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Generalization of Safe Optimal Control Actions
on Networked Multi-Agent Systems

Lin Song, Neng Wan, Aditya Gahlawat, Chuyuan Tao, Naira Hovakimyan, and Evangelos A. Theodorou

Abstract— We propose a unified framework to instantly
generate a safe optimal control action for a new task
from existing controllers on multi-agent systems (MASs).
The control action composition is achieved by taking a
weighted mixture of the existing controllers according to
the contribution of each component task. Instead of so-
phisticatedly tuning the cost parameters and other hyper-
parameters for safe and reliable behavior in the optimal
control framework, the safety of each single task solution
is guaranteed using the control barrier functions (CBFs) for
high relative degree stochastic systems, which constrains
the system state within a known safe operation region
where it originates from. Linearity of CBF constraints in
control ensures the feasibility of safe control action compo-
sition. The discussed framework can immediately provide
reliable solutions to new tasks by taking a weighted mixture
of solved component-task actions and satisfying some CBF
constraints, instead of performing an extensive sampling
to compute a new controller. Our results are verified and
demonstrated on both a single UAV and two cooperative
UAV teams in an environment with obstacles.

Index Terms— Stochastic Optimal Control, Safe Control,
Multi-Agent Systems, Control Barrier Functions

[. INTRODUCTION

PTIMAL control design by minimizing a cost function

or maximizing a reward function has been investigated
for various systems [1], [2]. Specifically, stochastic optimal
control problems consider minimizing a cost function for
dynamical systems subject to random noise [3], [4]. Although
such formulation captures a wide class of real-world prob-
lems, stochastic optimal control actions are typically difficult
and expensive to compute in large-scale systems due to the
curse of dimensionality [5]. To overcome the computation
challenges, many approximation-based approaches, including
cost parameterization [6], path-integral formulation [7], value
function approximation [8] and policy approximation [9],
have been proposed. Exponential transformation on the value
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function was applied in [10] such that linear-form solutions to
stochastic optimal control problems were achieved, and thus
the computational efficiency was improved. Optimal control
problems whose solutions can be obtained by solving reduced
linear equations are generally categorized as linearly-solvable
optimal control (LSOC) problems in [11]. These formulations
leverage the benefits of LSOC problems, including com-
positionality and path-integral representation of the optimal
solution [12]. Path integral (PI) control approach usually
requires extensive sampling on given dynamical models. How-
ever, the compositionality property enables the construction of
composite control by taking a weighted mixture of existing
controllers to solve a new task in a certain class without
sampling on the dynamical system again, and thus improves
the computation efficiency [13], [16]. The methodology of
combining and reusing existing controllers has been explored
and validated on different systems, from single-agent systems
(e.g., 3-dimensional robotic arm [13] and physically-based
character animation [14]) to networked multi-agent systems
(e.g., a cooperative UAV team [15]).

Networked multi-agent systems enable coordination be-
tween agents and have a wide range of real-world applications,
including cooperative vehicles [17], robotics [18], sensor net-
works [19], and transportation systems [20]. The decentralized
POMDP (Dec-POMDP) model in [21], formulates the control
problem in multi-agent systems under uncertainty with only lo-
cal state information available. A dynamic programming (DP)-
based approach has been investigated on the Dec-POMDP
model in [22] towards the search for the optimal solution.
However, the computation required for solving such systems
grows exponentially as the system state dimension scales.
To tackle the difficulties in computation, approximation-based
approaches and distributed algorithms based on certain net-
work partition have been discussed. In [23], the expectation-
maximization (EM) algorithm was introduced on the Dec-
POMDP model, where optimal policies were represented as
finite-state controllers to improve the scalability. Q-value func-
tions are approximated and efficient computation of optimal
policies is achieved in [24]. Furthermore, fully-decentralized
reinforcement learning algorithms were investigated on net-
worked MASs using function approximation in [25]. Com-
pared to aforementioned approaches, path integral (PI) for-
malism of stochastic optimal control problem solutions re-
lies on sampling of the stochastic differential equation, and
is applicable to large-scale nonlinear systems. Path integral
formulation has demonstrated higher efficiency and robustness
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in solving high-dimensional reinforcement learning problems
in [7]. Path integral control approach has also been extended to
MASSs, and an approximate inference method was applied to
approximate the exact solution in [27]. A distributed algorithm
proposed in [26] partitions the networked MAS into multiple
subsystems, from which local control actions are computed
with limited resources.

However, the optimal solution to a cost-minimization prob-
lem is not always reliable and applicable in the real world,
especially in safety-critical scenarios. Guaranteed-safe control
actions have attracted researchers’ interest, both in controller
design [28], [30], and in verification [29], [31]. Control barrier
functions (CBFs) have been proposed as a powerful tool to
enforce safe behavior of system states by introducing extra
constraints on the control inputs [32]. Control barrier functions
are required to be finite (for Reciprocal CBF) or positive (for
Zero CBF) as the system operates within the known safe
region. CBF can be constructed empirically [33] or learned
from data [35], [36]. Along with optimization-based control
actions or reinforcement learning (RL) techniques, the CBF-
based approach to ensure safety has achieved satisfying results
in various application scenarios, including bipedal locomotion
under model uncertainty [34], autonomous vehicles [37], and
UAVs [38]. Recently, CBF techniques were generalized to
stochastic systems with high-probability guarantees, in cases
of both complete and incomplete information in [40], and also
in high relative degree stochastic systems [39]. A sub-optimal
and also stabilizing controller for linearly-solvable stochastic
systems is synthesized in [45] utilizing sum-of-square (SOS)
programming with guaranteed performance. Safety-critical
control problem for networked systems leveraging CBF-based
techniques on the sub-problems has been investigated in [44],
with applications to power grid systems. To achieve the state-
trajectory tracking goal and associated safe certificates on
nonlinear and complicated systems, contraction-based methods
are applicable on both nominal dynamics [41] and uncertain
dynamics [42].

