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Each year in the US, hundreds of billions of dollars are spent on transportation infrastructure and
billions of hours are lost in traffic. We develop a quantitative general equilibrium spatial framework
featuring endogenous transportation costs and traffic congestion and apply it to evaluate the welfare
impact of transportation infrastructure improvements. Our approach yields analytical expressions for
transportation costs between any two locations, the traffic along each link of the transportation network, and
the equilibrium distribution of economic activity across the economy, each as a function of the underlying
quality of infrastructure and the strength of traffic congestion. We characterize the properties of such an
equilibrium and show how the framework can be combined with traffic data to evaluate the impact of
improving any segment of the infrastructure network. Applying our framework to both the US highway
network and the Seattle road network, we find highly variable returns to investment across different
links in the respective transportation networks, highlighting the importance of well-targeted infrastructure
investment.
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1. INTRODUCTION

More than a trillion dollars is spent on transportation infrastructure across the world each
year (Lefevre, Leipziger and Raifman, 2014). In the US alone—where annual spending on
highways exceeds $150 billion—the average driver spends an average of 42 h a year in traffic,
generating economic losses exceeding these direct costs (ASCE, 2017). Evaluating the impact of
infrastructure investments in the presence of such traffic congestion is difficult. On the one hand,
improvements to one part of the infrastructure network causes drivers to alter their routes, changing
traffic patterns and congestion throughout the network. On the other hand, changes in traffic
patterns affects the spatial distribution of economic activity, as individuals re-optimize where to
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live, work, and/or consume. But as the spatial distribution of economic activity determines the
underlying traffic patterns, these two hands are intricately intertwined, resulting in a complex
feedback loop between routing, traffic, congestion, and the spatial distribution of economic
activity.

We develop a new tractable spatial framework featuring endogenous transportation costs and
traffic congestion and apply it to evaluate the welfare impact of transportation infrastructure
improvements. We embed a route choice problem into two spatial models where the cost of
traversing a particular link depends on the equilibrium amount of traffic on that link. Our approach
yields analytical expressions for transportation costs between any two locations, the traffic along
each link of the transportation network, and the equilibrium distribution of economic activity
across the economy. We characterize the properties of such an equilibrium, highlighting how the
presence of traffic congestion shapes those properties. We then show how the framework can
be combined with readily available traffic data to evaluate the welfare impact of improving any
segment of the infrastructure network. Finally, we evaluate the welfare impact in two settings:
(1) the US highway network; and (2) the Seattle road network. In both cases, we find on average
positive but highly variable returns to investment, showing the importance of well-targeted
infrastructure investment.

Our framework begins with a modest departure from two widely used quantitative general
equilibrium models: an economic geography model where agents choose a location to live (as
in Allen and Arkolakis (2014)) and engage in trade between locations (as in Eaton and Kortum
(2002)), and an urban model where agents choose where to live and where to work within a city
(as in Ahlfeldt, Redding, Sturm and Wolf (2015)). In Eaton and Kortum (2002), it is assumed
that while each location has a idiosyncratic productivity for producing each type of good, the
transportation technology is identical for all goods. Similarly, in Ahlfeldt ez al. (2015), while it is
assumed that each individual has idiosyncratic preferences for each home—work pair of locations,
all individuals incur the same transportation costs when commuting from home to work. In our
framework, we allow for transportation costs in both models to also be subject to idiosyncrasies
at the route-level. As a result, simultaneous to their choice of where to purchase goods (in the
economic geography model) or where to live and work (in the urban model), agents also choose
an optimal route through the transportation network.

This departure allows us to derive an analytical expression for the endogenous transportation
costs between all pairs of locations as a function of the transportation network. It also allows
us to derive an analytical expression for the equilibrium traffic along a link. This expression
takes an appealing “gravity” form, where traffic depends only on the cost of travel along
the link and the economic conditions at the beginning and end of the link. Those economic
conditions turn out to be the familiar market access terms (see e.g. Anderson and Van Wincoop,
2003; Redding and Venables, 2004)—the “inward” market access at the start of the link and the
“outward” market access at the end—highlighting the close relationship between equilibrium
traffic flows and the equilibrium distribution of economic activity. It is this close relationship that
allows us to tractably introduce traffic congestion, which we do so in the spirit Vickrey (1967), by
assuming transportation costs of traversing a link depend on both the underlying infrastructure
and amount of traffic along the link.

Ultimately, we can express the equilibrium distribution of economic activity solely as a
function of the underlying infrastructure matrix, the geographic fundamentals of each location,
and four model elasticities, one of which is new (the traffic congestion elasticity) and three of
which are not (a trade/commuting elasticity, a productivity externality, and an amenity externality).
While the mathematical structure the equilibrium system takes has to our knowledge not been
studied before, we prove an equilibrium will exist and provide conditions under which it will be
unique. The new mathematical structure also yields new implications: most notably, the presence
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of traffic congestion implies that the equilibrium is no longer scale invariant. Increasing the size
of an economy results in disproportionate changes in bilateral transportation costs due to changes
in traffic congestion, reshaping the equilibrium distribution of economic activity.

We then turn to the question of how to apply our framework empirically. We begin by
developing a few new tools. First, we derive an analytical relationship between traffic flows along
a network and bilateral trade/commuting flows between an origin and destination; in contexts
such as our own where we observe both, this serves as a model validation check. Second, we
show that the “exact-hat” approach of conducting counterfactuals (see Dekle, Eaton and Kortum,
2008; Costinot and Rodriguez-Clare, 2014; Redding and Rossi-Hansberg, 2017) can be applied
to our framework, albeit using (readily available) traffic data rather than harder to observe bilateral
trade/commuting data. Third, we provide conditions under which one can recover the necessary
traffic congestion elasticity from a regression of speed of travel on traffic, where the traffic gravity
equation provides guidance in the search for an appropriate instrument for traffic.

Finally, we calculate the welfare impact of transportation infrastructure improvements in two
settings: (1) the US highway network (using the economic geography variant of the framework);
and (2) the Seattle road network (using the urban variant). In both cases, we begin by showing that
the observed network of traffic flows, appropriately inverted through the lens of the model, does
a good job predicting the observed matrix of trade and commuting flows, respectively. We then
estimate the strength of traffic congestion, finding in both cases substantial traffic congestion.
We proceed by estimating the welfare elasticity of improving each link on each road network.
We find highly variable elasticities across different links, with the greatest gains in the densest
areas of economic activity and at choke-points in the network. Here, traffic congestion plays a
particularly important role, as there is only a modest positive correlation between these welfare
elasticities and those that one would calculate in a standard model ignoring congestion forces.

Finally, we combine our welfare elasticities with detailed cost estimates of improving each
link (which depends on the number of lane-miles needed to be added as well as the geographic
topography and the density of economic activity along the link) to construct an estimate of the
return on investment for each link. For the US highway network, we estimate an average annual
return on investment of 108%; for the Seattle road network that figure is 16%. Both averages,
however, belie substantial heterogeneity across links. For the US highway network, the returns
on investment for a handful of highways serving as connectors just outside major metropolitan
areas exceed 400%; in Seattle, a number of links surrounding downtown have annualized returns
exceeding 60%. Conversely, a substantial fraction of US highway links (mainly through the
mountain west) and nearly half the links in Seattle are estimated to have a negative return on
investment. Taken together, these results highlight the importance of targeting infrastructure
improvements to the appropriate locations in the infrastructure network.

The primary contribution of the article is to develop a quantitative general equilibrium spatial
framework that incorporates traffic congestion and can be applied to empirically evaluate the
welfare impact of transportation infrastructure improvements. In doing so, we seek to connect
two related—but thus far distinct—literatures.

The first literature seeks to understand the impacts of infrastructure improvements on the
distribution of economic activity. This literature is mostly the domain of spatial economists;
early examples include Fogel (1962, 1964); recent quantitative work on the subject that
incorporates rich geographies and general equilibrium linkages across locations include
Donaldson (2018), Allen and Arkolakis (2014), Donaldson and Hornbeck (2016) in an inter-
city context Ahlfeldt et al. (2015), Tsivanidis (2018), Heblich, Redding and Sturm (2020) in
an intra-city context, and Monte, Redding and Rossi-Hansberg (2018) combining intra-city and
inter-city analyses; Redding and Turner (2015) and Redding and Rossi-Hansberg (2017) offer
excellent reviews. While the details of these models vary, a unifying characteristic is that the
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transportation costs are treated as exogenous model parameters (usually determined by the least
cost route, as computed using Dijkstra’s algorithm or the “Fast Marching Method” pioneered
by Osher and Sethian (1988) and Tsitsiklis (1995)). As a result, this literature abstracts from the
effect of infrastructure improvements on how changes in the use of the transportation network
affects the transportation costs themselves through traffic congestion.

Relative to this literature, we make two contributions: first, we provide an analytical
relationship between the transportation network and the bilateral costs of travel through the
network, obviating the need to rely on computational methods. Second (and more importantly),
we allow the transportation costs to respond endogenously through traffic congestion to changes
in the distribution of economic activity. This force has been identified as empirically relevant
(see Duranton and Turner, 2011) but thus far has been absent in such quantitative modelling. Our
analysis retains the key analytical benefits of that previous work but also provides a comprehensive
framework to analyse the effects of traffic both theoretically and empirically.

The second literature seeks to understand the impacts of infrastructure improve-
ments on the transportation network. This literature is mostly the domain of trans-
portation economics; early examples include Beckmann, McGuire and Winsten (1955) and
seminal textbook of Sheffi (1985); recent work on the subject includes Bell (1995),
Akamatsu (1996), De Palma, Kilani and Lindsey (2005), Eluru, Pinjari, Guo, Sener, Srinivasan,
Copperman and Bhat (2008), Mattsson, Weibull and Lindberg (2014); Galichon (2016) pro-
vides a comprehensive theoretical treatment and Chapter 10 of De Palma, Lindsey,
Quinet and Vickerman (2011) provides an excellent review. While the details of these models
vary, a unifying characteristic is that the economic activity at each node in the network is taken
as given, so the literature abstracts from how changes in the transportation costs affects this
distribution of economic activity.

Relative to this literature, we also make two contributions: first, we provide an analytical
solution for the equilibrium traffic along each link in the network that highlights the close
relationship between traffic and the equilibrium distribution of economic activity. Second (and
more importantly), we allow infrastructure improvements to affect traffic not only through
changing route choices (and congestion) on the network but also through the resulting equilibrium
changes in the distribution of economic activity.

Most closely related to this article is parallel work by Fajgelbaum and Schaal (2020), who
characterize the optimal transportation network in a similarly rich geography and also in the
presence of traffic congestion. In that important work, the focus is on an efficient equilibrium
of a flexible spatial model, as it is assumed that the social planner can implement optimal
Pigouvian taxes to offset the externalities created by traffic congestion. Our focus, instead, is on
the competitive equilibrium of constant elasticity quantitative spatial models where the presence
of productivity and amenity externalities and/or traffic congestion given the absence of congestion
tolls means the equilibrium is (generically) inefficient. Relative to Fajgelbaum and Schaal (2020),
a separate contribution is that the analytical tractability of the framework developed here facilitates
the use of many of the tools developed previously by the quantitative spatial literature, such as
the ability to evaluate the welfare impact of infrastructure improvements using readily available
traffic data and the use of “exact hat algebra” methodology to compute counterfactuals.'

1. The tractability of our approach is evinced by the number of recent working papers who have proposed
extensions to it since its original dissemination. These include extending the framework to consider multiple types
of transportation networks and transshipment (as in Fan, Lu, and Luo (2019) and Fan and Luo (2020), respectively),
extending the framework to include endogenous development of transportation capabilities in locations (as in
Ducruet, Juhdsz, Nagy, Steinwender, et al. (2020)), and extending the framework to multiple sectors with economies
of scale in traffic rather than traffic congestion (as in Ganapati, Wong and Ziv (2020)).
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The remainder of the article proceeds as follows. In the next section, we incorporate the
routing choice of agents in economic geography and urban variants of the framework. In Section
3, we provide analytical expressions for the endogenous transportation costs and traffic flows in
the presence of traffic congestion. In Section 4, we combine the results of the previous sections to
characterize the equilibrium distribution of economic activity and traffic. In Section 5, we develop
a set of tools for applying the framework empirically. In Section 6, we implement these tools to
examine the welfare impacts of improvements to the US highway network and the Seattle road
network. Section 7 concludes.

2. OPTIMAL ROUTING IN TWO SPATIAL MODELS

In this section, we embed an optimal routing problem into two quantitative spatial models: an
economic geography model (where goods are traded between locations subject to trade costs)
and an urban model (where workers commute between locations subject to commuting costs).
We show that both models yield identical expressions for the endogenous transportation costs,
and mathematically identical equilibrium conditions as a function of these costs. This allows us
to derive analytical expressions for costs, traffic, and congestion in both frameworks, a task we
undertake in Section 3; we refer the interested reader to Supplementary Appendix B for detailed
derivations of the results that follow in this section.

For both models, we posit the following geography. Suppose the economy consists of a
finite number of locations i € {1, ..., N}=A\ arrayed on a network and inhabited by L individuals.
Mathematically, this network is represented by an N x N matrix T =[#;; > 1], where #; indicates
the (ad valorem) cost incurred from moving directly from k to [ along a link (if no link between
k and [ exists, then t;; =00).> We refer to T as the transportation network and emphasize that it
is endogenous and will depend on the equilibrium traffic congestion.

