�) matching

Q over the observed data, {(Yi(Zi),Zi), i = 1, . . . , n}. This symmetry is unnecessary if one

is interested in the mean (or conditional mean) of a single potential outcome E[Y(1)] (or

E[Y(1) | X = x], in which case the test ψ�
n achieves the optimal design sensitivity for any

alternative for which the proposed method is consistent.

4. Numerical experiments. To complement our theoretical analysis in Section 3, we

examine the performance of the method using Monte-Carlo simulation and a real data set

from an observational study examining the effect of fish consumption on blood mercury

levels. We evaluate two implementations of the methodology developed in Sections 2 and

3—one based on the sieve estimators studied in Section 2.2 and the other based on gradient

boosted trees fit to minimize the weighted squared loss (19).

The Monte-Carlo simulations support the validity of the inference procedure in realistic

settings. We find that the semiparametric approach presented in Section 3 accurately bounds

the average treatment effect under unobserved confounding, when our assumptions about the

extent of confounding � hold. We show that by using machine learning to optimize the loss
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function in (20), our method can scale to reasonably high-dimensional data. Additionally,

we show that the bounds on the ATE are tight in practice, and empirically compare their

conservativeness to that of the matching-based approach from Rosenbaum [47]. Finally, we

confirm our findings on a real observational study, demonstrating that our semiparametric

approach provides valid yet narrow bounds on the ATE τ .

4.1. Method implementations. When implementing an estimator to bound the ATE τ

using the method developed in Section 3, one must choose estimators of the nuisance param-

eters ez(·), θz(·) and νz(·), and select their hyperparameters. In the first implementation, we

stay close to the estimators used in our theoretical analysis with formal convergence guaran-

tees: we estimate the propensity score ê1(·) by a random forest [4], and θ̂z(·) (resp., ν̂z(·)) by

the nonparametric estimator from Section 2 (resp., Section 3.3) using the polynomial (power

series) sieve. The sieve size and regularization were selected via 10-fold cross-validation,

and then used with 10-fold cross-fitting for the semiparametric estimation. To estimate ν̂z(·),
we use an iterative, instead of nested, form of cross-fitting that sacrifices some independence

between folds to be more computationally efficient, described in Section 6 of the Supple-

mentary Material. Nonparametric estimation of the propensity score e1(·) leads to variability

that requires weight clipping to stabilize the semiparametric estimates [31, 53]. We clipped

weights worth more than 1/20 of the total weight of the samples.

In one experiment below, we use a variant of this implementation where we fit ê1,k(·)
via a simple logistic regression; the logistic regression model for the propensity score is

misspecified, so the lower-order statistical bias from the Neyman orthogonality will not hold;

the statistical bias of the estimator will depend on the convergence rate of the nonparametric

estimator of θ̂z(·), which will not converge sufficiently quickly. As a result, we expect that

the statistical bias will dominate the convergence of τ̂− to τ−.

In the second implementation, we use xgboost [9] to fit a machine learning estimator

for all of the nuisance parameters, emphasizing the generality and scalability of our methods.

xgboost is a gradient boosted tree method that performs well with tabular data, despite

having little formal theory regarding its convergence guarantees. Therefore, we used the sim-

ulations discussed below as a way to assess its appropriateness as a nuisance parameter es-

timator for our semiparametric method from Section 3.1. In this implementation, we fit the

estimator θ̂z(·) to minimize the weighted squared loss (19), and fit the remaining nuisance

parameters to minimize the log loss for predicting a binary target (treatments or the targets

1{Yi ≥ θ} for estimating νz(·)). As with the previous implementation, ν̂z(·) are fit with the

iterative cross-fitting described in Section 6 of the Supplementary Material. Similarly, all

tuning parameters (boosting iterations, regularization, subsampling fraction, minimum node

size) are selected via 10-fold cross-validation. We found that when estimating a generic nui-

sance parameter η(·), representing either θz(·), νz(·), or e1(·), adding an additional intercept

term as follows improved performance signficantly: After fitting η̂z(·) using xgboost, we

fit β0 in the model η̂z(X)+β0 using the appropriate loss function for the nuisance parameter.

4.2. Simulations. The purpose of the simulation study is to demonstrate the good cover-

age of the proposed confidence intervals for reasonable choices of sample size n and covariate

dimension d , and to understand some of the practical properties of the proposed methods rel-

ative to existing methods for sensitivity analysis, such as matching methods [47]. In all of the

simulations, we generate the data as follows for a randomly chosen set of coefficients β and

μ: draw X ∼ Uniform[0,1]d , and conditional on X = x, draw

U ∼ N

{
0,

(
1 + 1

2
sin(2.5x1)

)2}
, Y (0) = β�x + U, Y (1) = τ + β�x + U.
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We draw the treatment assignment according to

Z ∼ Bernoulli

{
exp(α0 + x�μ + log(�data)1{u > 0})

1 + exp(α0 + x�μ + log(�data)1{u > 0})

}
,

where α0 is a constant controlling the overall treatment assignment ratio. This model satisfies

the �data-selection bias condition, since

P(Z = 1 | X = x,U = u)

P (Z = 0 | X = x,U = u)

P (Z = 0 | X = x,U = ũ)

P (Z = 1 | X = x,U = ũ)
= �

1{u>0}−1{ũ>0}
data ∈

[
�−1

data,�data

]
.

Across all experiments, we set τ = 1 and �data = exp(1). Unless otherwise stated, we used

the same � in our sensitivity analysis as the level of confounding �data used to generate the

data. Here, unobserved confounding inflates estimates that assume unconfoundedness: when

Z = 1, U is more likely to be positive than when Z = 0, which inflates the mean of treated

units, that is, E[Y(1) | Z = 1,X = x] > E[Y(1) | X = x]. We expect that the upper bound

from the sensitivity analysis is above the true ATE, while the lower bound is only slightly

below the truth, assuming that we choose � ≥ �data, but not by too much.

