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Abstract 

Triplet-triplet annihilation upconversion (TTA-UC) is a process that shows promise for 

applications such as energy-harvesting and light-generation technologies. The irradiance 

dependent performance of TTA-UC systems is typically gauged using a graphical analysis, 

rather than a detailed model. Additionally, kinetic models for TTA-UC rarely incorporate mass 

conservation, which is a phenomenon that can have important consequences under 

experimentally relevant conditions. We present an analytical, mass-conserving kinetic model 

for TTA-UC, and demonstrate that the mass-conservation constraint cannot generally be 

ignored. This model accounts for saturation in TTA-UC data. Saturation complicates the 

interpretation of the threshold irradiance Ith, a popular performance metric. We propose two 

alternative figures of merit for overall performance. Finally, we show that our model can 

robustly fit experimental data from a wide variety of sensitized TTA-UC systems, enabling the 

direct and accurate determination of Ith and of our proposed performance metrics. We employ 

this fitting procedure to benchmark and compare these metrics, using data from the literature. 
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Table of rate constants and variables 

Variable Explanation Variable Explanation 

[𝑆𝑆] Concentration of ground-state 
sensitizers [𝐴𝐴] Concentration of ground-state 

annihilators 

[ 𝑆𝑆 1 ∗] Concentration of sensitizers in first 
excited singlet state [ 𝐴𝐴 1 ∗] Concentration of annihilators in the first 

excited singlet state 

[ 𝑆𝑆 3 ∗] Concentration of sensitizers in the 
lowest triplet state [ 𝐴𝐴 3 ∗] Concentration of annihilators in the 

lowest triplet state 

[ 𝐴𝐴 3 ∗∗] Concentration of annihilators in a 
higher-order triplet state 𝛽𝛽 Fraction of annihilator triplets decaying 

initially through TTA 

𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼  Irradiance dependent yield of 
sensitizer intersystem crossing 𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼  Branching ratio for sensitizer 

intersystem crossing 

𝛣𝛣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
Irradiance dependent yield of triplet 

sensitization 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
Branching ratio of sensitization from 

the sensitizer 

𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  Branching ratio for annihilator 
reverse intersystem crossing 𝛿𝛿𝐼𝐼 

Percent difference between fit and 
graphically determined values of Ith 

𝛿𝛿𝑛𝑛 Percent difference between fit and 
ideal values of n(Ith) 𝐹𝐹𝑆𝑆𝑆𝑆 Steady-state fluorescence rate 

𝐹𝐹𝑆𝑆𝑆𝑆,𝑙𝑙𝑙𝑙𝑙𝑙 Steady-state fluorescence rate in the 
low-irradiance regime 𝐹𝐹𝑆𝑆𝑆𝑆,ℎ𝑖𝑖𝑖𝑖ℎ Steady-state fluorescence rate in the 

high-irradiance regime 

𝐹𝐹𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠 
Steady-state fluorescence rate in the 

saturation regime 𝐹𝐹�𝑆𝑆𝑆𝑆 Normalized steady-state fluorescence 
rate 

Φ𝑓𝑓𝑓𝑓 Fluorescence quantum yield Φ𝑈𝑈𝑈𝑈  TTA-UC quantum yield (photons out 
divided by photons in) 

Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 The maximum attainable value of  
Φ𝑈𝑈𝑈𝑈  for any given TTA-UC system Φ�𝑈𝑈𝑈𝑈  Φ𝑈𝑈𝑈𝑈/Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 

Γ The range of irradiances at which a 
TTA-UC system performs optimally 𝐼𝐼 Irradiance 

𝐼𝐼𝑐𝑐𝑐𝑐 
The point at which an extrapolated 

line with a slope of 2 on a 
logarithmic curve intersects 𝐹𝐹𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠 

𝐼𝐼𝑛𝑛 The irradiance at which the local slope 
is n 

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 
 

The cross-over point between the 
high irradiance and saturation regions 𝐼𝐼𝑡𝑡ℎ The threshold irradiance 

𝑘𝑘𝑒𝑒𝑒𝑒 Rate constant for photoexcitation of 
the sensitizer 𝑘𝑘𝑓𝑓𝑓𝑓 

Rate constant for annihilator 
fluorescence 

𝑘𝑘𝐼𝐼𝐼𝐼  Rate constant for internal conversion 
in the annihilator 

𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 
(𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼′) 

Intersystem crossing rate constant for 
the sensitizer (annihilator) 

𝑘𝑘𝑁𝑁𝑁𝑁𝐴𝐴  Rate constant for singlet non-
radiative decay in the annihilator 𝑘𝑘𝑁𝑁𝑁𝑁𝑆𝑆  Rate constant for singlet non-radiative 

decay in the sensitizer  

𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  Rate constant for reverse intersystem 
crossing in the annihilator 𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 

Rate constant for sensitization of the 
annihilator by the sensitizer 

𝑘𝑘𝑇𝑇𝐴𝐴 Pseudo-first-order rate constant for 
annihilator triplet quenching 𝑘𝑘𝑇𝑇𝑆𝑆 Pseudo-first-order rate constant for 

sensitizer triplet quenching 

𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 Triplet-triplet annihilation rate 
constant n(I) The slope for a given I in a plot of 

log (𝐼𝐼) vs. log (𝐹𝐹𝑆𝑆𝑆𝑆) 
𝜉𝜉 𝐼𝐼𝑡𝑡ℎ/𝐼𝐼𝑐𝑐𝑐𝑐 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Overall rate of triplet sensitization 

𝜌𝜌 Second term in the radicand in the 
expression for 𝐹𝐹𝑆𝑆𝑆𝑆 in eqn 14 𝜓𝜓 log(𝐼𝐼𝑡𝑡ℎ) / (log (𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠) − log (𝐼𝐼𝑡𝑡ℎ)) 

 

 



3 
 

Introduction 

Triplet-triplet annihilation upconversion (TTA-UC) is a term used to describe a singlet excited 

state that is formed via the disproportionation of two triplet excited states.1, 2 In a typical TTA-

UC process, a photoexcited sensitizer (S) singlet state undergoes intersystem crossing (ISC) to 

the lowest triplet excited state. Triplet energy transfer then takes place between the sensitizer 

and an annihilator (A).2, 3 The collision of two annihilators in their lowest triplet states can 

result in the formation of a singlet excited state that fluoresces at a wavelength that is shorter 

than that of the light used to excite the sensitizers. Although TTA-UC was first described in 

1962 in phenanthrene/anthracene systems,4 there has been a recent surge in interest in this field, 

owing to the discovery of organometallic compounds in which long-lived triplet states can be 

photogenerated efficiently at room temperature.5-8 The intensity of the upconverted 

fluorescence is affected strongly by phenomena such as annihilator triplet quenching (for which 

we denote the rate constant 𝑘𝑘𝑇𝑇𝐴𝐴) and triplet-triplet annihilation (for which we denote the rate 

constant 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇). The overall efficiency of the TTA-UC process is determined primarily by the 

sensitization rate (for which we denote the rate constant 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and the pseudo-first-order 

sensitizer triplet quenching rate (for which we denote the rate constant 𝑘𝑘𝑇𝑇𝑆𝑆). 

Over the past decade, a number of different kinetic frameworks have been developed to 

describe TTA-UC. Monguzzi et al. analyzed a series of coupled rate equations at steady state 

to show that when the product of 𝑘𝑘𝑇𝑇𝐴𝐴 and the annihilator triplet concentration, [ 𝐴𝐴 3 ∗], is much 

larger than the product 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]2, a quadratic relationship exists between the upconverted 

fluorescence intensity and the irradiance (which the authors defined as 𝐼𝐼𝑈𝑈𝑈𝑈 and 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒, 

respectively).9 Conversely, they showed that when 𝑘𝑘𝑇𝑇𝐴𝐴[ 𝐴𝐴 3 ∗] ≪ 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[ 𝐴𝐴 3 ∗]2, 𝐼𝐼𝑈𝑈𝑈𝑈 depends linearly 

on 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒. The point at which the quadratic and linear regions meet is known as the threshold 

irradiance (𝐼𝐼𝑡𝑡ℎ), which is often interpreted to be point at which, on average, 50% of the 
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annihilator molecules undergo TTA.10, 11 Monguzzi et al.9 derived an expression for 𝐼𝐼𝑡𝑡ℎ by 

equating their results for 𝐼𝐼𝑈𝑈𝑈𝑈 in the low and high 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒 limits.  

Haefele et al. presented a time-dependent solution of kinetic rate equations to describe the 

change in annihilator triplet concentration in terms of simultaneous loss through intrinsic triplet 

quenching and TTA.12 These authors evaluated their analytical solution under a set of kinetic 

limits that were nearly identical to those of Monguzzi et al. Schmidt and co-workers have also 

developed a number of models to describe the behavior of TTA-UC.3, 13, 14 One of these models 

suggests that the efficiency of the TTA-UC process depends on a competition between the 

intrinsic decay of sensitizer triplets and the product 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]𝑡𝑡, where [𝐴𝐴]𝑡𝑡 is the concentration 

of ground-state annihilators at time t. This result is notable, as most researchers have only 

considered 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 as part of a branching ratio β𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑘𝑘𝑇𝑇

𝑆𝑆. Uniquely, Schmidt and co-

workers also considered heterogenous TTA processes between triplets from the sensitizer and 

annihilator.13  

Murakami and Kamada have recently presented a kinetic treatment of the TTA-UC process 

in which they discuss the effects of ISC from the annihilator excited singlet state [1𝐴𝐴∗] to the 

annihilator triplet state [ 𝐴𝐴 3 ∗], as well as the effects of spin statistics.15 These authors also 

dispelled the notion that 𝐼𝐼𝑡𝑡ℎ represents the point at which the TTA process reaches half of its 

maximum efficiency. 

Although considerable advances have been made in understanding the nature of TTA-UC 

systems from a kinetic standpoint, most analytical treatments have focused on limiting 

behaviors. Moreover, the kinetic limits in which a TTA-UC system exhibits quadratic and 

linear dependences on irradiance are often given in terms of [ 𝐴𝐴 3 ∗], which is a complex quantity 

that is not easily accessible experimentally, and that depends on the irradiance and system 

parameters. Equations that instead incorporate the initial concentrations of the species when 
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the system is not being irradiated are more readily evaluated. Finally, existing treatments have 

not incorporated mass conservation, and so cannot model saturation behavior.  