However, efficient computation of certified-safe stochastic
optimal control solutions on MASs is still an open prob-
lem. The main contribution of this paper is a framework
of generalizing optimal control actions while ensuring safety
on networked MASs; the architecture is illustrated in Fig. 1.
When multiple solved control problems on MASs share iden-
tical dynamical information, but are slightly different in some
aspects, such as terminal states and final costs, instead of
sampling on the given dynamical system again to solve a
new task, the compositionality of achieved control actions
can be leveraged, and the existing controllers of these solved
problems can be weighted and mixed to solve a new problem
and drive the system to a new target. The baseline optimal
control for the new task is first obtained by mixing exist-
ing certified-safe controllers. Then, a post-composite con-
strained optimization using CBFs is formulated to constrain
the baseline control and thus guarantee the safety. The task
generalization capability of resulting control actions allows
direct and efficient computation of a new problem solution
without re-sampling in a certain problem class. Compared
with our preliminary work [15], we furthermore incorporate
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Fig. 1. The architecture of the proposed safe composition control
framework.

safety constraints on the compositionality of LSOC problem
solutions. The proposed strategy is validated via numerical
simulations on both single UAV and two cooperative UAV
teams.

The rest of the paper is organized as follows: Section II
introduces the preliminaries of formulating stochastic control
problems, linearly-solvable optimal control (LSOC) problems,
and stochastic CBFs; Section III introduces the composition-
ality of LSOC problem solutions on networked MASs; Sec-
tion IV introduces the achieved certified-safe optimal control
actions on MASs and the generalization of proposed control
actions with safety guarantees; Section V provides numerical
simulations in three scenarios validating the proposed ap-
proach; the conclusion of this paper and some open problems
are discussed in Section VI.

[I. PRELIMINARIES AND PROBLEM FORMULATION

We start by introducing some preliminary results of optimal
control actions in stochastic systems, including both the single-
agent and multi-agent scenarios. Then an extension of control
barrier functions (CBFs) to stochastic systems is presented,
which enables the proposed safe and optimal control frame-
work introduced in Section IV.

A. Stochastic optimal control problems

1) Single-Agent Systems: Consider a continuous-time dy-
namical system described by the Ito diffusion process:

dot = g(2*)dt + B(z")[u(z",t)dt + odw) (1)
= f(z', u)dt + F(z", u")dw,

where 2t € RM is the state vector with M denoting the state
dimension, g(z?) € RM, B(a?) € RM*P? are locally Lipschitz
continuous functions, representing the passive/autonomous dy-
namics and control matrix, and P is the input dimension,
u(xt,t) € RP is control input, f is the deterministic drift
term and F is the diffusion coefficient. The noise dw € R
is a vector of Brownian components with zero-mean and unit
rate of variance, positive definite matrix o € RP*¥ denotes
the covariance of noise dw. We also assume o to be lo-
cally Lipschitz continuous. The Lipschitz continuity conditions
guarantee the uniqueness of the stochastic differential equation
(SDE) solution.

Let B denote the set of boundary states (terminal states) and
7 denote the set of interior states (non-terminal states), i.e.,
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the entire allowable state space S := ZUB. When 2 € Z, the
running cost function is defined as:
1

c(xt,ut) = q(z") + iu(xt,t)TRu(xt,t), ()
where q(x?) > 0 is a state-related cost and u(zt,t) " Ru(x?,t)
is a control-quadratic term with R being a positive definite
matrix. When 2t/ € B, the terminal cost function is denoted
by ¢(z'7) and ¢y is the final time. The cost-to-go function

JU(zt,t) for the first-exit problem under control action u can
be defined as:

Ju(at,t) = B2 [(at) + /

t

ty

c(z(r),u(r))dr], (3)
where the expectation is taken with respect to the probability
measure under which z is the solution to (1) given the control
law v and initial condition x! as in [26]. In the first-exit
formulation, ¢ is computed online as the time a terminal state
x € B is first reached. The value function V (2%, ¢) is defined
as the optimal cost-to-go function:

V(a',t) = minEY [6(2") + /t " ela(r) u(r)dr]. @)

The value function is the minimal cost-to-go function starting
from the state z!. For notation simplicity, the time-evolution
of the state is omitted in the following text.

Efficient computation of optimal control action for system
(1) in the first-exit and and finite-horizon setting is introduced
in [10] and [16], and we briefly summarize the results here.
First define a stochastic second-order differentiator L,,)[V] =
fTVV + 2u(FFTVZ, V) with f and F defined in (1) as
in [10], and then the value function V satisfies the stochastic
Hamilton-Jacobi-Bellman (HJB) equation as follows:

0 = min{c(z, u) + Ly [V](z)}. (5)
With the desirability function Z(z,t) = exp(—V(x,t)/A) and
under the nonlinearity cancellation condition oo = AR™!,
the linear-form optimal control action for continuous-time
stochastic systems is obtained as

V.Z(x,t)

uw*(z,t) = oo BT () Z@.1)

(6)

As the above optimal control is adopted, the computation of
the linear differentiator £ is no longer dependent on control u,
and the subscript u in the operator definition is omitted, i.e.,
LIZ] = g"VoZ + 5te(FFTV2,Z), then the corresponding
transformed linear HJB equation takes the form of 0 = L[Z]—
qZ.