In the first set of simulations, we simulate data with a moderate number of observed co-

variates (d = 20), where we observe the proposed sensitivity analysis procedure quickly ap-

proaches its asymptotic behavior as sample size grows. For these simulations, we use the

xgboost implementation, validating the performance of our semiparametric method when

the nuisance parameters are estimated well, even if lacking in formal convergence guarantees.

Table 1 summarizes the empirical performance of the xgboost implementation based on

500 simulations. As expected, the average lower bound estimator τ̂− is close to the true ATE,

while the average upper bound estimator τ̂+ is higher than the true ATE to account for un-

measured confounding. The estimators of the standard errors of τ̂− and τ̂+ are fairly accurate

when n ≥ 1000. When n is small, they slightly underestimate the true standard errors. The

empirical coverage probability of the confidence interval of ATE is conservative because of

unobserved confounding. As the unobserved confounding introduces upward bias, the lower

bound τ− ≈ τ , and we expect that the coverage probability of the confidence interval of τ is

close to 97.5% for large n, which is confirmed by the simulation results in Table 1.

In the second set of simulations, the dimension d of the covariates, sample size n and

marginal treatment probability P(Z = 1) match those from the real observational study on

fish consumption and blood mercury levels in the next subsection (d = 8, n = 1100, P(Z =
1) = 0.21), so that we can validate our approach before interpreting the results on real data.

We use the nonparametric sieve implementation for estimating the nuisance parameters in the

real observational study, and so we use this implementation here. As estimation with sieves

is challenging in this setting due to the eight covariates and a nonlinear model, in Table 2

we observe that the variance estimates σ̂± underestimate the standard deviation of τ̂± by

TABLE 1

Simulation results of the proposed method with 20 observed covariates. τ̂−, the empirical average of τ̂−; σ̂τ− ,

the empirical average of σ̂τ− ; SD. of τ̂−, the empirical standard deviation of τ̂−; τ̂+, the empirical average of

τ̂+; σ̂τ+ , the empirical average of σ̂τ+ ; SD. of τ̂+, the empirical standard deviation of τ̂+; and coverage, the

empirical coverage probability of the 95% confidence intervals ĈIτ . (ATE = τ = 1 and �data = exp(1))

n τ̂− SD. of τ̂− σ̂τ− τ̂+ SD. of τ̂+ σ̂τ+ Coverage

500.0 1.008 0.085 0.081 1.424 0.082 0.077 0.952

1000.0 1.000 0.059 0.057 1.404 0.058 0.053 0.978

2000.0 0.998 0.042 0.040 1.395 0.040 0.038 0.966

4000.0 0.995 0.029 0.028 1.387 0.027 0.027 0.980
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TABLE 2

Simulation results of the proposed method (parametric and nonparametric) and the existing matching method

with eight observed covariates. τ̂−, the empirical average of τ̂−; σ̂τ− , the empirical average of σ̂τ− ; SD. of τ̂−,

the empirical standard deviation of τ̂−; τ̂+, the empirical average of τ̂+; σ̂τ+ , the empirical average of σ̂τ+ ;

SD. of τ̂+, the empirical standard deviation of τ̂+; and coverage, the empirical coverage probability of the 95%

confidence intervals ĈIτ . (ATE = τ = 1 and �data = exp(1))

Approach τ̂− σ̂τ− SD. of τ̂− τ̂+ σ̂τ+ SD. of τ̂+ Coverage

Nonparametric 0.995 0.073 0.081 1.775 0.069 0.076 0.960

Misspecified 0.988 0.071 0.081 1.775 0.068 0.076 0.970

Matching 0.869 – 0.097 2.125 – 0.097 0.996

approximately 10%. We also evaluate the performance when the propensity score estimator

is misspecified, as discussed in Section 4.1.

We compare our semiparametric methods to the M-estimator based matching method

sensitivitymw [47]. Note that our simulation uses a constant treatment effect, as as-

sumed by matching methods. The confidence intervals for the matching approach is condi-

tional on the design (and assumes exact matched pairs), whereas our intervals are uncondi-

tional. The confidence intervals for the ATE from the matching method appear conservative,

coming from having a lower design sensitivity and larger standard errors (Table 2). The larger

standard errors could potentially be reduced using covariate adjustment in matching [44].

In the third set of simulations, we include only a single covariate (d = 1), and eval-

uate the performance of the semiparametric method with the xgboost implementation,

and the matching method described above over a range of sample sizes. One of the chal-

lenges with interpreting the above simulations is that the results will include a mixture of

errors—statistical error from having finite observations, and population-level uncertainty on

the treatment effect. With one covariate, the semiparametric and approximate matching meth-

ods should have a small statistical bias relative to their standard errors, so the average of the

point estimates from simulations with a large sample size should approximate the asymptotic

sensitivity bounds well. This allows us to compare the asymptotic behavior of the semipara-

metric method and matching methods, over a variety of values of � used in analysis (while

holding �data used in the data-generation fixed). Like previous settings, Table 3 shows that

the bounds from matching are more conservative than the semiparametric approach.

4.3. Real observational data. We apply our method to analyzing an observational study

to infer the effect of fish consumption on blood mercury levels and compare our result to

that of a prior analysis based on covariate matching [58]. The data consist of observations

from 2512 adults in the United States who participated in a single cross-sectional wave of the

National Health and Nutrition Examination Survey (2013–2014). All participants answered a

questionnaire regarding their demographics and food consumption and had their blood mer-

cury concentration measured (data available in the R package CrossScreening).

