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Abstract— This work proposes an optimal safe controller
minimizing an infinite horizon cost functional subject to control
barrier functions (CBFs) safety conditions. The constrained
optimal control problem is reformulated as a minimization
problem of the Hamilton-Jacobi-Bellman (HJB) equation sub-
jected to the safety constraints. By solving the optimization
problem, we are able to construct a closed form solution
that satisfies optimality and safety conditions. The proposed
solution is shown to be continuous and thus it renders the
safe set forward invariant while minimizing the given cost.
Hence, optimal stabilizability and safety objectives are achieved
simultaneously. To synthesize the optimal safe controller, we
present a modified Galerkin successive approximation approach
which guarantees an optimal safe solution given a stabilizing
safe initialization. The proposed algorithm is implemented on
a constrained nonlinear system to show its efficacy.

I. INTRODUCTION

Safety, in its various forms and definitions, must be consid-
ered and, in many cases, prioritized to avoid costly damages.
In safety critical control systems, however, potentially contra-
dicting control requirements are likely to arise. Moreover, the
need of effectively and efficiently controlling systems while
satisfying safety conditions must be recognized. Optimal
control has been a key approach to solve control theory
problems while addressing possibly conflicting optimization
objectives and requirements. Through dynamic programming
arguments, the optimal control problem can be solved using
the well known Hamilton-Jacobi-Bellman (HJB) equation.
The main objective of this paper is to design optimal
controllers that achieve safety and performance objectives
simultaneously through solving constrained HJB equations.

In dynamic systems theory, safety can be represented by
invariance of the set of permitted states in the state space and
this set is referred to as the safe set. Proving invariance of the
safe set means that the system’s states never leave the safe
set and hence safety is guaranteed [1]. Influenced by barrier
methods used in optimization to approximately convert con-
strained optimization problems into unconstrained ones [2],
barrier certificates were presented in the control literature to
prove sets’ invariance and verify safety [3], [4]. Performing
similar arguments to those of control Lyapunov functions
(CLFs) for control systems, resulted in introducing control
barrier functions (CBFs) in [5] which were further developed
in [6]–[9]. Recently, CBFs have become noted tools to render
sets invariant and enforce safety.
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CBFs are popularly unified with CLFs in multi-objective
control tasks [5], [8]–[11]. Exploiting Lyapunov arguments,
CLFs are capable of rendering equilibrium points of interest,
e.g. the origin, of nonlinear control systems asymptotically
stable. Nonetheless, there is no formal method to find CLFs
for general nonlinear systems and a unique control law
may not be found [12]. Furthermore, in the unification of
CLFs and CBFs, the associated stability and safety con-
ditions may conflict and one needs to relax one of the
conditions to guarantee feasibility of the solution. On the
other hand, solving the HJB equation can provide a unique
feedback controller that satisfies prespecified constraints and
performance objectives, giving more flexibility to the control
designer in multi-objective control tasks. Therefore, in this
paper, we utilize the concept of control barrier functions
in the context of optimal control to enforce safety and
meet performance objectives through the minimization of an
infinite horizon cost functional. It must be noted, however,
that those advantages are associated with a difficult and
potentially computationally demanding problem.

Computing optimal safe controllers through CBFs has
been considered recently in the literature [13], [14]. Moti-
vated by minimizing the cumulative intervention of the CBF
overtime, optimal safe control is computed using the duality
relationship between the value function and the density func-
tion in [13]. The proposed primal-dual algorithm solves the
constrained optimal control problem iteratively by solving a
perturbed HJB equation then using the solution to estimate
the density function and then the perturbation is Clear-
lyupdated based on the estimation of the density function
until satisfaction of Karush–Kuhn–Tucker (KKT) conditions.
Clearly, the proposed algorithm is effective but adds to the
complexity of the HJB equation’s solution. Moreover, the
dual optimization problem needs to be feasible in order to
have no duality gap and if the CBF is estimated numerically,
the duality gap could be large. To avoid the complexity of
[13], [14] used approximate dynamic programming (ADP) to
unify optimality and safety. Nonetheless, the approach taken
to enforce safety is considerably different in that it enjoys
adding a scheduled barrier function to the cost to approx-
imate the problem rather than directly enforcing the CBF
condition, a standard method known as the penalty method in
the literature. Additionally, continuity of the proposed ADP
based safe control was not provided which is needed for
rendering the safe set forward invariant. It is not clear how
adding the arbitrarily scheduled barrier function affects the
optimal solution near the boundaries especially that there
appears to be a sharp bouncy control action shown in the
given two dimensional integrator example which resulted in
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a poor reaction in the states trajectory near the unsafe region.
Furthermore, to enforce the required assumptions, one may
need to use a large number of extrapolation functions which
could affect the sought-after computational efficiency. It is
worth noting that both methods do not provide a closed form
solution.