2) Multi-Agent Systems: For a networked multi-agent sys-
tem governed by mutually independent passive dynamics, the
index set of all the agents neighboring or adjacent to agent i is
denoted by N;. The factorial subsystem for agent 7 includes all
the agents directly communicating with agent 4 and the agent
itself, and is denoted by A; := N;U{i}, and the cardinality of
set V; is denoted by |V;|. Consider the joint continuous-time
dynamics for factorial subsystem N as in [26]:

dzr; = gi (i‘i)dt + BZ‘ (@)[az (.’fi7 t)dt + 6idw,»], 7
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where the joint state vector is denoted by Z; = [z, /x| €
RM Nl the joint passive or autonomous dynamics vec-
tor is denoted by gi(7:) = l[gi(z:)", gjeni(z;)]T €
RM:INil " the joint control matrix is denoted by B;(7;) =
[Bi(;), 0;0, Bjen, (z;)] € RMWNiXxPINil " the joint control
action vector is ;(Z;,t) = [u;(%i,t) ", ujen; (Tint) "] €
RPWil and @; = [w;r7wj—-'—€M]T € RPWil s the joint
noise vector with covariance matrix &; = diag{c;,0jen;} €
RPINilxPINil - As in the single-agent scenario, we also as-
sume §;, B;, &; are locally Lipschitz continuous.

Let B; denote the set of boundary joint states (terminal
joint states), and 7, denote the set of interior joint states (non-
terminal joint states), i.e., the entire allowable joint state space
S; :=7Z,UB;. When Z; € 7,, the running cost function of the
joint states of N; is defined as:

- N
= qi(Z;) + iui(fﬂiat) Riu;(24,1), ®)
where ¢;(Z;) > 0 is a joint-state-related cost, and
@i (T, t) T Ryu;(Z;,t) is a control-quadratic term with R; €
RPWilxP-INil peing a positive definite matrix. When z.’ €
B;, the terminal cost function is denoted by ¢;(Z.’) and ¢ is
the final time. Specifically, when the central agent state sz €
B;, we also have the terminal cost function gbi(xzf ) defined.
Following the computation procedure as in the single-agent
scenario, the minimal cost-to-go function (value function) is:

t.
V(3! t) = minE% [6:(5) + / (@ (), wa(r))dr, )
U i ¢

and the value function is the minimum of expected cumulative
running cost starting from joint state z:.

Similar to the single-agent scenario, the desirability function
over the joint state Z; is defined as

Z(fz,t) = exp[sz(a_:Z,t)/)\l} (10)

and the condition c‘ri&iT = )\ZR; L is satisfied to cancel the
nonlinear terms. The linear-form joint optimal control action
for the factorial subsystem A; in the networked MAS under
aforementioned decentralization topology is derived in [26]
and the result is in the form of

ci(Ti, uy)
E

vai%(jivt). (11)

In the computation of optimal control law for MASs, we
follow the approximation to (11) in the path-integral reformu-
lation introduced in Proposition 3 of [26]. For more detailed
information on the path-integral control and stochastic optimal
control, interested readers can refer to [4], [7], [13], [26], [27],
[46], [47].

al(Zi,t) = 6,6, Bi(T;)

Remark 1. Only the central agent i of the factorial subsystem
N samples or selects the local optimal control action u} (Z;,t)
from the joint optimal control action U} (Z;,t) according to the

computation results on factorial subsystem N;.

B. Stochastic control barrier function (SCBF) as a safety
filter

Optimization-based control actions achieve the goal of cost
minimization, but seldom provide rigorous guarantees on sat-
isfying the commanded constraints, which can be problematic
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in some safety-critical scenarios. Control barrier functions
(CBFs) have been widely used to describe certain safe operat-
ing region and can guarantee invariance of safe sets. Recently,
CBFs have also been investigated in stochastic systems in [39].
We refer to the CBFs as a safety filter to highlight that the
constrained control actions satisfying CBF constraints are safe-
guaranteed.

Definition 1 (zero-CBF for stochastic systems). A locally
Lipschitz and twice-differentiable function h(zx) on int(C) =
{z : h(xz) > 0} serves as a zero-CBF (ZCBF) for a system
described by the stochastic differential equation (SDE) (1), if
Sor all x satisfying h(x) > 0 there exists a u satisfying

on 9*h

o) + Blayu) + irle BT @)(5 )

B(z)o) > —h(x).
(12)

Lemma 1 (State-invariant guarantees by definition of the
ZCBF). Define the safe operating region C = {x : h(x) > 0}.
If ut satisfies (12) for all t, then P(z* € C,Vt) = 1, provided
20 eC.

It is apparent that the safety guarantees rely on the exis-
tence of control wu satisfying (12). However, in some cases
(high relative degree systems, which will be introduced later),
%B(I) = 0 for some z, and thus control u satisfying (12)
may not exist. For such systems, the safety guarantees given by
the constraint (12) are no longer applicable. We next introduce
the definition of relative degree of systems adapted from [43].

Definition 2 (Relative degree). The relative degree of a
continuously differentiable function h : R™ — R with respect
to system (1) is the number of times differentiation is taken
along the dynamics of (1) until the control u explicitly shows.

Remark 2. Note for the systems satisfying %B(m) %0 for
all © at each time step, h(x) can be directly taken as the
CBF and (12) is treated as the CBF constraints to ensure
safety. However, for systems violating %B (z) # 0 for some
x (referred to as high relative degree systems), another set of
CBFs needs to be particularly constructed.

We next introduce a theorem modified from [39] construct-
ing ZCBFs for high relative degree stochastic systems, which
our proposed safe control framework is built upon.

Theorem 1 (Construction of ZCBF for high relative degree
stochastic systems). Define the ZCBF's for high relative degree
stochastic systems (1) as ho(x) = h(z), and subsequently

Oh;
hiyi(z) = o g(x)

0%h;
0x?
i =0,1,2,..., and define C, = (\;_,C;i with C; = {x :
hi(x) > 0} and C = {z : h(x) > 0}. Suppose that there
exists v such that, for any x € C,., we have %};iB(m)u > 0 for
1 <1 and

oh,
ox

+ %tr(UTBT(:E)( )B(x)o) + hi(z), (13)

9%h,
0x?