High fish consumption is defined as individuals who reported > 12 servings of fish or

shellfish in the previous month per their questionnaire, low fish consumption as 0 or 1 serv-

ings of fish. The outcome of interest is log2 of total blood mercury concentration (ug/L).

The primary objective is to study if fish consumption causes higher mercury concentration.

To match prior analysis [58], we excluded one individual with missing education level and

seven individuals with missing smoking status from the analysis, and imputed missing in-

come data for 175 individuals using the median income. In addition, we created a supple-

mentary binary covariate to indicate whether the income data were missing. There are a total

of 234 treated individuals (those with high fish consumption), 873 control individuals (low
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TABLE 3

Simulation results of the proposed method and matching with 1 observed covariate. For each method,

0.025-quantile and average of the lower bound, followed by average and 0.975-quantile of the upper bound, and

the coverage of the confidence interval are reported. Comparing the average bounds for each method shows that

the semiparametric method has a less conservative lower bound as � varies, but is still below the true ATE when

the appropriate � is used, which is 1 in this simulation; the coverage shows that it still covers the true ATE at the

appropriate level. Varying the sample size shows that the statistical bias of both methods is already negligible

with very small sample sizes. (ATE = τ = 1 and �data = exp(1))

Semiparametric Method Matching Method

Lower Upper Lower Upper

0.025- 0.975- Cover- 0.025- 0.975- Cover-

quantile Lower Upper Quantile age quantile Lower Upper Quantile age

� Fixing n = 1000

1 1.08 1.18 1.18 1.29 0.06 1.23 1.42 1.42 1.65 0.00

exp(0.5) 1.00 1.09 1.27 1.37 0.56 0.93 1.11 1.73 1.96 0.61

exp(1) 0.90 1.00 1.35 1.46 0.97 0.58 0.80 2.05 2.30 1.00

exp(2) 0.71 0.81 1.52 1.64 1.00 −0.13 0.17 2.69 3.01 1.00

exp(3) 0.51 0.63 1.69 1.82 1.00 −0.90 −0.48 3.35 3.75 1.00

exp(4) 0.30 0.46 1.85 2.01 1.00 −1.67 −1.16 4.02 4.49 1.00

n Fixing � = exp(1) as in simulation

100.0 0.65 1.00 1.37 1.69 0.97 0.11 0.82 2.05 2.83 0.99

1000.0 0.90 1.00 1.35 1.46 0.97 0.58 0.80 2.05 2.30 1.00

4000.0 0.94 1.00 1.35 1.41 0.98 0.68 0.81 2.05 2.19 1.00

fish consumption). The data include eight covariates (gender, age, income, whether income

is missing, race, education, ever smoked, and number of cigarettes smoked last month). Our

approach uses the same �-selection bias model as the previous matched-pair analysis in [58],

so results for our proposed method and the analysis based on these 234 matched pairs are

nearly comparable. However, the confidence intervals constructed for matching are condi-

tional on the covariates and choice of matched pairs. As Table 4 shows (see also Figure 2),

when � > exp(1), our method achieves tighter confidence intervals around the effect of fish

consumption on blood mercury level: our confidence intervals are nested within those based

on the matching method. For example, when � = exp(3) (representing a relatively large se-

lection bias), the 95% confidence interval for the increase in average log2-transformed blood

mercury concentration caused by high fish consumption is [0.47,3.29] based on our new

TABLE 4

Comparison to sensitivity results of [58] using the same data set. Because the same sensitivity model as the

matched analysis was used, results can be compared directly. We demonstrate that the method can achieve

tighter bounds on the average treatment effect both in point estimates and confidence intervals

Semiparametric Method Matching Method

Lower Upper Length Lower Upper Length

� 95% CI Lower Upper 95% CI of CI 95% CI Lower Upper 95% CI of CI

1 1.51 1.74 1.74 1.97 0.46 1.9 2.08 2.08 2.25 0.35

exp(0.5) 1.31 1.53 2.03 2.26 0.95 1.57 1.75 2.41 2.59 1.02

exp(1) 1.07 1.27 2.27 2.47 1.4 1.25 1.45 2.74 2.94 1.89

exp(2) 0.74 0.91 2.77 2.89 2.15 0.58 0.87 3.36 3.65 3.07

exp(3) 0.47 0.6 3.19 3.29 2.82 −0.23 0.28 3.97 4.48 4.71

exp(4) 0.18 0.29 3.55 3.63 3.45 – – – – –
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FIG. 2. Visual comparison to sensitivity results of matching method in [58] using the same data set. See numer-

ical details in Table 4. The filled areas represent the estimated bounds on the average treatment effect, whereas

the dotted/dashed lines represent their confidence intervals. For values of � larger than exp(0.5), our approach

produces intervals with shorter length.

method and [−0.24,4.48] based on the matching method. While the former excludes zero,

suggesting a significant association in the presence of unknown confounding, the latter in-

cludes the null association and is not statistically significant. The confidence intervals for our

method are always shorter except when � = 1, that is, under unconfoundedness.

5. Discussion. The �-selection bias model (3) relaxes the unconfoundedness assump-

tion (1) required for the identification of causal treatment effects. We propose estimators

τ̂±(·) for upper and lower bounds on the CATE τ(x) and τ̂± for the ATE τ under the �-

selection bias condition (3) and derive their asymptotic properties. Our loss minimization

approach is practical and scalable, allowing the use of flexible machine learning methods.