Moving goods (in the economic geography model) or people (in the commuting model)
from an origin i to a destination j entails taking a route r through the network. Mathematically,
r is a sequence of locations beginning with location i and ending with location j, i.e. r=
{i=ro,r1,....,rk =j}, where K is the number of links crossed on the route, i.e. the length of
route r. Because iceberg costs are multiplicative, the total costs incurred from moving from i to
Jj along route r of length K is then ]_[lllelrk,l, re-> Let 0y denote the set of all the (countably
infinite) possible routes from i to j.

2.1.  An economic geography model with optimal routing

We first embed a routing framework into an economic geography model where goods are traded
across locations and labour is mobile, as in Allen and Arkolakis (2014) and Redding (2016).

2.1.1. Setup. An individual residing in location i supplies her endowed unit of labour
inelastically for the production and shipment of goods, for which she receives a wage w; and
from which she purchases quantities of a continuum of consumption goods v € [0, 1] with constant

2. Following the literature on graph theory (see e.g. p. 14 of Szabo (2015) or p. 218 from Chartrand (1977)), we
assume that #;; = 0o to exclude self-loops; however, below we allow agents in i to choose the “null” path (which is the
only admissible path of length 0) where they source goods/work where they reside, thereby incurring no transportation
costs.

3. We follow the tradition of the spatial literature by treating transportation costs as ad valorem (iceberg). In
Supplementary Appendix D.1, we consider an alternative framework where costs incurred travelling through the network
are additive and show that one can derive a similar expression for the endogenous transportation costs below.
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elasticity of substitution preferences with elasticity of substitution o > 0. Labour is the only factor
used in the production and shipment of goods. Let YW and L denote the total income and total
labour endowment in the economy, respectively; in what follows, we choose average per-capita
income as our numeraire, that is, ¥ /I: =1, which implies that the value of trade is measured in
average units of labour.

Each location i e N is endowed with a constant returns to scale technology for producing
and shipping each good v €[0,1] to each destination j €\ along each route r € %;;, which is
subject to idiosyncratic productivity shocks &;; »(v), meant to capture the various uncertainties
that production and shipping are subject to. Under perfect competition the price of good v in
destination j € N/ from origin i € N along route r € Ri;; is

[Ti
Pij.r(v) =w; =L L
Eij,r v)

Individuals in destination j then purchase each good v €[0,1] from the cheapest source (i.e.
location-route). Following Eaton and Kortum (2002), we assume ¢, (v) is independently and
identically Frechet distributed across routes and goods distributed with scale parameter 1/A;,
where A; captures an origin-specific efficiency, and shape parameter 6, which regulates the (inverse
of) shock dispersion.*

The main innovation in our setup is that individuals choose both a location and route to
source each good (rather than just a location). But why would a consumer not simply choose to
purchase the goods from the cheapest source along the least cost route? Some of the value of
this choice of modelling arises from the great tractability it yields below. Yet this added “noise”
is also is plausible in the presence of traffic congestion, as there will be many alternative routes
that yield approximately the same costs.> If all consumers were to use the least cost route, then
infinitesimal deviations from Mogridge’s hypothesis would result in large changes in agents’
route choice; empirically, an infinitely elastic route choice is unrealistic; theoretically, it would
lead to a nightmare of corner solutions. Avoiding corner solutions by adding such noise is cited
as the original impetus for the Eaton and Kortum (2002) framework and the Frechet assumption
allows us to further retain the tractability and extend the analytical solutions of that framework
in the presence of traffic.®

A related concern is with the assumption that agents simultaneously choose the location that
sources the good and the route over which it is supplied. Should agents not first choose where to
purchase a good and then decide how to ship it? It turns out the timing assumption is not crucial:
one can construct a model with just such a timing assumption that is formally isomorphic to
the framework presented here (see Supplementary Appendix D.2). Instead, what is enormously
helpful (and which the simultaneous choice over locations and routes ensures) is that agents’
elasticities of substitution among locations and among routes are the same. Deviations from this

4. Papers such as Eaton and Kortum (2002), Ramondo and Rodriguez-Clare (2013), and Lind and Ramondo
(2018) illustrate how correlated Frechet shocks could be added to a multi-regional analysis. The idea behind such an
extension is that some routes may be subject to common underlying conditions and thus subject to correlated shocks.
We abstract from such consideration for tractability purposes and because it requires the need of additional (correlation)
parameters to be estimated.

5. This is known as Mogridge’s hypothesis, quoted as originally stating “For trip origins at any particular distance
from the centre of London, peak hour journey times by car and rail to central destinations are equal” (Holden, 1989).

6. In practice, the addition of noise is of little consequence when calculating transportation costs. In the empirical
contexts considered below, the correlation between the (log) transportation costs estimated with noise and the (log)
transportation costs along the least cost route exceeds 0.99 (for the US highways) and 0.98 (for the Seattle road network).
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assumption—while computationally straightforward—come so at the loss of substantial analytical
tractability and ensuing economic insight.’

We further allow for the possibility that productivities and amenities potentially depend on
the measure of workers in a given location as follows:

Ar=ALY w=L,, M

where A;>0 and ii; >0 are the local geography of productivity and amenities, and o, 8 €R
govern the strength of the productivity and amenity externalities, respectively. As noted in
Allen and Arkolakis (2014), the presence of productivity and amenity spillovers create formal
isomorphisms between a large set of economic geography models and also play an important
role in determining the qualitative and quantitative implications of the model. For example, the
parameter « can be considered as capturing entry externalities as in Krugman (1991), which lead
to more concentration of economic activity, and the parameter § negative amenity spillovers or the
presence of a housing market, which lead to dispersion of economic activity. We will contrast the
implications of these (now standard) spillovers to the (new) traffic congestion spillovers below.

2.1.2. An analytical expression for transportation costs. We now characterize the
fraction and value of goods shipped on each route between each origin and destination. Given the
Frechet assumption, the probability that j € N purchases good v €[0, 1] from i € A" along route
r €Ny, mjj r, can be written as:

o/~ (T 1%,
- —0 K 6
2keN Wk/AD T Epe Ili=it,”

@

JT,'J"r

To determine the total value of goods shipped from i e A to j € N, X;;, we sum across all routes,
recalling from Eaton and Kortum (2002) that the expenditure shares are equal to the probability
of purchasing a good:

7" wifAD™!

Xij= ) mij.rEj= ©)

—6 —6 >
redt; Zke/\[fkj (Wk/Ak)

where:

K
Yo @

refy \I=1

=

Tij

is the transportation costs from i to j. Note that expression (3) is identical to that of
Eaton and Kortum (2002); however, rather than the transportation cost Tjj being taken as given,
here it is determined by the least cost routing problem through the (endogenous) transportation
network.

7. There are two places where an equal demand elasticity for location and route greatly increases the tractability:
first, in transforming the equilibrium conditions of the model written as a function of transportation costs to a function of
the transportation matrix (where it allows for a linear inversion); second, in deriving the traffic gravity equation (where it
allows for an explicit rather than implicit analytical form). Such deviations may arise if, for example, substitution among
production locations is more difficult than substitution among alternative routes (or vice-versa). Such an example and
intuition of where these assumptions exactly come to play for our results is provided in Supplementary Appendix D.3
based on the Armington model.
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2.1.3. Market access and gravity. While (3) provides an analytical expression for the
value of bilateral trade flows, it turns out it is convenient for what follows to express it in market
access terms, as in Anderson and Van Wincoop (2003) and Redding and Venables (2004). To
do so, we first impose two equilibrium market clearing conditions: (1) total income Y; in each
location is equal to its total sales; and (2) total expenditure E; in each location is equal to its total
purchases:

N N
Yi:ZXij, Ei=ZXﬁ. (5
Jj=1 Jj=1
We can re-write the gravity equation (3) as follows:
Y; E;
—0 ! J
Xp=170x —x (©)
HR A e
i J
where IT; is a producer price index capturing the (inverse) of producer market access:
_1
u —0 1 pb 9 -5
M= v EP] =ALY, 7, (7
j=1
and P; is the consumer price index capturing the (inverse) of consumer market access:
_1
N o
Pi=(> vl ) . ®)
i=1

A lower value of P; indicates that consumers in location i have greater access to producers in
other markets, and a lower value of I1; indicates that producers have greater access to consumers
in other markets.

2.1.4. Equilibrium. Finally, we calculate the equilibrium distribution of population and
economic output across space. Following Allen and Arkolakis (2014), we write the welfare of
residents in location j € NV, W;, as:

W
W= 5t ©
where u; is an amenity value of living in location j €. We assume that there is free labour
mobility across locations and we focus in equilibria where welfare equalizes across locations,
W= W, and every location is populated.®
Combining the definitions in (1), equation (6), the market clearing conditions (5), imposing
balanced trade (i.e. E; =Y;) and welfare equalization (i.e. condition (9)), we obtain the following
equilibrium conditions:

N
-0 140,—0(1+ - -
j=1

8. This assumption, combined with congestion spillovers introduced later, simply introduces a labour supply
function that increases in the real wage offered in a location. Various microfoundations of such a labour supply
function have been discussed in the literature, see for example, Allen and Arkolakis (2014), Redding (2016),
Redding and Rossi-Hansberg (2017), and Allen, Arkolakis and Takahashi (2020).
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N
-——0 —0,0(1— —0,0 1
9y 9.( B) XZ 19A0 9.(054*) (11)

1 l
Jj=1

where y;=Y;/Y" and l;=L;/L are the share of total income and total labour in location
L+B)
w

0
ieN, respectively, and x E( ) is an endogenous scalar capturing the (inverse) of the

equilibrium welfare of the system.® Conditional on 7;; this equilibrium system is identical to
the one in Allen and Arkolakis (2014) and Redding (2016). In particular, given productivities
{Ai}, amenities {u;}, and transportation costs {r,'j}, the 2N equations (10) and (11) can be solved
for the 2N equilibrium shares of income {y;} and labour {/;} in all locations. However, it is essential
to note that the transportation costs themselves are endogenous and—through traffic congestion—
will respond to the equilibrium distribution of economic activity; hence, these conditions only
provide part of the story. We address the remainder of the story below in Section 3. First, however,
we turn to another spatial model.

2.2.  An urban model with optimal routing

We next embed a routing framework in an urban model where agents commute between their
place of residence and their place of work, as in Ahlfeldt et al. (2015).

2.2.1. Setup. Anindividual v €[0, 1] residing in city block i € N"who works in city block
j €N and commutes via route r of length K to work receives a payoff Vj; . (v) that depends on the
wage in the workplace, wj; the amenity value of residence, u;; the time spent commuting; and an
idiosyncratic (Frechet distributed with shape parameter 6) route-, origin-, and destination-specific
term, & » (v):
K
Vij,r(v) = ”in/Htr/—l o | X € r (V).
=1
Individual v chooses where to live, work, and which route to take in order to maximize Vj; . (v).
That is, we extend the framework of Ahlfeldt et al. (2015) to introduce heterogeneity across
individuals in their preference not only of where to live and work but also of what route to
take when commuting between the two. Like in the economic geography framework above,
this additional “noise” both substantially increases the tractability and generates an empirically
plausible finite elasticity to the costs of different routes between home and work. And as above,
the assumption that the three choices of where to live, where to work, and what route to take
share the same elasticity—while straightforward to relax—greatly facilitate the tractability of the
derivations and ensuing economic insight that follows.

We assume each location j produces a homogeneous and costlessly traded good with a constant
returns to scale production function where labour is the only factor of production with productivity
A;. Taking the price of the good as the numeraire, this implies that the equilibrium real wage is
the marginal product of labour w; =A;.

9. That y combines both the equilibrium welfare W and the aggregate population L demonstrates that whether one
treats the economy as “closed” (so L is fixed and W is endogenous) or “open” (so that W is fixed and L is endogenous)
has no bearing on the equilibrium distribution of economic activity {/;,yi};c - nor on the value that x takes, that s, x isa
sufficient statistic for welfare in either scenario. This is closely related to the fact that, conditional on transportation costs,
the equilibrium is scale invariant—that is, changes in L have no effects on x or the equilibrium distribution of economic
activity—a point we discuss in detail in Section 4.3.
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2.2.2. An analytical expression for transportation costs. The probability a worker
chooses to live in i, work in j, and commute via route r can be written as:

K -0 0 0
Tlim i 15, i > W5

= K .0 0.0’
Zuﬂhﬂmwﬂ”ﬁx%

12)

Tij,r

where we re-use the notation from the economic geography model for reasons that will become
apparent below. This implies that the total number of workers residing in i and working in j, L,
can then be determined by simply summing across all routes and multiplying by the aggregate
population L, yielding for all ie Nand j e N

L
o o060, L
Lij= Y Lir=1;" xuf xw] x wo’ (13)
}’Efﬂg,‘

where transportation costs T; are given again by (4) and W=E [max,-,j,,\/,:,-,,(v)]:

1
-0 0 9\ . . . .
( T XU XW; ) is the expected welfare of a resident in the city.