Here we present a detailed kinetic model of the TTA-UC process that includes mass 

conservation, and we use this model to find analytical expressions for the steady-state 

concentrations of key species. We demonstrate that mass conservation significantly alters some 

the conclusions of a thorough kinetic analysis. Our approach allows us to express kinetic limits 

in terms of readily obtainable rate constants and the known initial annihilator and sensitizer 

concentrations, [𝐴𝐴]0 and [𝑆𝑆]0, respectively. Furthermore, this model can be used to examine 

non-ideal implementations of TTA-UC. In particular, we show that a linear dependence 

between the steady-state fluorescence rate 𝐹𝐹𝑠𝑠𝑠𝑠 and the irradiance I exists only for a limited range 

of irradiance. We further demonstrate that 𝐹𝐹𝑠𝑠𝑠𝑠 is limited by the finite values of 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and [𝐴𝐴]0, 

resulting in the saturation of upconverted fluorescence at high irradiance. Moreover, although 

𝐼𝐼𝑡𝑡ℎ has often been considered as a key parameter in characterizing the efficiency of the TTA-

UC process, we demonstrate that it is difficult to determine 𝐼𝐼𝑡𝑡ℎ reliably through the 

conventional analysis of TTA-UC data. Additionally, in the presence of saturation, 𝐼𝐼𝑡𝑡ℎ is not 

necessarily an ideal performance metric. We therefore propose two new performance metrics 

and demonstrate the feasibility of determining all three of these metrics accurately by applying 

our kinetic expression for the dependence of 𝐹𝐹𝑠𝑠𝑠𝑠 on irradiance to fit experimental data. We 

demonstrate the utility of this approach on experimental data reported for wide a range of TTA-

UC data from the literature. 

Experimental 

TTA-UC experiments 

9,10-diphenylanthracene (DPA, Sigma-Aldrich), platinum octaethylporphyrin (PtOEP, 

Frontier Scientific), and toluene (Alfa Aesar) were used as received. Samples were prepared 
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by dissolving the platinum porphyrin sensitizer and anthracene annihilator molecules in toluene 

in a 1 cm × 1 cm quartz cuvette. The samples were then sealed with rubber septa, bubble 

deaereated with N2 gas for 30 min, and measured immediately to minimize the introduction of 

oxygen into the system during data acquisition.  

Data were collected at room temperature using an Edinburgh FLS980 fluorescence 

spectrometer. The samples were excited using the 532 nm output from a Nd:YAG laser (Aixiz, 

AD-532-400T). The laser output was passed through a variable neutral density filter 

(Edinburgh F-B01 laser mount) and a 2-mm-diameter iris (Newport ID-1.0), and then directed 

to the sample via a flip mirror. Emission from the sample was first passed through a 532 nm 

notch filter (Thorlabs Inc., NF533-17) then a single grating (1800 lines/mm, 500 nm blaze) 

Czerny-Turner monochromator, and was detected by a Peltier-cooled Hamamatsu R928 

photomultiplier tube. Laser powers were measured using a power meter (Ophir Vega 7Z01560) 

with a high sensitivity sensor (Ophir 3A-FS 7Z02628). 

Data fitting 

Data fitting was performed with MATLAB’s Curve Fitting Toolbox. Known parameter values 

were substituted into the expression derived below for 𝐹𝐹𝑆𝑆𝑆𝑆 to generate a fitting equation. The 

resultant fitting equation was simplified by assuming the fractional yield of sensitizer triplets 

through ISC to be unity, and ISC and reverse intersystem crossing (RISC) events in the 

annihilator to be negligible. Because upconverted fluorescence intensity values are arbitrary, 

and often vary depending on the instrumentation used, the upconverted fluorescence intensity 

was normalized to the highest experimental value prior to fitting. A weighting factor of 

1/𝐹𝐹�𝑆𝑆𝑆𝑆(𝐼𝐼) was applied to the fits, where 𝐹𝐹�𝑆𝑆𝑆𝑆(𝐼𝐼) is the normalized upconverted fluorescence 

intensity at irradiance I, to ensure that the data points at all irradiances are treated equally when 

fitting. 
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Results and discussion 
The kinetic model 

Schematics of the processes considered in our kinetic model are shown in Fig. 1. The rate 

equations for the time evolution of [1𝑆𝑆∗], [ 𝑆𝑆 3 ∗], [1𝐴𝐴∗], [ 𝐴𝐴 3 ∗∗] and [3𝐴𝐴∗] in terms of the 

concentrations of the sensitizer ground state [𝑆𝑆] and the annihilator ground state [𝐴𝐴] are  

𝑑𝑑[1𝑆𝑆∗]
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆] − 𝑘𝑘𝑁𝑁𝑁𝑁
𝑆𝑆 [1𝑆𝑆∗] − 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼[1𝑆𝑆∗]     (1) 

 𝑑𝑑[ 𝑆𝑆] 
3

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼[1𝑆𝑆∗] − 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[3𝑆𝑆∗][𝐴𝐴] − 𝑘𝑘𝑇𝑇

𝑆𝑆[3𝑆𝑆∗]    (2) 

𝑑𝑑[3𝐴𝐴∗]
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[3𝑆𝑆∗][𝐴𝐴] + 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼
′[1𝐴𝐴∗] − 𝑘𝑘𝑇𝑇

𝐴𝐴[3𝐴𝐴∗] − 2𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]2 + 𝑘𝑘𝐼𝐼𝐼𝐼[ 𝐴𝐴∗∗] 
3   (3) 

 𝑑𝑑[ 𝐴𝐴∗∗] 
3

𝑑𝑑𝑑𝑑
= 0.75𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]2 − 𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅[ 𝐴𝐴∗∗] 

3 − 𝑘𝑘𝐼𝐼𝐼𝐼[ 𝐴𝐴∗∗] 
3  .     (4) 

and 

𝑑𝑑[1𝐴𝐴∗]
𝑑𝑑𝑑𝑑

= 0.25𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]2 + 𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅[ 𝐴𝐴∗∗] 
3 − �𝑘𝑘𝑓𝑓𝑓𝑓 + 𝑘𝑘𝑁𝑁𝑁𝑁𝐴𝐴 + 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼

′�[1𝐴𝐴∗] .  (5) 

Here, the term 𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼 is the rate constant for the excitation process times the irradiance (I), 𝑘𝑘𝑁𝑁𝑁𝑁𝑆𝑆  

is the rate constant for all first-order or pseudo-first-order decay mechanisms for 1S* except for 

intersystem crossing (ISC), and 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 is the rate constant for ISC to T1. The term 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[3𝑆𝑆∗][𝐴𝐴] 

represents the rate of triplet sensitization of an annihilator. The rate constants 𝑘𝑘𝑇𝑇𝑆𝑆 and 𝑘𝑘𝑇𝑇𝐴𝐴 are for 

all first-order or pseudo-first-order triplet decay mechanisms in the sensitizer and annihilator, 

respectively. The rate constant 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼
′ governs the repopulation of 3A* through ISC from 1A*, 

𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 is the rate constant for TTA, and 𝑘𝑘𝐼𝐼𝐼𝐼  is the rate constant for internal conversion from 3A** 

to 3A*. The coefficients that precede the 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 terms arise from spin statistics, as discussed in 

the next section. The rate constant for fluorescence from 1A* is 𝑘𝑘𝑓𝑓𝑓𝑓. The rate constant 𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

governs RISC from 3A** to 1A*.  
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Fig. 1 Schematics of the processes considered in the TTA-UC kinetic model. (a) 

Photoexcited sensitizers undergo intersystem crossing from the lowest singlet excited state 

(denoted 1S*) to the lowest sensitizer triplet state (3S*). Triplet sensitization by 3S* generates 

an annihilator triplet state (3A*). Two annihilators in their triplet states can undergo TTA to 

generate one annihilator in its ground state (A) and another in a singlet excited state (1A*), the 

latter of which can emit at a wavelength shorter than that of the excitation light. (b) Spin-

statistics-based outcomes of triplet-triplet annihilation when no quintet state is energetically 

accessible. This annihilation event will create a ground state and an excited singlet state 25% 

of the time, and a ground state and a higher-order excited triplet state 75% of the time. In the 

latter case, the high energy triplet typically undergoes internal conversion to 3A*. However, 

reverse intersystem crossing can also take the higher-order triplet state to the singlet manifold, 

from which the molecule can fluoresce. 
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We also employ two mass-conservation equations,  

[𝑆𝑆]𝑡𝑡 = [𝑆𝑆]0 − [3𝑆𝑆∗]𝑡𝑡 − [ 𝑆𝑆  
1 ∗]𝑡𝑡       (6) 

and 

[𝐴𝐴]𝑡𝑡 = [𝐴𝐴]0 − [3𝐴𝐴∗]𝑡𝑡 − [ 𝐴𝐴  
1 ∗]𝑡𝑡 − [ 𝐴𝐴  

3 ∗∗]𝑡𝑡  .       (7) 

These equations are crucial for developing analytical expressions for all of the steady-state 

concentrations of species in terms of the known initial concentrations of [𝑆𝑆]0 and [𝐴𝐴]0. 

We solve all of the rate equations at steady state by setting the rate of change of the 

population of each species to zero. Expressions for the steady-state concentrations of [1𝑆𝑆∗] and 

[ 𝑆𝑆 3 ∗] are given in the ESI. The rate of upconverted fluorescence is 

𝐹𝐹𝑆𝑆𝑆𝑆 = 𝑘𝑘𝑓𝑓𝑓𝑓[1𝐴𝐴∗]𝑆𝑆𝑆𝑆 =
𝑘𝑘𝑓𝑓𝑓𝑓𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]𝑆𝑆𝑆𝑆

2 �(1+ 𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑘𝑘𝐼𝐼𝐼𝐼+𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

�

4(𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴 +𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼′)

 .    (8) 

𝐹𝐹𝑆𝑆𝑆𝑆 is proportional to the experimentally measured upconverted fluorescence intensity. The 

steady-state solution for the concentration of annihilator triplets can be written as  

𝛣𝛣𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0
𝛣𝛣𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]𝑆𝑆𝑆𝑆+𝑘𝑘𝑇𝑇𝑆𝑆

�[𝐴𝐴]0 − [3𝐴𝐴∗]𝑆𝑆𝑆𝑆 −  
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]𝑆𝑆𝑆𝑆

2 �1+ 𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑘𝑘𝐼𝐼𝐼𝐼+𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

�

4(𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴 +𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼′)

− 0.75𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]𝑆𝑆𝑆𝑆
2

𝑘𝑘𝐼𝐼𝐼𝐼+𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
�  

  

= 𝑘𝑘𝑇𝑇
𝐴𝐴[3𝐴𝐴∗]𝑆𝑆𝑆𝑆 + �1.25 + 𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑘𝑘𝐼𝐼𝐼𝐼+𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
� 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]𝑆𝑆𝑆𝑆2 − 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼

′ 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]𝑆𝑆𝑆𝑆
2 �1+ 𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+𝑘𝑘𝐼𝐼𝐼𝐼
�

4(𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴 +𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼′)

 .   (9) 

Here, 𝛣𝛣𝐼𝐼𝐼𝐼𝐼𝐼  is an irradiance dependent ratio that is defined as 

𝛣𝛣𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼
𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼+𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼+𝑘𝑘𝑁𝑁𝑁𝑁𝑆𝑆

 .                                                      (10) 

Although TTA between sensitizer triplets could be included in this model, we ignore this effect 

in our analysis, because under typical conditions the concentration of ground-state annihilators 
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is considerably higher than the concentration of excited sensitizers. A more detailed analysis 

of the conditions under which sensitizer TTA could be important is provided in the ESI (see 

Fig. S1). We can solve eqn (9) through either an approximate approach or an exact approach. 