Theoretically, we demonstrate the statistical advantages of our approach, replicating the ad-

vantageous op(n−p/(2p+d)) convergence of series estimation procedures [36] and root n con-

sistency of doubly robust semiparametric estimates [5, 13] in the absence of unobserved

confounding (1). Our simulation studies and experimental evidence from real observational

data confirm these advantages exist in practical finite sample regimes as well.

Our bounds demonstrate a few important phenomena for understanding the robustness of

causal inference with observational data. First, as we note in Section 3, the estimator τ̂−

reduces to the AIPW estimator (28) when � = 1. Therefore, for any � > 1, the confidence

interval for τ estimated in (33) includes the AIPW estimate (28), which serves as the center

of the interval bounding the ATE. Second, the estimator θ̂1(·) minimizes a weighted squared

error loss function (19), while the estimator μ̂1,1(·) minimizes a unweighted mean squared

error loss. When the residual noise Y − μ1,1(X) is small, the difference between weighted

and unweighted loss functions also tends to be small. Therefore, the effect of selection bias

on the bias of the ATE τ or CATE τ(x) estimated under the no unobserved confounding

assumption (1) depends on the magnitude of these residuals; when these residuals are close

to zero, the risk of unobserved confounding is mitigated.

Our bounds on the ATE τ and CATE τ(x) depend on bounding the conditional mean of the

potential outcomes μ1(x) = E[Y(1) | X = x] and μ0(x) = E[Y(0) | X = x]. The proposed

τ̂− and τ̂−(x) employ a worst-case reweighting scheme (such as in (16) and (19)) to bound

them separately. Section 3.4 establishes the optimality of this approach under a specific sym-

metry condition on the distributions of the potential outcomes. In general, our approach may
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not be optimal; an optimal estimator may require worst-case treatment assignments that de-

pend on both potential outcomes simultaneously, consistent with the independence assump-

tion (2) and �-selection bias condition (3). Such joint consideration of μ1(x) and μ0(x)

complicates the estimation procedure but is an important direction of future research.

In practice, choosing an appropriate level of � in the sensitivity analysis is important.

Rosenbaum ([43], Chapter 6) discusses using known relationships between a treatment and

an auxiliary measured outcome to detect the presence and magnitude of hidden bias. For

example, suppose a drug is approved with an unbiased estimate of its effect on a primary

outcome based on a randomized clinical trial, and drug surveillance investigates the potential

adverse events associated with the drug use in real world. The difference between the esti-

mated treatment effect on the primary outcome based on observational data and that based on

a randomized clinical trial can serve as an indication of the magnitude of �, the hidden bias

in the observational data. It may then be appropriate to perform a sensitivity analysis for ad-

verse events with the same level of �. However, in many settings, there is no such surrogate

for estimating �. In discussions with clinicians who often conduct biomedical studies, we

find it helpful to provide results for a number of different values of � to help contextualize

the strength of evidence, rather than present a single bound with undue certainty. While our

result is valid for each fixed �, providing uniform inference results over a set of � would

allow estimation of the smallest value of � consistent with zero treatment effect in the data (a

sensitivity value analogous to the E value for risk ratios from VanderWeele and Ding [54]).

APPENDIX A: PROOFS FOR BOUNDS ON THE CATE

A.1. Proof of absolute continuity in Lemma 2.1. PROOF. Here, we only prove the

absolute continuity result. The rest of the proof is in Section 2 after the statement of

Lemma 2.1. Let U ∈ U be the unobserved confounder satisfying Y(1) ⊥⊥ Z | X, U and (3).

Then for any set A ⊂ U,

P (U ∈ A | Z = 0,X = x)

P (U ∈ A | Z = 1,X = x)

= P(Z = 0 | X = x,U ∈ A)

P (Z = 1 | X = x,U ∈ A)
· P(Z = 1 | X = x)

P (Z = 0 | X = x)
∈

[
�−1,�

]
(39)

by condition (3) and the quasiconvexity of the ratio mapping (a, b) �→ a/b. Letting qz denote

the density of U (with respect to a base measure μ) conditional on Z = z, we then have

q0(u | x)/q1(u | x) ∈ [�−1,�], and for any measurable set A ⊂R,

P(Y (1) ∈ A | Z = 0,X = x)

P (Y (1) ∈ A | Z = 1,X = x)

=
∫

P(Y (1) ∈ A | Z = 0,U = u,X = x)q0(u | x)dμ(u)∫
P(Y (1) ∈ A | Z = 1,U = u,X = x)q1(u | x)dμ(u)

(i)=
∫

P(Y (1) ∈ A | U = u,X = x)q0(u | x)dμ(u)∫
P(Y (1) ∈ A | U = u,X = x)q1(u | x)dμ(u)

(ii)∈
[
�−1,�

]
,

where equality (i) is a consequence of Y(1) ⊥⊥ Z | X, U , and inequality (ii) follows again

from the quasiconvexity of the ratio. This yields the absolute continuity claim. �

A.2. Proof of Lemma 2.2.

PROOF. As everything is conditional on x, we it without loss of generality, letting

E1[·] = E[· | Z = 1] for shorthand. We first develop a simple duality argument. The set

L� :=
{
L : Y →R+,L measurable,L(y) ≤ �L(ỹ) for all y, ỹ

}
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is convex, contains the constant function L ≡ 1 in its interior and for L ≡ 1 we have

E1[L(Y (1))] = 1. Thus, strong duality ([32], Theorem 8.6.1 and Problem 8.7) implies

(40) inf
L∈L�

{
E1

[
L

(
Y(1)

)]
| E1

[
L

(
Y(1)

)]
= 1

}
= sup

μ∈R
inf

L∈L�

{
E1

[(
Y(1) − μ

)
L

(
Y(1)

)]
+ μ

}
.

