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Generalization of Safe Optimal Control Actions
on Networked Multi-Agent Systems

Lin Song, Neng Wan, Aditya Gahlawat, Chuyuan Tao, Naira Hovakimyan, and Evangelos A. Theodorou

AbstractÐ We propose a unified framework to instantly
generate a safe optimal control action for a new task
from existing controllers on multi-agent systems (MASs).
The control action composition is achieved by taking a
weighted mixture of the existing controllers according to
the contribution of each component task. Instead of so-
phisticatedly tuning the cost parameters and other hyper-
parameters for safe and reliable behavior in the optimal
control framework, the safety of each single task solution
is guaranteed using the control barrier functions (CBFs) for
high relative degree stochastic systems, which constrains
the system state within a known safe operation region
where it originates from. Linearity of CBF constraints in
control ensures the feasibility of safe control action compo-
sition. The discussed framework can immediately provide
reliable solutions to new tasks by taking a weighted mixture
of solved component-task actions and satisfying some CBF
constraints, instead of performing an extensive sampling
to compute a new controller. Our results are verified and
demonstrated on both a single UAV and two cooperative
UAV teams in an environment with obstacles.

Index TermsÐ Stochastic Optimal Control, Safe Control,
Multi-Agent Systems, Control Barrier Functions

I. INTRODUCTION

O
PTIMAL control design by minimizing a cost function

or maximizing a reward function has been investigated

for various systems [1], [2]. Specifically, stochastic optimal

control problems consider minimizing a cost function for

dynamical systems subject to random noise [3], [4]. Although

such formulation captures a wide class of real-world prob-

lems, stochastic optimal control actions are typically difficult

and expensive to compute in large-scale systems due to the

curse of dimensionality [5]. To overcome the computation

challenges, many approximation-based approaches, including

cost parameterization [6], path-integral formulation [7], value

function approximation [8] and policy approximation [9],

have been proposed. Exponential transformation on the value
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function was applied in [10] such that linear-form solutions to

stochastic optimal control problems were achieved, and thus

the computational efficiency was improved. Optimal control

problems whose solutions can be obtained by solving reduced

linear equations are generally categorized as linearly-solvable

optimal control (LSOC) problems in [11]. These formulations

leverage the benefits of LSOC problems, including com-

positionality and path-integral representation of the optimal

solution [12]. Path integral (PI) control approach usually

requires extensive sampling on given dynamical models. How-

ever, the compositionality property enables the construction of

composite control by taking a weighted mixture of existing

controllers to solve a new task in a certain class without

sampling on the dynamical system again, and thus improves

the computation efficiency [13], [16]. The methodology of

combining and reusing existing controllers has been explored

and validated on different systems, from single-agent systems

(e.g., 3-dimensional robotic arm [13] and physically-based

character animation [14]) to networked multi-agent systems

(e.g., a cooperative UAV team [15]).

Networked multi-agent systems enable coordination be-

tween agents and have a wide range of real-world applications,

including cooperative vehicles [17], robotics [18], sensor net-

works [19], and transportation systems [20]. The decentralized

POMDP (Dec-POMDP) model in [21], formulates the control

problem in multi-agent systems under uncertainty with only lo-

cal state information available. A dynamic programming (DP)-

based approach has been investigated on the Dec-POMDP

model in [22] towards the search for the optimal solution.

However, the computation required for solving such systems

grows exponentially as the system state dimension scales.

To tackle the difficulties in computation, approximation-based

approaches and distributed algorithms based on certain net-

work partition have been discussed. In [23], the expectation-

maximization (EM) algorithm was introduced on the Dec-

POMDP model, where optimal policies were represented as

finite-state controllers to improve the scalability. Q-value func-

tions are approximated and efficient computation of optimal

policies is achieved in [24]. Furthermore, fully-decentralized

reinforcement learning algorithms were investigated on net-

worked MASs using function approximation in [25]. Com-

pared to aforementioned approaches, path integral (PI) for-

malism of stochastic optimal control problem solutions re-

lies on sampling of the stochastic differential equation, and

is applicable to large-scale nonlinear systems. Path integral

formulation has demonstrated higher efficiency and robustness
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in solving high-dimensional reinforcement learning problems

in [7]. Path integral control approach has also been extended to

MASs, and an approximate inference method was applied to

approximate the exact solution in [27]. A distributed algorithm

proposed in [26] partitions the networked MAS into multiple

subsystems, from which local control actions are computed

with limited resources.

However, the optimal solution to a cost-minimization prob-

lem is not always reliable and applicable in the real world,

especially in safety-critical scenarios. Guaranteed-safe control

actions have attracted researchers’ interest, both in controller

design [28], [30], and in verification [29], [31]. Control barrier

functions (CBFs) have been proposed as a powerful tool to

enforce safe behavior of system states by introducing extra

constraints on the control inputs [32]. Control barrier functions

are required to be finite (for Reciprocal CBF) or positive (for

Zero CBF) as the system operates within the known safe

region. CBF can be constructed empirically [33] or learned

from data [35], [36]. Along with optimization-based control

actions or reinforcement learning (RL) techniques, the CBF-

based approach to ensure safety has achieved satisfying results

in various application scenarios, including bipedal locomotion

under model uncertainty [34], autonomous vehicles [37], and

UAVs [38]. Recently, CBF techniques were generalized to

stochastic systems with high-probability guarantees, in cases

of both complete and incomplete information in [40], and also

in high relative degree stochastic systems [39]. A sub-optimal

and also stabilizing controller for linearly-solvable stochastic

systems is synthesized in [45] utilizing sum-of-square (SOS)

programming with guaranteed performance. Safety-critical

control problem for networked systems leveraging CBF-based

techniques on the sub-problems has been investigated in [44],

with applications to power grid systems. To achieve the state-

trajectory tracking goal and associated safe certificates on

nonlinear and complicated systems, contraction-based methods

are applicable on both nominal dynamics [41] and uncertain

dynamics [42].

However, efficient computation of certified-safe stochastic

optimal control solutions on MASs is still an open prob-

lem. The main contribution of this paper is a framework

of generalizing optimal control actions while ensuring safety

on networked MASs; the architecture is illustrated in Fig. 1.

