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Abstract
Analyzingmassive spatial datasets using aGaussian processmodel poses computational challenges. This is a problem prevail-
ing heavily in applications such as environmental modeling, ecology, forestry and environmental health. We present a novel
approximate inference methodology that uses profile likelihood and Krylov subspace methods to estimate the spatial covari-
ance parameters and makes spatial predictions with uncertainty quantification for point-referenced spatial data. “Kryging”
combines Kriging and Krylov subspace methods and applies for both observations on regular grid and irregularly spaced
observations, and for any Gaussian process with a stationary isotropic (and certain geometrically anisotropic) covariance
function, including the popular Matérn covariance family. We make use of the block Toeplitz structure with Toeplitz blocks
of the covariance matrix and use fast Fourier transform methods to bypass the computational and memory bottlenecks of
approximating log-determinant and matrix-vector products. We perform extensive simulation studies to show the effective-
ness of our model by varying sample sizes, spatial parameter values and sampling designs. A real data application is also
performed on a dataset consisting of land surface temperature readings taken by the MODIS satellite. Compared to existing
methods, the proposed method performs satisfactorily with much less computation time and better scalability.

Keywords Approximate inference · Profile likelihood · Block Toeplitz matrix · Fast Fourier transform · Krylov subspace
methods · Golub–Kahan bidiagonalization

1 Introduction

Massive spatial datasets, often coming fromsatellites or other
remotely sensed sources, have become increasingly common
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in applications such as environmental health, forestry, and
ecology. Classical geostatistical analysis methods for point-
referenced spatial data are burdened with computationally
intensive steps such as Cholesky factorization or eigende-
composition, which have cubic complexity in the number
of observations. Despite the advances in computing per-
formance, these methods remain prohibitively expensive to
apply to datasets of even moderately large size. Therefore,
we need to develop methods that perform nearly as well as
the classical methods but are more computationally efficient
and therefore applicable to problems of massive volume.

There is a rich literature of approximate inferencemethods
for point-referenced spatial data. Early approaches approxi-
mated the joint likelihood by decomposing it into a product
of conditional distributions (Vecchia 1988; Stein et al. 2004),
using pseudo-likelihood (Varin et al. 2011; Eidsvik et al.
2014) or using covariance tapering (Furrer et al. 2006; Kauf-
man et al. 2008; Stein 2013).Modeling in the spectral domain
(Fuentes 2007; Guinness and Fuentes 2017; Guinness 2019)
was also used to circumvent the heavy computation. Another
class of approaches are based on finite-rank approximations
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such as fixed-rank Kriging (Cressie and Johannesson 2008;
Kang and Cressie 2011; Katzfuss and Cressie 2011), predic-
tive process (Banerjee et al. 2008; Finley et al. 2009), process
convolution (Higdon 2002) and lattice Kriging (Nychka et al.
2015). Other approaches use a combination of hierarchical
matrix approaches and stochastic estimators for the log-
likelihood (Anitescu et al. 2012; Ambikasaran et al. 2015;
Minden et al. 2017; Eriksson et al. 2018; Stein 2013) or spec-
tral methods and h-likelihood (Dutta and Mondal 2016).

More recent approaches make use of the modern comput-
ing platforms and focus on parallelizing the computational
load. Paciorek et al. (2015) is one such example. Katz-
fuss (2017) and Katzfuss and Hammerling (2017) combine
low-rank methods with distributed computing. Dividing the
data into subsets, drawing inference on these subsets in
parallel and recombining them has been proposed by Bar-
bian and Assunção (2017) and Guhaniyogi and Banerjee
(2018). Datta et al. (2016a, b, c) use an approximation based
on the conditional distribution given the nearest neighbors,
inducing sparsity and allowing the method to be paral-
lelized. The stochastic partial differential equation or SPDE
(Lindgren et al. 2011) approach induces sparsity in the
inverse-covariance matrix for fast approximations. Sun et al.
(2012), Bradley et al. (2016), Heaton et al. (2019) and Liu
et al. (2020) provide comprehensive reviews of these meth-
ods and demonstrate their effectiveness in spatial modeling.