The former strategy involves the assumption that [𝐴𝐴]𝑆𝑆𝑆𝑆 ≅ [𝐴𝐴]0, which follows from the typical 

situation in TTA-UC in solution that [𝐴𝐴]0 ≫  [𝑆𝑆]0. This approach results in a quadratic 

equation for [3𝐴𝐴∗]𝑆𝑆𝑆𝑆, and so we denote the resultant expression the quadratic model. In the 

second strategy, eqn (7) can be used to determine [3𝑆𝑆∗]𝑆𝑆𝑆𝑆. In this case, eqn (9) takes on a quartic 

form that can be solved analytically for [3𝐴𝐴∗]𝑆𝑆𝑆𝑆, yielding one positive root of interest, as well 

as three negative roots. We denote the resultant, complex expression the quartic model.  

In the quartic model, the rate at which triplets are supplied to the annihilator is 

𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[3𝑆𝑆∗][𝐴𝐴], which, under steady-state conditions, is given by 

𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[3𝑆𝑆∗]𝑆𝑆𝑆𝑆[𝐴𝐴]𝑆𝑆𝑆𝑆 = 

𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[3𝑆𝑆∗]𝑆𝑆𝑆𝑆 �[𝐴𝐴]0 − [3𝐴𝐴∗]𝑆𝑆𝑆𝑆 −
0.75𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]𝑆𝑆𝑆𝑆

2

𝑘𝑘𝐼𝐼𝐼𝐼+𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
−

𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]𝑆𝑆𝑆𝑆
2 �1+ 𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑘𝑘𝐼𝐼𝐼𝐼+𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
�

4�𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴 +𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼

′�
�  (11) 

In the quadratic model, 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[3𝑆𝑆∗]𝑆𝑆𝑆𝑆[𝐴𝐴]𝑆𝑆𝑆𝑆 reduces to 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[3𝑆𝑆∗]𝑆𝑆𝑆𝑆[𝐴𝐴]0. Because [3𝐴𝐴∗]𝑆𝑆𝑆𝑆 

increases with I, the rate of sensitization becomes smaller at higher irradiance in the quartic 

model. This situation opens up a saturation pathway for upconverted fluorescence that 

Monguzzi et al. discussed previously, but did not model with rate equations.10  

In Fig. 2 we compare the results of the quadratic and quartic models for solutions with 

[𝐴𝐴]0 =100 mM and [𝑆𝑆]0 = 14 mM or 0.14 mM (see Table S1 for a list of parameter values in 

all figures in this paper). When 𝑘𝑘𝑇𝑇𝐴𝐴, 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 are fixed at 2.00 × 102 s-1, 1.63 × 109 M-1 

s-1, and 3.6 × 108 M-1 s-1, respectively, the two models are nearly indistinguishable (Fig. 2a). 

When 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 is reduced by four orders of magnitude, the resultant accumulation of annihilator 

triplets leads to notable fluorescence saturation at high irradiance, as seen in Fig. 2b. The 
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quartic model exhibits a more rapid transition to fluorescence saturation than does the quadratic 

model, particularly when the expenditure of annihilator triplets through intrinsic decay or TTA 

is small.  

 

Fig. 2 Log-log plot of the fluorescence versus irradiance for the quadratic (solid lines) and 

quartic (dashed lines) models for solutions containing [𝐴𝐴]0 = 100 mM and [𝑆𝑆]0 = 14 mM and 

0.14 mM, with 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 is fixed at (a) 3.6 × 108 M-1s-1 and (b) 3.6 × 104 M-1s-1 (see Table S1 for a 

list of parameters). Here, it is assumed that 𝛣𝛣𝐼𝐼𝐼𝐼𝐼𝐼  is unity, and that the rates of ISC between 1A* 

and 3A*  and RISC between 3A** and 1A* are negligibly small. The range of Γ is denoted by 

circles and Isat is denoted by triangles. Solid symbols represent the quadratic model and open 

symbols represent the quartic model. Ith is identical for both models for a given set of 

conditions. In (a) Ith is -0.896 for the lower value of [𝑆𝑆]0 and -2.896 for the higher value of 

[𝑆𝑆]0. In (b) Ith is 3.104 for the lower value of [𝑆𝑆]0 and 1.104 for the higher value of [𝑆𝑆]0. 



12 
 

Because the quadratic model is the simpler of the two, is relevant for most TTA-UC 

systems of interest, produces tractable and insightful analytical results, and can be used not 

only for modelling, but also for the fitting of data, we will focus on this model for the remainder 

of this paper. However, we will highlight any situations in which the quartic model might be 

expected to give results that are meaningfully different from those of the quadratic model. 

Spin statistics  

Rigorous spin-multiplicity restrictions give an excited singlet state a 1/9 statistical probability 

of being created via TTA. However, if quintuplet states are energetically inaccessible via TTA, 

then singlet excited states are generated with a 1/4 statistical probability (Fig. 1b).16-18 A triplet 

excited state generated by TTA (3A**) can decay rapidly to the lowest triplet state (3A*) via 

internal conversion. These 3A* species then reenter the reaction pool. A molecule in the 3A** 

state can also undergo reverse RISC, typically to a highly excited singlet state.19-21 To account 

for the probability of TTA leading to a singlet excited state, a scaling factor is included to 

implement spin statistics in a kinetic model.15, 22 We consider the generation of the excited 

triplet state and its decay pathways explicitly, and consequently can explore how the internal 

conversion rate constant 𝑘𝑘𝐼𝐼𝐼𝐼 affects the upconverted fluorescence and its quantum yield. 

Although 𝑘𝑘𝐼𝐼𝐼𝐼 is expected to be large,23 the density of states of highly vibrationally excited 

singlet states at the energy of the excited triplet state is large enough that RISC can compete 

with internal conversion in some cases.21, 24 

When the rate of internal conversion dominates over the rate of RISC, the latter of which 

is represented by the rate constant 𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, the theoretical maximum quantum yield of the TTA 

process is 20%. However, this theoretical ceiling can be exceeded when 𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  is large enough 

that the branching ratio for RISC, 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑘𝑘𝐼𝐼𝐼𝐼+𝑘𝑘𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

, is non-zero. At steady state at high enough 

irradiance that the quenching rate is negligible, the rate of loss of annihilator triplets via TTA 
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plus the rate of increase of annihilator triplets though internal conversion from higher-order 

triplets is equal to the sum of the rates of excited singlets being created via TTA and via RISC; 

this equilibrium can be expressed as 

−𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[ 𝐴𝐴] 
3

𝑆𝑆𝑆𝑆
2 (1.25 + 0.75𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]𝑆𝑆𝑆𝑆2 (0.25 + 0.75𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)  .  (12) 

The maximum theoretical quantum yield of the TTA process (i.e., assuming lossless 

sensitization and a unity fluorescence quantum yield) can be expressed as the number of 

annihilator singlets that are generated for each annihilator triplet expended:  

Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 = 0.25+0.75𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
1.25+0.75𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 .     (13) 

When 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  is 0, Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 is 20%. On the other hand, when 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  is 1, Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 is 50%. The 

latter case is akin to neglecting the effect of spin statistics completely. Experimentally, it is 

difficult to obtain a reliable estimate for the rate at which RISC takes place. Therefore, we 

ignore RISC below, but the effects of this process can easily be incorporated in the manner 

described here.  

An expression for 𝑰𝑰𝒕𝒕𝒕𝒕 with mass conservation included 

Many of the characteristics of the TTA-UC process in our model can be understood by 

simplification of eqn (9). Indeed, an analysis of eqn (9) that ignores the effects of mass 

conservation allows us to derive an expression for 𝐼𝐼𝑡𝑡ℎ. Such an analysis is included in the ESI. 

Here, we consider our complete TTA model, including mass conservation. For simplicity, we 

will assume that 𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼
′ =  0, 𝛣𝛣𝐼𝐼𝐼𝐼𝐼𝐼  =  1, and 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]𝑆𝑆𝑆𝑆 ≅ 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0. Under these conditions, 

the complete solution of eqn (9) with conservation of mass is  

[3𝐴𝐴∗]𝑆𝑆𝑆𝑆 = 𝛼𝛼�𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁�𝑘𝑘𝐼𝐼𝐼𝐼
2𝛾𝛾

��1 + 4𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0[𝐴𝐴]0𝛾𝛾
𝛼𝛼2�𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁𝐴𝐴 �𝑘𝑘𝐼𝐼𝐼𝐼

− 1� ,                            (14) 

where 
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𝛼𝛼 = 𝑘𝑘𝑇𝑇
𝐴𝐴(𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼 + 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0 + 𝑘𝑘𝑇𝑇𝑆𝑆) + 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0      (15) 

and 

𝛾𝛾 = 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 �1.25(𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼 + 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0 + 𝑘𝑘𝑇𝑇𝑆𝑆)�𝑘𝑘𝑓𝑓𝑓𝑓 + 𝑘𝑘𝑁𝑁𝑁𝑁𝐴𝐴 �𝑘𝑘𝐼𝐼𝐼𝐼 + 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0 �0.25𝑘𝑘𝐼𝐼𝐼𝐼 + 0.75�𝑘𝑘𝑓𝑓𝑓𝑓 + 𝑘𝑘𝑁𝑁𝑁𝑁𝐴𝐴 ��� .   

(16) 

We examine eqn (14) under three different limits. If the second term in the radicand is much 

smaller than 1, then we find that 

 [3𝐴𝐴∗]𝑆𝑆𝑆𝑆 = 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0[𝐴𝐴]0

𝑘𝑘𝑇𝑇
𝐴𝐴�𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0+𝑘𝑘𝑇𝑇

𝑆𝑆�+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0
 .     (17) 

As we are operating in the low irradiance regime, we can assume that 𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼 is much smaller 

than 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0 + 𝑘𝑘𝑇𝑇𝑆𝑆, and that the quenching rate 𝑘𝑘𝑇𝑇𝐴𝐴 is much larger than 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0. Thus, we 

obtain: 

𝐹𝐹𝑆𝑆𝑆𝑆,𝑙𝑙𝑙𝑙𝑙𝑙 = 0.25Φ𝑓𝑓𝑓𝑓𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[3𝐴𝐴∗]𝑆𝑆𝑆𝑆2  = 0.25Φ𝑓𝑓𝑓𝑓𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 �
𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0

𝑘𝑘𝑇𝑇
𝐴𝐴 �

2
.                    (18) 

Here, 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the branching ratio of triplet sensitization from the sensitizer, which is defined 

as 

𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0+𝑘𝑘𝑇𝑇

𝑆𝑆 .                                                      (19) 

As expected, the fluorescence intensity scales as 𝐼𝐼2 in the low irradiance regime.  