Now, we show that for each μ ∈ R,

(41) L∗(y) ∝ �1{y − μ ≤ 0} + 1{y − μ > 0}
attains the minimum value of infL∈L� E1[(Y (1) − μ)L(Y (1))]. That is, the minimizer takes

on only the values L∗(y) ∈ {c, c�} for some c ≥ 0. The constraint L ∈ L� guarantees that

L∗(y) ∈ [c, c�] for some c ≥ 0. Assume that c ≤ L(y) ≤ c�, but L(y) /∈ {c, c�}. Then letting

L�(y) = c if (y − μ) > 0 and L�(y) = c� if (y − μ) ≤ 0, we have (y − μ)L�(y) ≤ (y −
μ)L(y), with strict inequality if y �= μ. Thus, any function L ∈ L� can be modified to be of

the form (41) without increasing the objective E1[(Y (1) − μ)L(Y (1))].
Substituting the minimizer (41) into the right objective (40), we recall that ψt (y) =

(y − t)+ − �(y − t)− to obtain

θ1(x) = sup
μ

inf
c≥0

{
E1

[
cψμ

(
Y(1)

)
| X = x

]
+ μ

}
.

This gives the final result (18), as

inf
c≥0

E1

[
cψμ

(
Y(1)

)
| X = x

]
=

{
−∞ if E1

[
ψμ

(
Y(1)

)
| X = x

]
< 0,

0 otherwise.

Since θ �→ E[ψθ (Y (1)) | Z = 1,X] is a decreasing function, θ1(X) is the only zero crossing

of the function for almost every X. �

A.3. Proof of Lemma 2.3.

LEMMA 2.3. Assume (t, x) �→ E[
�(t, Y (1)) | X = x,Z = 1] is continuous on R × X .

If E1[
�(θ1(X),Y (1))] < ∞, then θ1(·) solves E[ψθ (Y (1)) | X = x,Z = 1] = 0 for almost

every x if and only if it solves (19). Such a minimizer θ1(·) : X → R exists and is unique up

to measure-0 sets.

PROOF. Let R= R∪ {+∞}. Normal integrand theory ([42], Section 14.D) allows swap-

ping integrals and infimum over measurable mappings. A map f : R × X → R is a normal

integrand if its epigraphical mapping x �→ Sf (x) := epif (·;x) = {(t, α) ∈ R×R : f (t;x) ≤
α} is closed-valued and measurable, that is, for A the Borel sigma-algebra on R, S−1

f (O) ∈ A

for all open O ⊂ R
2. We have the following.

LEMMA A.1 (Rockafellar and Wets [42], Theorem 14.60). If f :R×X → R is a normal

integrand, and
∫
X

f (θ1(x);x)dP (x) < ∞ for some measurable θ1, then

inf
θ

{∫

X

f
(
θ(x);x

)
dP (x) | θ : X →R measurable

}
=

∫

X

inf
t∈R

f (t;x)dP (x).

If this common value is not −∞, a measurable function θ∗ : X → R attains the minimum of

the left-hand side iff θ∗(x) ∈ argmint∈R f (t;x) for P -almost every x ∈ X .

Let f (t, x) := 1
2
E1[(Y (1) − t)2

+ + �(Y (1) − t)2
− | X = x]. Since (t, x) �→ f (t, x) is con-

tinuous by assumption, f is a normal integrand [42], Example 14.31. Rewrite the minimiza-

tion problem (19) using the tower property

inf
θ

{
E1

[
E1

[

�

(
θ;

(
X,Y (1)

))
|X

]]
= E1

[
f

{
θ(X),X

}]
| θ : X →R measurable

}
.
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Apply Lemma A.1 to obtain θ1(x) = argmint∈R f (t;x). Since t �→ f (t, x) is convex, the

first- order condition d
dt

f (t;x) = 0 shows that θ1(x) solves E1[ψθ(x)(Y (1)) | X = x] = 0.

The uniqueness (up to measure-zero transformations) of θ1 is immediate by the strong con-

vexity of t �→ 
�(t, y). �

APPENDIX B: SIEVE ESTIMATION

B.1. Convergence rates for θ̂1, the empirical minimizer (21). In this section, we es-

tablish asymptotic convergence rates for minimizers θ̂1(·) of (21). We consider two examples

to make this concrete.

EXAMPLE 1 (Polynomials). Let Pol(J ) be the space of J th order polynomials on [0,1],

Pol(J ) :=
{
[0,1] � x �→

J∑

k=0

akx
k : ak ∈R

}
.

Define the sieve �n := {x �→ �d
k=1fk(xk) | fk ∈ Pol(Jn), k = 1, . . . , d}, for Jn → ∞.

EXAMPLE 2 (Splines). Let 0 = t0 < · · · < tJ+1 = 1 be knots that satisfy

max0≤j≤J (tj+1 − tj )

min0≤j≤J (tj+1 − tj )
≤ c

for some c > 0. Then the space of r th order splines with J knots is

Spl(r, J ) :=
{
x �→

r−1∑

k=0

akx
k +

J∑

j=1

bj (x − tj )
r−1
+ , x ∈ [0,1] : ak, bk ∈ R

}
.

Define the sieves �n := {x �→ f1(x1)f2(x2) . . . fd(x) | fk ∈ Spl(r, Jn), k = 1, . . . , d} for

some integer r ≥ �p� + 1 and Jn → ∞.