As in the economic geography model, we assume that productivities and amenities are affected
by commercial and residential population, respectively, as follows:

AizAi(Lf)a,uizﬁi<L§)ﬁ, (14)

where A; > 0 and #; > 0 are again the fundamental components of productivity and amenities and
o, B the respective elasticities.

2.2.3. Market access and gravity. We can now express the gravity commuting equation
(13) in market access terms. To do so, we impose the following two market clearing conditions:
(1) we require that the total number of residents in i, LlR, is equal to the commuting flow to all

workplaces; and (2) we require that the total number of workers in j, LJF ,1s equal to the commuting
flow from all residences:

R _ F_
L :ZL,,-, L :ZL,-J-. (15)
j i

We can write the gravity commuting equation (13) as follows:
Lj=t;"x — x L (16)

where I1; is aresident price index capturing the (inverse of) the commuting market access residents
in i have to firms in all locations:

L -
— = L 20
—0 1 F pb RY) ¢
J

S
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and P; is a firm price index capturing the (inverse of) the commuting market access firms in j
have to residents in all locations:

AN
2 : —0 7 R0 F 0
J

Note that we re-use the notation from the economic geography framework above: both models
l'Il._g captures the “outward” market access and Pj_e captures the “inward” market access with
respect to the flows from i to j.

2.2.4. Equilibrium. Substituting equations (14) into the commuting gravity equation
(13) and imposing the equilibrium market clearing conditions (15) yields the following system

of equations:
—0B+1 n_n-= af
(zf) =x > e ulAY (zf ) (19)
J
—Oa+1 P B6
(zf ) =x > o ulAY (zf) , (20)
J
where llR ELlR /L and lf ELIF /L are the share of workers living and working, respectively, in

Lo p@tm\0 . . . s
location i and x = (L v{;ﬁ)> is again the (inverse) of the equilibrium welfare of the system. As

in the trade model above, given transportation costs {rij}, productivities {A;}, and amenities {u;},
equations (19) and (20) can be solved to determine the equilibrium distribution of where people
live {IR} and where they work {/f'}. Once again, however, the transportation costs themselves
are endogenously determined and will respond to the distribution of economic activity through
traffic congestion.

2.3. Taking stock: gravity and optimal routing on the network

We now compare the aggregate outcomes of the economic geography and urban models.
As is evident, the two setups are very similar, sharing (1) identical expressions for the
(endogenous) bilateral trade/commuting costs (summarized in equation (4)); (2) identical gravity
expressions for the bilateral flow of goods/commuters as a function of bilateral costs and market
access (summarized in equations (6) and (13), respectively); and (3) mathematically equivalent
equilibrium conditions (summarized in equations (10) and (11) for the economic geography model
and equations (19) and (20) for the urban model). Indeed, the only distinction between the two
models is the particular log linear relationship between market access variables IT;~ 9 and Pj_e

and the equilibrium economic activity in the origin (¥; and LlR , respectively) and the destination
(Ej and LJF , respectively): the equilibrium conditions in both models as functions of the market

access variables and economic activities are identical.'” These similarities allow us to introduce
endogenous transportation costs through equilibrium traffic congestion in both frameworks using
a unified set of tools we develop, which we turn to next.

10. That our model yields a log-linear relationship between local economic outcomes and market access terms
means that it generates a structural interpretation to the empirical specification used by a recent literature to estimate the
effects of transportation where economic outcomes are projected onto market access terms (see Donaldson (2015) and
Redding and Turner (2015) for excellent reviews).
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3. TRANSPORTATION COSTS, TRAFFIC, AND CONGESTION

In this section, we provide analytical solutions for the equilibrium transportation costs, traffic,
and congestion throughout the infrastructure network. We refer the interested reader to Appendix
A for detailed derivations of the results that follow in this section.

3.1.  Transportation costs

Both the economic geography and urban models yield transportation costs of the form given in
equation (4). By explicitly enumerating all possible routes, equation (4) can be written in matrix

notation as follows:!!
o0
—6 _ K
— § A%,
K=0

where A= [ i ] that is, A is an N x N matrix with (i,j) element t (not to be confused with

the vector of productivities) and AKX = [Al.j ], that is, Aij is the (i,j) element of the matrix A to

the matrix power K.'? As in Bell (1995), as long as the spectral radius of A is less than one, the
geometric sum can be expressed as:!?

ZAK—(I A)~'=B,

where B= [b,-j] is simply the Leontief inverse of the weighted adjacency matrix. As a result, the
transportation cost from i to j can be written as a simple function of the infrastructure matrix:

Ty=b". @

Equation (21) provides an analytical relationship between the transportation network T =[]
and the resulting transportation costs {rij }i’j 2> accounting for the choice of the least cost route.

Notice that in the limit case of no heterogeneity (6 — co), the transportation costs converge to
those of the least cost route, which is typically solved computationally using the Dijkstra algorithm
(see e.g. Donaldson, 2018). Our formulation results in an analytical solution by extending the
idiosyncratic heterogeneity already assumed in spatial models to also incorporate heterogeneity
over the route chosen. In doing so, our setup bears resemblance to stochastic path-assignment
methods used in transportation and computer science literature (c.f. Bell, 1995; Akamatsu,
1996); here, however, the endogenous transportation costs arise from—and are determined
simultaneously with—a larger general equilibrium spatial model.'*

11. See Appendix A.1 for a detailed derivation.

12. By summing over all possible routes, there is a direct analogy to the integral formulation of quantum mechanics,
which considers all possible paths of the system in between the initial and final states, including those that are absurd
by classical standards. Note that while it is straightforward to truncate the summation up to some finite K to restrict
consideration to only routes that are not “too” long, doing so would entail a substantial loss of analytical tractability. In
the empirical exercises below, the inclusion of more indirect routes is not quantitatively important, as they are chosen
with extremely small probability.

13. A sufficient condition for the spectral radius being less than one is if Z 1; 9 <1 for all i. The condition will hold
if either transportation costs, #;, between connected locations are sufficiently large the adjacency matrix is sufficiently
sparse (i.e. many locations are not directly connected so that #;; =+00), or the heterogeneity in preferences across routes
is sufficiently small (i.e. 6 is sufficiently large).

14. Whileequation (21) offers an explicit analytical relationship between the transportation network and the resulting
transportation costs that is unavailable with Dijkstra algorithm, in terms of computation, the two share the same operational
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3.2. Traffic flows

We next characterize traffic along a particular link in the infrastructure matrix. This will allow us
to introduce traffic congestion into the framework and relate it to observed measures of economic
activity. '3

To begin, we characterize the expected number of times in which link (k,/) is used in trade
between (i,j), nl.’;.l , which we refer to as the link intensity. We sum across all routes from i to j the
product of the probability a particular route is used (conditional on purchasing a product from i
to j) and the number of times that route passes through link (k,1), nlr‘l (as some routes may use a
link more than once):

-
n{;’z Z L |k (22)
redf Zr,emlinij’r,

Note that for any route r of length K that travels through link (k,/) at least once, there must
exist some length Be[1,2,...,K — 1] at which the route arrives at link (k,[). As a result, we can
calculate nl.];Z by explicitly enumerating all possible routes from i to k of length B and all possible
routes from [ to j of length K —B— 1, which can be expressed as elements of matrix powers of
A. With some matrix calculus, we obtain:

Tij o
nl!j-l - <—J> ) (23)
Tik ki Tij

This expression—which resembles the one of Akamatsu (1996) derived using an exponential
distribution—has a simple intuition: the more “out of the way” the transportation link (k,1) is
from the optimal path between i and j (and hence the greater the cost of travelling through link
(k,l) along the way from i to j relative to the unconstrained cost of travelling from i to j) the less
frequently that link is used.

We now use the above derivation to characterize equilibrium traffic flows along each link
of the network. Let Ey; be the total traffic over link (k,[), by which we mean the total value
of goods shipped (in the economic geography model) or the total number of commuters (in the
urban model) over the link (k,/). To calculate Ey;, we sum across all origins, destinations, and
routes which travel over link kI, which can be written as:

k= Z Z Z 7Tij,rnlrdEj= Z ZTE{}IXI']',

[1]

iENJeN reR;; ieNjeN
- kly kl
Bu=2_2 D mim L= 'Ly
iENjeNreR;; ieNjeN

in the economic geography and urban models, respectively. In either case, combining the market
access gravity equation ((6) in the economic geography model or (16) in the urban model) with
the link intensity equation (23), we obtain the following expression for equilibrium traffic flows:

Bu=t," <P <10, (24)

complexity of O (N 2logN ) In practice, however, we find equation (21) offers significant computational advantage over the
Djikstra algorithm. For example, in the interstate highway network constructed below (N =228), calculating all bilateral
transportation costs takes 0.04 seconds using equation (21) and 116.5 s using Djikstra’s algorithm—a three orders of
magnitude improvement.

15. See Appendix A.2 for a detailed derivation.
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Equation (24) offers a gravity equation for traffic, where all determinants of the flow of traffic along
link (k, ) are fully summarized by the cost to travel along the link (#;;) and the economic conditions
at the beginning and end of the link. It shows the tight connection between the gravity equation
for traffic and trade/commuting flows, as the variables summarizing the economic conditions for
the traffic gravity equation are the same market access terms Py and I that shape the economic
conditions in the origin and destination in the economic geography and urban models. The intuition
for the role that the market access terms play in the traffic gravity equation is straightforward: the

greater the inward market access (Pk_9> , the more traffic that flows into a link k, and the greater

the outward market access (HZ_Q), the more traffic that flows out of link 7.1

Equation (24) takes the cost of travelling along a link #;; as given — we now introduce traffic
congestion by a parametric relationship between this cost and the traffic along the link.

3.3.  Traffic congestion

To complete our modelling of traffic flows, we now suppose that the direct cost of travelling over a
particular link depends in part on the total traffic flowing over that link through traffic congestion.
In particular, we assume that the direct cost of travelling over a link, #;;, depends in part on the
amount of traffic over that link =j; through the following simple functional form:

=1 (E)", (25)

where A > 0 governs the strength of traffic congestion and T = [;kl] is the infrastructure network.
Intuitively, if A > 0, the greater the fraction of total economic activity that passes through a link, the
more costly traversing that link is. Like the amenity and productivity externalities in equations (1)
and (14), the choice of the functional form of equation (25) succinctly allows for transportation
costs to depend on an exogenous component (the infrastructure network) and an endogenous
component (traffic), with a single structural parameter (1) governing the relative strength of the
two. And like with the amenity and productivity externalities, it has the unattractive feature that
the transportation costs is equal to zero when the endogenous component (traffic) is equal to zero.
Just as with the amenity and productivity externalities, however, this never occurs in equilibrium,
as all agents’ idiosyncratic preferences over routes ensures there will be strictly positive traffic
on all links. An additional attractive feature of equation (25) is that can be derived from a simple
micro-foundation (presented in Section 5.3) where transportation costs are log-linear functions
of travel time and speed is a log-linear function of traffic congestion.

It is important to note that the measure of traffic—and hence traffic congestion—is in the
same units that we measure bilateral flows, that is, in the economic geography model, traffic
is measured in the value of goods flowing over a link, whereas in the urban model, traffic is
measured in the quantity of commuters flowing over a link. There are several advantages to
this approach. First, by measuring traffic in the same units that we measure bilateral flows, we
generate a close connection between the (new) gravity equation (24) for traffic on a link and the
(traditional) gravity equation for flows between an origin and destination (i.e. equations (6) and
(16) for the economic geography and urban models, respectively). Second, as we will see below,
this close connection allows us to derive analytical equilibrium conditions for the distribution of

16. In both the economic geography and urban models, traffic flows from an origin to a destination. This abstracts
from back-hauling (in the economic geography model) and return commutes (in the urban model). For this reason (and
because our traffic data does not indicate a direction of travel), in the empirical exercises below, we consider symmetric
improvements to both directions of travel on a given link in the infrastructure network.

2202 JaquieAoON zz uo Jasn Aselqi eb9jj00 yinoweq Aq ZEE61L59/1 L 62/9/68/2101e/pnisal/woo dno olwapeoe//:sdiy Wwol) papeojumo(]



ALLEN & ARKOLAKIS TRANSPORTATION INFRASTRUCTURE 2925

economic activity solely as a function of the model fundamentals by solving the same number of
equations for the same number of unknowns despite the additional complicated feed-back loop
that the presence of traffic congestion generates. Third, retaining the same units for traffic and
bilateral flows—along with the assumed log-linear congestion relationship in equation (25)—
ensures that the transportation costs between origin and destination remain ad-valorem in the
presence of traffic congestion, that is, our framework follows the large literature focusing on
so-called iceberg transportation costs.

These advantages notwithstanding, however, a reasonable objection that applies to the
economic geography framework is that traffic congestion actually is increasing in the quantity
rather than the value of trade: for example, a truck carrying cheap apples generates the same
traffic congestion as one carrying expensive apples. In the Supplementary Appendix D.4, we
show how the economic geography framework can be easily altered to to assume instead that
traffic (and traffic congestion) are measured in the quantity of labour used to produce the goods and
Supplementary Appendix D.5 for the case where traffic is measured in the quantity of goods. In
both cases, we show that equilibrium traffic flows also follow a gravity equation nearly identical
to that of equation (24), differing only in that the market access measures are quantity-based
rather than value-based. However, the need to simultaneously consider both quantity- and value-
based market access measures increases the complexity of the equilibrium system, for example,
increasing the set of endogenous variables (and systems to solve) from 2N to 3N when traffic
congestion depends on the quantity of labour used to produce the goods.