In this paper, CBFs preliminaries are provided in Section
II. Then, we introduce the optimal safe control problem
statement in Section III in which an optimal safe controller
minimizing a prespecified cost functional subject to safety
constraints for systems with a high relative degree is sought-
after. Using Karush–Kuhn–Tucker (KKT) optimality condi-
tions, a closed form solution is constructed which is then
utilized to form a new HJB equation used to generate the
optimal safe solution in Section IV. As a result, the CBF
condition is directly enforced, with no approximations, and
the new HJB equation can be directly solved using existing
methods with mild modifications. Furthermore, we show that
the proposed safe controller is continuous and thus it belongs
to the set of controls that render the safe set forward invariant
and is the one that minimizes the given cost functional
achieving stabilizability and safety requirements. Moreover,
in the absence of input constraints, we show when the opti-
mal safe solution is the pointwise minimum norm controller
that minimizes the CBF intervention to the unconstrained
optimal controller and thus we provide a holistic discussion
of the CBF constrained HJB equation’s solutions. In Section
V, we present a safe Galerkin successive approximation
algorithm to synthesize the optimal safe control. To show
the efficacy of the proposed algorithm, we show improved
performances over the popular min-norm CBF controller in a
simulation example in Section VI. Lastly, conclusion remarks
and future directions are discussed in Section VII.

II. CONTROL BARRIER FUNCTIONS PRELIMINARIES

In this paper, we use zeroing control barrier functions
[8] and thus we simply refer to them as control barrier
functions (CBFs). In this section, we review CBFs notions
and theorems used throughout the paper.

A. Control Barrier Functions

Consider a continuously differentiable function h : Rn →
R defining the superlevel set C, i.e. h is non-negative in C,
zero at the boundaries and strictly positive in the interior.
Additionally, consider the dynamical control system

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)

for t ∈ R, x ∈ D ⊂ Rn, u ∈ U ⊂ Rm, and locally Lipchitz
f : Rn → Rn and g : Rn → Rn×m.

Definition 1. A continuously differentiable function h :
Rn → R is a CBF for the superlevel set C ⊆ D ⊂ Rn
defined above for the control system (1), if there exists a class
K function α, i.e. a continuous strictly increasing function
α(−a, b) → (−∞,∞) with α(0) = 0 for a, b ∈ R+, such
that ∀x ∈ C,

sup
u∈U

[Lfh(x(t)) + Lgh(x(t))u(t) + α(h(x(t)))] ≥ 0 (2)

Theorem 1 ([15]). Consider the superlevel set C ⊂ Rn
defined by the continuously differentiable function h : D ⊂
Rn → R. If ∂h

∂x 6= 0 ∀x ∈ ∂C and h is a CBF on D, then
a Lipschitz continuous controller u(x(t)) = K(x(t)) for (1)
that satisfies (2) renders the set C forward invariant.

B. High Order Control Barrier Functions

When the gradient of a CBF h is orthogonal to the input
matrix g, the Lie derivative Lgh(x) = 0. This calls for the
need of a high order CBF (HOCBF) [15]–[17], generalized
in [17]. Consider the kth continuously differentiable function
h : Rn → R and let us have differentiable class K functions
α1, α2, . . . , αk with a series of functions

ψ0(x) := h(x)

ψ1(x) := ψ̇0(x) + α1(ψ0(x))

:

ψk(x) := ψ̇k−1(x) + αk(ψk−1(x))

(3)

Define the superlevel sets C1, C2, . . . , Ck associated with each
function in (3) such that

Ci := {x ∈ Rn : ψi−1(x) ≥ 0}, i = 1, . . . , k (4)

Let the set C = C1 ∩ C2 ∩ · · · ∩ Ck. Now, we define high
order control barrier functions according to [17].