We require (standard) regularity conditions. Let �
p
c (X ) denote the Hölder class of p-

smooth functions, defined for p1 = �p� − 1 and p2 = p − p1 by

�p
c (X ) :=

{
h ∈ Cp1(X ) : sup

x∈X∑d
l=1 αl<p1

∣∣Dαh(x)
∣∣ + sup

x �=x′∈X
∑d

l=1 βl=p1

|Dβh(x) − Dβh(x′)|
‖x − x′‖p2

≤ c

}
,

where Cp1(X ) denotes the space of p1-times continuously differentiable functions on X ,

and Dα = ∂α

∂α1 ...∂αd , for any d-tuple of nonnegative integers α = (α1, . . . , αd). We make a few

concrete assumptions on smoothness and other properties of parameters of interest.

ASSUMPTION A4. Let X = X1 ×· · ·×Xd be the Cartesian product of compact intervals

X1, . . . ,Xd , and assume θ1 ∈ �
p
c (X ) =: � for some c > 0.

ASSUMPTION A5. There exists σ 2
shift < ∞ such that for all x ∈ X , E[{Y(1) − θ1(X)}2 |

Z = 1,X = x] ≤ σ 2
shift.

ASSUMPTION A6. PX|Z=1 has a density p1(x) with respect to the Lebesgue measure

and 0 < infx∈X p1(x) ≤ supx∈X p1(x) < ∞.
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Assumption A4 assumes that θ1(·) is in a p-smooth Hölder space. Sufficient conditions

for satisfying this assumption include when the conditional mean function μz(x) = E[Y(z) |
X = x] is in a p-smooth Hölder space, and the residuals Y(1) − μ1(x) are homoskedastic

or Y(1) is binary: in these cases, θ1(x) is a simple affine transformation of μ1(x), preserv-

ing its smoothness. Assumption A4 allows for more general models where the residuals may

be heteroskedastic but θ1 is still smooth. Assumption A5 is a standard condition to ensure

convergence of the empirical loss function by bounding the second moment. Finally, As-

sumption A6 asserts that PX|Z=1 has upper- and lower-bounded density, so that it is equiva-

lent to the Lebesgue measure on X . This assumption, along with the symmetric assumption

on PX|Z=0 needed to estimate θ0(·), implies strong ignorability, as well as bounds on the

marginal density of PX under the Lebesgue measure. Assumption A6 allows us to relate the

L2(P ) norm, ‖ · ‖2,P , to the supremum norm, ‖ · ‖∞,P , of θ̂1 − θ1 ∈ �
p
c (X ), which is impor-

tant for proving the convergence of sieve estimators [10]. Although outside the scope of this

paper, adapting other nonparametric estimators such as the partitioning estimates described

in Györfi et al. [20] may admit good ‖ · ‖2,P convergence rates without this assumption.

The tradeoff between the random estimation error and approximation precision of the sieve

space �n (see Lemma 7.1 in the Supplementary Material) dictates the accuracy of θ̂1(·). The

following theorem guarantees that finite-dimensional linear sieves considered yield standard

nonparametric rates for estimating θ1(·) by balancing different sources of error.

THEOREM B.1. For X = [0,1]d , let �n be given by the finite- dimensional linear sieves

in Examples 1 or 2 with Jn 
 n
1

2p+d . Define εn = (
logn

n
)

p
2p+d . Let Assumptions A4, A5 and

A6 hold, and let θ̂1 satisfy

En

[

�

(
θ̂1(X),Y (1)

)
| Z = 1

]
≤ inf

θ∈�n

En

[

�

(
θ(X),Y (1)

)
| Z = 1

]
+ OP

(
ε2
n

)
.

Then ‖θ̂1 − θ1‖2,P1
= OP (εn) and ‖θ̂1 − θ1‖∞,P1

= OP (ε

2p
2p+d
n ).

See the Supplementary Material, Section 7.1, for proof. The key property of the function

spaces �n in Examples 1 and 2 is that infθ∈�n ‖θ − θ1‖∞ = O(J
−p
n ) (cf. [52], Section 5.3.1,

or [49], Theorem 12.8), which allows appropriate balance between approximation and esti-

mation error. Similar guarantees hold for wavelet bases and other finite-dimensional sieves

[10, 16], allowing generalization of Theorem B.1 beyond the explicit examples provided.

B.2. Convergence rates for ν̂1,k , the empirical minimizer (35). To show convergence

of the empirical minimizer (35), ν̂1,k , we need two assumptions.

ASSUMPTION A7. There exist q, r > 0 and a set S ⊂ �
p
c (X ) with θ1 ∈ S such that (a)

P(θ̂
ν1

1k ∈ S | Z = 1) → 1 as n → ∞, (b) for all θ ∈ S, x �→ P(Y (1) ≥ θ(x) | Z = 1,X = x)

belongs to � := �
q
r (X ) ∩ {ν : X → [0,1]}.

ASSUMPTION A8. Let S be as in Assumption A7. There is a constant Lν < ∞ such that

for f,g ∈ S,

∫ [
P

(
Y(1) ≥ f (X) | Z = 1,X = x

)
− P

(
Y(1) ≥ g(X) | Z = 1,X = x

)]2
dP1(x)

≤ L2
ν‖f − g‖2

2,P1
.
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Assumption A7 ensures that the map x �→ P(Y (1) ≥ θ(x) | Z = 1,X = x) is sufficiently

smooth for functions θ(·) close to θ1(·). In the current case, since ‖θ̂ν1

1k −θ1‖2,P1
= op(1), S in

Assumption A7 can be a ‖ · ‖2,P1
-neighborhood of θ1 ∈ �

p
c (X ). This condition is necessary,

as ν̂1,k(x) solves an empirical version of the optimization problem (34) using the estimator

θ̂
ν1

1k (·) instead of the true θ1(·). Assumption A8 guarantees that the map θ �→ P(Y (1) ≥ θ(x) |
Z = 1,X = x) is also sufficiently smooth. A simple sufficient condition for Assumption A8

is that Y(1) | Z = 1, X = x has a bounded density for almost every x ∈ X . If the density in

certain regions is not bounded, but we know a priori that θ(x) �= y in these regions, then we

choose S so that θ̂
ν1

1k �= y in these regions, as well. For instance, if Y(1) ∈ {0,1}, then unless

it is deterministic, θ1(x) ∈ (0,1), so θ1 ∈ S = �
q
r (X ) ∩ {f : X → (0,1)}, and PY (1)|X=x,Z=1

has a density pY (1)|X=x,Z=1(θ1(x)) = 0, which implies Assumption A8.