Combining equation (25) with the gravity equation for Ej; from equation (24), we immediately
obtain:

e o o

tkl:tlcll+gh XPk 1+61 X Hl 1401 , (26)
6 __6_ 6

Eklztkl 1+61 XPk 1+61 X 1—11 1+61 . (27)

Equation (26) shows how the distribution of economic activity affects transportation costs through
traffic congestion. It says that the cost of transiting a link #;; is higher the better the inward market
access (lower Py ) at the beginning of the link and/or the better the outward market access (lower
[1; at the end of the link), as both increase traffic along the link, with A governing the strength of the
forces. Equation (27)—which provides the basis for estimating the strength of traffic congestion
below—shows traffic flows retain a gravity structure in the presence of traffic congestion. It also
highlights that improvements in infrastructure quality endogenously increases the traffic demand
for the infrastructure with an elasticity 331{:1 %{’;’ =— 1_5# ,afacthighlighted by Duranton and Turner

(2011), and a point we return to in Section 5.3.

4. TRAFFIC CONGESTION IN THE SPATIAL ECONOMY

In Section 2, we characterized the equilibrium distribution of economic activity given
transportation costs. In Section 3, we characterized the equilibrium transportation costs given
the distribution of economic activity. In this section, we characterize both simultaneously as a
function of the fundamental infrastructure network.

4.1.  General equilibrium with traffic

We begin by formally defining our equilibrium: given a local geography {A iU }i oA/ Anaggregate
labour endowment L, an infrastructure network T= [Ekl], and model parameters {«,8,6,1},
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we define an equilibrium to be a distribution of economic activity {y;,/;};cas in the economic
geography model and {llF , llR }i < In the urban model and an aggregate (inverse) welfare x >0
such that:

1. Given equilibrium transportation costs {Ti/}i,j en2» the equilibrium distribution of economic
activity ensures markets clear, that is, equations (10) and (11) hold in the economic geography
model and equations (19) and (20) hold in the urban model,

2. Given the equilibrium transportation network T =[#;], agents optimally choose their routes
through the network, that is, equilibrium transportation costs are determined by equation (21);
and

3. Given the equilibrium distribution of economic activity, the infrastructure network T= [Ekl],
and agents’ optimal route choice, the equilibrium transportation network T =[#;;] is determined
by the equilibrium levels of traffic congestion, that is, equation (26) holds.

We further define a strictly positive equilibrium to be one where the distribution of economic
activity is strictly greater than zero in all locations, that is, y; >0 and /; >0 for all i€ A/ in an
economic geography model and lf >0 and llR >0 for all i € A/ in an urban model. While the first
equilibrium condition—market clearing given transportation costs—is standard to all general
equilibrium spatial models, the second and third conditions are new, introducing optimal routing
on the part of agents and endogenous traffic congestion, respectively. Despite the added complexity
of the system, however, it turns out that the equilibrium of the system remains surprisingly
tractable.

Before deriving the new equilibrium system, two remarks are in order. First, in the absence of
traffic congestion—that is, A =0—then conditional on the equilibrium transportation costs {r,:/}
that arise from agents optimal routing decision, the equilibrium is equivalent to the standard spatial
setup upon which it is based, that is, our framework tractably nests the standard no-congestion
case. Second, with traffic congestion—that is, A > 0—the equilibrium will differ from the no-
congestion case, as the level of economic activity across space determines the cost of shipping in
each link through traffic congestion, differences which we discuss further below. This also implies
that the counterfactual predictions of our new setup with traffic congestion cannot be determined
by substituting unobserved transportation costs with observed data following the “exact hat”
approach of Dekle et al. (2008), as now t;; is endogenous and depends on the entire network of
connections through traffic and not just on bilateral flows. We nevertheless devise a new procedure,
same in spirit to their exercise, but which instead replaces the need of knowledge of the entire
network of connections with the use of traffic data. We discuss this in Sections 5.1 and 5.2.

Consider first the economic geography model. Recall that equations (10) and (11) characterize
the equilibrium distribution of population and income as a function of the endogenous
transportation costs {rl-j}, that is, they satisfy equilibrium condition 1. To satisfy equilibrium
condition 2, we substitute in equation (21) for the endogenous transportation costs and perform
a matrix inversion to re-write the equilibrium conditions as a functions of the infrastructure
network rather than the transportation costs and then substitute the endogenous transport costs
using equations (24),(26), (27), yielding:'”?

14040% _ 8(1+a+(@+p)0R) . lsesn 6(B-1)
l.”“ l; 1402 = xit] Aly; Ton [ v
o & e \ T 20—l e 0
+Xm E (L tl]) Al ﬁl 1+9AAj l+9)uyjl+t9)» l] 1+6A (28)

j=1

17. See Appendix A.3 for a detailed derivation of the equilibrium system for both the economic geography and
urban models.
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—0(1-3) 0(1—F—0Ar(@+h) g =R ot
T+6x T+62 . aA0= T+on T+0x
Yi l; = XA;U; y; l;
0 & o \ T < 720 g — e e 2P
_{_XWE (L l‘ﬂ> Al_1+9»\ ﬁi ﬁj 1+9»\yl_ 1+9xl,_1+m . (29)
Jj=1

An identical process for the urban model—starting from equilibrium conditions (19) and
(20), substituting in equation (21) for the endogenous transportation costs, performing a matrix
inversion, and incorporating endogenous traffic congestion from equation (24), (26), (27),—
yields:

R 1-6p F ml(l@ig) 0-0(F el(i;)){) 02 N A _lfﬁ 2 02— R %
10 = £ TAT -0 5% T+o% -~ T+ox x
(li) (li) = xA] i (li> + x THO% Z(L tij) uA; " U + (lj)

Jj=1

(30)

R “1(179/;9) F 1-6a 050 (iR 9{,940-:) 0. al A *HW 9-0 2 2 F %

+ -0 7 + 225 Faz \ T TR 760 Teon 7 T THen +

(li) (ll-) = il A (l,.) +x1+mZ(L t,-,-) Ala, FTAT (zj) .
Jj=1

(31)

Equations (28) and (29) for the economic geography model and equations (30) and (31) for the
urban model determine the equilibrium distribution of economic activity {y;,/;} or {lf , Zf } asa
function of the model elasticities {«, 8,6, 1}, geography {/_\i, ﬁ,-}, and fundamental infrastructure
matrix T= [;kl], accounting for both the (standard) effect of transportation costs on the distribution
of economic activity and the (new) effect of the distribution of economic activity on agents’
optimal routing choice, the resulting traffic congestion, and the equilibrium transportation costs.

Despite the complicated feedback loop between the two effects and the necessity of solving
the resulting fixed point, the dimensionality of resulting equilibrium system is not larger than the
typical system treating transportation costs as exogenous, as the number of equations and number
of unknowns remains the same. That allows us to make some progress in characterizing their
positive properties (existence and uniqueness), which we turn to next.

4.2. Existence and uniqueness of equilibrium with traffic

While systems of equations with a structure as in (28) and (29) have, to our knowledge, not been
studied previously, it turns out that the tools developed in Allen et al. (2020) can be extended to
analyse the properties of such an equilibrium.'® We first make an additional assumption on the
infrastructure matrix:

Assumption 1. The infrastructure matrix T is strongly connected, i.e. there exists a path with
finite costs between any two locations i and j, where i #}j.

Given Assumption 1, we now provide conditions regarding existence and uniqueness in the
following proposition.

18. In the absence of traffic congestion, the equilibrium (e.g. equations (10) and (11) in the economic geography
model) is an example of a system of non-linear integral equations known as a Hammerstein equation of the second kind,
see for example, Polyanin and Manzhirov (2008). Since the results hold for Lebesgue integrals they also apply for a
discrete set of locations as discussed in Allen and Arkolakis (2014). Such systems, however, do not admit the inclusion
of an endogenous additive term, as in (28) and (29) and also in (30) and (31).
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Proposition 1.  For any strictly positive local geography {A, >0,u; > O}i e\ aggregate labour
endowment L >0, strongly connected infrastructure network T= [Zkl], and model parameters
{eeR,BeR,0>0,A>0}, then:

1. (Existence): There exists a strictly positive equilibrium.
2. (Uniqueness): For any a €[—1,1]and pe[—1,1]:

(a) In an economic geography model with a symmetric infrastructure matrix, i.e. tyy =1y for all
leN and ke N, the equilibrium is unique if:

a+pB<0. (32)

(b) In an urban model, the equilibrium is unique if:

<1 ! A d <1 ! A 33
e (5-+) mar<3(5-2) 49

Proof. See Supplementary Appendix C.1. O

Part 1 of Proposition 1 relies on showing that the equilibrium system defined by Equations (28)
and (29) for the economic geography model and equations (30) and (31) for the urban model
can be transformed into a continuous operator on a compact space so that Brouwer’s fixed point
theorem applies; whereas Part 2 uses a bounding argument in the spirit of Karlin and Nirenberg
(1967) and Allen et al. (2020) to show that a (different) transformation of the respective systems
would generate a contradiction under the reported parameter constellations.

Despite the added complexity of endogenous traffic congestion (and the involved nature of the
proofs), the sufficient conditions for uniqueness in the economic geography model provided in
part (a) of the Proposition are identical to those of an economic geography model with exogenous
transportation costs, provided by Allen and Arkolakis (2014): the sum of the productivity and
amenity externalities must be (weakly) negative to ensure a unique equilibrium, that is, on net the
forces that cause dispersion need to dominate the forces that cause concentration. In the urban
model, we achieve a similar result but since we do not impose symmetry the productivity and
amenity spillovers must satisfy arelated condition individually, rather than combined).'® Unlike in
the economic geography model, however, the strength of traffic congestion (1) does play a role in
ensuring uniqueness: the stronger the traffic congestion, the lower the values of the productivity
and amenity externalities must be to satisfy these sufficient conditions for uniqueness. Unlike
productivity and amenity externalities where the forces occur within a location, traffic congestion
forces arise on flows between locations; loosely speaking, stronger traffic congestion forces
can induce greater economic concentration by reducing the flows of goods or people between
locations.

4.3. Traffic congestion and scale dependence

In the absence of traffic congestion, equilibrium of the economic geography and urban models do
not depend on the size of the aggregate labour endowment L, that is, both (standard) spatial models

19. We should note that for the Allen and Arkolakis (2014) model these sufficient conditions are also necessary,
assuming arbitrary geography of trade costs (see Theorem 1(iii) in Allen, Arkolakis and Li (2020)). Unfortunately, such a
characterization of necessary conditions is not possible in the presence of traffic congestion. It thus remain a possibility that
weaker sufficient conditions can be proven where the traffic congestion parameter, X, plays a role in such characterization.
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are scale invariant.’° In the presence of traffic congestion, however, the equilibrium distribution
of economic activity does depend on the size of the aggregate labour endowment L, that is,
the equilibrium is scale dependent. As is evident from equations (28) and (29) (in the economic
geography model) and equations (30) and (31) (in the urban model), increases in L are isomorphic
to increases in costs of travel through the infrastructure network 7;;, with an elasticity equal to the
strength of the traffic congestion A. Intuitively, the greater the aggregate labour endowment, the
greater the traffic flowing through the network, and the greater the resulting traffic congestion.
While the increases in the cost of travel through the infrastructure network are uniform, the impact
on equilibrium transportation costs is not. To see this, we ask how a small uniform increase in
the cost of travel through the entire infrastructure matrix by a factor of ¢ > 1, that is, suppose
1y increases to cty;, changes equilibrium transportation costs (holding constant traffic congestion
fixed). Differentiating equation (21) around c =1 yields:*!

dln dln;j(c) (c)

dlnc le=1 _Zzn

k=11=1

that is, a uniform increase in the cost of travel results in a non-uniform increase in bilateral
transportation costs, where origins and destinations whose link intensity across the entire network
is greater face the largest increases. These disproportionate changes in transportation costs alter
the equilibrium distribution of economic activity, as the following example highlights.

4.4. Example

Consider a city comprising 25 locations arranged in a 5 x 5 grid, where, apart from their location
in the grid, all locations are identical. Figure 1(a) depicts the equilibrium distribution of economic
activity in the absence of congestion forces (i.e. A=0). Locations in the centre of the grid
with better market access enjoy greater equilibrium economic activity (as indicated by taller
“buildings”), and links in the centre of the grid experience greater traffic (as indicated by their
colour), as they are more heavily used to travel through the network.

In Figure 1(b), we introduce traffic congestion, setting A =0.05, but holding everything else
constant. Traffic congestion disproportionately increases the cost of traversing the more heavily
travelled central network segments. This disproportionately reduces the amount of traffic on those
segments, causing relatively greater declines in central locations’ market access and resulting in
a fall in economic activity falls in the centre of the city and rises in the outskirts: that is, traffic
congestion forces agents out of the centre of the city and into the suburbs.