In the high irradiance limit, the second term in the radicand in eqn (14) is much larger than 

1, so the equation reduces to 

[3𝐴𝐴∗]𝑆𝑆𝑆𝑆 = �
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0[𝐴𝐴]0�𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁

𝐴𝐴 �𝑘𝑘𝐼𝐼𝐼𝐼

𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇�1.25�𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0+𝑘𝑘𝑇𝑇
𝑆𝑆��𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁

𝐴𝐴 �𝑘𝑘𝐼𝐼𝐼𝐼+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0�0.25𝑘𝑘𝐼𝐼𝐼𝐼+0.75�𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴 ��� 

 .     (20) 

With some rearrangement, this equation can be written as 
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[3𝐴𝐴∗]𝑆𝑆𝑆𝑆 = �
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0[𝐴𝐴]0𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼

𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇�1.25�𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0+𝑘𝑘𝑇𝑇
𝑆𝑆�+1.25𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼�

0.25

𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴 +

0.75
𝑘𝑘𝐼𝐼𝐼𝐼
�� 

.           (21) 

The fluorescence rate in the high irradiance limit is then 

𝐹𝐹𝑆𝑆𝑆𝑆,ℎ𝑖𝑖𝑖𝑖ℎ = Φ𝑓𝑓𝑓𝑓
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0[𝐴𝐴]0𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼

5�𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0+𝑘𝑘𝑇𝑇
𝑆𝑆�+5𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼�

1

𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴 +

3
𝑘𝑘𝐼𝐼𝐼𝐼
� 

 .  (22) 

As long as the first term dominates the denominator, the rate of fluorescence will be linear in 

irradiance, which is the classic definition9, 12, 15 of the high-irradiance regime: 

𝐹𝐹𝑆𝑆𝑆𝑆,ℎ𝑖𝑖𝑖𝑖ℎ = Φ𝑓𝑓𝑓𝑓
𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼

5 
 .     (23) 

We find 𝐼𝐼𝑡𝑡ℎ by setting eqn (18) equal to eqn (23) and solving for the irradiance: 

𝐼𝐼𝑡𝑡ℎ = 𝑘𝑘𝑇𝑇
𝐴𝐴2

1.25𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[𝑆𝑆]0
 .     (24) 

Our result for 𝐼𝐼𝑡𝑡ℎ is similar to the expressions that Monguzzi et al.9 and Murakami and 

Kamada15 have derived, even though neither of these groups used mass conservation in their 

treatments. The reason for this correspondence is that in our analysis we considered a TTA-UC 

system that exhibits ideal characteristics, which allows us to assume that the second term in the 

radicand of eqn (14) is much larger than 1 at irradiances for which 𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼 ≪ 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0. If this 

assumption does not hold, as for example when a TTA-UC system has a high rate of triplet 

quenching, fluorescence saturation occurs at high irradiance. Saturation would cause the region 

in a log-log plot with a slope of 1 to appear at lower irradiance than would be the case in the 

absence of saturation. It is also possible that the region with a slope of 1 in the log-log plot 

could be vanishingly small due to the effects of fluorescence saturation. We therefore next 

consider the saturation regime. 
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The saturation regime 

When 𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼 ≫ 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0, eqn (14) becomes 

 

[3𝐴𝐴∗]𝑆𝑆𝑆𝑆 = 𝛼𝛼′�𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁�𝑘𝑘𝐼𝐼𝐼𝐼
2𝛾𝛾′

��1 + 4𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0[𝐴𝐴]0𝛾𝛾′

 𝛼𝛼′2�𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁𝐴𝐴 �𝑘𝑘𝐼𝐼𝐼𝐼
− 1� ,   (25) 

where 𝛼𝛼′ and 𝛾𝛾′ are irradiance independent versions of 𝛼𝛼 and 𝛾𝛾 that are given by 

𝛼𝛼′ = 𝑘𝑘𝑇𝑇
𝐴𝐴 + 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0                                                 (26)  

and 

𝛾𝛾′ = 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 �1.25�𝑘𝑘𝑓𝑓𝑓𝑓 + 𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴 �𝑘𝑘𝐼𝐼𝐼𝐼 + 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0 �0.25𝑘𝑘𝐼𝐼𝐼𝐼 + 0.75�𝑘𝑘𝑓𝑓𝑓𝑓 + 𝑘𝑘𝑁𝑁𝑁𝑁

𝐴𝐴 ���  ,       (27) 

respectively. An exact solution for the rate of fluorescence at saturation can be obtained from 

eqn (25). However, to simplify matters, we once again assume that the second term in the 

radicand is much greater than 1, yielding 

[3𝐴𝐴∗]𝑆𝑆𝑆𝑆 =
�

𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0[𝐴𝐴]0

𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇�1.25+𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒[𝑆𝑆]0�
0.75
𝑘𝑘𝐼𝐼𝐼𝐼

+0.25𝑘𝑘𝐼𝐼𝐼𝐼
𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁

𝐴𝐴 �� 

 .          (28) 

The corresponding expression for the rate of fluorescence is  

𝐹𝐹𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠 = Φ𝑓𝑓𝑓𝑓
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0[𝐴𝐴]0

5+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0�
1

𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴 + 3

𝑘𝑘𝐼𝐼𝐼𝐼
� 

 .     (29) 

This expression is independent of irradiance, and so increased photon flux in this regime does 

not result in increased light harvesting. The saturation fluorescence rate is independent of the 

main factors that affect 𝐼𝐼𝑡𝑡ℎ when mass conservation is not considered, such as 𝑘𝑘𝑒𝑒𝑒𝑒, 𝑘𝑘𝑇𝑇𝐴𝐴, and 

𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇. Instead, 𝐹𝐹𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠 depends linearly on the initial concentration of annihilators, [𝐴𝐴]0, and on 
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𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, until the sensitization rate constant becomes large enough. This behavior is another 

manifestation of saturation.  

We next examine the effect of 𝑘𝑘𝐼𝐼𝐼𝐼 on the saturation behavior of TTA-UC systems. In the 

unlikely scenario that 𝑘𝑘𝐼𝐼𝐼𝐼 ≪ 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0, eqn (29) becomes  

𝐹𝐹𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠 = Φ𝑓𝑓𝑓𝑓
𝑘𝑘𝐼𝐼𝐼𝐼[𝐴𝐴]0

3 
 .      (30) 

Therefore, we see that 𝑘𝑘𝐼𝐼𝐼𝐼 presents an alternate pathway to fluorescence saturation in cases in 

which the rate of internal conversion may be limited. In the more likely scenario that 𝑘𝑘𝐼𝐼𝐼𝐼 is 

large, eqn (29) becomes 

𝐹𝐹𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠 = Φ𝑓𝑓𝑓𝑓
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0[𝐴𝐴]0
5+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0

𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴  

 .     (31) 

In this limit, excited triplets decay immediately to T1, and so are ready to undergo another TTA 

event. When 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0 ≫ 𝑘𝑘𝑓𝑓𝑓𝑓 + 𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴 , this expression further reduces to 

𝐹𝐹𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠𝑠𝑠 = Φ𝑓𝑓𝑓𝑓[𝐴𝐴]0 .                   (32) 

This equation represents an ideal limit in which the fluorescence rate and the annihilator 

concentration are the limiting factors in determining the saturation fluorescence intensity.  

The saturation threshold and the efficient performance range for TTA-UC systems 

Now that we have established that our model exhibits saturation, we turn to the issue of 

quantifying the onset of saturation. To do so, we define a quantity, 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠, that is the intersection 

point between tangent lines drawn on the regions of the logarithmic plot of fluorescence versus 

irradiance in which the slopes are 1 and 0. By setting eqn (23) equal to eqn (29) and solving 

for the irradiance, we find that 
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𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 = 5�𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0+𝑘𝑘𝑇𝑇
𝑆𝑆�

𝑘𝑘𝑒𝑒𝑒𝑒�5+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0�
1

𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴 + 3

𝑘𝑘𝐼𝐼𝐼𝐼
��

 .     (33) 

This result shows that increasing 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0 generally delays the onset of fluorescence signal 

saturation, whereas increasing 𝑘𝑘𝑒𝑒𝑒𝑒 hastens the onset of fluorescence signal saturation.  

Monguzzi and et al. proposed that the intensity of upconverted fluorescence emission 

saturates when [3𝐴𝐴∗]𝑆𝑆𝑆𝑆 approaches [𝐴𝐴]0.10 However, this conjecture does not hold strictly. The 

bottleneck in the growth of 𝐹𝐹𝑆𝑆𝑆𝑆 with I is the rate of sensitization. The rate of sensitization in 

our model is described by the quantity: 

𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[3𝑆𝑆∗]𝑆𝑆𝑆𝑆[𝐴𝐴]𝑆𝑆𝑆𝑆 = 𝛣𝛣𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0
𝛣𝛣𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]𝑆𝑆𝑆𝑆+𝑘𝑘𝑇𝑇𝑆𝑆

[𝐴𝐴]𝑆𝑆𝑆𝑆.                      (34) 

Based on mass conservation of the annihilator, eqn (7), there are two main avenues through 

which 𝐹𝐹𝑆𝑆𝑆𝑆 saturates. The limited availability of annihilator ground states at high irradiance is 

one obvious avenue for saturation, as Monguzzi pointed out.10 In the scenario in which 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

is large, 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 → 0 as [3𝐴𝐴∗]𝑆𝑆𝑆𝑆 → [𝐴𝐴]0, and therefore [𝐴𝐴]𝑆𝑆𝑆𝑆 → 0. However, this situation would 

only occur when the regeneration of ground-state annihilators is muted by slow TTA kinetics 

and long annihilator triplet lifetimes. Another avenue for saturation is for 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to be small. In 

this case, 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and therefore 𝐹𝐹𝑆𝑆𝑆𝑆, may saturate even when a significant portion of annihilator 

molecules remain in the ground state and available for triplet sensitization. Indeed, it is only 

possible for [3𝐴𝐴∗]𝑆𝑆𝑆𝑆 to approach [𝐴𝐴0] when 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is large (Fig. S2). Under such conditions, we 

find that [𝐴𝐴]𝑆𝑆𝑆𝑆 ≪ [𝐴𝐴]0, which necessitates the use of the quartic model. Eqn (33) describes 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 

under ideal conditions, in which sensitized annihilator triplets are rapidly expended through 

TTA, thus allowing us to assume that [𝐴𝐴]𝑆𝑆𝑆𝑆 ≈ [𝐴𝐴]0. When this approximation is made, [3𝑆𝑆∗]𝑆𝑆𝑆𝑆 

is independent of [𝐴𝐴]𝑆𝑆𝑆𝑆. In contrast, the quartic model predicts that [3𝑆𝑆∗]𝑆𝑆𝑆𝑆 will increase as 

[𝐴𝐴]𝑆𝑆𝑆𝑆 approaches zero, thus allowing the rate of fluorescence to continue to increase linearly 
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with I until a sharp transition to saturation occurs, at a lower irradiance than in the quadratic 

model. The degree to which 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 differs in the quartic and quadratic models is explored in Figs. 

S3a and S3b.  

To examine and visualize the range of irradiances through which the TTA-UC system is 

most efficient, we define a transition width, Γ, that describes the logarithmic change in 

irradiance needed to bring the local slope of the logarithmic curve from 1.1 to 0.9, i.e. 

log(𝐼𝐼0.9/𝐼𝐼1.1). The dependences of Γ on the logarithms of the quantities 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇, 𝑘𝑘𝑇𝑇𝐴𝐴, [𝐴𝐴]0, 

and [𝑆𝑆]0 are shown in Fig. S4 for the quadratic model. The corresponding Γ values in the 

quartic model are generally, but not always, larger; see Fig. S3c and the ESI. All of the plots 

feature linear regions with a slope of 1, except that for 𝑘𝑘𝑇𝑇𝐴𝐴, which has a linear region with a 

slope of -2. This linear relationship generally holds when 106 > Γ > 101.5.  