Under these additional assumptions, the following proposition gives the convergence rate

of the proposed sieve estimator. See the proof in the Supplementary Material, Section 7.2.

PROPOSITION B.1. For X = [0,1]d , let �n be the finite-dimensional linear sieves con-

sidered in Examples 1 or 2. Let εn = (
logn

n
)

q
2q+d and Jn 
 ε

−1/q
n . Let Assumptions A6, A7

and A8 hold. Assume that ‖θ̂ν1

1k − θ1‖2,P1
= Op(εn), and let ν̂1,k satisfy

E
(k)
n,2

[

̄�

(
ν̂1,k(X), θ̂

ν1

1k (X),Y (1)
)]

≤ inf
ν∈1+(�−1)�n

E
(k)
n,2

[

̄�

(
ν(X), θ̂

ν1

1k (X),Y (1)
)]

+ Op

(
ε2
n

)
.

Then ‖ν̂1,k − ν1‖2,P = Op(εn).
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[20] GYÖRFI, L., KOHLER, M., KRZYŻAK, A. and WALK, H. (2002). A Distribution-Free Theory of Nonpara-

metric Regression. Springer, Berlin.

[21] HAHN, J. (1998). On the role of the propensity score in efficient semiparametric estimation of average

treatment effects. Econometrica 66 315–331. MR1612242 https://doi.org/10.2307/2998560

[22] HILL, J. L. (2011). Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Statist. 20

217–240. MR2816546 https://doi.org/10.1198/jcgs.2010.08162

[23] HIRANO, K., IMBENS, G. W. and RIDDER, G. (2003). Efficient estimation of average treatment effects

using the estimated propensity score. Econometrica 71 1161–1189. MR1995826 https://doi.org/10.

1111/1468-0262.00442

[24] IMBENS, G. W. (2003). Sensitivity to exogeneity assumptions in program evaluation. Am. Econ. Rev. 93

126–132.

[25] IMBENS, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review.

Rev. Econ. Stat. 86 4–29.

[26] IMBENS, G. W. and RUBIN, D. B. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences.

Cambridge Univ. Press, New York. MR3309951 https://doi.org/10.1017/CBO9781139025751



2614 S. YADLOWSKY ET AL.

[27] KALLUS, N., MAO, X. and ZHOU, A. (2019). Interval estimation of individual-level causal effects under

unobserved confounding. In The 22nd International Conference on Artificial Intelligence and Statistics

2281–2290.

[28] KALLUS, N. and ZHOU, A. (2018). Confounding-robust policy improvement. Available at https://papers.

nips.cc/paper/2018/hash/3a09a524440d44d7f19870070a5ad42f-Abstract.html.

[29] KENNEDY, E. H. (2020). Optimal doubly robust estimation of heterogeneous causal effects. arXiv preprint.

Available at arXiv:2004.14497 [math.ST].

[30] KÜNZEL, S. R., SEKHON, J. S., BICKEL, P. J. and YU, B. (2017). Meta-learners for estimating heteroge-

neous treatment effects using machine learning. Available at https://www.pnas.org/doi/10.1073/pnas.

1804597116.

[31] LEE, B. K., LESSLER, J. and STUART, E. A. (2011). Weight trimming and propensity score weighting.

PLoS ONE 6 e18174. https://doi.org/10.1371/journal.pone.0018174

[32] LUENBERGER, D. G. (1969). Optimization by Vector Space Methods. Wiley, New York. MR0238472

[33] MIRATRIX, L. W., WAGER, S. and ZUBIZARRETA, J. R. (2018). Shape-constrained partial identifica-

tion of a population mean under unknown probabilities of sample selection. Biometrika 105 103–114.

MR3768868 https://doi.org/10.1093/biomet/asx077

[34] NEWEY, W. K. (1994). Kernel estimation of partial means and a general variance estimator. Econometric

Theory 10 233–253. MR1293201 https://doi.org/10.1017/S0266466600008409

[35] NEWEY, W. K. (1994). The asymptotic variance of semiparametric estimators. Econometrica 62 1349–

1382. MR1303237 https://doi.org/10.2307/2951752

[36] NEWEY, W. K. (1997). Convergence rates and asymptotic normality for series estimators. J. Econometrics

79 147–168. MR1457700 https://doi.org/10.1016/S0304-4076(97)00011-0

[37] NEYMAN, J. (1959). Optimal asymptotic tests of composite statistical hypotheses. Probab. Stat. 416.