In Figure 1(c) and (d), we increase the size of the economy from L=100 to L=1000
(Figure 1(c)) and L= 10,000 (Figure 1(d)). As discussed above, this would have no effect on the
distribution of economic activity in the absence of traffic congestion, but in the presence of traffic
congestion, scale matters. Increasing the aggregate population increases traffic everywhere, but
the centre of city is the worse affected: the resulting gridlock induces a reallocation of economic
activity away from the centre and toward the edges, further amplifying the move to the suburbs.

20. This fact is immediately evident from an examination of equations (10) and (11) (in the economic geography
model) and equations (19) and (20) (in the urban model). In both systems, L only enters as a component of the endogenous
scalar x, so that any changes in L only changes W in such a way to ensure x remains constant.

21. See Supplementary Appendix B.3 for a detailed derivation.
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(a) No congestion (A =0, L = 100) (b) Congestion, low scale (A = 0.05, L = 100)
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FIGURE 1

Traffic congestion and the distribution of economic activity

Notes: This figure shows how traffic congestion (1) and the scale of the economy (Z) shapes the distribution of economic activity within
an example 5 x 5 grid network using the urban model. The height of the buildings (and the rooftop colours, associated with the colour bar
on the right) indicate the equilibrium residential population (L{" ) at each location in the city, and the colour of each link (associated with
the colour bar on the left) indicates the equilibrium traffic along the link. Throughout, « =8=0, 6 =4, and 7;; = 1.5 for connected links.

5. FROM THEORY TO DATA

We now turn to applying our framework to evaluate the welfare impact of transportation
infrastructure improvements. To do so, we begin by developing three helpful empirical tools:
(1) we derive an equilibrium relationship between traffic flows on the one hand and trade (in the
economic geography model) or commuting (in the urban model) on the other; (2) we show how to
re-write the equilibrium conditions in terms of “exact hat” changes that depend only on observed
traffic flows and economic activity and model parameters (e.g. the strength of traffic congestion);
and (3) we present a procedure for estimating the strength of traffic congestion.

5.1.  Traffic, trade, and commuting flows

As we discussed in Section 3.2, there is a close link between the gravity equations for
trade/commuting flows (equations 6 and 16, respectively) and the gravity equation for traffic (27).
It turns out that this close link admits an analytical relationship between trade/commuting flows
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and traffic. Combining the two gravity equations (along with the definitions of the respective
market access terms), one can express equilibrium trade flows in the economic geography
model as:*
X
Xl'j:CinY,'XE', (34)

where cfj is the (i,j) th element of the matrix C¥ = (DX — 5)71 , DX is a diagonal matrix with ith

element d; =} (Yi—i—Ei)—i—%(Zj-V:l (Zi+ E,J)) and E=[g;].

Similarly, one can express equilibrium commuting flows in the urban model as:

L :ciLj x LR x LJF , (35)

. .. . —_ —1 . . . cq .
where ciLj is the (i,7)th element of the matrix cL= (DL — :.) .Dlisa diagonal matrix with ith

element d; = % (LIR—G—Lf) + % (Z]N:l (8i+ E,j)> and E=[E;].

Equations (34) and (35) show that in both the economic geography and urban models, the
equilibrium flows from origin to destination can be written only in terms of the economic
activity in the origin (¥; and LZR , respectively), economic activity in the destination (E; and LZF ,
respectively), and the matrix of traffic flows through the network, Z.%° In particular, equations
(34) and (35), show that trade and commuting flows can be expressed as (an appropriately scaled)
Leontief inverse of the traffic flows. Note that the expression depends only on available data
and hence can be accomplished without knowledge of the underlying model elasticities. This
result had two advantages, depending on the empirical availability of trade/commuting flows. In
settings where both traffic flows and commuting/trade flows are observed (such as our empirical
contexts discussed below), it provides an out-of-sample test of the model predictions about traffic
flows. In addition, if trade/commuting data are not available, but traffic data is (e.g. as in much
of the developing world), it still enables one to evaluate the welfare impacts of infrastructure
improvements, a point we turn to next.

5.2.  Counterfactuals

To evaluate the welfare impact of transportation infrastructure improvements in the presence of
traffic congestion, we next analyse how to conduct counterfactuals. To do so, we follow the “exact

hat algebra” approach pioneered by Dekle er al. (2008), where we denote with hats the change in

variables, y; = %, where we denote with prime the counterfactual outcome. We summarize the
]

result in the following proposition.

Proposition 2.  Suppose an observed economy has infrastructure network T= [Ekl] and is in
equilibrium. Consider any change in the underlying infrastructure network denoted by 1. Given

observed traffic flows, [E ij]y economic activity in the geography (Yi,Ej) or urban model (LlR , LJF )

22. See Supplementary Appendix B.4 for a detailed derivation.

23. By imposing symmetry, one can also recover the transportation costs of traversing each link of the infrastructure
network as summarized by the adjacency matrix A= [t,;g]; this procedure—which applies a variant of the methodology
developed by Head and Ries (2001) to recover bilateral trade costs from bilateral trade flows to equations (34) and (35).
In combination with equation (23), this then allows us to calculate the link intensity nlf;’ using only observed traffic and
economic activity data, something we return to below. We use this procedure—discussed in detail in Supplementary
Appendix B.4—in creating Figure 4 below.
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and parameters {«, B,0, 1}, the equilibrium change in economic outcomes (51,', 1, )2) is the solution

the following system of equations:
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for the urban model. Moreover, existence and uniqueness of the counterfactuals are given by the
same conditions as in Proposition (1).

Proof. See Supplementary Appendix C.2. O

Proposition 2 says that given observed traffic flows and the observed distribution of economic
activity—and knowledge of the model parameters {0,«, 8,A}—it is possible to evaluate the

impact of any transportation infrastructure improvements [ fij] on the equilibrium distribution

of economic activity and aggregate welfare.”* Note that equations (36)—(39) all say that some
log linear combination of endogenous changes in location i depend on a weighted average
of a (different) log linear combination of endogenous changes in location i and a (third) log
linear combination of endogenous changes in all location j, where the weights are determined
by the relative size of observed local economic activity and traffic flows. Loosely speaking,
this locations with large amounts of traffic flows to i will play a greater role in determining
the counterfactual outcomes in i, all the more so if these traffic flows are large relative to the
economic activity in i. It is worth emphasizing that conducting counterfactuals using this result
requires easily observed traffic flows along links in the network, instead of potentially harder
to observe bilateral trade or commuting flows between origins and destinations upon which

24. Supplementary Appendix E describes the algorithm used to solve equations (19) and (20) given these ingredients.
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traditional implementations of the Dekle ez al. (2008) “exact hat” algorithm rely (see e.g. Redding,
2016; Caliendo, Parro, Rossi-Hansberg and Sarte, 2018; Adao, Arkolakis and Esposito, 2021).

The second part of Proposition 2 says that existence and the sufficient conditions for
uniqueness for the counterfactuals are the same as for the system in levels. This result arises
from the fact that the systems of equations that determine the counterfactual outcomes in changes
are mathematically equivalent to their level variants above, where the local geography and
infrastructure matrix are simply replaced with shares that depend only on observed traffic flows
and the observed distribution of economic activity.

While the first three parameters {0, «, 8} are familiar ingredients in spatial models (and we
will be calibrating their values to those of the literature below), the strength of traffic congestion
A is new to our framework. We turn now to its estimation.

5.3. Estimating the strength of traffic congestion

To derive a straightforward estimating equation for the strength of the endogenous traffic
congestion, we make two additional assumptions. First, we follow an extensive literature on
trade cost estimation, and assume that transportation costs f; are a log-linear function of travel
time.” As a result, we can write #;; as a function of the distance of the link and the speed of travel
on the link:

8
= (distancekl x speedk_l1> g (40)

where § is the time elasticity of the transportation cost. In our preferred results below, we set
8o=1/6 to imply a “distance elasticity” of negative one, which is consistent with a large gravity
literature, see for example, Disdier and Head (2008) and Chaney (2018).2°

Our second assumption is that time per unit distance (inverse speed) is a log-linear function
of traffic congestion (measured as total vehicle miles travelled per lane-miles, or equivalently,
traffic per average lanes) as follows:

= i
speed,:l1 =mg X ( M > X Exl 41)
lanesy;

where §1is the congestion elasticity of inverse speed, mq is the average rate of flow without
congestion, lanesy; are the average number of lanes on a link, and gy is a segment specific
idiosyncratic free rate of flow. The log-linear specification was first posited by Vickrey (1967),
and while simple, has a number of advantages in our setting.?’ First, combined with equations
(40), and (41) immediately implies:

= - \A
=ty < (Ex)",

25. For example, Hummels and Schaur (2013) find that time is an important component of international trade costs,
and Pascali (2017) and Feyrer (2019) use plausibly exogenous shocks to travel time as instruments for changes in trade
costs. Anderson and Van Wincoop (2004) note that the assumption that trade costs are a log-linear function of distance—a
special case of our assumption when speed of travel is constant—is “by far the most common assumption” (p.710).

26. In Supplementary Appendix G, we present alternative results where we estimate o by using the estimated
distance elasticity from gravity equations of our observed trade and commuting flows, respectively, on distance, which
imply slightly stronger traffic congestion forces (as our estimates of the distance elasticity are 1.6 in the economic
geography case and 1.45 in the urban case). As is evident, the welfare impacts of infrastructure improvements are
qualitatively and quantitatively similar to those with our preferred estimates.

27. Vickrey (1967) assumes a log-linear relationship between inverse speed and traffic congestion, where inverse
speed is defined relative to an unimpeded inverse speed (see his equation 1). In equation (41) there is no such unimpeded
inverse speed, that is, while we follow Vickrey (1967) in considering a log-linear approximation of the impact of congestion
on travel time, our approximations centres around an inverse speed of zero rather than the free-flow rate of travel.
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where 7 Elaneslg&)‘s1 x (distancey; x mq X ekl)‘so and A =4§p481. That is, this simple setup offers a
micro-foundation for the traffic congestion formulation (25) posited in Section 4. Second, treating
distance and the free rate of flow as segment specific time-invariant characteristics, equation
(41) provides a simple relationship between infrastructure improvements and the change in the
infrastructure matrix: .

T = laﬁesk_,k. (42)

As additional lane-miles are added to a segment, congestion on the segment falls, reducing the
exogenous component of transportation costs with an elasticity of A. This is intuitive: the greater
the strength of traffic congestion, the larger the impact of adding additional lanes. However, it is
important to (re-)emphasize that improvements in the infrastructure matrix will also result in an
endogenous increase in traffic demand. Indeed, combining equation (42) with (27), we see that the
elasticity of traffic to lanes is % = %, i.e. the limiting case as traffic congestion becomes
infinitely large is that traffic increases proportionately with the adding of additional lanes, as in
“the fundamental law of road congestion” identified by Duranton and Turner (2011).28

The final advantage of this setup is that it delivers a straightforward estimating equation and,
combined with the traffic gravity equation (27), an appropriate identification strategy. Taking logs

of equation (41) yields:

Exl
lanesy;

lnspeed];l1 =lnm0+61ln< )+ln8k1, (43)

that is, a regression of inverse speed on traffic congestion can in principal identify the congestion
elasticity of inverse speed §1. An ordinary least squares regression is inappropriate in this case,
as the residual is the free rate of flow on the segment kI, which enters into 7;; and so, from
the traffic gravity equation (27) is negatively correlated with traffic Ey;, biasing the estimate of
81 downwards. Instead, we propose to use an instrumental variables strategy, instrumenting for
traffic Ey; with observables that affect traffic demand for a segment but are uncorrelated with
the free rate of flow on the segment.”” From the traffic gravity equation (27), conditional on k
and [ fixed effects, any component of 7; that does not affect the free rate of flow is a suitable
instrument. Intuitively, we can use observables that shift the traffic gravity (demand) equation to
identify the slope of the traffic congestion (supply) equation. We describe such instruments in
the next section, where we apply our procedure to determine the welfare impact of transportation
infrastructure improvements in two different settings.

6. THE WELFARE IMPACT OF TRANSPORTATION INFRASTRUCTURE
IMPROVEMENTS

We first apply the economic geography variant of our framework to evaluate the welfare impact
(and, given cost estimates, the return on investment) of small improvements to every single
segment of the US Interstate Highway network. We then apply the urban variant of our framework
to do the same for each segment of the road network in Seattle, WA.

28. Itis important to note that this is the partial elasticity of traffic to additional lanes, whereas Duranton and Turner
(2011) empirically evaluate the total elasticity of traffic to additional lanes, including the resulting general equilibrium
changes in the spatial distribution of economic activity.

29. Alternatively, we could have calibrated §; by adapting the estimates of Couture, Duranton and Turner (2018).
The authors estimate a very similar relationship using instrumental variables, but estimate a different elasticity for traffic
and number of lanes. Their preferred estimates imply that the elasticity on traffic is larger than the elasticity on lanes, but
the difference is typically very small.