Definition 2. For the control system (1), the superlevel sets
C1, . . . , Ck and the associated functions ψ0, . . . , ψk defined
above, the function h : Rn → R is called a high order
control barrier function (HOCBF) of relative degree k if it
is kth differentiable over (1) and there exists differentiable
class K functions α1, . . . , αk such that ∀x ∈ C

Lkfh(x) + LgL
k−1
f h(x)u+ α(ψk−1) ≥ 0 (5)

Theorem 2 ([17]). For the control system (1), the HOCBF
h(x) defined above, and the safe sets (4), if x(t0) ∈ C, then
a Lipschitz continuous controller that belongs to the set Kcbf

that consists of controls that satisfy the safety condition (5):

Kcbf(x) ={u ∈ U : Lkfh(x(t)) + LgL
k−1
f h(x(t))u

+ α(ψk−1) ≥ 0}
(6)

∀t ≥ t0, is safe, i.e. it renders the set C forward invariant.

III. OPTIMAL CONTROL PROBLEM STATEMENT

Consider the optimal control problem

V (x0, u) = min
u∈U

∫ ∞
0

(
Q
(
x
)

+ R
(
u
))
dt (7)

subject to the nonlinear control-affine system (1) and the
safety condition (5), where x0 = x(t0), Q : Rn →
R+ ∀x 6= 0 is continuously differentiable and R : Rm → R+

is continuously differentiable, even, R = ∂2R
∂u2 � 0 and

there exists ρ(u) := (∂R∂u )T which has the inverse function
φ(v) := ρ−1(v) and ρ(0) = φ(0) = 0 [18]. It is assumed that
x(t0) ∈ IntC and that the origin, without loss of generality, is
in the set C. Furthermore, the functions involved in the safety
constraint, ḣ, ψ’s and α’s, are locally Lipschitz continuous.
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A leading methodology to tackle such an optimal control
problem is solving the associated Hamilton-Jacobi-Bellman
(HJB) equation. Under certain conditions and assumptions,
the HJB equation has a unique, possibly smooth, solution and
is a necessary and sufficient condition for the optimal control
problem [19], [20]. In light of this, to achieve our goal, we
turn the constrained optimal control problem (7) subject to
(1) and (5) into an optimization problem that minimizes the
generalized HJB (GHJB) equation

V ∗x
(
f(x) + g(x)u∗

)
+ R(u∗) + Q(x) = 0 (8)

with a boundary condition V ∗(0) = 0 and an optimal
controller u∗, where V ∗ is the optimal solution and V ∗x =
∂V ∗

∂x . Therefore, the problem can be formulated as

0 = min
u∈U

{
LfV

∗(x) + LgV
∗(x)u+ R(u) + Q(x)

}
s.t.

Cs := Lkfh(x) + LgL
k−1
f h(x)u+ α(ψk−1(x)) ≥ 0

(9)

IV. HJB BASED OPTIMAL SAFE CONTROL

Throughout the paper, u∗safe denotes the optimal safe
control, V ∗safe denotes the corresponding value function that
solves the constrained HJB equation (9) and u∗ and V ∗

denote the optimal control and the value function of the
unconstrained optimal control problem respectively. Due to
convexity of the objective function and the constraint, the
optimal safe control that solves (9) can be acquired through
the Karush–Kuhn–Tucker (KKT) optimality conditions

∂R

∂u

∣∣∣
u∗

safe

+ LgV
∗

safe(x)− λTLgL
k−1
f h(x) = 0

λT
(
Lkfh(x) + LgL

k−1
f h(x)u∗safe + α(ψk−1(x))

)
= 0

λ ≥ 0

(10)

Hence, the optimal safe control is given by:

u∗safe = −φ
(
LgV

∗
safe(x)− λTLgL

k−1
f h(x)

)T

(11)

It is worth mentioning that input constraints can be enforced
through a proper choice of R and φ [21] as in [18] where φ
was chosen to be the hyperbolic tangent function. For math-
ematical clarity and simplicity in our equations, however,
we choose a quadratic cost in the input R(u) = 1

2u
TRu

although the same exact analysis can be carried out with a
general R. Hence, the optimal safe control can be given as

u∗safe = −R−1
(
LgV

∗
safe(x)− λTLgL

k−1
f h(x)

)T

(12)

where λ(x) =

−
Lkfh(x)− LgLk−1

f h(x)R−1LgV
∗

safe(x)T + α(ψk−1)

LgL
k−1
f h(x)R−1LgL

k−1
f h(x)T

(13)
if Cs < 0 and 0 otherwise. Consequently, the associated HJB
equation can be found to be