Γ saturates at high values of [𝑆𝑆]0 and 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. We explore this behavior further by analyzing 

the related quantity log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ). The horizontal distances between irradiances on a log-log 

plot of FSS vs. I that correspond to the quantities log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ) and Γ are highlighted in Figs. 2c 

and 2d. Γ is always smaller than log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ), by definition. The transition width Γ and 

log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ) exhibit a similar trend with respect to the parameters 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇, 𝑘𝑘𝑇𝑇𝐴𝐴, [𝐴𝐴]0, and 

[𝑆𝑆]0. The relationships between log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ) and the system parameters 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇, 𝑘𝑘𝑇𝑇𝐴𝐴, [𝐴𝐴]0, 

and [𝑆𝑆]0 in the quadratic model are shown in Fig. S5. 𝐼𝐼𝑡𝑡ℎ decreases with 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇, and increases 

as (𝑘𝑘𝑇𝑇𝐴𝐴)2, whereas 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 is typically independent of 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑘𝑘𝑇𝑇𝐴𝐴. Therefore, log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ) scales 

as 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 and as (𝑘𝑘𝑇𝑇𝐴𝐴)−2. Conversely, 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 has a linear dependence on [𝐴𝐴]0, whereas 𝐼𝐼𝑡𝑡ℎ is largely 

independent of [𝐴𝐴]0, assuming that  Φ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 1. Therefore, log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ) scales with [𝐴𝐴]0. As 

is shown in Fig. S3, log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ) is smaller in the quartic model. However, log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ) 

depends on the parameters considered in a similar manner. 
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The behaviors of log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ) with respect to [𝑆𝑆]0 and 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are more complex. In the case 

of [𝑆𝑆]0, both 𝐼𝐼𝑡𝑡ℎ and 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 decrease as [𝑆𝑆]0 increases. However, 𝐼𝐼𝑡𝑡ℎ decreases at a faster rate than 

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 when [𝑆𝑆]0 is small. Eqn (33) can be expressed as 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 = 1
𝑋𝑋+𝑌𝑌[𝑆𝑆]0

, where X and Y are large 

constants. When [𝑆𝑆]0 is large, 𝑌𝑌[𝑆𝑆]0 becomes much larger than X, and so 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 decreases at 

approximately the same rate that 𝐼𝐼𝑡𝑡ℎ decreases, which causes log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ) to become 

independent of [𝑆𝑆]0. The value of log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ) also reaches an asymptote when 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is large 

enough, such that both 𝐼𝐼𝑡𝑡ℎ and 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 become independent of this rate constant. 

In Figs. S4c and S4e, 𝑘𝑘𝑇𝑇𝐴𝐴 was set to 2.0 × 104 s-1 instead of 2.0 × 102 s-1, the latter of which 

was the value used in the remaining panels in this figure. Fig. S6 shows the behavior of the 

transition width when 𝑘𝑘𝑇𝑇𝐴𝐴 = 2.0 × 102 s-1. In this case, the dependence of Γ on both 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 and 

[𝐴𝐴]0 has an exponent of ~1.6, rather than an exponent of unity. This behavior is explained 

further in the ESI.  

The local slope of logarithmic plots of 𝑭𝑭𝒔𝒔𝒔𝒔 vs. I. 

We note that the local slope of a logarithmic plot of FSS vs. I is an important property in the 

study of TTA-UC, because this slope allows for the description of the relationship between FSS 

and I succinctly at any irradiance. The irradiance dependent local slope, which we denote n(I), 

may be expressed as:  

𝑑𝑑(log(𝐹𝐹𝑠𝑠𝑠𝑠))
𝑑𝑑(log(𝐼𝐼))

= 𝐼𝐼
𝐹𝐹𝑠𝑠𝑠𝑠
∙ 𝑑𝑑𝐹𝐹𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

.                                          (35) 

A thorough analysis of eqn (35) is presented in the ESI.  
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Fig. 3 Dependence of the local slope n(I) on the irradiance I for different values of (a) 𝑘𝑘𝑇𝑇𝐴𝐴 and 

(b) kTTA. See Table S1 for the values of the other parameters. The colored dashed lines indicate 

the irradiance at which n = 1.5 for the curve of the corresponding color, and the black dashed 

lines indicate the irradiance at which n = 0.5. 

From eqn (35), we find that for any TTA-UC system, n(I) is close to 2 at low irradiances. 

As I increases beyond 𝐼𝐼𝑡𝑡ℎ, 𝐹𝐹𝑠𝑠𝑠𝑠 begins to scale linearly with I, and so n(I) approaches a value of 

1. We note that if mass conservation is not considered, n(I) never reaches a value of 1. 

However, in our model, the quantity 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0 limits the increase of FSS at high irradiances, 

allowing n(I) to attain a value of 1. When I > 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠, 𝐹𝐹𝑠𝑠𝑠𝑠 begins to saturate. Therefore, at high 

enough irradiance, n(I) approaches 0. Figures 3a and 3b show characteristic plots of n(I) as a 

function of I for different values of 𝑘𝑘𝑇𝑇𝐴𝐴 and 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇, respectively. The value of n is roughly 2 at 
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low irradiance, and declines rapidly as I approaches the quantity 4�𝑘𝑘𝑇𝑇
𝐴𝐴�

2

5𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘𝑒𝑒𝑒𝑒[𝑆𝑆]0
, which is an 

approximate expression for 𝐼𝐼𝑡𝑡ℎ. There is another sharp decline in n(I) that persists until I 

approaches the quantity 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0
𝑘𝑘𝑒𝑒𝑒𝑒

, which is an approximate expression for 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠. For a typical 

TTA-UC system, the quantities 4�𝑘𝑘𝑇𝑇
𝐴𝐴�

2

5𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘𝑒𝑒𝑒𝑒[𝑆𝑆]0
 and 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0

𝑘𝑘𝑒𝑒𝑒𝑒
 are of different enough magnitudes 

that there is an extended range of irradiances for which the local slope is close to 1. However, 

for some TTA-UC systems, the two aforementioned quantities may lie close to one another, 

which can make the portion of the log-log plot that possesses a slope of 1 vanishingly small.  

The points at which n(I) attains a value of 1.5 (𝐼𝐼1.5) and a value of 0.5 (𝐼𝐼0.5) are analogues 

to 𝐼𝐼𝑡𝑡ℎ and 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠, respectively. Figure 4a shows that 𝐼𝐼1.5 initially scales as (𝑘𝑘𝑇𝑇𝐴𝐴)2, but reaches an 

asymptote as 𝑘𝑘𝑇𝑇𝐴𝐴 exceeds 106 s-1. This behavior stems from the fact that when 𝑘𝑘𝑇𝑇𝐴𝐴 becomes large 

enough, the value of 4�𝑘𝑘𝑇𝑇
𝐴𝐴�

2

5𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘𝑒𝑒𝑒𝑒[𝑆𝑆]0
 approaches the value of 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0

𝑘𝑘𝑒𝑒𝑒𝑒
. Indeed when 4�𝑘𝑘𝑇𝑇

𝐴𝐴�
2

5𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘𝑒𝑒𝑒𝑒[𝑆𝑆]0
≫

𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0
𝑘𝑘𝑒𝑒𝑒𝑒

, 𝐼𝐼1.5 is completely independent of 𝑘𝑘𝑇𝑇𝐴𝐴, and is determined primarily by 𝑘𝑘𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠[𝐴𝐴]0
𝑘𝑘𝑒𝑒𝑒𝑒

. 

Similarly, if 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is small, the condition 4�𝑘𝑘𝑇𝑇
𝐴𝐴�

2

5𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘𝑒𝑒𝑒𝑒[𝑆𝑆]0
≫ 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0

𝑘𝑘𝑒𝑒𝑒𝑒
 is once again satisfied, and 

𝐼𝐼1.5 becomes strongly dependent on the term 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0
𝑘𝑘𝑒𝑒𝑒𝑒

. Therefore, the decline in n(I) under non-

ideal TTA-UC conditions is a consequence of fluorescence saturation, rather than an indication 

that the TTA process has become efficient. Figure 4b illustrates the source of this behavior. 

When we compare the dependence of n(I) on I for substantially different values of 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, we 

see that both curves overlap when n(I) is close to 2. As all rate constants except 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are held 

constant in these curves, one might expect that the declines in n(I) from a value of 2 to a value 

of 1 would be identical. However, Fig. 4b shows that n(I) decreases more quickly when 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

is small, because n(I) undergoes an earlier descent towards a value of 0 due to the saturation of 

[3S*]SS, and consequently [3A*]SS. Because the dependence of n(I) on I must be smooth and 
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continuous for all values of I, the value of I at which n attains a value of 1 must decrease when 

𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 decreases. The significance of this finding is that it is not desirable for a TTA-UC system 

to possess a small 𝐼𝐼𝑡𝑡ℎ if this value is a consequence of an early onset of saturation.  

 

Fig. 4 (a) Dependence of 𝐼𝐼1.5 (red) and 𝐼𝐼0.5 (blue) on 𝑘𝑘𝑇𝑇𝐴𝐴. (b) The local slope as a function of 

irradiance for a small sensitization rate constant (blue) and a typical sensitization rate constant 

(red). The dashed lines indicate the point at which n = 1 in the corresponding curve. See Table 

S1 for the values of the other parameters. 

Visualizing the change in upconverted fluorescence intensity across a range of 

irradiance  

We saw above that in the low irradiance limit, the rate of excitation is small, such that the 

second term in the radicand in eqn (14) must be much less than 1. Assuming that we are far 
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away from the saturation region, i.e. that 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0 ≫ 𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼, the second term in the radicand 

being small implies that 

𝑘𝑘𝑇𝑇
𝐴𝐴[𝐴𝐴]0

5𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[𝐴𝐴]02
 ≫  𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0

𝑘𝑘𝑇𝑇
𝐴𝐴[𝐴𝐴]0

 .                                                      (36) 

In an ideal TTA-UC system, in which 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇  ≫  𝑘𝑘𝑇𝑇𝐴𝐴, the irradiance has to be small for the system 

to remain in the quadratic regime by satisfying the condition that 𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0  ≪  𝑘𝑘𝑇𝑇𝐴𝐴[𝐴𝐴]0. On the 

other hand, for a non-ideal TTA-UC system, in which either 𝑘𝑘𝑇𝑇𝐴𝐴 is large or 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 is small, the 

quadratic irradiance regime can extend over a larger range. As shown in Figs. 5a and 5b, as 𝑘𝑘𝑇𝑇𝐴𝐴 

increases, so does the maximum irradiance at which the local slope is 2. Conversely, as shown 

in Figs. 5c and 5d, the maximum irradiance at which the local slope is 2 decreases with 

increasing 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇. In the high irradiance limit, 𝑘𝑘𝑇𝑇
𝐴𝐴[𝐴𝐴]0

5𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[𝐴𝐴]02
 ≪  𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0

𝑘𝑘𝑇𝑇
𝐴𝐴[𝐴𝐴]0

. This inequality is equivalent 

to 𝐼𝐼 ≫  �𝑘𝑘𝑇𝑇
𝐴𝐴�

2

5𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘𝑒𝑒𝑒𝑒[𝑆𝑆]0
 , which implies that the local slope approaches 1 at smaller irradiance 

values when 𝑘𝑘𝑇𝑇𝐴𝐴 is small and 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 is large (cf. Figs. 5b and 5d.) 