Most of these methods use either finite-rank approx-
imations or introduce sparsity in the covariance or the
inverse-covariance structure. Finite rank-based models typ-
ically have complexity O(nr2 + r3) with r being the rank
of the model such that r � n. However, in order for the
approximation to be effective for large n, a large rank r is
needed, which increases the computational costs. This cost
can be alleviated by inducing sparsity into the covariance
structure using compactly supported covariance function;
however, this may not be an appropriate modeling choice
when long-range dependence is present in the data.

We present a novel statistical method of log-linear com-
plexity to provide approximate inference for massive geosta-
tistical datasets using profilemaximum likelihood estimation
andKrylov subspacemethods basedon the genHyBRmethod
proposed by Chung et al. (2018). The proposed method,
a combination of kriging and Krylov subspaces and hence
dubbed “Kryging”, provides prediction for the observed
process at unobserved locations by approximating the under-
lying spatial process on a regular, equispaced grid. Although
we approximate the latent process on a grid, we do not restrict
the observations to be on grid and therefore the method can
be applied to irregularly spaced large spatial datasets. We
generate estimates of the underlying process through Krylov
subspacemethods. Krylov subspaces (see Saad 2003, for ref-
erence) are efficient iterative methods for solving large-scale
linear systems and least-square problems. A key advantage

of the Krylov subspace approach is that it is matrix-free,
in that it does not require forming the matrices explicitly,
but only requires the action of the matrix on appropriate
vectors. We provide prediction uncertainty estimates in the
form of pointwise 95% confidence intervals via a parametric
bootstrap approach and estimates for the mean and spatial
covariance parameters. Kryging applies to any stationary
isotropic covariance structure, e.g., the Matérn covariance
family, as well as covariance functions that incorporate geo-
metric anisotropy by allowing dissimilar stretching along
the two axes. It exploits the Toeplitz (in one dimension)
or block Toeplitz with Toeplitz blocks (BTTB) structure
(in higher dimensions) of the resulting covariance matrices
and employs a fast Fourier transformation-based method for
achieving computational gains for matrix-vector multiplica-
tions (See Gray 2006) and approximating log determinants
(Kent and Mardia 1996). As a result, Kryging has O(n)

storage costs and only O(n log n) computational complex-
ity where n is the size of the underlying grid for estimating
the spatial parameters and performing spatial prediction.

The tools used for building the Kryging model have been
used in the literature before in different contexts and different
problems. However, by efficiently combining them in a spe-
cific manner, Kryging has several advantages compared to
related methods in the literature. Chung et al. (2018) also use
the same core method, but we extend it to include mean and
spatial covariance parameter estimation, uncertainty quan-
tification and approximation of log-determinants. Aune et al.
(2014) and Dutta and Mondal (2016) also use tools such as
Krylov subspaces and the fast Fourier transformation, but
their usage differs vastly from ours. First, we construct a
different Krylov subspace, one that incorporates the noise
covariance, a mapping matrix, and the covariance matrix; in
contrast, the approach in the other papers is to build a Krylov
subspace method with the covariance matrix alone. Second,
we use the Golub–Kahan bidiagonalization rather than Lanc-
zos or conjugate gradient for linear systems. Third, we use
the basis vectors from the Krylov subspace to estimate the
objective function and the gradients (one exception is the
determinant and its derivative for which we use a different
approximation). In contrast, other approaches use various
tools such as Monte Carlo trace estimators, to estimate the
various quantities.

Kryging has a low-rankmatrix involved in the approxima-
tion process. However, compared to other low-rank methods
discussed above, empirical evidence hints that using a small
order of the Krylov subspace works well for huge datasets
and produces accurate results. Block-circulant embeddings
have been proposed as a stand-alone method to approximate
determinants (Rue and Held 2005), which nicely gels with
the Krylov subspace-based approximation to the problem of
maximizing the quadratic part of a Gaussian log-likelihood
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to produce a fast and scalable approximate inference method
for massive geostatistical datasets.

We establish the particular form of latent Gaussian model
that we use for our method in Sect. 2. Section 3 gives the
details of the method. We provide detailed description and
algorithms of components of the method in various subsec-
tions of Sect. 3. A thorough simulation study is performed
in Sect. 4, and an application to MODIS satellite data is per-
formed in Sect. 5. The data analysis is based on Heaton et al.
(2019). The rationale behind this was to be able to compare
the performance of our method to other available methods
directly. We finish with a discussion and concluding remarks
in Sect. 6.