(g(ac)—i—B(gc)u)—i-%tr(a—'—B—r (z)(
(14)
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)B(x)o) > —h.(z).

Then P(xt € C,Vt) =1 if 2° € C,..

Proof. Provided u! satisfies (14), by Lemma 1, we have xt €
C,Vt if 2° € C,, which is equivalent to h,(x!) > 0,V¢ if
2% € C,.. By the construction of the high relative degree ZCBFs
as in (13), we have
Oh,._ 1 0%h,_
he(z) = Ly(x)+=tr(o " BT (—=1)Bo)+h,_1(x) > 0.
ox 2 0x?
. (15)
Since digm’l B(x)u > 0, once added to both sides of (15), we
have

ahr—l o ahr—l
he(@) + S By = 2 (g(a) + Bloyu)
1 TpT thr—l
+ 5t(e BT (S5 Bo)
+ hr—l(-r) Z Oa

which satisfies (12), and thus we have 2t € C,_;,Vt if 2¥ €
C,—1. By induction, we have

zt et if 2°€C;,i=0,1,2,...,7

which is equivalent to 2z € Cy = C,Vt if 2° € N_,C; =
C,. O

[1l. CONTROL COMPOSITIONALITY

Considering that the optimal control action takes a linear
form ((6) in the single-agent scenario and (11) in the multi-
agent scenario) and the transformed HJB equation can also be
linear, assume there are multiple solved problems (we refer to
them as component problems) and one new problem to solve
(we refer to it as the composite problem), that share identical
dynamical information and satisfy certain conditions on the
final cost; the composite desirability function first solves the
composite HIB equation and thus a composite control action
can be obtained analytically by combining existing component
control actions. We also refer the capability of control law by
composition solving a new task as control generalization.

First assume there are L problems in MASs to solve,
governed by identical dynamics (7), running cost rates (8),
set of initial joint states, and set of interior joint states Z;, but
differ at the final costs and boundary joint states. For factorial
subsystem N;, denote the final cost of the component problem
[ on joint states Z; as gf)l{l}(fﬁf ), and the corresponding
desirability function as Z{l}(a?i,tf). Suppose the composite
final cost ¢;(Z.') satisfies

L

1

0i(;)) = ~Ailog(3_w exp(——gr ol @), (16
=1 i

for some set of weights wi{l} and scalars \;, )\Z{l}. Then the
composite desirability function can be computed by definition
as:

L
=1

a7

Furthermore, consider the desirability function solves a linear
HJB equation after the exponential transformation (10), once
the composite condition on the desirability function (17) holds
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on the boundary, it holds everywhere, and the compositionality
of optimal control actions can thus be established. The result of
control generalization is formulated in the next theorem. Such
formulation is especially useful when the component control
actions are analytically solvable but costly; then the control
action solving the new task can be constructed by composition
in a sample-free manner and is less computationally expensive.

Remark 3. A necessary condition to apply the composite
control result is that there exist sufficient amount of com-
ponents or solved tasks such that (16) holds, which can be
realized by two approaches in practice. For some problems,
when we can directly design the terminal cost for the new
task, i.e., d)z(i:f ), the condition (16) can be easily satisfied
by choosing the terminal cost of the new task appropriately
as in [13]. For other problems, when the terminal cost for
the new task ¢; (fff ) is already given, we need to determine
a set of weights w;{ solving (16), which requires w{ Y 1o be
the unique solution to (16). The existence and uniqueness of
the composite weights wi{l} can be examined by evaluating the
matrix rank. A feasible way to examine this is using the matrix
singular value decomposition (SVD) as in [16]. A minimal
component problem set is constructed by a low-rank matrix
approximation using SVD, and the component problems within
the set are sufficient to generalize to a new task. In this paper,
we mainly consider the former scenario.

Theorem 2 (Continuous-time MAS compositionality). Sup-
pose there are L multi-agent LSOC problems in continuous-
time on factorial subsystem N with joint states T; and central
agent state x;, governed by the same joint dynamics (7),
running cost rates (8), the set of initial joint states and the set
of interior joint states IZ, but various terminal costs q& Y and
terminal joint states w ( l=1,. L). Define the terminal
joint state for a new problem as T and the composition
weights as

1
o0 = oxp(- L (st 54

—#"y),

with P being a positive definite diagonal matrix. Suppose the
terminal cost for the new problem satisfies

)" P(z! (18)

6i(z) = —\; 1ogzw“exp< A{lz}eé“}( '), (19)

)\Z{l} are

¢ ..
where T’ denotes the boundary joint states, \;,

{1y

l ) .

scalars and w{} = ity can be interpreted as the
33

probability weights. The é;ltiiﬁal control law solving the new
problem is obtained by a weighted combination of the existing
controllers

L _
@@t =) Wi @, oar (z,1),  (0)
with
0 oz (z;,1)
W (7 4) = — 2 i @

DORELACTENY

and the individual desirability function Z11} (z; 1) takes the
form of (10).
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Proof. From composition of the terminal-cost function in
continuous-time given by (19), we have

Zw{l} exp(—

From (9), at the terminal time step, we have V;(Z;,ty) =
¢:i(Z") and for each component problem, it follows
Vi{l}(s?:l7 ty) = qS{l}( 7). Consider the desirability function
is in the form of Z(x,, t) = exp[—Vi(Z;,t)/A;]. Then we
have the following composition relationship of desirability
functions:

exp(—5-0i(a A;w( 7).

L
Z(@its) =y @20 (@ ty).