2202 JaquieAoON zz uo Jasn Aselqi eb9jj00 yinoweq Aq ZEE61L59/1 L 62/9/68/2101e/pnisal/woo dno olwapeoe//:sdiy Wwol) papeojumo(]



ALLEN & ARKOLAKIS TRANSPORTATION INFRASTRUCTURE 2935

6.1. Traffic across the country: the US highway network

The US National Highway System is the largest highway system in the world. The main backbone
of the National Highway System—the Interstate Highway System—is one of the world’s largest
infrastructure projects in history (Kaszynski, 2000), taking more than thirty five years to construct
at an estimated cost $650 billion (in 2014 dollars), and total annual maintenance costs are
approximately $70 billion (CBO, 1982; FHA, 2008; NSTIFC, 2009; ASCE, 2017). However,
little is known about the relative importance of different segments of the highway system in terms
of how each affects the welfare of the US population. Such knowledge is crucial for appropriately
targeting future infrastructure investments.

Our strategy to estimate the welfare impact of improvements to the US Highway System is
straightforward: for each segments of the network, we will use equations (36) and (37) from
Proposition 2 for the economic geography variant of our approach to estimate the aggregate

welfare impact (W =3~ é) of a small (1%) improvement to the infrastructure network. We then
use equation (42) to calculate how many lane-miles must be added in order to achieve a 1%
improvement in order to estimate such an infrastructure cost. Given costs and benefits, we can
then identify the highway segments with the greatest return on investment. This procedure requires
just two ingredients: (1) data on traffic {Ey;} and income {Y; =E;}; and (2) knowledge of the four
model parameters {0, «, 8,A}. We discuss the source of these ingredients in turn.

6.1.1. Data. We briefly summarize the data used here; see Supplementary Appendix F.1
for more details. The primary source of data we use to construct the infrastructure network is
the 2012 Highway Performance Monitoring System (HPMS) dataset by the Federal Highway
Administration. This dataset comprises the length, location, number of lanes, and average annual
daily traffic (AADT) over 330,021 segments of the US highway system.°

To create the infrastructure network, we begin by placing nodes at each endpoint and
intersection between two different Interstate highways and collapsing all nodes within the same
core-based statistical area (CBSA) to a single CBSA point. This results in 228 locations and 704
links between adjacent nodes, where for each link we construct a length-weighted average of
AADT and number of lanes. Figure 3(a) depicts the actual highway network and the resulting
infrastructure network.

To this network, we append four additional data sources. First, to estimate the strength of
congestion, we recover the time of travel (timey;) across each link from the HERE API using the
georoute Stata command by Weber and Péclat (2017). Second, we calculate the population and
income at each node by summing the population and averaging the median income of all cities
from Edwards (2017) (which is itself based on the US Census and American Community Survey)
within 25 miles of the node. Third, we estimate the cost of improving each link based on the
topography of its constituent segments. To do so, we classify each segment of the Interstate
Highway System into one of seven categories from the Federal Highway Administration’s
Highway Economic Requirements System (HERS) Federal Highway Administration (2015),
each of which is associated with an estimated cost of adding one lane-mile.?' To determine

30. The traffic data are reported for a segment without reference to the direction of travel. Combined with the fact
that we impose Y; =E; in the data, this results in two implications: first, as equations (36) and (37) have symmetric kernels,
the uniqueness results of Proposition 2(a) apply to the counterfactuals conducted; second, to be consistent with the data,
we examine infrastructure improvements that symmetrically improve a segment in both directions of travel.

31. The Federal Highway Administration provides seven different cost categories for the interstate highway system
that we can use based on geographical characteristics and urbanization: rural-flat ($1.923 m), rural-rolling ($2.085 m),
rural-mountainous ($6.492 m), small-urban ($3.061 m), small-urbanized ($3.345 m), large-urbanized ($5.598 m), and
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the average cost of adding one lane-mile to a link, we construct a distance-weighted average of
the cost of improving each of its constituent segments. Fourth, we rely on the 2012 Commodity
Flow Survey (CFS) to construct measures of the value of bilateral trade flows between each
CBSA; for CFS areas comprising more than one CBSA, we allocate observed CFS area flows to
CBSAs proportionally to their share of the CFS area’s total income.

6.1.2. Predicted vs. observed trade flows. As a first check of the validity of the
framework developed above, we compare the observed value of bilateral trade flows between
CBSAs from the CFS to the backed out bilateral trade flows using equation (34) and the observed
traffic flows. To do so, we assume that each element of the matrix of traffic flows E =[Ey]
is equal to the observed AADT along the highway segment, which is equivalent to assuming
that each car is carrying a value of trade equal to the average value of a single individual’s
labour. This of course abstracts from many nuances of traffic flows, including shipments via
truck (where the trade value exceeds this average) as well as traffic for non-trade purposes
such as commuting and shopping (where the trade value falls below this average). Given these
abstractions, it is all the more remarkable how well traffic across the interstates is able to predict
actual trade between CBSAs. Figure 2(a) shows the scatter plot between observed and predicted
(log) trade flows, conditional on origin and destination fixed effects (so the only variation
arises from the bilateral flows and not for example, income in the origin or destination). As
is evident, there is a strong positive correlation of 0.60, indicating the traffic matrix—through
the lens of the theory and despite obvious measurement issues—does a good job of predicting
trade flows.>

Finally, Figure 4(a) provides an example of intensity of usage of different links for a specific
origin and destination pair, Los Angeles, California to New York, New York. As expected, the
links that are on very direct routes, such as for example segments of the I-95 interstate near New
York, are very intensively used to serve that pair, whereas more indirect links such as highway
segments in California north of Los Angeles, have negligible usage.

6.1.3. Estimation. We now discuss our choice of the four model parameters {6, «, 8, 1}.
As the first three model parameters—the trade elasticity 6, productivity externality «, and amenity
externality B—are standard in the economic geography literature, we choose central values from
the literature. We set § =8 to match previous estimates of the trade elasticity.’> We also choose
a=0.1,and g = —0.3, which corresponds to the estimated scale economies found in the literature,
as e.g. summarized in Rosenthal and Strange (2004) and Combes and Gobillon (2015) and the
share of consumption allocated to housing, see for example, Allen and Arkolakis (2014).3* From
Proposition 1, this choice of parameter values guarantees the existence of a unique equilibrium.

major-urbanized ($11.197 m). We are grateful to the experts at the US Department of Transportation Volpe National
Transportation Systems Center for their substantial assistance in developing these cost estimates.

32. The modelis able to fit the rapid decline of trade with distance (Hillberry and Hummels, 2008) as Supplementary
Appendix Figure F.2 illustrates.

33. Donaldson and Hornbeck (2016) estimate a trade elasticity of 8.22 for US intra-national trade, albeit in the late
19th century. Eaton and Kortum (2002) estimate a trade elasticity between 3.60 and 12.86 for international trade, with a
preferred estimate of 8.28.

34. In reviews of the literature, Rosenthal and Strange (2004) and Combes and Gobillon (2015) conclude that
agglomeration elasticities at the city level are likely between 0.03 and 0.08. As in Allen and Arkolakis (2014), we
choose a spillover of « =0.1 to also incorporate the effects of entry on overall output. As robustness, in Supplementary
Appendix G, we repeat the exercise for alternative constellations of these model parameters, including (1) removing the
externalities, (2) lowering the trade elasticity; and (3) increasing the traffic congestion parameters. As is evident, both the
patterns of welfare elasticities and the returns on investment are both qualitatively and quantitatively similar to the results
presented here.
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Observed trade from CFS (log)
0
1

-10

T T T
-10 0 10 20 30 40
Predicted trade (log), cond. on orig. & dest. FE

Correlation: 0.6101

Trade flows in an economic geography model

-10

Observed commuting from LODES (log)
-15

T T T T

0 5
Predicted commuting (log), cond. on orig. & dest. FE
Correlation: 0.4335

Commuting flows in an urban model

FIGURE 2
Predicting flows using traffic

Notes: This figure compares the observed bilateral origin to destination flows to those predicted from the observed traffic along the
transportation network. In panel (a), we compare the predicted (log) trade flows on the x-axis to the observed (log) trade flows between
metropolitan areas from the Commodity Flow Survey (CFS) data on the y-axis using the economic geography model. In panel (b), we
compare the predicted (log) commuting flows on the x-axis to the observed (log) commuting flows from the Longitudinal Employer-
Household Dynamics Origin-Destination Employment Statistics (LODES) between grid cells within Seattle. In both figures, the predicted
and observed flows are residualized using origin and destination fixed effects, so the observed correlation only arises through similarity at
the pair level.
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(a)
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Panel A: The Interstate Highway System

U.S. Highway Network

Seattle Road Network

Traffic (AADT)
—— <11580
— 217260
—— =20780
— <26470
—— <35650
—— =50490
—— =74460
— <113200
—— <175800
— =276850
Node Population
- =511901
+ <1308587
= <2252276
e =4532390
<14745610
(b)
Traffic (AADT)
—— <4696
—— <5453
—— <10030
—— <37680
—— <204800
Node Population
o <2168
® <4260
® <7061
@ <11470
@ <8695

Notes: This figure presents the observed transportation network (on the top) and the constructed infrastructure matrix (on the bottom) for
the US highway network (panel a) and the observed transportation network (on the right) and the constructed infrastructure matrix (on the
right) for the Seattle road network (panel b). In both panels, the size of each node reflects its population and the colour of each link reflects
the amount of traffic with red (blue) indicating high (low) levels of traffic. The grey roads in panel (b) are roads not on the least cost route

between grid centres.

"5 5
i

o
i

FIGURE 3

Transportation systems and their network representations
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(a) Economic geography: Los Angeles, CA to New York, NY

Link Intensity
— <0.005
— =0.01
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— =05
— =0.75
— =0.999

Start Pt.
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(b) Urban model: Safeco Field to the University of Washington

FIGURE 4
Example link intensities

Notes: This figure shows an example of the link intensity nl.];l— i.e. the expected number of traverses of each link in the network — across all

chosen routes from Los Angeles, California to New York, New York in panel (a) and from Safeco Field to the University of Washington
in panel (b). These link intensities are calculated using only observed data on traffic flows and the economic activity in each location (i.e.
no assumptions on model parameters are necessary); see Supplementary Appendix B.4 for details.
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TABLE 1
Estimating the strength of traffic congestion

Panel A: Interstate highway system

(1 2 3) )
OLS OLS IV: Ist stage IV: 2nd stage
Log congestion 0.106™** 0.050*** 0.739***
(0.010) (0.011) (0.181)
Log distance —0.156***
(0.033)
Start-location FE No Yes Yes Yes
End-location FE No Yes Yes Yes
F-statistic 116.371 19.987 22.747 16.656
Observations (excl. singletons) 630 630 630 630
Observations (incl. singletons) 704 704 704 704
Panel B: Seattle road network
1 2 3) 4) )
OLS IV: Ist stage v IV: Ist stage v
AADT per lane —0.048*** 0.118** 0.488*
(0.007) (0.048) (0.278)
Turns along route —0.252%* —0.091**
(0.049) (0.039)
Start-location FE Yes Yes Yes Yes Yes
End-location FE Yes Yes Yes Yes Yes
No. of intersections No Yes Yes Yes Yes
Bilateral route quality No No No Yes Yes
F-statistic 41.546 26.347 6.195 5.336 3.084
Observations 1,338 1,338 1,338 1,338 1,338

Notes: Panel A presents the congestion parameter estimates for the Interstate Highway System, and each observation is
a segment of the interstate highway network. In columns 1, 2, and 4, the dependent variable is the (log) time of travel per
unit distance, calculated using the HERE API, and the independent variable is the (log) AADT per lane from the highway
performance monitoring system (HPMS). In column 3, we instrument for the (log) traffic per lane using the (log) length
of the segment. Panel B presents the congestion parameter estimates for Seattle, and each observation is a segment of the
Seattle’s Network. In columns 1, 3, and 5 the dependent variable is the (log) time of travel per unit distance, calculated
using the HERE API, and the independent variable is the (log) traffic per lane from the highway performance monitoring
system (HPMS). In columns 3 and 5, we instrument for the (log) traffic per lane using the (log) number of turns, conditional
on number of intersections traversed. In column 5, we add controls for bilateral route quality, which are generated by
binning each segment into deciles based on the shares of arterial roads and local roads along it. Road classifications
(functional system) are taken from the HPMS. For both panels, standard errors two-way clustered at the start-location
and end-location are reported in parentheses. Stars indicate statistical significance: *p <0.10,**p <0.05,***p <0.01.

To estimate the strength of traffic congestion, we follow the estimation procedure described in
Section 5.3, regressing observed inverse speed on (appropriately instrumented) traffic congestion
as in equation (43). As implied by the traffic gravity equation (27), recall that an appropriate
instrument would be something that—conditional on start-location and end-location fixed
effects—affects the cost of travel 7y; but is uncorrelated with the free-flow speed of travel on
the link. In the context of the US highway system, we propose that the distance along the link is
such an appropriate instance. Distance clearly affects the cost of travel (and so is relevant), and
given the relative homogeneity of US highways in terms of speed limits, lanes, limited access,
etc., we have no reason to believe that longer or shorter links have different free flow rates of
speed (so it is plausibly excludable).

Table 1 Panel (a) presents the results. Columns (1) and (2) show using OLS that there is
a positive, but small, correlation between inverse speed of travel and congestion. Column (3)
presents the first stage regression of traffic on distance: as expected, conditional on start-location
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and end-location fixed effects, distance is strongly negatively correlated with traffic. Column (4)
presents the I'V regression: Consistent with OLS exhibiting downward bias due to traffic demand
being lower on slower links, the IV is substantially larger, finding a coefficient §; =0.739 (with
standard error of 0.181). Recall from above that we set §o=1/6 to match the unit distance
elasticity, so this implies A =3§169=0.092, that is, a 10% increase in traffic flows is associated
with a 7.4% increase in travel time, resulting in a 0.9% increase in the transportation cost.?