2 Latent Gaussianmodel

Let y(s) be the observed process, and x(s) is the under-
lying process of interest at location s ∈ R

d , d ≥ 1;
throughout this paper, we illustrate the methods using the
d = 2 but our approach is applicable to problems with two
or three spatial dimensions with a possible additional time
dimension. A realization from the observation process, y =
[y(s1), . . . , y(sp)]T, at p locations s1, . . . , sp is related to a
realization from the latent process, x = [x(s∗1), . . . , x(s∗n)]T,
at n possibly different locations s∗1, . . . , s∗n by the relationship

y = Xβ + Ax + ε, (1)

where ε ∼ N (0,R)withR being a cheaply invertible matrix
of individual variances for each location, X being the matrix
of corresponding covariates observed at the same locations as
the observations themselves and A being a matrix that spec-
ifies the linear combinations that connect the mean removed
y and x. For this paper, we make the standard assumption
that the nugget variance is constant across space and set
R = τ 2Ip.

The mapping matrix A permits the flexibility of y and x
not being co-located, as well as change of support. For exam-
ple,A = I, the identity matrix, represents the case where y is
a noisy observation of x itself after accounting for the mean
process. In case the response locations are a subset of the n
locations s∗1, . . . , s∗n , then A is the n × n identity matrix with
n − p rows removed. The matrix A can be non-diagonal as
well, for the case when value of y at each location is consid-
ered as an average of the unobserved x at nearby locations,
as it can be when y(s) is observed at locations at irregularly
spaced locations and x(s) is considered on a grid around those
locations.

When the observations are not on a regular grid, we still
set the latent process locations s∗1, . . . , s∗n to be on a rectan-
gular grid and account for the irregularity of the observation
locations in the mapping matrix, A. We specify the entries

of A so that each observation is a convex combination of the
latent process in the neighborhood of the observation. Specif-
ically, the latent process is weighted by the Wendland kernel
function (Wendland 1995) w(di j ) = (1 − di j )4+

(
1 + 4di j

)
,

where di j = max {|si1 − s∗
j1|/Δ1, |si2 − s∗

j2|/Δ2} and
(x)+ = max{x, 0}, Δ1 and Δ2 are the grid spacings in the
two directions and si = (si1, si2) and s∗j = (s∗

j1, s
∗
j2) are

the i-th observation location and j-th grid-point location,
respectively. This particular formulation allows to approxi-
mate the value at a point outside of the grid as a weighted
combination of its nearest four neighbors, while for a point
on the grid itself, the approximation is exact. To ensure the
weights are convex, they are normalized to sum to one for
each observation. That is, we assume the mean response is

E{y(si )} = X(si )Tβ +
∑n

j=1 w(di j )x(s∗j )∑n
k=1 w(dik)

.

This is equivalent to setting the (i, j) element of A to
w(di j )/{∑n

k=1 w(dik)}. The truncation function (x)+
ensures that A is a sparse matrix with at most four nonzero
entries per row, i.e., the matrix A has O(p) nonzero entries.

Choosing the mapping matrix to be sparse ensures there
is not significantly higher computational cost due to these
changes when applying to an irregularly spaced data. This
approach to handling irregularly spaced observations intro-
duces an additional tuning parameter, n, which controls the
density of the latent space observations. When the obser-
vation locations are on a regular grid, we simply set it to
be equal to p so that the latent process locations match the
observations. However, when the observations are not on a
grid, then there is no natural choice for n. Accuracy should
increase with n at the expense of computational burden. This
issue is explored further in the simulation study of Sect. 4.

We use a latent Gaussian process to model the true state
x(s), with zero mean and isotropic Matérn covariance ker-
nel (Matérn 1960) with standard deviation σ , spatial range
parameter ρ and smoothness parameter ν. Therefore, at finite
collection of locations, x is a multivariate Gaussian distribu-
tion with mean 0 and n × n correlation matrix �, i.e.,

x ∼ N
(
0, σ 2�

)
, (2)

with 0 being the vector of all zeros and

�i j = 21−ν

�(ν)

(√
2ν

di j
ρ

)ν

Kν

(√
2ν

di j
ρ

)

being the spatial correlation between locations i and j
induced by the stationary isotropic Matérncovariance ker-
nel for i, j = 1, . . . , n. Here di j = ‖si − s j‖2 and ‖ · ‖2
denotes the Euclidean norm in R

2 and Kν(·) is the modified
Bessel function of the second kind with parameter ν. The
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choice ofMatérn covariance kernel is common, but any other
stationary covariance function (or geometrically anisotropic
covariance function that induces different stretching along
the two axes) may be used along with the approach for both
regularly gridded and irregularly spaced datasets with same
computational complexity that we outline in the next section.