LfV
∗

safe(x)− 1

2
LgV

∗
safe(x)R−1LgV

∗
safe(x)T +Q(x)

+
1

2
λTLgL

k−1
f g(x)R−1LgL

k−1
f h(x)Tλ = 0 (14)

It should be noted that the carried development is for
high order CBFs and thus simple first order CBF, i.e. the
relative degree k = 1, is a simple special case. One may
solve this HJB equation (14) using the SGA method to
compute V ∗safe successively based on the current estimate
of Cs(x, u

∗
safe). To utilize the well known solution of the

unconstrained infinite horizon optimal control problem [19],
which coincides with (14) and (12) with λ = 0, we compute
V ∗safe when the constraint is active and use the unconstrained
solution elsewhere. Now, let ηT = LgL

k−1
f h(x)R−1 and

H = ηTRη. Then λ can be written as{
−H−1

(
Lkfh(x)− ηTLgV

∗
safe(x)T + α(ψk−1)

)
, Cs < 0

0 , Cs ≥ 0
(15)

It must be noted that H is always invertible for all x ∈ D
since η is nonzero, for a properly defined HOCBF. Now, sub-
stituting for λ in the optimal safe controller (12), with further
simplifications, the constrained HJB equation becomes

2V ∗safe

(
f − gηH−1

(
Lkfh(x) + α(ψk−1)

))
+ 2Q(x)

−V ∗safeg
(
R−1 − ηH−1ηT

)
gTV ∗Tsafe + Lkfh(x)TH−1Lkfh(x)

+2Lkfh(x)TH−1α(ψk−1) + α(ψk−1)TH−1α(ψk−1) = 0
(16)

Defining

F̄ = f − gηH−1
(
Lkfh(x) + α(ψk−1)

)
R̄ = R−1 − ηH−1ηT, ḡ = gR̄

1
2

Q̄ = 2Q(x) + Lkfh(x)TH−1Lkfh(x)

+ 2Lkfh(x)TH−1α(ψk−1) + α(ψk−1)TH−1α(ψk−1)

= 2Q(x) + ||Lkfh(x) + α(ψk−1)||2H−1

(17)

gives

LF̄V
∗

safe(x)− 1

2
LḡV

∗
safe(x)LḡV

∗
safe(x)T + Q̄ = 0 (18)

which, interestingly, looks similar to the original HJB equa-
tion but with modified dynamics and costs. The following
Proposition shows that the matrix R̄ is bounded and positive
semi-definite and thus it has a unique positive semi-definite
square root. Hence, ḡ is well defined and (18) is well posed.

Proposition 3. The matrix R̄ = R−1−ηH−1ηT is bounded
and is positive semi-definite for all x ∈ D.

Proof. Let R
1
2 be the symmetric and positive definite square

root of R and η̄ = R
−1
2 LgL

k−1
f h(x). Then, H = η̄Tη̄

and R̄ = R−
1
2Pη̄R

− 1
2 where Pη̄ = I − η̄(η̄Tη̄)−1η̄T is

the projection matrix onto the orthogonal complement of
col(η̄) implying that its eigenvalues are either one or zero
since Pη̄ η̄ = 0 and Pη̄v = v, vT η̄ = 0. Therefore R̄ =
R−

1
2Pη̄R

− 1
2 is positive semi-definite and bounded.

In the following theorem, we establish the main result
through the assumption of a smooth solution for the con-
strained optimal control problem. As mentioned earlier,
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under certain conditions and assumptions, a continuously
differentiable, possibly smooth, value function can be shown
to exist. For further discussions on this, the reader may refer
to the literature, [18]–[20], [22] and the references therein.

Theorem 4. Consider the optimal control problem (9), sat-
isfying the required conditions and assumptions associated
with the control system (1) and the CBF condition (5).
Assume that there exists a Lyapunov-like smooth solution
V ∗safe(x) that solves the optimal control problem (7) subject
to the dynamics (1) and the safety condition (5). As a
consequence, the optimal safe controller u∗safe in (12) belongs
to the set Kcbf, i.e. it renders C forward invariant, is locally
Lipchitz continuous and is the one, in Kcbf, that minimizes
the cost functional (7). Furthermore, the origin of the closed
loop system ẋ = f(x) + g(x)u∗safe is asymptotically stable.