Next, we consider the saturation regime, in which 𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼 > 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0. When either 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 

[𝐴𝐴]0, or both, are high enough, a large irradiance is required for saturation to be observed, as 

shown in Fig. S7. The rate constants 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑘𝑘𝑇𝑇𝐴𝐴 have little effect on the signal saturation, and 

may be factored out of the equation for 𝐹𝐹𝑠𝑠𝑠𝑠 in most instances. Figure 5 shows that TTA-UC 

systems with different 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑘𝑘𝑇𝑇𝐴𝐴 values exhibit saturation at identical values of I. In 

implementing mass conservation, we consider [𝐴𝐴]0 to be an emitter species “reservoir” that is 

consumed as the irradiance increases. Although the emission intensity does not scale 

proportionally with [𝐴𝐴]0 along the entire log-log plot, the maximum achievable emission 

intensity does scale with [𝐴𝐴]0. Figures S7a and S7b show that increasing [𝑆𝑆]0 and [𝐴𝐴]0 

concurrently extends the region in which n(I) ~ 1 in both directions. Figures S7c and S7d 

demonstrate that an increase in 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 results in a proportional extension of the region in which 
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n(I) ~ 1 towards higher I. The effect of 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 on signal saturation can be understood based on 

the fact that the TTA-UC process, under the quadratic model, can only proceed as fast as 

𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0, regardless of how quickly triplet states may be generated in the sensitizer or how 

quickly annihilator triplets may undergo TTA to produce fluorescent singlets.  

 

Fig. 5 Dependence of the fluorescence rate and the local slope, n(I), respectively, on (a), (b) 

𝑘𝑘𝑇𝑇𝐴𝐴 and (c), (d) 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇. See Table S1 for the values of the other parameters. The open and filled 

circles indicate the irradiances at which the local slope is 1.1 and 0.9, respectively. 

The TTA-UC quantum yield (𝚽𝚽𝑼𝑼𝑼𝑼) 

Achieving a high Φ𝑈𝑈𝑈𝑈 at low irradiance is one of the ultimate performance goals of any TTA-

UC system. Φ𝑈𝑈𝑈𝑈 is the ratio of the rate of emission (𝐹𝐹𝑠𝑠𝑠𝑠) to the rate of absorption by the 

sensitizer (𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]𝑆𝑆𝑆𝑆), neglecting any losses arising from an output coupling that is less than 
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unity.25 Because FSS is proportional to In(I), we can conclude that Φ𝑈𝑈𝑈𝑈(𝐼𝐼) must be proportional 

to In(I)-1. Therefore, at irradiances low enough that n(I) ~ 2, Φ𝑈𝑈𝑈𝑈 increases linearly with I. When 

2 > 𝑛𝑛(𝐼𝐼) > 1, Φ𝑈𝑈𝑈𝑈 increases more slowly with increasing irradiance. When n(I) is unity, 

Φ𝑈𝑈𝑈𝑈 ∝ 𝐼𝐼0. The TTA-UC quantum yield reaches its maximum value at this irradiance, and 

decreases at higher irradiances. Thus, for any TTA-UC system, peak performance is achieved 

when the relationship between 𝐹𝐹𝑠𝑠𝑠𝑠 and I becomes strictly linear. As n(I) approaches 0, Φ𝑈𝑈𝑈𝑈 

becomes inversely proportional to I. As a result, Φ𝑈𝑈𝑈𝑈 decreases at irradiances high enough to 

saturate the intensity of upconverted fluorescence. This behavior is illustrated in Fig. 6 for 

different values of 𝑘𝑘𝑇𝑇𝐴𝐴 (Figs. 6a, 6b) and 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 (Figs. 6c and 6d). As shown in Figs. 6b and 6d, 

the slope of the quantum yield for the data in Figs. 6a and 6c undergoes a smooth transition 

from a value of 1 at low irradiance, to a value of 0 when n(I) = 1, and then finally to a value of 

-1 at high irradiance. 

 

Fig. 6 The dependence of the upconversion quantum yield and its slope on irradiance for (a) 

and (b), respectively, different values of 𝑘𝑘𝑇𝑇𝐴𝐴, and (c) and (d), respectively, different values of 

𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇. See Table S1 for the values of the other parameters. 
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We next consider the relationship between Φ𝑈𝑈𝑈𝑈(𝐼𝐼) and n(I). Fig. S8 shows that for an ideal 

TTA-UC system, Φ𝑈𝑈𝑈𝑈 increases monotonically as n(I) decreases from a value of 2 to a value 

of 1. In this case, we find empirically that the relationship between Φ𝑈𝑈𝑈𝑈(𝐼𝐼) and n(I), when 1 ≤

𝑛𝑛(𝐼𝐼) ≤ 2, is described by an equation of the form 

Φ𝑈𝑈𝑈𝑈(𝐼𝐼) ∝ 𝑎𝑎𝑎𝑎−𝑏𝑏∙𝑛𝑛(𝐼𝐼) + 𝑐𝑐 ,                                          (37) 

where, a, b and c are positive constants (Fig. S9). When 𝑘𝑘𝑇𝑇𝐴𝐴 is small and 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 is large, Φ𝑈𝑈𝑈𝑈 can 

be estimated reliably given knowledge of n(I). However, as 𝑘𝑘𝑇𝑇𝐴𝐴 becomes larger and 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 

becomes smaller, the relationship between Φ𝑈𝑈𝑈𝑈 and n(I) deviates significantly from that in eqn 

(37). Furthermore, the highest achievable TTA-UC quantum yield (Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚) decreases as 𝑘𝑘𝑇𝑇𝐴𝐴 

increases and 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 decreases. We also define the TTA-UC quantum yield fraction (Φ�𝑈𝑈𝑈𝑈) as 

Φ�𝑈𝑈𝑈𝑈 = Φ𝑈𝑈𝑈𝑈
Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚

 .     (38) 

Φ�𝑈𝑈𝑈𝑈 reaches a peak value of 1 when a TTA-UC system achieves its maximum possible Φ𝑈𝑈𝑈𝑈. 

Φ�𝑈𝑈𝑈𝑈 increases towards a value of 1 steeply as n(I) approaches 1, as highlighted in Fig. S8. 

Under non-ideal TTA-UC conditions, the dependence of Φ�𝑈𝑈𝑈𝑈 on n(I) becomes steeper than in 

the ideal case at larger values of n(I) and shallower as n(I) approaches 1. This behavior is due 

to the influence of saturation on the value of n(I).  

It is typically assumed in the literature that Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 does not depend upon 𝑘𝑘𝑇𝑇𝐴𝐴 or 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇. The 

independence of Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 from these rate constants only holds when one makes the 

assumptions that the relationship between 𝐹𝐹𝑠𝑠𝑠𝑠 and I becomes strictly linear only as I → ∞, and 

that 𝐹𝐹𝑠𝑠𝑠𝑠(∞) is completely independent of 𝑘𝑘𝑇𝑇𝐴𝐴 and 𝑘𝑘𝑇𝑇𝑇𝑇[𝐴𝐴]𝑆𝑆𝑆𝑆. When mass conservation is 

considered, 𝑘𝑘𝑇𝑇𝐴𝐴 and 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 both affect the finite value of I at which the relationship between 𝐹𝐹𝑠𝑠𝑠𝑠 

and I becomes strictly linear, as well as the value of 𝐹𝐹𝑠𝑠𝑠𝑠 at this point. We discussed above the 

requirement in ideal TTA-UC systems that the second term within the radicand in eqn (14), 
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called 𝜌𝜌 for convenience, be much greater than 1 at irradiances at which saturation could be 

avoided. Under these conditions, 𝑘𝑘𝑇𝑇𝐴𝐴 and 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 may be factored out of the expression for 

𝐹𝐹𝑆𝑆𝑆𝑆,ℎ𝑖𝑖𝑖𝑖ℎ, and so will not influence Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 or 𝐹𝐹𝑆𝑆𝑆𝑆,ℎ𝑖𝑖𝑖𝑖ℎ

𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]𝑆𝑆𝑆𝑆
. An ideal TTA-UC system attains a peak 

value of 𝜌𝜌 at lower irradiance than do non-ideal TTA-UC systems (Fig. S10). For non-ideal 

TTA-UC systems, the rate constants 𝑘𝑘𝑇𝑇𝐴𝐴 and 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 retain a strong influence on Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚. This 

dependence fades as 𝑘𝑘𝑇𝑇𝐴𝐴  →  0 and 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇  →  ∞.  

An idealized expression for Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 takes the form 

Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 =
Φ𝑓𝑓𝑓𝑓𝛣𝛣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0

5[𝐴𝐴]0+𝛣𝛣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0�
1

3�𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁
𝐴𝐴 �

+ 1
𝑘𝑘𝐼𝐼𝐼𝐼
�
 .                                    (39) 

Here, 𝛣𝛣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is an intensity dependent version of the branching ratio β𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 that is given by 

𝛣𝛣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0

𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0+𝑘𝑘𝑇𝑇
𝑆𝑆  .                                   (40) 

The second term in the denominator of eqn (39) is small when compared to the initial 

concentration of the annihilator, and so we arrive at an expression for the theoretical maximum 

quantum yield of a TTA-UC system: 

Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 = 0.2Φ𝑓𝑓𝑓𝑓Β𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  .                                   (41) 

For such an idealized system, the maximum attainable quantum yield is limited only by the 

sensitization efficiency, the fluorescence quantum yield, and a scaling factor of 0.2 that arises 

from the implementation of spin statistics, assuming inaccessible quintets.  

Fig. S11a shows that Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 increases with 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, as predicted by eqn (39). However, 

when 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 becomes large enough, this rate constant no longer has an effect on Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚, 

because there is little room to improve Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 once 𝛣𝛣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 approaches unity. The dependence 

of Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 on 𝑘𝑘𝑇𝑇𝐴𝐴 is particularly evident when 𝑘𝑘𝑇𝑇𝐴𝐴 is large. For a representative TTA-UC system 
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with a 𝑘𝑘𝑇𝑇𝐴𝐴 of 2.0 × 102 s-1, a 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 of 3.6 × 109 M-1 s-1, and a Φ𝑓𝑓𝑓𝑓 of 0.997, Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 reaches 

99.5% of the theoretical maximum value at a 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 value of 1.63 × 109 M-1 s-1. When 𝑘𝑘𝑇𝑇𝐴𝐴 is 

increased to 2.0 × 104 s-1 while keeping the other parameters unchanged, Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 drops to 

96.6% of the theoretical maximum value. When 𝑘𝑘𝑇𝑇𝐴𝐴 is increased further to 2.0 × 106 s-1, 

Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 plummets to just over 51% of the theoretical maximum. We also note that at 𝑘𝑘𝑇𝑇𝐴𝐴 values 

of 2.0 × 106 s-1 or 2.0 × 108 s-1, Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 remains close to 0 at low irradiances, because when 

𝑘𝑘𝑇𝑇𝐴𝐴 is large, 𝜌𝜌 is small unless 𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0 is also large. Therefore, to drive the TTA process 

efficiently, we require that 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 be large enough that the condition 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0 ≫ 𝑘𝑘𝑒𝑒𝑒𝑒𝐼𝐼[𝑆𝑆]0 is 

satisfied.  