3 Inferential approach

In this section, we describe an inferential approach for the
latent Gaussian model that combines Kriging and Krylov
subspace methods, which we have been calling “Kryging”.
The likelihood function for the latent state x, themean param-

eter, the spatial variance parameters θ = (
βT, σ 2, τ 2, ρ

)T

and a given smoothness parameter ν can be written as:

L(x, θ; y, ν) = fy,θ (y|x) fx,θ ,ν(x|θ; ν), (3)

where fy,θ (·|x) is the density of the data given x and fx,θ;ν(·)
is the density of x; both densities depend on the parameters
θ and ν. Since we assumed a Gaussian model for y|x and x,
we have

log fy,θ (y|x) 	 − p

2
log τ 2 − 1

2τ 2
ψTψ,

where	means equal up to a constant that is unimportant for
the purposes of optimization and ψ = y − Xβ − Ax and

log fx,θ (x) 	 −n

2
log σ 2 − 1

2
log det (�(θ; ν))

− 1

2σ 2 x
T�(θ; ν)−1x.

(4)

Thus, the log-likelihood function, l(x, θ; ν) = log L(x, θ;
y, ν), has the form

l(x, θ; ν) 	 − p

2
log τ 2 − 1

2τ 2
ψTψ

− n

2
log σ 2 − 1

2
log det �(θ; ν)

− 1

2σ 2 x
T�(θ; ν)−1x.

(5)

Evaluation of the log-likelihood function involves invert-
ing and computing the log-determinant of the covariance
matrix �(θ; ν), both of which require O(n3) many opera-
tions which is not feasible for large n. Since the optimiza-
tion needs to run on both x and θ , it would be a ultra
high-dimensional optimization, which would generally be
infeasible to implement. Therefore, running an optimiza-
tion procedure over both θ and x on this objective function
straightaway is futile, and we must look into approximation
methods to avoid these computational bottlenecks.

We propose a computationally efficient inference
approach using approximate inference for fast estimation for
both parameters θ and the underlying true state variables
x along with its uncertainty. We profile x as a function of
the parameters θ and maximize the corresponding profile
likelihood over θ (Cox and Snell 1989). This reduces the
dimensionality of the optimization problem greatly, but it
requires an estimate of x for a given value of θ . Since we
consider ν to be a given and known value, we drop it from
further notations in the rest of the paper.

The genHyBR method (Chung et al. 2018) circumvents
the matrix inversion problem as it brings down the total
complexity of computing the quadratic term to that of a
matrix vectormultiplication. Typically thiswould takeO(n2)
operations. However, computational techniques such as fast
Fourier transforms (FFTs) or H-matrices (a review of tech-
niques can be found in Ambikasaran et al. (2015)) can reduce
the computational cost of storage and the mathematical oper-
ators toO(n logr n),where r is a nonnegative exponentwhich
depends on the operation and the method used. In particular,
we use the symmetric BTTB structure of�(θ). The symmet-
ric BTTB structure allows us to store �(θ) in O(n), since
only one row/column of �(θ) needs to be stored and com-
pute the matrix vector products involving�(θ) inO(n log n)

time. If the underlying process realizations are not on a reg-
ular grid, then the H-matrix approach can be used instead
with the same computational cost. However, with the map-
ping matrix strategy laid out in Sect. 2, we do not require
this approach. The symmetric BTTB structure also allows us
to compute the log-determinant of �(θ) in O(n log n) time.
This gives us a good estimate for x for a given value of θ .