Proof. The first part of the Theorem, u∗safe ∈ Kcbf, follows
directly from definitions and theorems of CBFs, solving the
minimization problem and satisfying the KKT optimality
conditions (10). Optimality of the controller is inferred right
from the sufficiency of the HJB equation which we used to
get the controller equation in the derivations above. Then,
local Lipchitz continuity of the controller comes from the
smoothness assumption of the optimal cost-to-go V ∗safe(x)
and local Lipschitz continuity of the functions involved in the
safety constraint. Specifically, given that V ∗safe is continuously
differential, f, g, α and ḣ being locally Lipschitz continuous,
then h, η and H are locally Lipschitz continuous. From
equation (12), it is sufficient to show that λ is locally
Lipschitz continuous, implying Lipschitz continuity of u∗safe.
Clearly from the optimization problem (9), the optimal
control is equivalent to that resulting from solving the
unconstrained HJB equation as long as Cs(u

∗) = Lkfh(x)−
ηTLgV

∗
safe(x) + α(ψk−1) ≥ 0. Define

λ1 =

{
Lkfh(x)− ηTLgV

∗
safe(x) + α(ψk−1) ,Cs(u

∗) < 0

0 ,Cs(u
∗) ≥ 0

By definition, λ1 is locally Lipschitz continuous. Moreover,
H−1 is also locally Lipschitz continuous. Therefore, λ =
H−1λ1 is locally Lipschitz continuous. Finally, by (12), u∗safe
is locally Lipschitz continuous.

Finally, we shall show that origin of the closed loop
system, under the control u∗safe, is asymptotically stable:

dV ∗safe

dt
= LfV

∗
safe(x) + LgV

∗
safe(x)u∗safe

= LfV
∗

safe(x)− LgV ∗safe(x)R̄LgV
∗

safe(x))T

− LgV ∗safe(x)ηH−1(Lkfh+ α)

+
1

2
u∗TsafeR

−1u∗safe −
1

2
u∗TsafeR

−1u∗safe

= −Q(x)− 1

2
u∗TsafeR

−1u∗safe ≤ −Q(x) < 0, ∀x 6= 0

where the last steps utilize the constrained HJB equation.
Therefore, by Lyapunov stability theory [23], the origin of
f(x) + g(x)u∗safe(x) is asymptotically stable.

It is worth noting that the analysis above assumes η
to be a vector but one may use q safe constraints, or
equivalently use q functions to describe the safe set. Clearly,
from Proposition 3 and the discussions above, when there is
no input constraint with a quadratic input penalization, it is
possible that ηH−1ηT = R−1, i.e. R̄ is a zero matrix. In
fact, this is true for single input systems. This is also true
for multi-input systems in some over constrained problems
where the optimal solution cannot generate a minimizing
solution but the one that satisfies the safety constraint.

In such cases, the optimal safe controller can be computed
as u∗safe = −R−1LgV

∗
safe(x)T as long as Cs ≥ 0 and

u∗safe = −ηH−1(Lkfh(x) + α) otherwise. This suggests that
the optimal safe control is equivalent to the pointwise mini-
mum norm CBF controller that minimizes the instantaneous
intervention by the CBF condition mentioned in [15]. More-
over, in such cases, if a solution exists, the corresponding
constrained HJB equation will be 2V ∗x F̄ + Q̄ = 0 and from
(17), dV∗

dt ≤ −
1
2 Q̄(x) < 0, ∀x 6= 0, preserving asymptotic

stability. Next, we synthesize optimal safe controls using a
modified Galerkin successive approximation method.

V. OPTIMAL SAFE CONTROL VIA SAFE GALERKIN
SUCCESSIVE APPROXIMATION (SGSA)

The GSA method, successively approximates the optimal
cost-to-go by iteratively solving a sequence of linear GHJB
equations. It can be shown that the successively approxi-
mated solution converges to the solution of the HJB equation
[24]. For a thorough discussion on the GSA method, the
reader may refer to [24]–[26]. Obviously, the algorithm needs
to be modified and thus we propose a safe GSA (SGSA) to
obtain u∗safe.