The effect of 𝑘𝑘𝐼𝐼𝐼𝐼 on Φ𝑈𝑈𝑈𝑈,𝑚𝑚𝑚𝑚𝑚𝑚 is explored in Fig. S11b. The rate constant 𝑘𝑘𝐼𝐼𝐼𝐼 governs the 

rate at which higher-order annihilator triplets that are formed via TTA decay back to the 𝐴𝐴∗ 
3  

state, such that these triplets may participate in the TTA process once again. As 𝑘𝑘𝐼𝐼𝐼𝐼 → 0, the 

theoretical maximum yield of singlets from the TTA process is 12.5%, because on average 

only one singlet is generated for every eight triplets consumed. As 𝑘𝑘𝐼𝐼𝐼𝐼 → ∞, the theoretical 

maximum yield of singlets increases to 20%, because the overall consumption of triplets is 

reduced to 5. Finally, we explore Murakami and Kamada’s finding that at 𝐼𝐼𝑡𝑡ℎ, Φ�𝑈𝑈𝑈𝑈 has a value 

of 38.2%, whereas at an irradiance that is twice as large as 𝐼𝐼𝑡𝑡ℎ, Φ�𝑈𝑈𝑈𝑈 has a value of 50%. These 

findings also hold true only under ideal TTA-UC conditions, as we demonstrate in Fig. S12. In 

this figure, we show that Φ�𝑈𝑈𝑈𝑈 at the critical irradiance values of 𝐼𝐼𝑡𝑡ℎ and 2𝐼𝐼𝑡𝑡ℎ deviates 

significantly from the ideal values of 38.2% and 50% under non-ideal TTA-UC conditions, 

specifically due to the effects of mass conservation. 

The challenge of determining 𝑰𝑰𝒕𝒕𝒕𝒕 experimentally  

Although there is no special physical significance to 𝐼𝐼𝑡𝑡ℎ, from a practical standpoint this 

quantity has been an important metric for assessing TTA-UC systems. Furthermore, the value 
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of 𝐼𝐼𝑡𝑡ℎ is often used to extract 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 when 𝑘𝑘𝑇𝑇𝐴𝐴 and 𝑘𝑘𝑒𝑒𝑒𝑒 are known. To determine 𝐼𝐼𝑡𝑡ℎ reliably, one 

needs to obtain fluorescence measurements at low enough irradiances that a tangential line with 

a slope of 2 may be drawn. As discussed above, the value of n(I) is 2 only at irradiances that 

are substantially less than Ith. It is not easily possible to make experimental measurements in 

this irradiance regime, particularly for efficient TTA-UC systems. It is also necessary to 

perform fluorescence measurements at high enough irradiances to attain a slope of 1. Thus, a 

large dynamic range is required to determine 𝐼𝐼𝑡𝑡ℎ accurately. For instance, in the example shown 

in Fig. 7, the dynamic range of emission intensity needed to capture the transition of a typical 

TTA-UC system from the quadratic to the linear regime is more than 6 orders of magnitude.  

 

Fig. 7 TTA-UC log-log plots based on the quadratic model. (a) Capturing the quadratic and 

linear regions of the plot to determine Ith accurately requires obtaining data over 6 or more 

orders of magnitude in irradiance. (b) When a more typical experimental range of irradiances 

is used for the same data (box in (a)), the slopes do not reach 2 and 1. See Table S1 for the 

values of the parameters. 
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Experimentally, it is challenging to achieve a dynamic range of emission intensity 

exceeding 5 orders of magnitude. As shown in Fig. 7b, an asymmetric limitation on the local 

slope within the window, e.g., a maximum possible slope of 1.62 instead of 2 and a minimum 

slope of 1.05 instead of 1, can lead to uncertainty in the determination of 𝐼𝐼𝑡𝑡ℎ. 

In Fig. S13a we show TTA-UC curves calculated with our model for three different values 

of 𝑘𝑘𝑇𝑇𝐴𝐴, viewed through a window that is intended to simulate experimental conditions. We show 

the values of 𝐼𝐼𝑡𝑡ℎ for two of these curves. The 𝐼𝐼𝑡𝑡ℎ value for the system with 𝑘𝑘𝑇𝑇𝐴𝐴 = 2.0 ×104 s-1 lies 

beyond the range of our selected window, and therefore is not shown. For an accurate graphical 

interpretation of 𝐼𝐼𝑡𝑡ℎ to be made, the actual value of 𝐼𝐼𝑡𝑡ℎ must lie close to the center of the 

experimental window. As a measure of the difference between the visually extracted 

(𝐼𝐼𝑡𝑡ℎ,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) and fit values (𝐼𝐼𝑡𝑡ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) of 𝐼𝐼𝑡𝑡ℎ, we define 𝛿𝛿𝐼𝐼 = 𝐼𝐼𝑡𝑡ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝐼𝐼𝑡𝑡ℎ,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐼𝐼𝑡𝑡ℎ,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∙

100%. Bar plots of 𝛿𝛿𝐼𝐼 as function of various system parameters are shown in Fig. S13b-S13e. 

Using Fig. 7 as an example, at low 𝑘𝑘𝑇𝑇𝐴𝐴, the actual value of 𝐼𝐼𝑡𝑡ℎ can only be found at low values 

of I. Hence, extracting 𝐼𝐼𝑡𝑡ℎ graphically from a small experimental window (a window identical 

to that in Fig. 7 was used), leads to substantial overestimation of 𝐼𝐼𝑡𝑡ℎ. As 𝑘𝑘𝑇𝑇𝐴𝐴 increases, the actual 

values of 𝐼𝐼𝑡𝑡ℎ fall closer to center of the experimental window, and thus the predicted error is 

minimized when 𝑘𝑘𝑇𝑇𝐴𝐴 = 2.0 × 103 s-1. As 𝑘𝑘𝑇𝑇𝐴𝐴 increases even further, the actual value of 𝐼𝐼𝑡𝑡ℎ can 

only be found at an irradiance beyond the upper limit of the experimental window. In this 

situation, graphically extracted values of 𝐼𝐼𝑡𝑡ℎ are underestimated. A similar trend in 𝛿𝛿𝐼𝐼 with 

respect to the parameters 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 and [𝑆𝑆]0 is shown in Figs. S13c and S13d. Because [𝐴𝐴]0 has 

negligible impact on 𝐼𝐼𝑡𝑡ℎ, there is little change in the predicted error with different values of 

[𝐴𝐴]0.  
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It is more reliable to estimate 𝐼𝐼𝑡𝑡ℎ from measurements of the local slope n(I). Numerical 

analysis of eqn (35) reveals that for a broad range of different TTA-UC systems with varying 

system parameters, n(Ith) takes on a value near 1.4472, in basic agreement with the findings of 

Murakami and Kamada using a model that did not conserve mass.15 However, we do find that 

n(Ith) is not a constant, and to measure its variation from its ideal value we define 𝛿𝛿𝑛𝑛 =

1.4472−𝑛𝑛(𝐼𝐼𝑡𝑡ℎ)
𝑛𝑛(𝐼𝐼𝑡𝑡ℎ)

∙ 100%. As shown in Figs. S13b-S13e, 𝛿𝛿𝑛𝑛 in vanishingly small for a broad range 

of 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇, [𝐴𝐴]0, and [𝑆𝑆]0, and only becomes substantial under the conditions explored 

when 𝑘𝑘𝑇𝑇𝐴𝐴 is large. 

Fitting experimental data from literature with the quadratic TTA model  

Edhborg et al. recently outlined an approach for obtaining 𝐼𝐼𝑡𝑡ℎ by determining the fraction of 

annihilator triplets that decay initially through TTA (𝛽𝛽).26 Their approach necessitates the 

collection of upconverted emission decay curves to determine 𝛽𝛽 for a particular value of 

excitation irradiance. This process is repeated for a variety of irradiances to construct a plot of  

𝛽𝛽 vs. I. This plot can then be fit analytically to obtain 𝐼𝐼𝑡𝑡ℎ, which lies at the value of I for which 

𝛽𝛽 = 0.5. Any errors arising from poor fits to the emission decay data will be compounded, 

potentially leading to a large uncertainty in determining 𝐼𝐼𝑡𝑡ℎ.   

A more practical approach to determine 𝐼𝐼𝑡𝑡ℎ might be to fit experimental upconverted 

fluorescence intensity data with the full expression for 𝐹𝐹𝑠𝑠𝑠𝑠 from eqn (8), and then to obtain 𝐼𝐼𝑡𝑡ℎ 

from the extracted fitting parameters, 𝑘𝑘𝑇𝑇𝐴𝐴, 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇, 𝑘𝑘𝑒𝑒𝑒𝑒, 𝑘𝑘𝑓𝑓𝑓𝑓, 𝑘𝑘𝑁𝑁𝑁𝑁𝐴𝐴 , and the two known 

quantities [𝐴𝐴]0, and [𝑆𝑆]0. Fitting is an attractive strategy for finding 𝐼𝐼𝑡𝑡ℎ, because all data points 

contribute to the determination of the value of this parameter, not just those at low and high 

irradiance. As an example, we fitted experimental data on upconverted fluorescence from a 

solution of 0.05 mM PtOEP and 1 mM DPA in toluene, the results of which are presented in 

Fig. 8a. The fit yielded an R2 value of 0.9997. Based on the fit, Ith has a value of 116.5 mW/cm2, 
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which is little less than twice the value of 74.2 mW/cm2 determined from the intersection point 

between tangential lines that were drawn over the data.  

 

Fig. 8 Fits (solid lines) to experimental TTA-UC emission versus irradiance data (symbols) 

using the quadratic model. The data in (a) were collected for this paper and the data in (b) are 

from Deng et al.27 In (b), the solid black line is a fit to all of the data, and the dashed green line 

is a fit to only the blue data points. See Table S1 for the values of the parameters. 

 

Because our TTA model predicts saturation at high irradiances, we can fit data that hint at 

fluorescence saturation. For example, in fitting upconverted fluorescence data by Deng et al. 

from Pt(II) tetraphenyltetrabenzoporphyrin sensitized boron dipyrromethene systems, we 

found that our model fit conformed well to the entirety of the authors’ original data, including 
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the regions in which clear deviations from linearity are observed at high irradiance.27 

Furthermore, it is possible to use our model to fit upconverted fluorescence data over a limited 

range of irradiance to extract reliable information that may aid in predicting the behavior of the 

TTA-UC process beyond the experimental window. In Fig. 8b we show that it is possible to 

obtain comparable fits both to the original data of Deng et al. and to a truncated version in 

which only upconverted fluorescence data points for irradiances between ~1 and ~100 mW/cm2 

were considered. 

It is important to note that although the kinetic parameters obtained from best fits to 

experimental TTA-UC data may not be unique, performance metrics such as 𝐼𝐼𝑡𝑡ℎ or the 

theoretical quantum yield Φ𝑈𝑈𝑈𝑈 obtained by this fitting method are accurate. The system studied 

by Deng et al. appeared to lack of an extended region in the log-log plot in which the slope 

remained at ~1, which means that theoretically determined values of 𝐼𝐼𝑡𝑡ℎ from fitted parameter 

values would not be meaningful. Therefore, rather than comparing 𝐼𝐼𝑡𝑡ℎ values from the complete 

and truncated fits, we instead compare the points at which the local slope is expected to attain 

a value of 1 (𝐼𝐼1). 𝐼𝐼1 values of 84.3 mW/cm2 and 87.9 mW/cm2 were obtained from parameters 

extracted from the complete and truncated fits, respectively, demonstrating that this fitting 

method works well even when the dynamic range of the experimental data is limited.  