3.1 Profile likelihood

Maximizing the log-likelihood function in Eq. (5) as a func-
tion of both x and θ is not feasible, and therefore, we use a
profile likelihood-based optimization strategy by profiling x
as a function of θ . Profiling out x from Eq. (5) as a function
of θ , in exact arithmetic, results in

x̂(θ) =
(

1

σ 2�(θ)−1 + 1

τ 2
ATA

)−1

(
1

τ 2
AT(y − Xβ)

)
.

(6)

Plugging in x̂(θ) in Eq. (5) and calling ψ̂(θ) = y − Xβ −
Âx(θ) produces the exact profile log-likelihood function

pl(θ) 	 − p

2
log τ 2 − 1

2τ 2
ψ̂(θ)Tψ̂(θ)

−n

2
log σ 2 − 1

2
log det �(θ) −
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1

2σ 2 x̂(θ)T�(θ)−1̂x(θ). (7)

Since simply evaluating this function involves computing
inverses and determinants of the dense covariance matrix,
it must be approximated.

Evaluating the exact profile likelihood presents three com-
putational challenges: (1) computing x̂(θ) involves inverting
large dense n×n matrices, (2) computing the quadratic term
x̂(θ)T�(θ)−1̂x(θ) and (3) computing the log-determinant
of �(θ). The first two are overcome using the genHyBR
method (Chung et al. 2018), while the log-determinant term
is approximated using the symmetric BTTB structure of the
resulting covariance matrix from the choice of appropriate
covariance function previously mentioned in Sect. 2. Once
these approximations are in place, the optimization of an
approximated profile likelihood function can be performed
using typical optimization routines to get the estimates of θ

and x.

3.2 genHyBRmethod

A key component in maximizing the profile likelihood is
to quickly compute x̂(θ) = argmin

x
l(x, θ) for a given θ .

The computation of x̂(θ) in this context is tantamount to
computing

x̂(θ) = argmin
x∈Rn

1

τ 2
‖ψ‖22 + 1

σ 2 ‖x‖2
�(θ)−1 , (8)

where ‖r‖2M = rTMr and ‖ · ‖2 represents the Euclidean
norm. The genHyBR algorithm (Chung et al. 2018) solves
this weighted least squares problem iteratively using gen-
eralized Golub–Kahan bidiagonalization which is a special
type of Krylov subspace method (Benbow 1999; Chung and
Saibaba 2017). To simplify notation, we drop the dependence
on θ and write � = �(θ).

We provide an outline of the algorithm here. Denote
Kk(M, r) = span{r,Mr, . . . ,Mk−1r} as the Krylov sub-
space of degree k. Observing that Eq. (8) involves the inverse
of �, employing a change of variables w = �−1x and
b = y − Xβ, we then compute x̂(θ) = �ŵ(θ) and

ŵ(θ) = argmin
w∈Rn

1

τ 2
‖A�w − b‖22 + 1

σ 2 ‖w‖2� . (9)

Then, for our problem of estimating x, the genHyBR
method (Chung et al. 2018) looks for the solution of w in

Sk = Kk

(
1

τ 2
ATA�,

1

τ 2
AT (y − Xβ)

)
.

The genHyBR algorithm creates an n × k basis Vk =
[v1, v2, . . . , vk] for this subspace, i.e., Sk = span {V1, . . . ,

Vk} using an efficient Golub–Kahan bidiagonalization itera-
tion scheme, which is sketched in Algorithm 1.

Algorithm 1 Generalized Golub–Kahan (genGK) bidiago-
nalization
Ensure: Matrices A, �, vector b = y − Xβ and τ 2.
1: Compute u1 = b/β1, where β1 = ‖b‖2/τ .
2: Compute v1 = 1

τ 2
ATu1/α1 where α1 = ‖ 1

τ 2
ATu1‖� .

3: for i = 1, . . . , k do
4: Compute ui+1 = (A�vi − αiui ) /βi+1 where βi+1 =

1
τ 2

‖A�vi − αiui‖2.
5: Compute vi+1 = (

ATui+1/τ
2 − βi+1vi

)
/αi+1 where αi+1 =

‖ATui+1/τ
2 − βi+1vi‖� .

6: end for
7: return β1,Uk+1,Vk+1 and Bk .

FromAlgorithm 1, we also obtain a (k+1)×k bidiagonal
matrix

Bk =

⎡

⎢⎢⎢
⎣

α1

β2 α2
. . .

. . .