Since the desirability function solves a linear HIB equation,
once condition (22) holds on the boundary, it holds everywhere
and we have:

ERES

For the composite problem, the joint optimal control action in
the form of (11), can thus be reduced to

Z(Z4,1)
[T 20 )
Y @ 20 (@, )
B (20)Va, |51 20 (@,,1)]
DT PACICIN)
_ Sl BT @) 20 @, Vs, o 20 @)
S ol Z (3, 1) 20 (31, 1)

(22)

o 2 (7, 1). (23)

L My AUTERE _ AU
=y — (@:%) 51'5;3;(9?1)%@“)
=1 Z {}Z{ }(xz ) (.7;“ )
e=1
=S Wt @),
with
W@ = a0 z0@.0/ 3 &l 71 @,

IV. COMPOSITION ON CERTIFIED-SAFE CONTROL
ACTIONS

We first propose a revised optimal stochastic control law in-
corporating ZCBF in a multi-agent setting, which can provide
safety guarantees by enforcing certain conditions.

Theorem 3 (Safe and optimal control in MASs). In
continuous-time joint dynamics (7), for factorial subsystem N;
with joint states T; and central agent state xz, the desirability
function is represented by Z(Z;,t) = exp|—V;i(Z;,t)/ ;] with
Ai € R and V;(-,t) being the value functzon, and the joint
optimal control action is given by

. Ve, Z(Ti,t)

7:0; B (Z;) 7D (24)

al (Z,t) =

Authorized licensed use limited to: Georgia Institute of Tec'?mology Downloaded on November 30,2022 at 23:33:56 UTC from IEEE Xplore. Restrictions apply.
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As discussed in Section II-A.2, only the central agent i of
each factorial subsystem N selects or samples its local
control action u}(Z;,t) from (24). Define the ZCBFs for high
relative degree multi-agent systems as ho(x;) = h(x;), and
subsequently

Ohy,
h i) = 5—9i(T;
aa) = T )
+ 51‘)‘(0'1- B1 (8.1312 )Blal) + hk(xt)a (25)
k=0,1,2,..., and define C; = (\;._o Cr,; with Cj; = {z; :

hi(z;) > 0} and C; = {x; : h(x;) > 0}. The CBF constraint
for the high relative degree multi—agent system is given by

8xi (gz(xz) + Bz(xz)u) + 5”( B or 2

L Bioy) > ~hy (x),

(26)
where 1 is selected such that %Bi(:ci)u > 0 holds for k <r
and (26) holds for k = r. Then, the optimal control for the
central agent i of each factorial subsystem N that can also
guarantee the subsystem safety (state-invariant) within C; is
given by

us, = argmin ||u}
' u€ERP

s5.1.(26)

— ul2, 27)

where v} is the optimal local control action for the central
agent i sampled from (24).

Proof. The first part (optimal control law) of the theorem
comes from the solution to a linearly solvable optimal control
problem and is established in (11) of Section II-A.2. However,
simply applying the optimal control strategy may not render
the system safe considering the system stochastic noise, since
the control goal such as obstacle-avoidance is captured in
the cost function in the form of soft constraints. For the
second part, a constrained optimization framework is applied
to both minimizing the difference towards the ideal optimal
control sampled from (11) and enforcing the ZCBF constraints
(26) for safety concerns. For high relative degree systems,
%’;’:Bi(zi) = 0 for some x; when k < r; and r is selected as
the least positive integer such that g';’" B;(x;) # 0 and where
u starts to explicitly show up linearly in (26). Finally, if the
condition (26) holds, the system state is invariant within C;
and guaranteed by Theorem 1. O

Remark 4. For systems satisfying g—z(mi)B (x;) # 0 at each
time step, h(x;) can be directly applied as the CBF, and
the procedure of constructing high relative degree ZCBFs,
i.e., (25) and (26) are unnecessary. The corresponding CBF

constraint sufficient for safety guarantees becomes:

0?h
92

O (gu(as) + Bilayu) + sor(oT BT (20

oz, 5 )Bio;) > —h(x;),

(28)
and the ultimate safe optimal control action is in the form of:

(29)

u;"i = argmin ||u] — ul|s.
u€RP

s5.1.(28)
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It is also worth noting that (28) can also be interpreted as
a special case of high relative degree ZCBF constraints with
r=0.

Furthermore, utilizing the linear compositionality of the
optimal control action in multi-agent systems, along with
the fact that the ZCBF constraints are affine in control, the
above results can be extended to a task-generalization setting,
where the optimal solution to a new control problem can be
achieved by taking a weighted mixture of existing control
actions. Meanwhile, the composite control action is certified-
safe given by an additional step of post-composite constrained
optimization using ZCBFs.

Theorem 4 (Generalization of safe and optimal control in
MASS). Suppose there are L multi-agent LSOC problems in
continuous-time on factorial subsystem N; with joint states
Z; and central agent state x;, governed by the same joint
dynamics (7), running cost rates (8), the set of initial joint
states and the set of interior joint states Z, but various ter-
minal costs (b{l and terminal joint states ( 1=1,2,...,.L)\.
The safe and optimal control action u* (l =1,2,...,L) for
central agent i solving each single problem is computed via
(27). Denote the terminal joint state for a new problem as T
and define the composition weights as

~{1} _qti
Wy

-z ),

with P being a positive definite diagonal matrix. Suppose the
terminal cost for the new problem satisfies

L 1
$i(@;") = —Nilog(y_ @ exp(- A{l}«b“}( 7)), 31)

- exp(—%(fcd 74T pad (30)

3

where a’:t»f denotes the boundary joint states, )\i,/\-{l}
0 o

ﬁ The optimal control that solves

are
scalars and W,

the new problem is dtrectly computable through a weighted
combination of the component problem control solutions:

ZW{Z} Tt

with Wi (z,t) = o200 (@, 1)) SF ol 2t (7, 1)
and the individual desirability function Z\ (%;,t) takes the
form of (10), where the local control action u {; " is only

w (@,1) (32)

x’L?

sampled or selected from the computed joint control {Jl} on
factorial subsystem N Furthermore, the optimal control for
central agent i of each factorial subsystem N that can solve
the composite task and also guarantee the subsystem safety
(state-invariant) within a desired safe set C; = {x; : h(z;) >
0} is given by

*
us,

; = argmin ||uf — ul|2, (33)

ueRP
5.1.(26)

'Here, the conditions and assumptions are proposed between different
problems, rather than between the subsystems or agents in the same problem.
For example, between different problems, we require each joint state (e.g.,
Z1) take identical initial value. However, within the same problem, the agents
may have different initial states as illustrated in Fig. 9 and 10.
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where u; is computed using (32).