We were able to make robust fits to upconverted fluorescence data from a broad sampling 

of literature data (Figs. S14 and S15).11, 12, 28-32 These fits enabled us to calculate 𝛿𝛿𝐼𝐼 using the 

values of 𝐼𝐼𝑡𝑡ℎ that were quoted by the authors (Fig. S16). Moreover, our model is able to fit 

upconversion data from non-solution-based TTA-UC systems, such as dispersed 

sensitizer/annihilator assemblies,33 spin-coated TTA-UC thin films,34, 35 metal-ion-linked 

sensitizer/annihilator multilayers,36 perovskite-sensitized annihilator/acceptor solid films,37 

nanocrystal-sensitized upconversion systems,38 and upconverting core/shell nanoparticles39, 40 

(Figs. S17-S19). The only literature systems we examined for which our model could not fit 
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the TTA-UC data were gels41, 42 (Fig. S20), and TTA-UC devices.43-45 To apply our model to 

TTA-UC systems in gels, we believe that adjustments would have to be made to account for 

additional processes, such as oxygen quenching and singlet fission within the gel pores. 

Modelling the complex relationship between photogenerated current from a TTA-UC device 

and irradiance would require careful consideration of factors such as electron injection, charge 

regeneration effects, and exciton loss due to recombination events in trap states.   

Alternatives to 𝑰𝑰𝒕𝒕𝒕𝒕 as a metric for TTA-UC systems 

As we have seen, an early onset of saturation could belie the true performance of a TTA-UC 

system. In fact, 𝐼𝐼𝑡𝑡ℎ becomes meaningless when a system experiences an onset of saturation 

well before TTA becomes efficient. Therefore, 𝐼𝐼𝑡𝑡ℎ should not be relied upon as the sole metric 

to judge the performances of TTA-UC systems. The ratio 𝜓𝜓 = log (𝐼𝐼𝑡𝑡ℎ)
log (𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠)−log (𝐼𝐼𝑡𝑡ℎ)

 is an alternative 

means of characterizing the potential of a TTA-UC system. For an ideal TTA-UC 

system, log (𝐼𝐼𝑡𝑡ℎ) should be as small as possible, whereas log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ) should be large, such 

that 𝜓𝜓 ≪ 1. The reverse is true for a non-ideal system.  

Another alternative is the ratio 𝜉𝜉 = 𝐼𝐼𝑡𝑡ℎ
𝐼𝐼𝑐𝑐𝑐𝑐

, where 𝐼𝐼𝑐𝑐𝑐𝑐, the critical irradiance, is the irradiance at 

which the expression for 𝐹𝐹𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙𝑙𝑙, eqn (18), is equal to the expression for 𝐹𝐹𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠, eqn (31):  

𝐼𝐼𝑐𝑐𝑐𝑐 =  𝑘𝑘𝑇𝑇
𝐴𝐴

𝑘𝑘𝑒𝑒𝑒𝑒
� 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0(𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁

𝐴𝐴 )
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[𝑆𝑆]0(1.25(𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁

𝐴𝐴 )+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0)
  .    (42) 

Here for simplicity, we have assumed that 𝑘𝑘𝐼𝐼𝐼𝐼 ≫ 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0. 𝐼𝐼𝑐𝑐𝑐𝑐 is a balance among all the 

parameters that govern the TTA process. The critical irradiance decreases as 𝑘𝑘𝑒𝑒𝑒𝑒, 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇, [𝑆𝑆]0, 

and 𝑘𝑘𝑇𝑇𝐴𝐴 increase, but increases when 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and [𝐴𝐴]0 increase. The ratio 𝜉𝜉 can be expressed as 

𝜉𝜉 = 𝑘𝑘𝑇𝑇
𝐴𝐴� (𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁

𝐴𝐴 )+𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑆𝑆]0
1.25𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇[𝑆𝑆]0𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴]0(𝑘𝑘𝑓𝑓𝑓𝑓+𝑘𝑘𝑁𝑁𝑁𝑁

𝐴𝐴 ) 
.                                              (43) 
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This ratio decreases when any of the parameters 𝑘𝑘𝑒𝑒𝑒𝑒, 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇, [𝑆𝑆]0, 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, [𝐴𝐴]0, increases, and 

when 𝑘𝑘𝑇𝑇𝐴𝐴 decreases. Hence, we desire 𝜉𝜉 to be as small as possible.  

We explored the applicability of these proposed metrics to TTA-UC systems from 

literature. We began by fitting the experimental data with our quadratic TTA model. We then 

used the fit to determine 𝐼𝐼𝑡𝑡ℎ, log (𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ), and 𝐼𝐼𝑐𝑐𝑐𝑐. In Figs. 9a-9d, we compare the 

performance of six experimental TTA-UC systems from literature in terms of their 𝜓𝜓, 𝜉𝜉, and 

𝐼𝐼𝑡𝑡ℎ values, respectively, in addition to the projected TTA-UC quantum yield.  

 

 

Fig. 9 Comparison of the metrics (a) Ith, (b) ψ, (c) ξ, and (d) ΦUC for six different TTA-UC 

systems from the literature,11, 27, 28, 30, 32, 35 as well as (e) a comparison of the first three metrics 

to ΦUC.  

Some of our findings were surprising. For instance, although the extracted values of 𝐼𝐼𝑡𝑡ℎ 

from Ogawa et al.,11 Deng et al.,27 and Olesund et al.,28 were similar (~10 – 15 mW/cm2), the 

values of 𝜓𝜓 and 𝜉𝜉 that were obtained from their data are quite different. The PtOEP/DPA 

mixture that was studied by Olesund et al.28 exhibited the best performance, with 𝜓𝜓 and 𝜉𝜉 
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values of 0.1673 and 0.00087, respectively. The self-assembled TTA-UC system that was 

studied by Ogawa et al.11 had a poorer performance, as evidenced by a reduced analytical 

transition width, log (𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ). A 𝜓𝜓 value of 0.2065 and a 𝜉𝜉 value of 0.0032 were determined 

from their data. Respective values of 𝜓𝜓 and 𝜉𝜉 of 2.512 and 0.3920 were obtained by analyzing 

upconverted fluorescence data from Deng et al.27 When we analyzed an earlier work on TTA-

UC emission from Gray et al.32, we found that their system possessed a relatively large 𝐼𝐼𝑡𝑡ℎ (~70 

mW/cm2). However, their system also exhibited low 𝜓𝜓 and 𝜉𝜉 values (0.3010 and 0.00088, 

respectively). Lin et al.35 studied TTA-UC from mixtures of diiodo-BODIPY and perylene. 

Their system exhibited an extraordinarily low 𝐼𝐼𝑡𝑡ℎ of 8.9 mW/cm2, although the data exhibited 

an early onset of saturation. We found high 𝜓𝜓 and 𝜉𝜉 values of 0.6225 and 0.1194, respectively, 

from fits performed on their data.  

One key aspect of a good performance metric is a strong correlation with Φ𝑈𝑈𝑈𝑈. 

Accordingly, in Fig. 9e we plot each of the performance metrics versus Φ𝑈𝑈𝑈𝑈. For consistency, 

the quantum yield was determined from the best fit to each of the 6 sets of literature data with 

our TTA model. Neither log(Ith) nor ψ is correlated strongly with Φ𝑈𝑈𝑈𝑈, although there is a 

rough trend for ψ to decrease with increasing Φ𝑈𝑈𝑈𝑈. Therefore, neither of these metrics is a good 

predictor of Φ𝑈𝑈𝑈𝑈. On the other hand, ξ decreases with increasing quantum yield, and so may 

be a good proxy for Φ𝑈𝑈𝑈𝑈. From a different standpoint, 𝜓𝜓 is an excellent complementary metric 

to ξ considering that a TTA-UC system’s upconversion quantum yield and its ability to perform 

efficiently at low excitation powers are both important. 

Conclusions and future outlook 

We have developed a mass-conserving TTA model that is able to describe TTA-UC behaviour 

over all irradiance regimes. An important consequence of including mass conservation is that 

the upconverted fluorescence intensity saturates once the rate of excitation exceeds the rate of 
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triplet sensitization. The quantity 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 determines the point at which upconverted fluorescence 

saturation becomes significant and is highly dependent on the product 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝐴𝐴0]. We have also 

considered the behavior of the local slope n, which quantifies the dependence of upconverted 

fluorescence intensity on the irradiance I. It is beneficial for a TTA-UC system to remain in 

the linear regime, where n ~ 1, while avoiding fluorescence signal saturation. Therefore, there 

exists a region of irradiance through which a TTA-UC system performs most optimally, which 

we have defined via the quantities Γ and log(𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠/𝐼𝐼𝑡𝑡ℎ). Indeed, we show that an early onset of 

saturation, which occurs when 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 ≪ 𝐼𝐼𝑡𝑡ℎ, might lead to the false conclusion that the TTA-UC 

system in question possesses a small 𝐼𝐼𝑡𝑡ℎ. Another important consequence of incorporating mass 

conservation in an analytical TTA model is that the TTA quantum yield is limited by the 

quantities 𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑘𝑘𝑇𝑇𝐴𝐴, in contrast to what had been thought based on prior kinetic models.  

We have also illustrated the difficulty in obtaining 𝐼𝐼𝑡𝑡ℎ through a graphical inspection of a 

logarithmic plot of upconverted fluorescence vs. irradiance. We demonstrated that with a 

limited dynamic range, it is nearly impossible to observe a complete transition in local slope 

from a value of 2 to a value of 1. An alternative strategy to determine 𝐼𝐼𝑡𝑡ℎ, as well as other useful 

system parameters, is to fit experimental upconverted fluorescence data with our quadratic 

model. Our model successfully fits experimental upconverted fluorescence data from a wide 

range of different systems, although we find that the model is inadequate in replicating the 

behavior of upconverted fluorescence from TTA-UC gels and devices. Given the inability of 

𝐼𝐼𝑡𝑡ℎ to make an accurate prediction of the performance of a TTA-UC system that exhibits an 

early onset of saturation, we have proposed the use of additional figures of merit, and 

demonstrated their determination from literature data using our fitting method.  

It should also be noted that although we have demonstrated our ability to determine 𝐼𝐼𝑡𝑡ℎ 

with our fitting method, we have found that different combinations of system parameters might 
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lead to an equally good fit and near identical values of 𝐼𝐼𝑡𝑡ℎ. When armed with a rough 

knowledge of the critical system parameters 𝑘𝑘𝑇𝑇𝐴𝐴 and 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, however, fits with unique parameter 

values can be made. It would be useful in the future to extend the model to include effects such 

as triplet energy back-transfer from the annihilator to the sensitizer, singlet fission, and an 

inhomogeneous distribution of sensitizers and annihilators across a sample. 
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