Let u∗safe : Ω → Rm be a controller that safely and
asymptotically stabilize (1) on the compact set Ω. Ad-
ditionally, let us approximate the solution to the optimal
safe control problem as V ∗N (x) =

∑N
j=1 cjφj and thus

V ∗Nx =
∑N
j=1 cj

∂φj

∂x = ∇ΦT
NcN , where ΦN is a vector of a

complete set of basis functions of the domain of the GHJB
equation, φj is the jth basis function in the vector ΦN , cN
is a vector of weighting coefficients, cj is the jth weighting
coefficient in cN and ∇ΦN is the Jacobian of ΦN .

Using the Galerkin’s technique [24]–[26], the GHJB equa-
tion (8) can be approximated as∫

Ω

(
cT
N∇ΦN (f + gu∗safe) + Q +

1

2
u∗TsafeRu

∗
safe

)
ΦNdx = 0

⇒ cT
N

∫
Ω

∇ΦN (f+gu∗safe)ΦNdx = −
∫

Ω

(Q+
1

2
u∗TsafeRu

∗
safe)ΦNdx

⇒
(
A1 +A2(u∗safe)

)
cN = b1 +

1

2
b2(u∗safe)

where

A1 =

∫
Ω

ΦNf
T∇ΦT

Ndx, A2(u∗safe) =

∫
Ω

ΦNu
∗T
safeg

T∇ΦT
Ndx

b1 = −
∫

Ω

Q(x)ΦNdx, b2(u∗safe) = −
∫

Ω

u∗TsafeRu
∗
safeΦNdx

Notice that A1 and b1 need to be computed once, but
since we want to successively approximate u∗safe, A2(u∗safe)
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and b2(u∗safe) need to be recomputed at each run, which
is inefficient. Nonetheless, luckily, using the gradient of
V ∗N in the controller equation helps us avoiding such a
pitfall. Let û∗safeN = −

(
R̄gT∇ΦT

NcN + ucbf

)
where ucbf =

ηH−1(Lkfh(x) + α). Now,

A2(û∗safeN ) =

∫
Ω

ΦN û
∗T
safeN g

T∇ΦT
Ndx

= −
N∑
j=1

cj

∫
Ω

ΦN
∂φj
∂x

T

gR̄gT∇ΦT
Ndx

+

∫
Ω

ΦNu
T
cbfg

T∇ΦT
ndx = −

N∑
j=1

cjG
A
1j +GA2

where GA1j and GA2 are defined accordingly. Similarly,

b2(û∗safeN ) = −
∫

Ω

ΦN û
∗T
safeNRû

∗
safeN dx

= −
N∑
j=1

cj

(∫
Ω

ΦN
∂φj
∂x

T

gR̄RR̄gT∇ΦT
N dx cN

+

∫
Ω

2ΦN
∂φj
∂x

T

gR̄Rucbf dx

)
+

∫
Ω

ΦNu
T
cbfRucbf dx

= −
N∑
j=1

cj(G
b
1jcN +Gb2j) +Gb3

where Gb1j , G
b
2j and Gb3 are the integrals defined accordingly.

Now, we only need to compute the G’s defined above
once. Finally, one can implement the SGSA algorithm in
Algorithm 1 to compute û∗safeN . It is worth mentioning that,
as shown in [25], as N → ∞, the GSA method is capable
of providing the optimal solution. The difference between
the GSA method and the proposed SGSA method is that
we have more integrals to compute in the SGSA method,
which are related to the safety constraints. This is an off-
line technique, however. Additionally, it should be noted
that in the GSA algorithm, the curse of dimensionality can
be mitigated by removing redundancies in the integration
functions as discussed in [24].

VI. ALGORITHM IMPLEMENTATION AND EXAMPLES

In this section, we implement the proposed algorithm to
find the optimal safe control. A multi-input nonlinear system
is picked to compare the proposed optimal safe controller
with the minimum norm controller resulting from filtering the
unconstrained optimal control by the CBF safety constraint.
The multi-input nonlinear system is given by

ẋ =

[
sin(x2) + 2x1 + u1 + 0.5u2

0.5x3
1 + x2 − u2

]
(19)

The optimal control problem’s parameters are
Q(x) = 50xTx and R(u) = uTu and the safety constraint
is defined by h(x) = (x1−0.75)2 + (x2 + 0.6)2−0.252 and
α = 20h(x). Using Algorithm 1, with N = 25 and ΦT