βk αk

⎤

⎥⎥⎥
⎦

.

The outputs of the algorithms satisfy the following relation-
ships

A�Vk = Uk+1Bk,

UT
k+1Uk+1 = τ 2Ik+1,

VT
k�Vk = Ik .

(10)

Since we are looking for a solution of w ∈ Sk , we can
write wk = Vkzk and determine zk by solving

min
wk∈Sk

1

τ 2
‖A�wk − b‖22 + 1

σ 2 ‖wk‖2�

⇔ min
zk∈Rk

‖Bkzk − β1e1‖22 + 1

σ 2 ‖zk‖22.
(11)

Therefore, given Bk and Vk and by undoing the change of
variables, we approximate the solution to Eq. (8) as

x∗
k (θ) = �Vk

(
BT
kBk + 1

σ 2 I
)−1

BT
kβ1e1, (12)

where e1 is the first column of the (k + 1) × (k + 1) identity
matrix; that is, the vector with the first entry 1 and every other
entry equal to 0. In general, a stopping criterion must be used
to terminate the iterations and to automatically determine the
number of iterations k. Details on one such choice of stopping
criterion are given in Chung et al. (2018). However, we do
not use the said criterion for our method and instead treat
the parameter k as an algorithm parameter to be input by
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the user. The orthogonal basis vectors uk and vk may not
remain numerically orthogonal and therefore may require a
reorthogonalization scheme. Such a scheme is described in
the Chung et al. (2018) paper and is available for the user
to use in Kryging as well. However, we do not use it for the
results presented in this paper.

The genHyBR method reduces the computational com-
plexity of solving for x from O(n3) to that of matrix vector
multiplication, O(n2 + nk2). When the latent process loca-
tions s∗1, . . . , s∗n are arranged on a rectangular grid,� is sym-
metric BTTB, and thus, the matrix-vector multiplication can
be achieved swiftly, in O(n log n + nk2) flops, using circu-
lant embedding. Additionally, due to the form of x∗

k (θ) in Eq.
(12) and the exact arithmetic relationships presented in Eq.
(10), the quadratic term x̂(θ)T�−1̂x(θ) can now be approxi-

mated as ‖z∗
k‖22, where z∗

k =
(
BT
kBk + 1

σ 2 I
)−1

BT
kβ1e1. This

requires only O(k3) operations.

3.3 Log-determinant approximation

To compute the log determinant of �(θ), we once again use
the symmetric BTTB structure of�(θ). Gray (2006) reviews
methods for creating a circulant matrix based on a Toeplitz
matrix and using the circulant matrix structure to approxi-
mate the log-determinant of a Toeplitz matrix using inverse
FFTs. Refer to Section 4.1, 4.4 and 5.3 of Gray (2006) for
details. This behavior can be extended to a symmetric BTTB
structure as well and a similar asymptotic result also holds
for them (Gyires 1956; Widom 1974). The block circulant
matrixC = ((

C jk
))

(2n1−1)×(2n2−1) can be created exactly as
it is done for circulant embedding-based matrix-vector prod-
uct and therefore does not add any extra computation. The
approximation to the log-determinant is of the form

l̃og det�(θ) =
n1∑

p=1

n2∑

q=1

log

⎛

⎝
2n1−1∑

j=1

2n2−1∑

k=1

ω
( j−1)(p−1)
n1 ω

(k−1)(q−1)
n2 C jk

)
,

where ωn1 = exp (−2π i/(2n1 − 1)) and ωn2 = exp
(−2π i/(2n2 − 1)).

The approximation stems from the fact that the result
is only exact in an asymptotic sense. However, numerical
evidence suggests that the approximation to the log deter-
minant and its derivatives improves as the number of grid
points n increases; a more precise statement of convergence
can be found in Theorem 1.1 and Lemma 4.1(b) of Kent
and Mardia (1996). We mention that besides the BCCB
approximation, there are other ways of estimating the log-
determinant, such as stochastic trace estimation (Anitescu
et al. 2012; Ubaru et al. 2017) and using Hierarchical matrix
structure (Ambikasaran et al. 2015; Minden et al. 2017). In

particular, the advantage of the stochastic trace estimator is
that the information used in estimating the log-determinant
can be reutilized during the computation of the gradient
information. These approaches can be used in place of the
proposed estimator.