When multiple solved control problems on MASs share iden-

tical dynamical information, but are slightly different in some

aspects, such as terminal states and final costs, instead of

sampling on the given dynamical system again to solve a

new task, the compositionality of achieved control actions

can be leveraged, and the existing controllers of these solved

problems can be weighted and mixed to solve a new problem

and drive the system to a new target. The baseline optimal

control for the new task is first obtained by mixing exist-

ing certified-safe controllers. Then, a post-composite con-

strained optimization using CBFs is formulated to constrain

the baseline control and thus guarantee the safety. The task

generalization capability of resulting control actions allows

direct and efficient computation of a new problem solution

without re-sampling in a certain problem class. Compared

with our preliminary work [15], we furthermore incorporate

Fig. 1. The architecture of the proposed safe composition control
framework.

safety constraints on the compositionality of LSOC problem

solutions. The proposed strategy is validated via numerical

simulations on both single UAV and two cooperative UAV

teams.

The rest of the paper is organized as follows: Section II

introduces the preliminaries of formulating stochastic control

problems, linearly-solvable optimal control (LSOC) problems,

and stochastic CBFs; Section III introduces the composition-

ality of LSOC problem solutions on networked MASs; Sec-

tion IV introduces the achieved certified-safe optimal control

actions on MASs and the generalization of proposed control

actions with safety guarantees; Section V provides numerical

simulations in three scenarios validating the proposed ap-

proach; the conclusion of this paper and some open problems

are discussed in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

We start by introducing some preliminary results of optimal

control actions in stochastic systems, including both the single-

agent and multi-agent scenarios. Then an extension of control

barrier functions (CBFs) to stochastic systems is presented,

which enables the proposed safe and optimal control frame-

work introduced in Section IV.

A. Stochastic optimal control problems

1) Single-Agent Systems: Consider a continuous-time dy-

namical system described by the Itô diffusion process:

dxt = g(xt)dt+B(xt)[u(xt, t)dt+ σdω] (1)

= f(xt, ut)dt+ F (xt, ut)dω,

where xt ∈ R
M is the state vector with M denoting the state

dimension, g(xt) ∈ R
M , B(xt) ∈ R

M×P are locally Lipschitz

continuous functions, representing the passive/autonomous dy-

namics and control matrix, and P is the input dimension,

u(xt, t) ∈ R
P is control input, f is the deterministic drift

term and F is the diffusion coefficient. The noise dω ∈ R
P

is a vector of Brownian components with zero-mean and unit

rate of variance, positive definite matrix σ ∈ R
P×P denotes

the covariance of noise dω. We also assume σ to be lo-

cally Lipschitz continuous. The Lipschitz continuity conditions

guarantee the uniqueness of the stochastic differential equation

(SDE) solution.

Let B denote the set of boundary states (terminal states) and

I denote the set of interior states (non-terminal states), i.e.,
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the entire allowable state space S := I ∪B. When xt ∈ I, the

running cost function is defined as:

c(xt, ut) = q(xt) +
1

2
u(xt, t)⊤Ru(xt, t), (2)

where q(xt) ≥ 0 is a state-related cost and u(xt, t)⊤Ru(xt, t)
is a control-quadratic term with R being a positive definite

matrix. When xtf ∈ B, the terminal cost function is denoted

by ϕ(xtf ) and tf is the final time. The cost-to-go function

Ju(xt, t) for the first-exit problem under control action u can

be defined as:

Ju(xt, t) = E
u
xt,t[ϕ(x

tf ) +

∫ tf

t

c(x(τ), u(τ))dτ ], (3)

where the expectation is taken with respect to the probability

measure under which x is the solution to (1) given the control

law u and initial condition xt as in [26]. In the first-exit

formulation, tf is computed online as the time a terminal state

x ∈ B is first reached. The value function V (xt, t) is defined

as the optimal cost-to-go function:

V (xt, t) = min
u

E
u
xt,t[ϕ(x

tf ) +

∫ tf

t

c(x(τ), u(τ))dτ ]. (4)

The value function is the minimal cost-to-go function starting

from the state xt. For notation simplicity, the time-evolution

of the state is omitted in the following text.

Efficient computation of optimal control action for system

(1) in the first-exit and and finite-horizon setting is introduced

in [10] and [16], and we briefly summarize the results here.

First define a stochastic second-order differentiator L(u)[V ] =
f⊤∇xV + 1

2 tr(FF⊤∇2
xxV ) with f and F defined in (1) as

in [10], and then the value function V satisfies the stochastic

Hamilton-Jacobi-Bellman (HJB) equation as follows:

0 = min
u

{c(x, u) + L(u)[V ](x)}. (5)

With the desirability function Z(x, t) = exp(−V (x, t)/λ) and

under the nonlinearity cancellation condition σσ⊤ = λR−1,

the linear-form optimal control action for continuous-time

stochastic systems is obtained as

u∗(x, t) = σσ⊤B⊤(x)
∇xZ(x, t)

Z(x, t)
. (6)

As the above optimal control is adopted, the computation of

the linear differentiator L is no longer dependent on control u,

and the subscript u in the operator definition is omitted, i.e.,

L[Z] = g⊤∇xZ + 1
2 tr(FF⊤∇2

xxZ), then the corresponding

transformed linear HJB equation takes the form of 0 = L[Z]−
qZ.

2) Multi-Agent Systems: For a networked multi-agent sys-

tem governed by mutually independent passive dynamics, the

index set of all the agents neighboring or adjacent to agent i is

denoted by Ni. The factorial subsystem for agent i includes all

the agents directly communicating with agent i and the agent

itself, and is denoted by N̄i := Ni∪{i}, and the cardinality of

set N̄i is denoted by |N̄i|. Consider the joint continuous-time

dynamics for factorial subsystem N̄i as in [26]:

dx̄i = ḡi(x̄i)dt+ B̄i(x̄i)[ūi(x̄i, t)dt+ σ̄idω̄i], (7)

where the joint state vector is denoted by x̄i = [x⊤
i , x

⊤
j∈Ni

]⊤ ∈

R
M ·|N̄i|, the joint passive or autonomous dynamics vec-

tor is denoted by ḡi(x̄i) = [gi(xi)
⊤, gj∈Ni

(xj)
⊤]⊤ ∈

R
M ·|N̄i|, the joint control matrix is denoted by B̄i(x̄i) =

[Bi(xi), 0;0, Bj∈Ni
(xj)] ∈ R

M ·|N̄i|×P ·|N̄i|, the joint control

action vector is ūi(x̄i, t) = [ui(x̄i, t)
⊤, uj∈Ni

(x̄i, t)
⊤]⊤ ∈

R
P ·|N̄i|, and ω̄i = [ω⊤

i , ω
⊤
j∈Ni

]⊤ ∈ R
P ·|N̄i| is the joint

noise vector with covariance matrix σ̄i = diag{σi, σj∈Ni
} ∈

R
P ·|N̄i|×P ·|N̄i|. As in the single-agent scenario, we also as-

sume ḡi, B̄i, σ̄i are locally Lipschitz continuous.