6.1.4. Results. Given the observed traffic data and estimated parameters, we calculate
the aggregate welfare elasticity to a 1% reduction in iceberg transportation costs on every link (in
both directions of travel) of the US Highway System using equations (36) and (37) of Proposition

2, i.e. %(%—i—%). Figure 5(a) presents our results. While all highway segments have

positive welfare elasticities, the elasticities are largest on short segments connecting CBSAs in
densely populated areas, e.g. along [-95 between Boston and Philadelphia and on I-5 between
Los Angeles and San Diego. Welfare elasticities are also large along longer highway segments
that do not directly connect large urban areas but that are major thoroughfares for trade, e.g.
in the interstates passing through Indiana (“the crossroads of America”). Conversely, highway
segments that neither connect major urban areas nor are used intensively for trade—such as I-90
through Montana—have the lowest positive impact on aggregate welfare.

How much does incorporating endogenous traffic congestion affect our welfare elasticity
estimates? Figure 6(a) compares the welfare elasticity for each segment with and without
congestion. From the scatter plot on the right, it is clear that in the absence of traffic congestion,
the welfare gains from reducing transportation costs are greater. What is surprising, however, is
that there is substantial variation in welfare gains with and without congestion across segments.
From the map on the left, we see that ignoring traffic congestion overstates the welfare gains from
infrastructure improvements the most along highly trafficked segments of the highway system
such as I-5 between Los Angeles and San Diego, CA as well as along highway segments around
important hubs for intrastate shipping such as those surrounding Atlanta, GA, highlighting the
fact that traffic congestion plays an important role in determining which segments would achieve
the greatest welfare gains.

The benefit of improving a link, of course, is only half of the story. To calculate a return
on investment, we pursue a cost-benefit approach. On the benefit side, we translate the welfare
elasticity into a dollar amount use a compensating variation approach, asking how much the
annual US real GDP (of $19 trillion) would have to increase (in millions of chained 2012 US
dollars) to bring about the same welfare increase we estimate. On the cost side, we first use
equation (42) to calculate how many additional lane-miles would need to be added to the route
to achieve a 1% reduction in transportation costs. We then multiply this number of lane-miles by
the cost per lane-mile to get a total construction cost. We assume a 20 year depreciation schedule
(as in Appendix C of Office of the State Auditor (2002)), a 5% annual maintenance cost, and a
3% borrowing cost, which together imply 10% of the construction cost is incurred each year.

dnZy

35. Our estimate of §; implies a (partial) elasticity of traffic on a segment to additional lane-miles of Finlanesy =

1%%939 ~0.4, a substantial effect, albeit below the value of one implied by the “fundamental law of road congestion” of

Duranton and Turner (2011).

36. Annual spending equal to 10% of total cost accords well with various sources. Feigenbaum, Fields and Purnell
(2020) find the average total-disbursements of state-controlled highway in 2018 is $308,558 per lane-mile, 8.5% of our
length-weighted average estimated construction cost of $3.6m per lane-mile. ASCE (2017) find in 2014 that states spent
$70 billion in maintenance and upkeep of the highway system, 10.7% of the $650 billion construction cost of the interstate
highway system.
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@) U.S. Highway Network

(b) Seattle Road Network
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FIGURE 5

Welfare elasticities of infrastructure improvement

Notes: This figure presents the elasticity of aggregate welfare to improving each link in the US Highway Network (panel A) and the Seattle
road network (panel B). The colour ramp goes from blue (lower welfare elasticity) to red (higher welfare elasticity). Nodes in the network

are marked by the black circles, which are increasing the population size of the node.
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(a) U.S. Highway Network
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FIGURE 6
Comparing welfare elasticities with and without congestion

Notes: This figure compares the welfare elasticity calculated allowing for traffic congestion (given the estimated strength of congestion 1)
to the welfare elasticity that would be calculated if traffic congestion were ignored (i.e. if 2 =0), as in a standard spatial model for each link
in the US highway network (panel a) and the Seattle road network (panel b). The left figure in the panel shows the difference in welfare
with and without congestion across links, whereas the right figure panel shows a scatter plot of the two estimated elasticities.

Figure 7(a) reports the annual return on investment (Rol) for each segment of the US highway
system. On average, infrastructure improvement return are well-worth the investment, with a
mean Rol of just over 108%. However, there is also huge variance in returns, with some segments
offering negative Rol (such as I-90 through Montana) and others offering much higher than
average. Table 2(a) presents the ten links with the highest Rol (each of which exceed 400%).
All ten are for links outside the largest cities, where reducing transportation costs is less costly.
This does not mean that returns are entirely driven by costs: the links with the highest returns
are those on the periphery of densely populated areas with high welfare elasticities, reflecting the
importance of trade between these regions.

6.2. Traffic in the city: the Seattle Road Network

We now analyse the urban variant of our framework to examine the welfare impacts of
transportation infrastructure improvement in Seattle, WA. Seattle provides an ideal test-case
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(a) U.S. Highway Network
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(b) Seattle Road Network
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FIGURE 7

Returns on investment of infrastructure improvement

Notes: This figure presents the return on investment of improving links in the Interstate Highway System (Panel A) and the Seattle road
network (Panel B). Return on investment is annual and in decimals of the initial investment (i.e. 0.75 means a 75% return on initial
investment per annum). The colour ramps goes from blue (negative returns) to red (high positive returns). Nodes in the network are marked
by the black circles, which are increasing the population size of the node.
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for our framework for several reasons, notably: (1) it has some of the worst traffic in the US; (2)
with limited (non-bus) public transit options, its road network plays a critical role in commuting;
and (3) its road network is particularly interesting, with multiple natural choke points created by
the waterways which intersect the city.’’

Our strategy for estimating the welfare impacts of improvements to the Seattle road network
proceeds analogously to the US highway system above: for each link in the road network, we
estimate the change in the aggregate welfare (W =X _é) from a small (1%) improvement using
equations (38) and (39). Doing so requires just two ingredients: (1) data on traffic (Ey;), residential
population (LZR), and workplace population (LfF ) and (2) values for the model parameters
{6,a,B,1}. We discuss the source of both ingredients in turn.

6.2.1. Data. We briefly summarize the data used here; see Supplementary Appendix F.2
for more details. Data on the location, functional system (i.e. interstate, arterial road, local road,
etc.), ownership, AADT, lane width, and possibility for lane expansion of the 9,188 road segments
within the municipal boundaries of Seattle were taken from the 2016 HPMS release for the state
of Washington.*® To construct our adjacency matrix of Seattle, we divide Seattle into ~1 sq. mi.
grids, place the centre point of each of these grids as a node into ArcGIS Network Analyst, and
find the least-cost path between each of these nodes.*® This gives us a total of 217 nodes, with
1,384 links between adjacent nodes, 1,338 for which we observe traffic.** Figure 3(b) depicts the
actual Seattle road network and the resulting infrastructure network.

We append to this network five additional sources of data. First, we calculate the time of travel
between each link from the HERE API using the georoute Stata command by Weber and Péclat
(2017). Second, we observe the labour force and residential population density at the census block
group level from the 2017 Longitudinal Employer-Household Dynamics Origin—Destination
Employment Statistics (LODES), which we aggregate to our constructed grids (allocating
population from block groups intersected by our grids proportional to the area of the block group
within each grid). Third, the LODES data also provide bilateral commuting flows between census
block groups, which we aggregate to bilateral grid cell pairs using a similar procedure. Fourth,
we estimate the cost of adding an additional lane-mile to each link in the network. To do so, we
classify each Seattle’s road sections into the major urbanized road type based on the population of
the Seattle urban area (as defined by the Census Bureau’s 2012 Urban Area data) and additionally
indicate if the section is “restricted” if the HPMS indicate that additional lanes cannot be added.
Then, based on aroad section’s functional system classification, its major urbanized classification,

37. A 2019 study by Apartment Guide ranked Seattle as the second worst city for commuters; a coauthor vividly
remembers running out of gas while stuck in Seattle traffic. Of commuters, over half drive alone or carpool. Of those
that use public transit, the vast majority of trips are conducted via buses: Commute Seattle’s 2016 Center City Commuter
Mode Split Survey found that, among public transit commuters, over three-quarters take the bus while only around a sixth
take the train (or light rail or streetcar) (EMC Research, 2016).

38. Traffic data on a road segment is reported without regard to the direction of travel. As such, we evaluate
simultaneous improvements to each link in the Seattle road network in both directions of travel. This has the added
advantage of reconciling our urban framework—where traffic is modelled as flowing from an agents’ residence to her
workplace—to the (presumed) empirical reality that the agent returns home after work.

39. This approach is necessary because, at this level, typical units of observation like census blocks and block
grounds are endogenous to the road structure of Seattle; this leaves us with concerns that census blocks which are larger
are in a less dense area of Seattle with less traffic.

40. Unlike the interstates, where we observe all segments of the highway system, our analysis does not cover every
road in Seattle, just those along the least-cost path between adjacent nodes. We do, however, observe the entirety of the
Seattle road network in our dataset. We assume the route along the least-cost path between nodes reasonably captures the
costs of moving across similar paths, on different roads, between the same nodes.
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and whether it is a high cost road to improve or not, we code each road section with the cost of
adding a lane-mile to it, as estimated by the FHA’s HERS from Federal Highway Administration
(2015).%! Fifth, for the construction of our instrument, we calculate the number of intersections
and turns along each link of the network using the ArcGIS network analyst.

6.2.2. Predicted vs. observed commuting flows. As a first pass of the validity of the
urban variant of our framework to the data, we compare the observed bilateral commuting flows
from LODES to backed out from equation (35) using the observed traffic flows using equation
(35). To do so, we assume that each element of the matrix of traffic flows E=[Ey;] is equal to
the observed AADT along that road segment. This assumes every vehicle carries one commuter.
As with the interstates, this introduces obvious measurement error: some vehicles contain many
commuters (e.g. buses), whereas other vehicles contain none (e.g. when driving to go shopping).
And like with interstates, it is remarkable how well observed traffic flows are able to predict
commuting flows, as Figure 2(b) illustrates. Even conditional on origin and destination fixed
effects, there is a positive correlation between predicted and observed commuting flows of 0.43,
indicating that the urban model with traffic congestion is able to successfully predict observed
commuting flows.*?

Finally, Figure 4(b) shows the intensity of usage of different links for an example commute
from Safeco Field to the University of Washington, both on opposite sides of the city centre.
As with the interstate highway system, links along the most direct routes are most intensively
used. The figure also highlights the fact that different links through the city centre are quite
substitutable with each other, with no one link being used more than about half the time, whereas
the natural choke-points—e.g. the bridges over Lake Union—are traversed essentially on all
routes. In contrast, routes not along the direct route are used negligibly.

6.2.3. Estimation. We now discuss our choice of model parameters {0,«, 8,A}. As the
first three model parameters are standard in the quantitative urban literature, for our preferred
estimates presented here we set them equal to the values of estimated in the seminal work of
Ahlfeldt et al. (2015), with # =6.83, « =—0.12, and g = —0.1.** From Proposition 1, this choice
of parameter values guarantees the existence of a unique equilibrium.

To estimate the strength of traffic congestion, we again proceed as discussed in Section (39),
regressing the observed inverse speed of travel over a link on the traffic congestion, appropriately
instrumented by a demand shifter uncorrelated with the free-flow rate of speed over the link.
Unfortunately, the instrument used for the US highway system—distance—is inappropriate in
a city setting. There exists enormous variation in the types of roads and speed of travel within

41. For major urban areas, the Federal Highway Administration provides the following estimates of the cost of
adding an additional lane-mile: for interstates/freeways ($11.197 m when unrestricted, $46.691 m when restricted), other
principal arterial ($8.252 m when unrestricted, $31.988 m when restricted), and minor arterial/collector ($5.614 m when
unrestricted and $31.988 m when restricted. Further details are in Supplementary Appendix F.2.1.

42. Traffic predicted commuting flows also predict well the rapid decline of commuting flows with distance; see
Supplementary Figure F.2 (b).

43. Ahlfeldt et al. (2015) also allow for externalities to affect nearby locations, which they estimate to steeply decay
over space; here, we assume externalities have only local effects. Our choice of o =—0.12 combines their estimated
agglomeration externality with the congestion force that arises from floor space being used in the production of goods. As
robustness, in Supplementary Appendix G, we repeat the exercise for alternative constellations of these model parameters
where we vary the commuting elasticity, strength of externalities, and strength of congestion. As with the analysis of the
US highway network, both the patterns of welfare elasticities and the returns on investment are both qualitatively and
quantitatively similar to the results presented here.
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Seattle (e.g. surface streets with stop signs, larger streets with major intersections, highways,
etc.), so it is likely that the distance of a segment is correlated with its free-flow rate of speed (e.g.
a link which travels along a highway might be longer but faster). As an alternative, we propose
that the complexity of a route is a suitable instrument: conditional on the free-flow rate of speed,
drivers would prefer to take routes that are less complex. To measure complexity, we use the
number of turns along the route as our instrument, conditioning on the number of intersections.**
Intuitively, intersections reduce the free-flow rate of speed of travel regardless if one turns or not,
while turns themselves present an additional inconvenience to drivers.