Proof. The first part of the theorem is an immediate result
from Theorem 2, where the safe control from Theorem 3 is
applied as the primitives, and only the sampled central agent
control is considered. Since (26) is affine in control u on
considered system dynamics, and each component problem
control law solves a constrained optimization problem where
the baseline optimal control is linearly solvable (details for
the optimal control linear compositionality can also be found
in [15]), the linearity property preserves and enables the
compositionality of such safe and optimal control actions com-
puted using Theorem 3. Furthermore, condition (26) applied to
the composite control action from (32) ensures that the system

is state-invariant within C; by Theorem 1. O
Remark S. Again, for systems already satisfying
%(wi)B(xi) # 0 for all x; at each time step, the

construction of high relative degree ZCBFs in (25) and (26)
is redundant, h(x;) serves as a valid ZCBF and the safe
composite control action in (33) is reduced to:

ws , = argmin ||u] — ul|e, (34)
’ u€RP

5.4.(28)

where u; is computed using (32).

V. SIMULATION RESULTS

We performed numerical simulations in Matlab for both
single-agent systems (single UAV) and cooperative networked
multi-agent systems (cooperative UAV team) to demonstrate
the proposed results. Each UAV is described by the following
continuous-time dynamics as in [26]:

dx; V; COS ©; 00

dy; | vising; 00 U; o; 0 ]
dv; | = 0 dt+ 14 wi) W+ Lo w) il
dp; 0 01

(35
where (x;,y:),vi, @; denote the position coordinate, forward
velocity and heading angle for UAV <. The system state vector
is (x4, vs,vi, ;) ; the forward acceleration u; and angular
velocity w; are the control inputs, and w; is the standard
Brownian-motion disturbance. We specify the noise level as
o; = 0.05 and v; = 0.025 throughout the simulation. In
the simulations, we also assume a predefined final time ¢y
(ty = 20sec) as in [16].

In all the following experiments, we compute the baseline
optimal control actions for the component problems ((6) in
the single-agent scenario and (24), (32) in the multi-agent
scenario) in a path integral approximation framework, and
obtain the constrained optimal control actions using the above
theorems. In the following obstacle-avoidance tasks, each
individual obstacle is described by an independent set of
ZCBF constraints. We also explicitly check that the start point
satisfies all the ZCBF constraints in place (especially 2° € C,
as in Theorem 1), which renders the proposed methodology
applicable.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

A. Single-agent system experiments with the proposed
control strategy

1) Single-problem experiment: We first compare the perfor-
mance between the safe control actions with CBFs and the
baseline optimal control actions in a simple case. The UAV is
governed by the dynamics in (35) and is tasked to fly from
the start (5,5) towards a target (35,20) while avoiding the
obstacles. The running cost for the UAV is in the following
form:

a(x) = [[(z,y) = (@, y") 2 — d™,

where ||(z,y) — (z'/,y'f)||2 computes the distance to the goal
position for the UAV, and d™** denotes the distance between
the initial position and target position for the UAV. The
obstacles are incorporated by greater state-related cost values
(i.e., ¢(z) = 160 for obstacles) in the baseline optimal control
action computation. Here, we utilize CBFs for enhanced safety
and construct a set of CBFs for the description of one circular
obstacle centered at (z.,y.) with a radius of r. as follows:

ho(2) = h(x) = (z = 2c)* + (y — ye)* = (re + Ds)*, (37)
2

= %g(m) + %tr(UTBT(a&ZLQO)BU) + ho(z)

=2(x —xc)vcos P+ 2(y — y.)vsin

+ ({L‘ - xC)Q + (y - yc)2 - (Tc + Ds)27

(36)

hl (1’)

(38)

where g(z), B, o are defined in the dynamics (1) and D; is a
user-defined safety margin.

The simulation runs for 10 times independently, under both
the safe optimal control actions and the ideal optimal control
actions, respectively. The execution trajectories are shown in
Fig. 2, where the obstacles are denoted by the filled circles,
the trajectories under the safe optimal control are denoted by
the green lines, and the trajectories under the ideal optimal
control are denoted by the red lines. As Fig. 2 shows, the
performance of the ideal optimal control is not always uniform
on avoiding the lowest obstacle and relies on fine parameter-
tuning. However, the trajectories using the safe optimal control
actions can always guarantee a safe margin surrounding the
obstacles throughout all the simulations. Meanwhile, the safety
margin can be tuned as a hyper-parameter for achieving the
least conservative and feasible trajectory.

2) Task-generalization experiment: In this example, we con-
sider two component problems seeking safe optimal control
actions under the identical dynamics (35), running cost rates
(36), set of interior states, and set of initial states, but have
different final costs and terminal states. The final costs take the
form of ¢ = & (|z—x4|+c)+c, where the two problems have
different cost parameters c,d,«. The first problem ensures
that the UAV starting from (5,5) reaches the upper target
(35,28), while the second problem ensures that the UAV
starting from (5, 5) reaches the lower target (35, 14). Further,
we consider how these safe control actions can help with
solving a new problem aiming at reaching the target (35, 21).
We choose the terminal cost of the new task according to
(31). Here, we take a weighted mixture of safe and optimal
control actions solving the component problems and obtain
the optimal solution constrained by the ZCBFs. The execution

Authorized licensed use limited to: Georgia Institute of Tec'la"nnology. Downloaded on November 30,2022 at 23:33:56 UTC from IEEE Xplore. Restrictions apply.
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Fig. 2. Comparison between executed trajectories with (denoted in the

green lines) and without (denoted in the red lines) CBF constraints in a
single-agent case.