[38] NIE, X. and WAGER, S. (2021). Quasi-oracle estimation of heterogeneous treatment effects. Biometrika

108 299–319. MR4259133 https://doi.org/10.1093/biomet/asaa076

[39] NORTON, E. C., DOWD, B. E. and MACIEJEWSKI, M. L. (2018). Odds ratios-current best practice and

use. JAMA 320 84–85. https://doi.org/10.1001/jama.2018.6971

[40] RICHARDSON, A., HUDGENS, M. G., GILBERT, P. B. and FINE, J. P. (2014). Nonparametric bounds and

sensitivity analysis of treatment effects. Statist. Sci. 29 596–618. MR3300361 https://doi.org/10.1214/

14-STS499

[41] ROBINS, J. M., ROTNITZKY, A. and SCHARFSTEIN, D. O. (2000). Sensitivity analysis for selection bias

and unmeasured confounding in missing data and causal inference models. In Statistical Models in

Epidemiology, the Environment, and Clinical Trials (Minneapolis, MN, 1997). IMA Vol. Math. Appl.

116 1–94. Springer, New York. MR1731681 https://doi.org/10.1007/978-1-4612-1284-3_1

[42] ROCKAFELLAR, R. T. and WETS, R. J.-B. (1998). Variational Analysis. Grundlehren der Mathema-

tischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 317. Springer, Berlin.

MR1491362 https://doi.org/10.1007/978-3-642-02431-3

[43] ROSENBAUM, P. R. (2002). Observational Studies, 2nd ed. Springer Series in Statistics. Springer, New

York. MR1899138 https://doi.org/10.1007/978-1-4757-3692-2

[44] ROSENBAUM, P. R. (2002). Covariance adjustment in randomized experiments and observational studies.

Statist. Sci. 17 286–327. MR1962487 https://doi.org/10.1214/ss/1042727942

[45] ROSENBAUM, P. R. (2010). Design of Observational Studies. Springer Series in Statistics. Springer, New

York. MR2561612 https://doi.org/10.1007/978-1-4419-1213-8

[46] ROSENBAUM, P. R. (2011). A new u-statistic with superior design sensitivity in matched observational

studies. Biometrics 67 1017–1027. MR2829236 https://doi.org/10.1111/j.1541-0420.2010.01535.x

[47] ROSENBAUM, P. R. (2014). Weighted M-statistics with superior design sensitivity in matched observational

studies with multiple controls. J. Amer. Statist. Assoc. 109 1145–1158. MR3265687 https://doi.org/10.

1080/01621459.2013.879261

[48] SCHARFSTEIN, D. O., ROTNITZKY, A. and ROBINS, J. M. (1999). Adjusting for nonignorable drop-

out using semiparametric nonresponse models. J. Amer. Statist. Assoc. 94 1096–1146. MR1731478

https://doi.org/10.2307/2669923

[49] SCHUMAKER, L. L. (2007). Spline Functions: Basic Theory, 3rd ed. Cambridge Mathematical Library.

Cambridge Univ. Press, Cambridge. MR2348176 https://doi.org/10.1017/CBO9780511618994

[50] SHEN, C., LI, X., LI, L. and WERE, M. C. (2011). Sensitivity analysis for causal inference using inverse

probability weighting. Biom. J. 53 822–837. MR2861489 https://doi.org/10.1002/bimj.201100042

[51] STONE, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8 1348–1360.

MR0594650

[52] TIMAN, A. F. (1963). Theory of Approximation of Functions of a Real Variable. A Pergamon Press Book.

The Macmillan Company, New York. MR0192238



BOUNDS WITH UNOBSERVED CONFOUNDING FACTORS 2615

[53] TSIATIS, A. A. and DAVIDIAN, M. (2007). Comment: Demystifying double robustness: A comparison of

alternative strategies for estimating a population mean from incomplete data [MR2420458]. Statist.

Sci. 22 569–573. MR2420466 https://doi.org/10.1214/07-STS227B

[54] VANDERWEELE, T. J. and DING, P. (2017). Sensitivity analysis in observational research: Introducing the

E-value. Ann. Intern. Med. 167 268–274. https://doi.org/10.7326/M16-2607

[55] WAGER, S. and ATHEY, S. (2018). Estimation and inference of heterogeneous treatment effects using ran-

dom forests. J. Amer. Statist. Assoc. 113 1228–1242. MR3862353 https://doi.org/10.1080/01621459.

2017.1319839

[56] WAGER, S. and WALTHER, G. (2015). Adaptive concentration of regression trees, with application to ran-

dom forests. Available at arXiv:1503.06388 [math.ST].

[57] YADLOWSKY, S., NAMKOONG, H., BASU, S., DUCHI, J. and TIAN, L. (2022). Supplement to

“Bounds on the Conditional and Average Treatment Effect with Unobserved Confounding Factors.”

https://doi.org/10.1214/22-AOS2195SUPP

[58] ZHAO, Q., SMALL, D. S. and BHATTACHARYA, B. B. (2019). Sensitivity analysis for inverse probability

weighting estimators via the percentile bootstrap. J. R. Stat. Soc. Ser. B. Stat. Methodol. 81 735–761.

MR3997099


	Introduction
	Bounding treatment effects
	Related work
	Notation

	Bounds on conditional average treatment effect
	Bounding the unobserved potential outcome
	Nonparametric estimation with sieves
	Bounding the CATE


	Bounds on the average treatment effect
	Estimation procedure
	Asymptotic properties and inference
	Construction of nu1,k(·) and its asymptotic properties
	Design sensitivity and optimality of our bound on the ATE

	Numerical experiments
	Method implementations
	Simulations
	Real observational data

	Discussion
	Appendix A: Proofs for bounds on the CATE
	Proof of absolute continuity in Lemma 2.1
	Proof of Lemma 2.2
	Proof of Lemma 2.3

	Appendix B: Sieve estimation
	Convergence rates for theta1, the empirical minimizer (21)
	Convergence rates for nu1, k, the empirical minimizer (35)

	Acknowledgments
	Funding
	Supplementary Material
	References