Let B̄i denote the set of boundary joint states (terminal

joint states), and Īi denote the set of interior joint states (non-

terminal joint states), i.e., the entire allowable joint state space

S̄i := Īi ∪ B̄i. When x̄i ∈ Īi, the running cost function of the

joint states of N̄i is defined as:

ci(x̄i, ūi) = qi(x̄i) +
1

2
ūi(x̄i, t)

⊤R̄iūi(x̄i, t), (8)

where qi(x̄i) ≥ 0 is a joint-state-related cost, and

ūi(x̄i, t)
⊤R̄iūi(x̄i, t) is a control-quadratic term with R̄i ∈

R
P ·|N̄i|×P ·|N̄i| being a positive definite matrix. When x̄

tf
i ∈

B̄i, the terminal cost function is denoted by ϕi(x̄
tf
i ) and tf is

the final time. Specifically, when the central agent state x
tf
i ∈

Bi, we also have the terminal cost function ϕi(x
tf
i ) defined.

Following the computation procedure as in the single-agent

scenario, the minimal cost-to-go function (value function) is:

Vi(x̄
t
i, t) = min

ūi

E
ūi

x̄t
i
,t
[ϕi(x̄

tf
i )+

∫ tf

t

ci(x̄i(τ), ūi(τ))dτ ], (9)

and the value function is the minimum of expected cumulative

running cost starting from joint state x̄t
i.

Similar to the single-agent scenario, the desirability function

over the joint state x̄i is defined as

Z(x̄i, t) = exp[−Vi(x̄i, t)/λi] (10)

and the condition σ̄iσ̄
⊤
i = λiR̄

−1
i is satisfied to cancel the

nonlinear terms. The linear-form joint optimal control action

for the factorial subsystem N̄i in the networked MAS under

aforementioned decentralization topology is derived in [26]

and the result is in the form of

ū∗
i (x̄i, t) = σ̄iσ̄

⊤
i B̄i(x̄i)

⊤∇x̄i
Z(x̄i, t)

Z(x̄i, t)
. (11)

In the computation of optimal control law for MASs, we

follow the approximation to (11) in the path-integral reformu-

lation introduced in Proposition 3 of [26]. For more detailed

information on the path-integral control and stochastic optimal

control, interested readers can refer to [4], [7], [13], [26], [27],

[46], [47].

Remark 1. Only the central agent i of the factorial subsystem

N̄i samples or selects the local optimal control action u∗
i (x̄i, t)

from the joint optimal control action ū∗
i (x̄i, t) according to the

computation results on factorial subsystem N̄i.

B. Stochastic control barrier function (SCBF) as a safety

filter

Optimization-based control actions achieve the goal of cost

minimization, but seldom provide rigorous guarantees on sat-

isfying the commanded constraints, which can be problematic
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in some safety-critical scenarios. Control barrier functions

(CBFs) have been widely used to describe certain safe operat-

ing region and can guarantee invariance of safe sets. Recently,

CBFs have also been investigated in stochastic systems in [39].

We refer to the CBFs as a safety filter to highlight that the

constrained control actions satisfying CBF constraints are safe-

guaranteed.

Definition 1 (zero-CBF for stochastic systems). A locally

Lipschitz and twice-differentiable function h(x) on int(C) :=
{x : h(x) > 0} serves as a zero-CBF (ZCBF) for a system

described by the stochastic differential equation (SDE) (1), if

for all x satisfying h(x) > 0 there exists a u satisfying

∂h

∂x
(g(x) +B(x)u) +

1

2
tr(σ⊤B⊤(x)(

∂2h

∂x2
)B(x)σ) ≥ −h(x).

(12)

Lemma 1 (State-invariant guarantees by definition of the

ZCBF). Define the safe operating region C = {x : h(x) ≥ 0}.

If ut satisfies (12) for all t, then P(xt ∈ C, ∀t) = 1, provided

x0 ∈ C.

It is apparent that the safety guarantees rely on the exis-

tence of control u satisfying (12). However, in some cases

(high relative degree systems, which will be introduced later),
∂h
∂x

B(x) = 0 for some x, and thus control u satisfying (12)

may not exist. For such systems, the safety guarantees given by

the constraint (12) are no longer applicable. We next introduce

the definition of relative degree of systems adapted from [43].

Definition 2 (Relative degree). The relative degree of a

continuously differentiable function h : Rn → R with respect

to system (1) is the number of times differentiation is taken

along the dynamics of (1) until the control u explicitly shows.

Remark 2. Note for the systems satisfying ∂h
∂x

B(x) ̸= 0 for

all x at each time step, h(x) can be directly taken as the

CBF and (12) is treated as the CBF constraints to ensure

safety. However, for systems violating ∂h
∂x

B(x) ̸= 0 for some

x (referred to as high relative degree systems), another set of

CBFs needs to be particularly constructed.

We next introduce a theorem modified from [39] construct-

ing ZCBFs for high relative degree stochastic systems, which

our proposed safe control framework is built upon.

Theorem 1 (Construction of ZCBF for high relative degree

stochastic systems). Define the ZCBFs for high relative degree

stochastic systems (1) as h0(x) = h(x), and subsequently

hi+1(x) =
∂hi

∂x
g(x)

+
1

2
tr(σ⊤B⊤(x)(

∂2hi

∂x2
)B(x)σ) + hi(x), (13)

i = 0, 1, 2, . . . , and define C̄r =
⋂r

i=0 Ci with Ci = {x :
hi(x) ≥ 0} and C = {x : h(x) ≥ 0}. Suppose that there

exists r such that, for any x ∈ C̄r, we have ∂hi

∂x
B(x)u ≥ 0 for

i < r and

∂hr

∂x
(g(x)+B(x)u)+

1

2
tr(σ⊤B⊤(x)(

∂2hr

∂x2
)B(x)σ) ≥ −hr(x).

(14)

Then P(xt ∈ C, ∀t) = 1 if x0 ∈ C̄r.

Proof. Provided ut satisfies (14), by Lemma 1, we have xt ∈
Cr, ∀t if x0 ∈ Cr, which is equivalent to hr(x

t) ≥ 0, ∀t if

x0 ∈ Cr. By the construction of the high relative degree ZCBFs

as in (13), we have

hr(x) =
∂hr−1

∂x
g(x)+

1

2
tr(σ⊤B⊤(

∂2hr−1

∂x2
)Bσ)+hr−1(x) ≥ 0.