35
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25+
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15t TARGET

10

0 10 20 30 40

Fig. 3. Composition in a single-agent case, where the dashed lines
denote the component problem execution trajectories, and the solid
line denotes the composite problem execution trajectory. The red circle
centered at the target denotes the allowable error range.

trajectories for the component problems and the composite
problem are shown in Fig. 3.

In Fig. 3, the executed trajectories of the two component
problems are denoted by the dashed lines, and the executed
trajectory running the composite safe optimal control action is
denoted by the solid line. The targets of the two component
tasks are denoted by the cross markers. As Fig. 3 shows, all
these trajectories can avoid the obstacles with sufficient safety
margins. The component problem solution can lead the UAV to
the targeted goal accurately. However, the safe optimal control
action by composition leads the UAV to a target within some
acceptable error range, denoted by the red solid circle.

B. Evaluation of the safe and optimal control law for a
single task in a networked MAS under various safety
margins

For the networked MAS simulations, we consider a co-
operative UAV team as illustrated in Fig. 4, where UAVs 1

© 2022 |IEEE. Personal use is permitted, but re%ublication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 4. A cooperative UAV team with UAVs 1 and 2 flying cooperatively
and UAV 3 flying independently. The dashed lines represent the agents
are loosely coupled via only the terminal cost functions, and the solid
line denotes the agents are strongly coupled through the running cost
function.

50

45

40 1

351

0 10 20 30 40 50

Fig. 5. lllustration of one problem solution on a networked UAV team
without CBF constraints. The three agents’ trajectories are denoted in
the red, blue, and green lines, respectively. The ‘S1’ marker denotes the
start of UAV 1 and the ‘T1’ marker denotes the target of UAV 1.

and 2 fly cooperatively (distance-minimized) and UAV 3 flies
independently towards the goal joint states while avoiding the
obstacles. We assume the communication topology is fully-
connected, i.e., each agent can sense the other two agents.
According to the factorization introduced in Section II-A.2,
the joint states of the three factorial subsystems are X; =
[X1;X2;X3]T75<2 = [X1;X2;X3]T,5<3 = [Xl;XQ;X3]T, where
xX; = [zi;yivi; 04 and (x4,%;),vs, s denote the position
coordinate, forward velocity and heading angle for UAV .
The system joint dynamics can be described by (7). The
coordination between UAVs is considered by the running cost
in the following form:

(%) =0.7- (|(z1,00) — (@ )2 —dT™)  (39)
+ 1.4 ([(x1,91) — (22, y2)[]2 — d15¥),

(%) = 0.7+ (|(z2,92) — (25 )2 — d5™)  (40)
+ 14 ([[(@2,92) — (@1, 91) |2 — dB5),

g3(%s) = || (w3,ys) — (@5, v5" )2 — 5™, (41)

where ||(z,y;) — (2, 4.")|l2 calculates the distance to the
goal position for UAV 1, ||(z;,y:) — (2, y;)||2 calculates the
distance between UAVs ¢ and j, d}"®* denotes the distance
between the initial position and target position for UAV 1,
and d;3** denotes the initial distance between UAVs ¢ and j.
The cost parameters and coefficients can be tuned for better
performance and algorithm stability.
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Fig. 6. lllustration of one problem solution on a networked UAV team
with CBF constraints. The three agents’ trajectories are denoted in the
red, blue, and green lines, respectively. The ‘S1’ marker denotes the
start of UAV 1 and the ‘T1’ marker denotes the target of UAV 1.

We first evaluate optimization-based control actions from
(24) on the networked MAS, and run 10 independent simula-
tions. The trajectories for the UAV team are shown in Fig. 5,
where trajectories of UAVs 1, 2 and 3 are denoted by the
red, blue, and green lines, respectively. The two obstacles are
represented by the filled circles. The start point for UAV 2
is labeled by ‘S2’ in Fig. 5. As the figure shows, all UAVs
can reach the appointed targets. However, although the control
performance can be improved by tuning the obstacle state costs
and running cost coefficients, no guarantees on the obstacle-
avoidance is achievable. Among the observed runs, there are
some cases when UAV 3 collides with the lower obstacle due
to the stochastic noise.

We further extend the experiments using the control actions
subject to the CBF constraints according to (27). The CBFs
are designed similarly as (37) and (38). We run 10 independent
simulations and the executed trajectories are shown in Fig. 6.
As the case of under ideal optimal control actions, all UAVs
can reach the target states, and the coordination between
UAVs 1 and 2 is achieved. Furthermore, although every single
trajectory may differ much due to the stochastic noise, all
trajectories of each single UAV can avoid the placed obstacles
with some safety margins.

Compared with the case of using ideal optimal control
actions without CBFs, where no margin can be achieved sur-
rounding the obstacles in the executed trajectories, the safety
margin achieved from Theorem 3 can further be tuned. We
evaluate the relationship between the commanded margins in
CBF design (i.e., D parameter in (38)) and the achieved min-
imal distance to the nearest obstacles for all UAVs throughout
the simulations, and a quantitative illustration result is given in
Fig. 7. We can observe that the UAVs running unconstrained
optimal control actions fail to meet the safety margin, where
UAVs under safe optimal control actions can avoid all the
obstacles and the minimal distance to both obstacles is larger
than the threshold set in the CBF design in (37) and (38).
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Fig. 7. Minimal distance to the two obstacles under different CBF
margins throughout the simulations (data batches 1 and 2 show the
minimum distance to the upper obstacle, data batches 3 and 4 show
the minimal distance to the lower obstacle).