3.4 Optimization details

The approximations described in the previous sections render
the approximate profile log-likelihood function p̃l(θ) to have
the form

p̃l(θ) 	 − p

2
log τ 2 − 1

2τ 2
ψ∗

k(θ)Tψ∗
k(θ)

− n

2
log σ 2 − 1

2
l̃og det (�(θ))

− 1

2σ 2 ‖zk‖22,

(13)

whereψ∗
k = y−Xβ −Ax∗

k (θ), x∗
k (θ) and z∗

k are described in

Sect. 3.2 and l̃og det (�(θ)) is described in Sect. 3.3. Evaluat-
ing this function is faster and we can put it in an optimization
routine to optimize over θ to get the estimates of θ and x̂(θ).

We use the MATLAB optimization routine fminunc
with log-transformed range and variance parameters to avoid
the nonnegativity constrains. The optimization algorithm we
use is a trust-region algorithm, which requires derivative
information such as gradients and Hessians. The true gradi-
ent functions involve terms with�(θ)−1 and therefore needs
to be approximated. These problems are averted by using
the genHyBR solution of x∗

k (θ) in place of x as the matrix
inversion problem reduces to a matrix vector multiplication
problem.The derivative of the log determinant is also approx-
imated by using the BTTB structure. The details are given
in Appendix A. To approximate the Hessian, we use a rank-
one estimate of Hessian computed as the outer product of the
approximate gradient. The rationale behind this approxima-
tion is the fact that, in expectation, the outer product of the
score function equals the informationmatrix. Once again, the
details are given in Appendix A.

3.5 Uncertainty quantification

Besides a point estimate for x, we also want to quantify the
uncertainty associated with the estimated x and the predicted
y. We employ a parametric bootstrap for uncertainty quan-
tification. Using the estimated θ̂ , we generate B samples of
x1, . . . , xB from a zero-mean Gaussian process. For each xb,
we generate yb from the model in Eq. (1) with τ 2 and β

replaced by their estimates. We then estimate ŷb by Kryging,
but assuming θ is known.
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On the set of prediction locations s∗1, . . . , s∗m , we compute
the bootstrap MSE for each location s∗i as

var (x(s∗i )|θ̂) ≈ 1

B

B∑

b=1

(
xb(s∗i |θ̂) − x̂b(s∗i |θ̂)

)2
,

var (y(s∗i )|θ̂) ≈ 1

B

B∑

b=1

(
yb(s∗i |θ̂) − ŷb(s∗i |θ̂)

)2
.

(14)

This serves as an estimate of the classical Kriging variance
for spatial prediction (Den Hertog et al. 2006). Since we
use a parametric bootstrap approach, we use B = 20 boot-
strap samples as just this many bootstrap samples provide
satisfactory performance. The entire scenario entails using
genHyBR method (Chung et al. 2018) B times and therefore
costs O(n log n + nk2) flops. This procedure only approxi-
mates the uncertainty of the predictions assuming θ is known.
However, the bootstrap could be extended to give standard
errors for the elements of θ̂ as well as prediction variances
that account for uncertainty in θ by simply estimating θ for
each bootstrap sample.

3.6 Summary of themethod

We now summarize the overall computational cost of this
procedure. There are three main steps:

1. Optimizing the profiled likelihood p̃l(θ) to obtain θ∗
2. Compute x∗

k (θ
∗) and ŷ = Ax∗

k (θ
∗).

3. Compute prediction variance using bootstrap sampling.

The optimization routine involves computing an approximate
profile likelihood function and uses approximations based on
the genGKalgorithm to gradients andHessian. Using genGK
algorithm takes only O(nk log n) steps for computing x∗

k (t)
at the t-th iteration of the optimization.

Kryging has an overall computational complexity
O(n log n), assuming k is small, which is comparable to
the best available approximation methods. Naturally, it is
most useful in scenarios where the parameter settings favor a
small value of k. Empirical observations from our simulation
study suggest these to be scenarios where the spatial range
parameter ρ has a moderate-to-large value or the partial sill
parameter σ 2 is small. Also, Kryging is most efficient when
the observations are on a grid or they are somewhat uniformly
distributed over the space.