(15)

Since
∂hr−1

∂x
B(x)u ≥ 0, once added to both sides of (15), we

have

hr(x) +
∂hr−1

∂x
B(x)u =

∂hr−1

∂x
(g(x) +B(x)u)

+
1

2
tr(σ⊤B⊤(

∂2hr−1

∂x2
)Bσ)

+ hr−1(x) ≥ 0,

which satisfies (12), and thus we have xt ∈ Cr−1, ∀t if x0 ∈
Cr−1. By induction, we have

xt ∈ Ci, ∀t if x0 ∈ Ci, i = 0, 1, 2, . . . , r,

which is equivalent to xt ∈ C0 = C, ∀t if x0 ∈
⋂r

i=0 Ci =
C̄r.

III. CONTROL COMPOSITIONALITY

Considering that the optimal control action takes a linear

form ((6) in the single-agent scenario and (11) in the multi-

agent scenario) and the transformed HJB equation can also be

linear, assume there are multiple solved problems (we refer to

them as component problems) and one new problem to solve

(we refer to it as the composite problem), that share identical

dynamical information and satisfy certain conditions on the

final cost; the composite desirability function first solves the

composite HJB equation and thus a composite control action

can be obtained analytically by combining existing component

control actions. We also refer the capability of control law by

composition solving a new task as control generalization.

First assume there are L problems in MASs to solve,

governed by identical dynamics (7), running cost rates (8),

set of initial joint states, and set of interior joint states Īi, but

differ at the final costs and boundary joint states. For factorial

subsystem N̄i, denote the final cost of the component problem

l on joint states x̄i as ϕ
{l}
i (x̄

tf
i ), and the corresponding

desirability function as Z{l}(x̄i, tf ). Suppose the composite

final cost ϕi(x̄
tf
i ) satisfies

ϕi(x̄
tf
i ) = −λi log(

L
∑

l=1

ω
{l}
i exp(−

1

λ
{l}
i

ϕ
{l}
i (x̄

tf
i ))), (16)

for some set of weights ω
{l}
i and scalars λi, λ

{l}
i . Then the

composite desirability function can be computed by definition

as:

Z(x̄i, tf ) =

L
∑

l=1

ω
{l}
i Z{l}(x̄i, tf ). (17)

Furthermore, consider the desirability function solves a linear

HJB equation after the exponential transformation (10), once

the composite condition on the desirability function (17) holds
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on the boundary, it holds everywhere, and the compositionality

of optimal control actions can thus be established. The result of

control generalization is formulated in the next theorem. Such

formulation is especially useful when the component control

actions are analytically solvable but costly; then the control

action solving the new task can be constructed by composition

in a sample-free manner and is less computationally expensive.

Remark 3. A necessary condition to apply the composite

control result is that there exist sufficient amount of com-

ponents or solved tasks such that (16) holds, which can be

realized by two approaches in practice. For some problems,

when we can directly design the terminal cost for the new

task, i.e., ϕi(x̄
tf
i ), the condition (16) can be easily satisfied

by choosing the terminal cost of the new task appropriately

as in [13]. For other problems, when the terminal cost for

the new task ϕi(x̄
tf
i ) is already given, we need to determine

a set of weights ω
{l}
i solving (16), which requires ω

{l}
i to be

the unique solution to (16). The existence and uniqueness of

the composite weights ω
{l}
i can be examined by evaluating the

matrix rank. A feasible way to examine this is using the matrix

singular value decomposition (SVD) as in [16]. A minimal

component problem set is constructed by a low-rank matrix

approximation using SVD, and the component problems within

the set are sufficient to generalize to a new task. In this paper,

we mainly consider the former scenario.

Theorem 2 (Continuous-time MAS compositionality). Sup-

pose there are L multi-agent LSOC problems in continuous-

time on factorial subsystem N̄i with joint states x̄i and central

agent state xi, governed by the same joint dynamics (7),

running cost rates (8), the set of initial joint states and the set

of interior joint states Ii, but various terminal costs ϕ
{l}
i and

terminal joint states x̄d{l}

i (l = 1, . . . , L). Define the terminal

joint state for a new problem as x̄d
i and the composition

weights as

ω̄
{l}
i = exp(−

1

2
(x̄d

i − x̄d{l}

i )⊤P (x̄d
i − x̄d{l}

i )), (18)

with P being a positive definite diagonal matrix. Suppose the

terminal cost for the new problem satisfies

ϕi(x̄
tf
i ) = −λi log(

L
∑

l=1

ω̃
{l}
i exp(−

1

λ
{l}
i

ϕ
{l}
i (x̄

tf
i ))), (19)

where x̄
tf
i denotes the boundary joint states, λi, λ

{l}
i are

scalars and ω̃
{l}
i =

ω̄
{l}
i∑

L
l=1

ω̄
{l}
i

can be interpreted as the

probability weights. The optimal control law solving the new

problem is obtained by a weighted combination of the existing

controllers

ū∗
i (x̄i, t) =

∑L

l=1
W̄

{l}
i (x̄i, t)ū

∗{l}

i (x̄i, t), (20)

with

W̄
{l}
i (x̄i, t) =

ω̃
{l}
i Z{l}(x̄i, t)

∑L
e=1 ω̃

{e}
i Z{e}(x̄i, t)

(21)

and the individual desirability function Z{l}(x̄i, t) takes the

form of (10).

Proof. From composition of the terminal-cost function in

continuous-time given by (19), we have

exp(−
1

λi

ϕi(x̄
tf
i )) =

L
∑

l=1

ω̃
{l}
i exp(−

1

λ
{l}
i

ϕ
{l}
i (x̄

tf
i )).