Fig. 8. A cooperative UAV team with UAVs 1 and 2, 4 and 5
flying cooperatively and UAV 3 flying independently. The dashed lines
represent the agents are loosely coupled via only the terminal cost
functions, and the solid line denotes the agents are strongly coupled
through the running cost function.

C. Performance of the composite safe and optimal
control law generalizing to a new task in a networked
MAS

We further evaluate the proposed safe optimal control strat-
egy in a task-generalization setting on the cooperative UAV
team in Fig. 8. The five UAVs work in three groups, where
UAVs 1 and 2, 4 and 5 fly cooperatively (distance-minimized)
and UAV 3 flies independently towards the goal while avoiding
some obstacles. We consider two component problems, subject
to identical joint dynamics (7), joint running costs (8), and
set of interior joint states 7, for factorial subsystem N;, and
same set of initial joint states?, but different final costs and
terminal joint states. The terminal cost of the new problem
to solve is assigned according to (31). In the two problems,
the target position for all the UAVs are (35,28) and (35, 14),
respectively. In each problem, the safe optimal control leading
the UAV team to the target is obtained according to (27), and
the execution trajectories are demonstrated in Fig. 9, where the
trajectories of UAVs 1,2, 3, 4 and 5 are denoted by the red,
blue, green, magenta and cyan lines, respectively. The target
positions in the two different problems are labeled by the stars.

Once the component problem safe optimal control action
is obtained, a weighted mixture on the component control
solutions specified by (32) can be taken to achieve the com-
posite safe optimal control action, and a further constrained
optimization step according to (33) will ensure that the re-

2Here, between different problems, we require each joint state (e.g., Z1)
take identical initial value. However, within the same problem, the agents may
have different initial states as illustrated in Fig. 9 and 10.
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Fig. 9. lllustration of the solutions to the component problems for

composition on the safe optimal control law, with lines in red, blue, green,
magenta and cyan denoting the trajectories of agents 1, 2, 3, 4 and 5,
respectively. Target of each component problem is denoted by a star.
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Fig. 10. lllustration of the execution trajectories using the safe compos-
ite control law, with lines in red, blue, green, magenta, and cyan denoting
the trajectories of agents 1, 2, 3, 4 and 5, respectively. The red circle
centered at the new target denotes an allowable error range.

sulting optimal control action is always safe-guaranteed. The
execution trajectories of the UAV team using the composite
safe control action to solve a new problem are shown in
Fig. 10, where the red solid circle demonstrates an allowable
error range. As Fig. 10 shows, under the safe-guaranteed
composite optimal control action, all the UAVs can avoid the
obstacles with suitable safe margins, and UAVs 1 and 2, 4 and
5 can cooperate. They can also reach the target position but
subject to some error.

However, as illustrated in both Fig. 3 and Fig. 10, the
composition performance is not exactly accurate, and an error
still exists at the terminal time step. The error in the proposed
method can be explained in two aspects. First, the composite
control solution is also subject to stochastic noise. Although
the safety property is guaranteed by the stochastic CBFs and
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collision into obstacles is strictly forbidden even under the
noise, the composite solution can still drift due to the noise
and the new target is thus not reached accurately. Second,
in each component problem, the controller is computed online
and designed in a feedback manner, but the state-dependency is
with respect to each component problem state. The composite
control solution computed leveraging weighted mixtures of
the component problem solution is also dependent on the
component problem state, rather than the state of the new
problem. The feedback deficiency with respect to the new
problem state (i.e., the new problem state information is not
used in computing the new problem control solution) may
introduce errors when system noise and state error exist, and
cannot get compensated timely. However, by running several
simulations and selecting the optimal local control action
for each agent independently, the obtained performance, as
illustrated in Fig. 10, is satisfying, and the terminal error can
be constrained to an allowable error range. Also, the composite
safe control action proposed to solve the new problem using
Theorem 4 is obtained in a sample-free manner by taking a
weighted mixture of primitives and getting filtered by the CBF
constraints. It is worth to apply especially in the case when
each component problem solution can be solved analytically
but is expensive to compute, when consideration of effort in
solving a new problem dominates the control precision.

VI. CONCLUSION

In this paper, we developed a framework of safe general-
ization of optimal control utilizing control barrier functions
(CBFs) and linearly-solvable property in stochastic system
control, in both single-agent and cooperative networked multi-
agent system cases. The proposed control action simultane-
ously ensures optimality and guarantees safety by enforcing
the CBF constraints, while minimizing the difference away
from the ideal optimal control. Considering the linearity of
considered CBF constraints and compositionality of linear-
solvable optimal control (LSOC), we discuss the safe optimal
control framework in a task-generalization setting, where a
weighted mixture of computed actions for component prob-
lems is taken to solve a new problem. The safety of such
composite control action is incorporated by additional CBF
constraints as a filter after the composition. The composite
safe optimal control action is obtained in a sample-free manner
and thus is less computationally-expensive, while the safety
property can be reserved by the additional CBF constraint. We
evaluate the proposed approach on numerical simulations of
a single UAV and two cooperative UAV teams with obstacle-
avoidance and target-reaching goals. The constructed compo-
sition control law can drive the teamed UAV to a new target
within some acceptable error range. The error can be explained
by the system stochastic noise and the error due to lack of new
problem state information in the composite control solution.
Our work is promising in realizing multi-task safe optimal
control using learned controllers and we hope it can be applied
in scenarios when the computational cost of the component
task safe optimal control solution dominates the precision of
the implemented composite control. Future work will consider
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