Table 1 Panel (b) presents the results. Column (1) shows that there is actually a small negative
correlation between inverse speed and traffic, consistent with substantial downward bias due to
the heterogeneity in free-flow speed across links (e.g. faster links on highways also have higher
traffic). Column (2) presents the first stage results; as expected, the greater the number of turns
along a route (conditional on the number of intersections), the lower the traffic along that link.
Column (3) presents the IV results, where we estimate §; =0.118 (with a standard error of 0.048).
One potential concern with the instrument is that controlling for the number of intersections alone
may not be sufficient to allay the concern that more complex routes are more likely to travel over
smaller (and slower) roads. In Columns (4) and (5) present the first and second stage results where
we non-parametrically control for the share of the route that travels over arterial and local roads.*
Such a procedure compares links with similar road compositions, mitigating the concern that route
complexity is correlated with unobserved speed of travel. Adding these controls increases our
estimate of 61 =0.488 (with standard error of 0.278). Combined with the maintained assumption
that 69 = 1/0 (to generate a unit distance elasticity), this implies a traffic congestion parameter of
L =46169=0.071, thatis, a 10% increase in traffic flows is associated with a 4.9% increase in travel
time, resulting in a 0.7% increase in the transportation cost. It is interesting to note that while the
elasticity of travel time to congestion is smaller in Seattle than US highways—perhaps due to the
lower free-flow rates of speed within a city—the impact of traffic congestion on transportation
costs in both settings is quite similar.

6.2.4. Results. For each link in the road network, we simulate a 1% reduction in
transportation costs in each direction and calculate the change in aggregate welfare elasticity
1(3dnW , 9lnW
2 (alnfk[ dlnzy
all links are welfare improving, the largest welfare elasticities are greatest in the centre of the city
(downtown). Welfare elasticities are also higher for the various choke-points in the road network
(oftentimes corresponding to bridges over water).

Figure 5(b) compares these estimated welfare elasticities to those estimated without traffic
congestion. As with the US highway system, ignoring congestion would not just result in
overestimates of the welfare elasticities, it would also substantially change which links one would
identify as having the largest welfare effects. The left figure shows the variation across links in
the degree to which one would overestimate welfare gains by ignoring congestion. As is evident,
heavily trafficked links near the city centre and along interstate I-5 whose gains fall the most
in the presence of traffic congestion. For example, ignoring traffic congestion would cause one
to identify a stretch along interstate I-5 as the one whose improvement would yield the greatest
welfare gains for the city. Accounting for the endogenous change in traffic congestion throughout
the whole network, the aggregate welfare elasticity to improving this link is not even in the top
fifty of links.

). Figure 5(b) presents our findings. While a reduction in transportation costs on

44. See Supplementary Appendix Figure F.1 for an example of how the instrument is constructed.
45. To do so, we include fixed effects for each decile of arterial and local road shares.
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Finally, we combine these welfare elasticities with estimated costs of construction to estimate
a return on investment for each link of the Seattle road network. We proceed analogously to the
US highway system case, first calculating the necessary lane-miles to achieve a 1% reduction in
transportation costs, assuming 10% of construction costs are incurred each year, and then using
a compensating variation approach to assign a dollar vlue to the aggregate welfare gains.*® We
find that improving the average link in Seattle yields an annual return of 16.8% for the residents
of the city.*’ Like with the US. highway system, however, there is substantial heterogeneity, with
returns varying from less than 25% to more than 250%. Figure 7(b) shows the Rol for each
segment; the highest returns are concentrated in the centre of the city. Table 2 Panel b lists the
top 20 links in terms of their Rol; half of the list are either entirely within downtown Seattle
or between downtown Seattle and another part of the city. Other locations with high returns on
infrastructure improvement include the area around the University of Washington campus and
Lake City Way in the neighbourhood of North Seattle. On the other hand, we estimate that nearly
half (331 of 692) links in the Seattle road network would generate negative returns of investment,
highlighting the importance of well-targeted infrastructure improvements.

7. CONCLUSION

This article proposes a new spatial framework that incorporates traffic congestion and uses it
to evaluate the welfare impact of transportation infrastructure improvements. In doing so, it
combines the rich geography and general equilibrium structure of existing quantitative spatial
models with the endogenous routing and traffic congestion of transportation models, but where
both the distribution of economic activity and the resulting traffic patterns are determined jointly
in equilibrium.

The approach generates analytical expressions for transportation costs between any two
locations, the traffic along each link of the transportation network, and the equilibrium spatial
distribution of economic activity. This tractability not only allows us to characterize the
equilibrium properties of the framework, but it also facilitates applying the framework to evaluate
the welfare impacts of transportation infrastructure improvements empirically. Using readily
available traffic data we show that for both the US highway network and the Seattle road network,
congestion matters for, where you improve the road network.

The goal of this paper has been to provide a tractable framework that bridges the gap between
the quantitative spatial and transportation economics literatures. Qe hope it can facilitate the
answering of a number interesting and unresolved research questions, including: How does traffic
congestion impact urban land use? What is the best way to design congestion tolls? How does the
presence of multiple uses of transportation infrastructure (e.g. trade, commuting, consumption)
interact in determining the spatial distribution of economic activity? We look forward to fruitful
future research on these topics.
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A. APPENDIX: DERIVATIONS

The appendix presents the derivations of the results in Sections 3.1, 3.2, and 4.1; derivations for other sections are presented
in Supplementary Appendix B.

A.1. Section 3.1: Transportation costs

Define the N x N matrix A= [a,vj zti]_.e] We can write 7; from equation 4 by explicitly summing across all possible

routes of all possible lengths. To do so, we sum across all locations that are travelled through all the possible paths as

follows:
o] N

N N
-0 _ . .
Tij —2 : § : § : § : Qiky X Ak ky X0 X kg _p kg1 X Dkg_1,j | »

K=0 \kj=lkp=1 kg_i=1
where &, is the sub-index for the nth location arrived at on a particular route. Note that pairs of locations that are not
connected will have a;; =0, so that infeasible routes do not affect the sum. The portion of the expression in the parentheses
is equivalent to the (i,;) element of the weighted adjacency matrix to the power K, that is:

oo
-0 _ K
T _E Aij,
K=0

where AK = [Af]{ }, that is, A§ is the (i,j) element of the matrix A to the matrix power K. As we note in the paper, for a

matrix A with spectral radius less than one, the geometric sum can be expressed as:
o0
Y A =a-A)"=B,
K=0

where B= [b,,] is the Leontief inverse of the weighted adjacency matrix, so the transportation cost from i to j can be
expressed as a function of the infrastructure matrix:

Tij_ 0 ZbU,
as in equation (21).
A.2. Section 3.2: Traffic flows
Beginning with equation (22), we have:
T . T PN
rey Zr'em[j Tij.r!

—

[,

K =11 K

= = o\
4 K -0

refy; Zre:u,;,- (Hl:l Iy .r:)
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' Zl_[tftlrtr’

refil=1

where the second line used either equation (2) (for the economic geography model) or equation (12) (for the urban model),
and the third line used the definition of rij from equation 4).

For each route in r € i;, the value ¥ =1t o L nk is the transportation costs incurred along the route multiplied by the
number of times the routes traverses link {k, /}. To calculate this, we proceed by summing across all possible traverses that

occur on all routes from i to j. To do so, note for any r € )i;; of length K (the set of which we denote as );; ), a traverse is
possible at any point B€[1,2,...,K —1] in the route. Defining A =[ay]= [t,;e} and B= [bij] = |:r,.j_6] as above, we can
write:

oo K—1 B K—B—1
lj b 2 :z : z : l_[ar,,,l.r,, X ag X 2 1_[ Ary_1,1n
i k=0B=0 \ remty gn=1 redtyg x—p-1 n=1

This can in turn allows us to explicitly enumerate all possible paths from i to k of length B and all possible paths from /
toj of length K —B—1:

0o K—1 N N
,/ b ZZ Z Z Ajpy X" XApg_y k| XAkl X Z Z Ay X Xng_p 1|
4 k=0B=0 \nj=1 np_=1 m=1 ng_g_=1
which can be expressed more succinctly as elements of matrix powers of A:
oo K—1
ZZAkxakleK B-1
’/K =0B=0

A result from matrix calculus (see e.g. Weber and Arfken, 2003) is for any N x N matrix C we have:

oo K—1

DY APCAR T =a-A) T ca-A) (A1)

K=0B=0

Define C to be an N x N matrix that takes the value of a4; at row k and column / and zeros everywhere else. Using equation
(A.1), we obtain our result:

bixay by
Lk i lj

i
ij bj
—0 ,—0_—0
T, b, T
kl ik “kl Clj
i SR (A2)
Tij

as in equation (23).
We now derive gravity equations for traffic over a link for both economic geography and commuting models. For
trade, we sum over all trade between all origins and destinations, and all routes taken by that trade, to get:

= > 3wyl E =

(1]

ieNjeNref;;
= kl
0= X Yty
ieNjeN
U1l Y; E;
zk kl l] —0 i ‘j
"‘"’_ZZ T g pt
ieNjeN ij i j
Y; E;
—6 ! —9 J
Bu=ty" ) T e 2t po
ieN i jeN J

where the second line used equations (2) and (22), the third lines used equation (23), and the fourth lined rearranged.
Recalling our definition of the consumer and producer market access terms (equations (8) and (7)) in the text, this becomes:

_ —6 —6 —6
Dkl:tk[ XPk Xl_[l s

as in equation (24).
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Turning to the commuting model, we proceed similarly, summing over all commuting flow pairs and the routes they

take:
Ex = Z Z Z JT,:/Vrn];l[_A —

ieNjeN ref;;
RIS S TP

ieNjeN

R F

- ZZ Tie B Ty o L L
Sl = 9 ij ~0 p—0

ieNjeN Tij Hl PJ

F
_—_— -0 —0
S = e X X D P Zflj 7|
ieN i JjeEN J

where the second line used equations (12) and (22), the third lines used equation (23), and the fourth lined rearranged.
We substitute in the consumer and producer market access defined in (17) and (18) to generate traffic gravity for the
commuting framework:

Bu=ty” x (P~ x(M)~7,

again as in equation (24).

A.3. Section 4.1: Equilibrium

Trade model 1In this Appendix section, we derive the equilibrium conditions for the economic geography and
commuting frameworks.

For the trade equilibrium conditions, we start with equation (10) from the article. Note that rf 0~ - ] i where
A= [aij] = |:t” ] is the adjacency matrix, so with a change of notation, we can rewrite the summation term as a matrix

product:

_ L(o(+ﬂ)€
- —6(1+ - —0 1+ -
[Ai (’ygwli ( O‘)]_ 7 X I:‘L'lj H] X [u;)yjl glje(’g 1)] =

B} Ltp
—0 146 ;=0 (1+a) REXAN 1
[AToy 1 | = e = AT [y O .

where [A;gyilwli_ G(H'a)] and [ﬁfyng ljg(ﬁ’l)] are column vectors. Taking a matrix inversion and converting back to
summation notation:

_ 1@+B)0
- A]X[ -oyI0 0<1+a>} i x[ﬁ?yi”"li‘“ﬂ*”] —
- - L@+po
— —6(1 — —0(1 = -
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L@+p)o
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Jj

Wy 006D,

The second equilibrium condition, equation (11), can also be written as a matrix multiplication, where
|:12i_ 0 yi 0 lf(l - ] and [Aje yj_e l;) (O’H)] are row vectors. Applying the same matrix inversion we did to equilibrium equation

we did to the first equilibrium condition, we get:

_ L(a+ﬁ)o N
7 (a+p)0
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Recalling that a;;=t;", we have for our two equilibrium conditions (before incorporating traffic congestion):

I/’
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To incorporate congestion, we combine these two equations with the expression (26), converting from market access
terms to equilibrium {y;} and {/;} (as in Supplementary Appendix C.1). Starting with the first equilibrium condition:
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where y = (T) , as in equation (28). For the second equilibrium condition, we proceed similarly:
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where again x = ( ) , as in equation (29).

Commuting model The derivations for the commuting model follow a very similar process to that of the
economic geography model. We rewrite the first equilibrium condition, equation (19), as a matrix product and invert:
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where [12? (l{") o8 H] and |:Tj9 (IJF ) ] are column vectors.

Applying the same steps to equilibrium equation (20), where [ (lF ) MH] and |: (IJR) j| are row vectors:
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we have two equilibrium conditions for our commuting model:

Recalling a;; = tl i

. —0B+1 L@+p)o _ P L —0B8+1
i) = S A g (1)
J

L(a+ﬂ)0

— "‘3+Zt,,94 ()

As above, substituting in our expression for the iceberg transportation costs along a link using equation (26), and converting
from market access terms to equilibrium {ZIF } and {llR} (as in Supplementary Appendix C.1), incorporates endogenous
traffic congestion. For the first equilibrium condition (30), we have:
L(ot+/3)0 g O
wo Ai (li ) +
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where x =( =3~ ) , as claimed. For the second equilibrium condition (31):
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as claimed.
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