From (9), at the terminal time step, we have Vi(x̄i, tf ) =

ϕi(x̄
tf
i ) and for each component problem, it follows

V
{l}
i (x̄i, tf ) = ϕ

{l}
i (x̄

tf
i ). Consider the desirability function

is in the form of Z(x̄i, t) = exp[−Vi(x̄i, t)/λi]. Then we

have the following composition relationship of desirability

functions:

Z(x̄i, tf ) =
∑L

l=1
ω̃
{l}
i Z{l}(x̄i, tf ). (22)

Since the desirability function solves a linear HJB equation,

once condition (22) holds on the boundary, it holds everywhere

and we have:

Z(x̄i, t) =
∑L

l=1
ω̃
{l}
i Z{l}(x̄i, t). (23)

For the composite problem, the joint optimal control action in

the form of (11), can thus be reduced to

ū∗
i (x̄i, t) = σ̄iσ̄

⊤
i B̄

⊤
i (x̄i)

∇x̄i
Z(x̄i, t)

Z(x̄i, t)

= σ̄iσ̄
⊤
i B̄

⊤
i (x̄i)

∇x̄i

[

∑L
l=1 ω̃

{l}
i Z{l}(x̄i, t)

]

∑L
l=1 ω̃

{l}
i Z{l}(x̄i, t)

=

∑L
l=1 σ̄iσ̄

⊤
i B̄

⊤
i (x̄i)∇x̄i

[

ω̃
{l}
i Z{l}(x̄i, t)

]

∑L
e=1 ω̃

{e}
i Z{e}(x̄i, t)

=

∑L
l=1 σ̄iσ̄

⊤
i B̄

⊤
i (x̄i)Z

{l}(x̄i, t)∇x̄i

[

ω̃
{l}
i Z{l}(x̄i, t)

]

∑L
e=1 ω̃

{e}
i Z{e}(x̄i, t)Z{l}(x̄i, t)

=

L
∑

l=1

ω̃
{l}
i Z{l}(x̄i, t)

L
∑

e=1
ω̃
{e}
i Z{e}(x̄i, t)

σ̄iσ̄
⊤
i B̄

⊤
i (x̄i)

∇x̄i
Z{l}(x̄i, t)

Z{l}(x̄i, t)

=
∑L

l=1
W̄

{l}
i (x̄i, t)ū

∗{l}

i (x̄i, t),

with

W̄
{l}
i (x̄i, t) = ω̃

{l}
i Z{l}(x̄i, t)/

∑L

e=1
ω̃
{e}
i Z{e}(x̄i, t).

IV. COMPOSITION ON CERTIFIED-SAFE CONTROL

ACTIONS

We first propose a revised optimal stochastic control law in-

corporating ZCBF in a multi-agent setting, which can provide

safety guarantees by enforcing certain conditions.

Theorem 3 (Safe and optimal control in MASs). In

continuous-time joint dynamics (7), for factorial subsystem N̄i

with joint states x̄i and central agent state xi, the desirability

function is represented by Z(x̄i, t) = exp[−Vi(x̄i, t)/λi] with

λi ∈ R and Vi(·, t) being the value function, and the joint

optimal control action is given by

ū∗
i (x̄i, t) = σ̄iσ̄

⊤
i B̄

⊤
i (x̄i)

∇x̄i
Z(x̄i, t)

Z(x̄i, t)
. (24)
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As discussed in Section II-A.2, only the central agent i of

each factorial subsystem N̄i selects or samples its local

control action u∗
i (x̄i, t) from (24). Define the ZCBFs for high

relative degree multi-agent systems as h0(xi) = h(xi), and

subsequently

hk+1(xi) =
∂hk

∂xi

gi(xi)

+
1

2
tr(σ⊤

i B
⊤
i (

∂2hk

∂xi
2
)Biσi) + hk(xi), (25)

k = 0, 1, 2, . . . , and define C̄r,i =
⋂r

k=0 Ck,i with Ck,i = {xi :
hk(xi) ≥ 0} and Ci = {xi : h(xi) ≥ 0}. The CBF constraint

for the high relative degree multi-agent system is given by

∂hr

∂xi

(gi(xi) +Bi(xi)u) +
1

2
tr(σ⊤

i B
⊤
i

∂2hr

∂x2
i

Biσi) ≥ −hr(xi),

(26)

where r is selected such that ∂hk

∂xi
Bi(xi)u ≥ 0 holds for k < r

and (26) holds for k = r. Then, the optimal control for the

central agent i of each factorial subsystem N̄i that can also

guarantee the subsystem safety (state-invariant) within Ci is

given by

u∗
s,i = argmin

u∈RP

∥u∗
i − u∥2, (27)

s.t.(26)

where u∗
i is the optimal local control action for the central

agent i sampled from (24).

Proof. The first part (optimal control law) of the theorem

comes from the solution to a linearly solvable optimal control

problem and is established in (11) of Section II-A.2. However,

simply applying the optimal control strategy may not render

the system safe considering the system stochastic noise, since

the control goal such as obstacle-avoidance is captured in

the cost function in the form of soft constraints. For the

second part, a constrained optimization framework is applied

to both minimizing the difference towards the ideal optimal

control sampled from (11) and enforcing the ZCBF constraints

(26) for safety concerns. For high relative degree systems,
∂hk

∂xi
Bi(xi) = 0 for some xi when k < r; and r is selected as

the least positive integer such that ∂hr

∂xi
Bi(xi) ̸= 0 and where

u starts to explicitly show up linearly in (26). Finally, if the

condition (26) holds, the system state is invariant within Ci
and guaranteed by Theorem 1.

Remark 4. For systems satisfying ∂h
∂xi

(xi)B(xi) ̸= 0 at each

time step, h(xi) can be directly applied as the CBF, and

the procedure of constructing high relative degree ZCBFs,

i.e., (25) and (26) are unnecessary. The corresponding CBF

constraint sufficient for safety guarantees becomes:

∂h

∂xi

(gi(xi) +Bi(xi)u) +
1

2
tr(σ⊤

i B
⊤
i (

∂2h

∂x2
i

)Biσi) ≥ −h(xi),

(28)

and the ultimate safe optimal control action is in the form of:

u∗
s,i = argmin

u∈RP

∥u∗
i − u∥2. (29)

s.t.(28)

It is also worth noting that (28) can also be interpreted as

a special case of high relative degree ZCBF constraints with

r = 0.

Furthermore, utilizing the linear compositionality of the

optimal control action in multi-agent systems, along with

the fact that the ZCBF constraints are affine in control, the

above results can be extended to a task-generalization setting,

where the optimal solution to a new control problem can be

achieved by taking a weighted mixture of existing control

actions. Meanwhile, the composite control action is certified-

safe given by an additional step of post-composite constrained

optimization using ZCBFs.

Theorem 4 (Generalization of safe and optimal control in

MASs). Suppose there are L multi-agent LSOC problems in

continuous-time on factorial subsystem N̄i with joint states

x̄i and central agent state xi, governed by the same joint

dynamics (7), running cost rates (8), the set of initial joint

states and the set of interior joint states Īi, but various ter-

minal costs ϕ
{l}
i and terminal joint states x̄d{l}

i (l=1,2,. . . ,L)1.