25 =[
x2

1,
√

2x1x2, x
2
2, x

3
1,
√

3x2
1x2,

√
3x1x

2
2, x

3
2, x

4
1, 2x3

1x2,√
6x2

1x
2
2, 2x1x

3
2, x

4
2, x

5
1,
√

5x4
1x2,

√
10x3

1x
2
2,
√

10x2
1x

3
2,

Algorithm 1: SGSA for the Optimal Safe Control

Given: System Dynamics f, g;
Cost parameters Q(x), R;
Safety parameters h, α;
Safe control ucbf;
Complete basis functions vector ΦN ;
Initial safe stabilizing control (on Ω) u(0)

safe;
Compute: A1, A2(u

(0)
safe), b1, b2(u

(0)
safe);

{GA1j}Nj=1, G
A
2 , {Gb1j}Nj=1, {Gb2j}Nj=1, G

b
3;

A(0) = A1 +A2(u
(0)
safe);

b(0) = b1 + 1
2b2(u

(0)
safe);

c
(0)
N = (A(0))−1b(0) ;

for i = 1 to ∞ do
A(i) = A1 −

∑N
j=1 c

(i−1)
j GA1j +GA2 ;

b(i) =
b1 − 1

2

∑N
j=1 c

(i−1)
j (Gb1jc

(i−1)
N +Gb2j) + 1

2G
b
3;

c
(i)
N = (A(i))−1b(i) ;

end
V ∗N (x) =

∑N
j=1 cjφj ;

û∗safeN = −
(
R̄gT∇ΦT

NcN + ucbf

)
;

√
5x1x

4
2, x

5
2, x

6
1,
√

6x5
1x2,

√
15x4

1x
2
2, 2
√

5x3
1x

3
2,
√

15x2
1x

4
2,√

6x1x
5
2, x6

2

]
, the constrained solution’s co-

efficients vector is computed to be cT
25 =[

4.68, 1.78, 5.43, 0.26, −0.47, 0.44, −0.10, 0.10, −0.05,
0.24, −0.07, −0.26, −0.05, 0.02, 0.01, 0, −0.06,
−0.03, 0, 0.02, −0.01, −0.01, −0.01, 0.02, 0.03

]
. As the

SGSA nonlinear controller is 5th order, we use a 5th order
nonlinear quadratic regulator (NLQR) developed in [27]
as the optimal controller used with the min-norm solution
and the initial controller for the SGSA to provide a fair
comparison. Some of the obtained results for different initial
conditions are shown in Table I. Additionally, Fig. 1 shows
how the SGSA solution finds the optimal safe path which
is not necessarily the min-norm that minimizes the CBF
instantaneous intervention. Clearly, the proposed SGSA
solution successfully solves the safety critical problem
effectively and efficiently and outweighs the min-norm
solution.

Initial condition NLQR (unconstrained) [27] SGSA Min.Norm
(1,−0.8) 10.23 18.61 28.85

(1.45,−1.3) 23.27 31.90 43.22
(1.6,−1.4) 27.62 44.94 55.65

TABLE I: Costs of different solutions shown in Fig. 1

VII. CONCLUSIONS AND FUTURE WORK

We presented an optimal safe control problem for safety-
critical control systems that need to be efficiently regulated
to minimize a given cost integral while ensuring safety. The
proposed work utilized control barrier functions to enforce
safety which was used to constraint the solution of the HJB
equation. A CBF certified optimal controller was provided.
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Fig. 1: Closed loop responses of the control system (19) under the control
of a 5th order NLQR filtered by a min-norm CBF filter (yellow) and the
proposed SGSA control (blue) with different initial conditions. The red
circle represents the unsafe region. The proposed method safely stabilizes
the system and minimizes the cost as shown in Table I. In addition, it can
be seen that the SGSA controller reacts earlier to minimize the cumulative
cost and avoid the unsafe region whereas the min-norm controller sticks to
the nominal control, NLQR, which results in a sub-optimal behavior.

We showed that the proposed controller belongs to the set
of controls that renders the system safe and is the one that
minimizes the given cost functional. To solve the constrained
HJB equation and synthesize the optimal safe control law,
a modified Galerkin successive approximation (GSA) al-
gorithm was proposed. The off-line algorithm follows the
GSA presented in [24], [25] considering the CBF certified
control which resulted in more integrals to be computed.
The algorithm was implemented on a multi-input nonlinear
system to show its efficacy.

Future directions include extending the work to the min-
max problem to compute a robust optimal safe control and
improving the efficiency and scalability of the algorithm
through polynomial approximation and tensor decomposi-
tion.
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