The safe and optimal control action u∗{l}

s,i (l = 1, 2, . . . , L) for

central agent i solving each single problem is computed via

(27). Denote the terminal joint state for a new problem as x̄d
i

and define the composition weights as

ω̄
{l}
i = exp(−

1

2
(x̄d

i − x̄d{l}

i )⊤P (x̄d
i − x̄d{l}

i )), (30)

with P being a positive definite diagonal matrix. Suppose the

terminal cost for the new problem satisfies

ϕi(x̄
tf
i ) = −λi log(

∑L

l=1
ω̃
{l}
i exp(−

1

λ
{l}
i

ϕ
{l}
i (x̄

tf
i ))), (31)

where x̄
tf
i denotes the boundary joint states, λi, λ

{l}
i are

scalars and ω̃
{l}
i =

ω̄
{l}
i∑

L
l=1

ω̄
{l}
i

. The optimal control that solves

the new problem is directly computable through a weighted

combination of the component problem control solutions:

u∗
i (x̄i, t) =

L
∑

l=1

W̄
{l}
i (x̄i, t)u

∗{l}

s,i (x̄i, t) (32)

with W̄
{l}
i (x̄i, t) = ω̃

{l}
i Z{l}(x̄i, t)/

∑L
e=1 ω̃

{e}
i Z{e}(x̄i, t)

and the individual desirability function Z{l}(x̄i, t) takes the

form of (10), where the local control action u∗{l}

s,j is only

sampled or selected from the computed joint control ū∗{l}

s,j on

factorial subsystem N̄j . Furthermore, the optimal control for

central agent i of each factorial subsystem N̄i that can solve

the composite task and also guarantee the subsystem safety

(state-invariant) within a desired safe set Ci = {xi : h(xi) ≥
0} is given by

u∗
s,i = argmin

u∈RP

∥u∗
i − u∥2, (33)

s.t.(26)

1Here, the conditions and assumptions are proposed between different
problems, rather than between the subsystems or agents in the same problem.
For example, between different problems, we require each joint state (e.g.,
x̄1) take identical initial value. However, within the same problem, the agents
may have different initial states as illustrated in Fig. 9 and 10.
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where u∗
i is computed using (32).

Proof. The first part of the theorem is an immediate result

from Theorem 2, where the safe control from Theorem 3 is

applied as the primitives, and only the sampled central agent

control is considered. Since (26) is affine in control u on

considered system dynamics, and each component problem

control law solves a constrained optimization problem where

the baseline optimal control is linearly solvable (details for

the optimal control linear compositionality can also be found

in [15]), the linearity property preserves and enables the

compositionality of such safe and optimal control actions com-

puted using Theorem 3. Furthermore, condition (26) applied to

the composite control action from (32) ensures that the system

is state-invariant within Ci by Theorem 1.

Remark 5. Again, for systems already satisfying
∂h
∂xi

(xi)B(xi) ̸= 0 for all xi at each time step, the

construction of high relative degree ZCBFs in (25) and (26)

is redundant, h(xi) serves as a valid ZCBF and the safe

composite control action in (33) is reduced to:

u∗
s,i = argmin

u∈RP

∥u∗
i − u∥2, (34)

s.t.(28)

where u∗
i is computed using (32).

V. SIMULATION RESULTS

We performed numerical simulations in Matlab for both

single-agent systems (single UAV) and cooperative networked

multi-agent systems (cooperative UAV team) to demonstrate

the proposed results. Each UAV is described by the following

continuous-time dynamics as in [26]:





dxi

dyi
dvi
dϕi



 =





vi cosϕi

vi sinϕi

0

0



 dt+





0 0

0 0

1 0

0 1





[(

ui

wi

)

dt+
(

σi 0

0 νi

)

dωi

]

,

(35)

where (xi, yi), vi, φi denote the position coordinate, forward

velocity and heading angle for UAV i. The system state vector

is (xi, yi, vi, φi)
⊤; the forward acceleration ui and angular

velocity wi are the control inputs, and ωi is the standard

Brownian-motion disturbance. We specify the noise level as

σi = 0.05 and νi = 0.025 throughout the simulation. In

the simulations, we also assume a predefined final time tf
(tf = 20sec) as in [16].

In all the following experiments, we compute the baseline

optimal control actions for the component problems ((6) in

the single-agent scenario and (24), (32) in the multi-agent

scenario) in a path integral approximation framework, and

obtain the constrained optimal control actions using the above

theorems. In the following obstacle-avoidance tasks, each

individual obstacle is described by an independent set of

ZCBF constraints. We also explicitly check that the start point

satisfies all the ZCBF constraints in place (especially x0 ∈ C̄r
as in Theorem 1), which renders the proposed methodology

applicable.

A. Single-agent system experiments with the proposed

control strategy

1) Single-problem experiment: We first compare the perfor-

mance between the safe control actions with CBFs and the

baseline optimal control actions in a simple case. The UAV is

governed by the dynamics in (35) and is tasked to fly from

the start (5, 5) towards a target (35, 20) while avoiding the

obstacles. The running cost for the UAV is in the following

form:

q(x) = ∥(x, y)− (xtf , ytf )∥2 − dmax, (36)

where ∥(x, y)−(xtf , ytf )∥2 computes the distance to the goal

position for the UAV, and dmax denotes the distance between

the initial position and target position for the UAV. The

obstacles are incorporated by greater state-related cost values

(i.e., q(x) = 160 for obstacles) in the baseline optimal control

action computation. Here, we utilize CBFs for enhanced safety

and construct a set of CBFs for the description of one circular

obstacle centered at (xc, yc) with a radius of rc as follows:

h0(x) = h(x) = (x− xc)
2 + (y − yc)

2 − (rc +Ds)
2, (37)

h1(x) =
∂h0

∂x
g(x) +

1

2
tr(σ⊤B⊤(

∂2h0

∂x2
)Bσ) + h0(x)

= 2(x− xc)v cosϕ+ 2(y − yc)v sinϕ

+ (x− xc)
2 + (y − yc)

2 − (rc +Ds)
2, (38)

where g(x), B, σ are defined in the dynamics (1) and Ds is a

user-defined safety margin.

The simulation runs for 10 times independently, under both

the safe optimal control actions and the ideal optimal control

actions, respectively. The execution trajectories are shown in

Fig. 2, where the obstacles are denoted by the filled circles,

the trajectories under the safe optimal control are denoted by

the green lines, and the trajectories under the ideal optimal

control are denoted by the red lines. As Fig. 2 shows, the

performance of the ideal optimal control is not always uniform

on avoiding the lowest obstacle and relies on fine parameter-

tuning. However, the trajectories using the safe optimal control

actions can always guarantee a safe margin surrounding the

obstacles throughout all the simulations. Meanwhile, the safety

margin can be tuned as a hyper-parameter for achieving the

least conservative and feasible trajectory.

2) Task-generalization experiment: In this example, we con-

sider two component problems seeking safe optimal control

actions under the identical dynamics (35), running cost rates

(36), set of interior states, and set of initial states, but have

different final costs and terminal states. The final costs take the

form of ϕ = d
2 (|x−xd|+c)+α, where the two problems have

different cost parameters c, d, α. The first problem ensures

that the UAV starting from (5, 5) reaches the upper target

(35, 28), while the second problem ensures that the UAV

starting from (5, 5) reaches the lower target (35, 14). Further,

we consider how these safe control actions can help with

solving a new problem aiming at reaching the target (35, 21).
We choose the terminal cost of the new task according to

(31). Here, we take a weighted mixture of safe and optimal

control actions solving the component problems and obtain

the optimal solution constrained by the ZCBFs. The execution
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Fig. 2. Comparison between executed trajectories with (denoted in the
green lines) and without (denoted in the red lines) CBF constraints in a
single-agent case.

Fig. 3. Composition in a single-agent case, where the dashed lines
denote the component problem execution trajectories, and the solid
line denotes the composite problem execution trajectory. The red circle
centered at the target denotes the allowable error range.

trajectories for the component problems and the composite

problem are shown in Fig. 3.

In Fig. 3, the executed trajectories of the two component

problems are denoted by the dashed lines, and the executed

trajectory running the composite safe optimal control action is

denoted by the solid line. The targets of the two component

tasks are denoted by the cross markers. As Fig. 3 shows, all

these trajectories can avoid the obstacles with sufficient safety

margins. The component problem solution can lead the UAV to

the targeted goal accurately. However, the safe optimal control

action by composition leads the UAV to a target within some

acceptable error range, denoted by the red solid circle.

B. Evaluation of the safe and optimal control law for a

single task in a networked MAS under various safety

margins

For the networked MAS simulations, we consider a co-

operative UAV team as illustrated in Fig. 4, where UAVs 1

Fig. 4. A cooperative UAV team with UAVs 1 and 2 flying cooperatively
and UAV 3 flying independently. The dashed lines represent the agents
are loosely coupled via only the terminal cost functions, and the solid
line denotes the agents are strongly coupled through the running cost
function.

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

S2

S3

S1

T1

T2

T3

Fig. 5. Illustration of one problem solution on a networked UAV team
without CBF constraints. The three agents’ trajectories are denoted in
the red, blue, and green lines, respectively. The ‘S1’ marker denotes the
start of UAV 1 and the ‘T1’ marker denotes the target of UAV 1.

and 2 fly cooperatively (distance-minimized) and UAV 3 flies

independently towards the goal joint states while avoiding the

obstacles. We assume the communication topology is fully-

connected, i.e., each agent can sense the other two agents.

According to the factorization introduced in Section II-A.2,

the joint states of the three factorial subsystems are x̄1 =
[x1;x2;x3]

⊤, x̄2 = [x1;x2;x3]
⊤, x̄3 = [x1;x2;x3]

⊤, where

xi = [xi; yi; vi;φi]
⊤ and (xi, yi), vi, φi denote the position

coordinate, forward velocity and heading angle for UAV i.
The system joint dynamics can be described by (7). The

coordination between UAVs is considered by the running cost

in the following form:

q1(x̄1) = 0.7 · (∥(x1, y1)− (x
tf
1 , y

tf
1 )∥2 − dmax

1 ) (39)

+ 1.4 · (∥(x1, y1)− (x2, y2)∥2 − dmax
12 ),

q2(x̄2) = 0.7 · (∥(x2, y2)− (x
tf
2 , y

tf
2 )∥2 − dmax

2 ) (40)

+ 1.4 · (∥(x2, y2)− (x1, y1)∥2 − dmax
21 ),

q3(x̄3) = ∥(x3, y3)− (x
tf
3 , y

tf
3 )∥2 − dmax

3 , (41)

where ∥(xi, yi) − (x
tf
i , y

tf
i )∥2 calculates the distance to the

goal position for UAV i, ∥(xi, yi) − (xj , yj)∥2 calculates the

distance between UAVs i and j, dmax
i denotes the distance

between the initial position and target position for UAV i,
and dmax

ij denotes the initial distance between UAVs i and j.

The cost parameters and coefficients can be tuned for better

performance and algorithm stability.
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Fig. 6. Illustration of one problem solution on a networked UAV team
with CBF constraints. The three agents’ trajectories are denoted in the
red, blue, and green lines, respectively. The ‘S1’ marker denotes the
start of UAV 1 and the ‘T1’ marker denotes the target of UAV 1.

We first evaluate optimization-based control actions from

(24) on the networked MAS, and run 10 independent simula-

tions. The trajectories for the UAV team are shown in Fig. 5,

where trajectories of UAVs 1, 2 and 3 are denoted by the

red, blue, and green lines, respectively. The two obstacles are

represented by the filled circles. The start point for UAV 2
is labeled by ‘S2’ in Fig. 5. As the figure shows, all UAVs

can reach the appointed targets. However, although the control

performance can be improved by tuning the obstacle state costs

and running cost coefficients, no guarantees on the obstacle-

avoidance is achievable. Among the observed runs, there are

some cases when UAV 3 collides with the lower obstacle due

to the stochastic noise.

We further extend the experiments using the control actions

subject to the CBF constraints according to (27). The CBFs

are designed similarly as (37) and (38). We run 10 independent

simulations and the executed trajectories are shown in Fig. 6.

As the case of under ideal optimal control actions, all UAVs

can reach the target states, and the coordination between

UAVs 1 and 2 is achieved. Furthermore, although every single

trajectory may differ much due to the stochastic noise, all

trajectories of each single UAV can avoid the placed obstacles

with some safety margins.

Compared with the case of using ideal optimal control

actions without CBFs, where no margin can be achieved sur-

rounding the obstacles in the executed trajectories, the safety

margin achieved from Theorem 3 can further be tuned. We

evaluate the relationship between the commanded margins in

CBF design (i.e., Ds parameter in (38)) and the achieved min-

imal distance to the nearest obstacles for all UAVs throughout

the simulations, and a quantitative illustration result is given in

Fig. 7. We can observe that the UAVs running unconstrained

optimal control actions fail to meet the safety margin, where

UAVs under safe optimal control actions can avoid all the

obstacles and the minimal distance to both obstacles is larger

than the threshold set in the CBF design in (37) and (38).

Fig. 7. Minimal distance to the two obstacles under different CBF
margins throughout the simulations (data batches 1 and 2 show the
minimum distance to the upper obstacle, data batches 3 and 4 show
the minimal distance to the lower obstacle).

Fig. 8. A cooperative UAV team with UAVs 1 and 2, 4 and 5
flying cooperatively and UAV 3 flying independently. The dashed lines
represent the agents are loosely coupled via only the terminal cost
functions, and the solid line denotes the agents are strongly coupled
through the running cost function.

C. Performance of the composite safe and optimal

control law generalizing to a new task in a networked

MAS

We further evaluate the proposed safe optimal control strat-

egy in a task-generalization setting on the cooperative UAV

team in Fig. 8. The five UAVs work in three groups, where

UAVs 1 and 2, 4 and 5 fly cooperatively (distance-minimized)

and UAV 3 flies independently towards the goal while avoiding

some obstacles. We consider two component problems, subject

to identical joint dynamics (7), joint running costs (8), and

set of interior joint states Īi for factorial subsystem N̄i, and

same set of initial joint states2, but different final costs and

terminal joint states. The terminal cost of the new problem

to solve is assigned according to (31). In the two problems,

the target position for all the UAVs are (35, 28) and (35, 14),
respectively. In each problem, the safe optimal control leading

the UAV team to the target is obtained according to (27), and

the execution trajectories are demonstrated in Fig. 9, where the

trajectories of UAVs 1,2, 3, 4 and 5 are denoted by the red,

blue, green, magenta and cyan lines, respectively. The target

positions in the two different problems are labeled by the stars.

Once the component problem safe optimal control action

is obtained, a weighted mixture on the component control

solutions specified by (32) can be taken to achieve the com-

posite safe optimal control action, and a further constrained

optimization step according to (33) will ensure that the re-

2Here, between different problems, we require each joint state (e.g., x̄1)
take identical initial value. However, within the same problem, the agents may
have different initial states as illustrated in Fig. 9 and 10.
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Fig. 9. Illustration of the solutions to the component problems for
composition on the safe optimal control law, with lines in red, blue, green,
magenta and cyan denoting the trajectories of agents 1, 2, 3, 4 and 5,
respectively. Target of each component problem is denoted by a star.

Fig. 10. Illustration of the execution trajectories using the safe compos-
ite control law, with lines in red, blue, green, magenta, and cyan denoting
the trajectories of agents 1, 2, 3, 4 and 5, respectively. The red circle
centered at the new target denotes an allowable error range.

sulting optimal control action is always safe-guaranteed. The

execution trajectories of the UAV team using the composite

safe control action to solve a new problem are shown in

Fig. 10, where the red solid circle demonstrates an allowable

error range. As Fig. 10 shows, under the safe-guaranteed

composite optimal control action, all the UAVs can avoid the

obstacles with suitable safe margins, and UAVs 1 and 2, 4 and

5 can cooperate. They can also reach the target position but

subject to some error.

However, as illustrated in both Fig. 3 and Fig. 10, the

composition performance is not exactly accurate, and an error

still exists at the terminal time step. The error in the proposed

method can be explained in two aspects. First, the composite

control solution is also subject to stochastic noise. Although

the safety property is guaranteed by the stochastic CBFs and

collision into obstacles is strictly forbidden even under the

noise, the composite solution can still drift due to the noise

and the new target is thus not reached accurately. Second,

in each component problem, the controller is computed online

and designed in a feedback manner, but the state-dependency is

with respect to each component problem state. The composite

control solution computed leveraging weighted mixtures of

the component problem solution is also dependent on the

component problem state, rather than the state of the new

problem. The feedback deficiency with respect to the new

problem state (i.e., the new problem state information is not

used in computing the new problem control solution) may

introduce errors when system noise and state error exist, and

cannot get compensated timely. However, by running several

simulations and selecting the optimal local control action

for each agent independently, the obtained performance, as

illustrated in Fig. 10, is satisfying, and the terminal error can

be constrained to an allowable error range. Also, the composite

safe control action proposed to solve the new problem using

Theorem 4 is obtained in a sample-free manner by taking a

weighted mixture of primitives and getting filtered by the CBF

constraints. It is worth to apply especially in the case when

each component problem solution can be solved analytically

but is expensive to compute, when consideration of effort in

solving a new problem dominates the control precision.

VI. CONCLUSION

In this paper, we developed a framework of safe general-

ization of optimal control utilizing control barrier functions

(CBFs) and linearly-solvable property in stochastic system

control, in both single-agent and cooperative networked multi-

agent system cases. The proposed control action simultane-

ously ensures optimality and guarantees safety by enforcing

the CBF constraints, while minimizing the difference away

from the ideal optimal control. Considering the linearity of

considered CBF constraints and compositionality of linear-

solvable optimal control (LSOC), we discuss the safe optimal

control framework in a task-generalization setting, where a

weighted mixture of computed actions for component prob-

lems is taken to solve a new problem. The safety of such

composite control action is incorporated by additional CBF

constraints as a filter after the composition. The composite

safe optimal control action is obtained in a sample-free manner

and thus is less computationally-expensive, while the safety

property can be reserved by the additional CBF constraint. We

evaluate the proposed approach on numerical simulations of

a single UAV and two cooperative UAV teams with obstacle-

avoidance and target-reaching goals. The constructed compo-

sition control law can drive the teamed UAV to a new target

within some acceptable error range. The error can be explained

by the system stochastic noise and the error due to lack of new

problem state information in the composite control solution.

Our work is promising in realizing multi-task safe optimal

control using learned controllers and we hope it can be applied

in scenarios when the computational cost of the component

task safe optimal control solution dominates the precision of

the implemented composite control. Future work will consider
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the safety guarantees on the control action generalization

capability on networked MASs under incomplete information

where not every state information is measurable, and such

scenario can simulate the real-world environment with high-

fidelity. Another direction of research for future work consists

of leveraging images and high-dimensional sensor data, and

introducing perception-based closed-loop control to the current

framework.
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