Caveat: Kryging depends on circulant embedding opera-
tions via the log-determinant approximation and bootstrap-
based uncertainty quantification. A successful execution
requires that a positive-definite embedding be found for the
corresponding Gaussian process. Without this, the method
may fail to produce a bootstrap sample from the Gaus-

sian process in question and as a result fail to estimate
uncertainty. This will also result in poor approximation of
the log-determinant as many near-zero positive eigenvalues
would be computed as near-zero negative eigenvalues and
throw off the overall computation. This problem is evidently
presentwhen the spatial range parameter is high for theGaus-
sian process (see Graham et al. 2018). This problem with
circulant embedding is well known. The problem of gener-
ating samples from a Gaussian process can be ameliorated
by using different periodic embedding schemes (see Stein
2002; Gneiting et al. 2006; Guinness and Fuentes 2017).
Forcefully resetting the small negative eigenvalues to zero or
machine-precision value is a quick recourse for approximat-
ing the log-determinant. The different embedding schemes
proposed in the literature may also be considered for this.
However, none of these can solve the computational issue
completely.

4 Simulation studies

In this section, we perform simulation studies to evaluate
the performance of our proposed method. These studies aim
to demonstrate the effectiveness of the model with varying
sample size as well as under different parametric settings for
both gridded and irregularly spaced data. We perform three
different simulation studies toward this goal. In each of the
experiments, for each case, we repeat the process on 25 repli-
cations. Throughout the studies, the observed values y are
created by adding noise to x, where x is an observation from
a Gaussian process with constant mean β and exponential
covariance function (i.e., Matérncovariance with ν = 0.5)
with sill σ 2 and spatial range ρ. We take the variance of the
noise process to be τ 2.

The first study varies the number of observations n by
generating data on a 100 × 100, 200 × 200, 300 × 300
and 400 × 400 grid in the unit square. The covariate matrix
X is a single column vector of ones, and the choice of
θ = (β, σ 2, τ 2, ρ)T is taken to be (44.49, 3, 0.5, 0.1). The
Kryging method is fit using the same grid of p = n used
to generate the data, and we compare performance for k ∈
{20, 50, 100, 200}. About 5% of the observed data y were
held out and were treated as test data upon which the perfor-
mance was evaluated.

The second study demonstrates the performance of the
method under different parametric settings on a grid of 200×
200 points. The spatial extents were kept same as in the first
study. The four different parametric settings that were used
for this study are as follows:

1. Small spatial range, θ = (44.49, 3, 0.5, 0.05)T .
2. Large spatial range, θ = (44.49, 3, 0.5, 0.2)T .
3. Small partial sill, θ = (44.49, 1.5, 0.5, 0.1)T .
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4. Large partial sill, θ = (44.49, 6, 0.5, 0.1)T .

In all of these cases, about 5%of the data from randomly cho-
sen locations on the grid were held out from the observed y
and kept as test sample data on which to evaluate the method.

The third study deals with the issue of irregularly
spaced data. We used the first parametric setting, θ =
(44.49, 3, 0.5, 0.1), and the spatial extent of the data as in
the first study.

The number of observed points was 40,000 of which 5%
were held out as test samples. The data were generated by
drawing x on a 1000 × 1000 grid and discarding 96% of
the data at random, leaving an irregularly spaced dataset of
40,000 observations. For testing the scalability with the grid
size n, we used 200 × 200, 300 × 300 and 400 × 400 grids
for s∗i .

The root-mean-squared error (RMSE) in predicting y
pointwise coverage (CVG) of 95% prediction intervals for
these predictions was averaged over replications, andmedian
of computation time (MedTime) for all the replications was
noted. These were used as performance metrics for each of
the cases. For a competing method, we use the SPDEmethod
available in theRpackageINLA. TheSPDEmethod emerged
from the comparison of several methods in Heaton et al.
(2019) as one of the leading methods in terms of both com-
putational speed and predictive accuracy.

Table 1 presents the RMSE and pointwise coverage val-
ues, averaged over replications, for the first simulation study
and the median time for computation over the replicates for
different choices of the tuning parameter k and different grid
sizes. In all cases, k = 50 seems to be sufficient. The occa-
sional inconsistencies in the computation times in Table 1 are
due to the differences in the number of iterations taken by
the optimization procedure to converge. In terms of RMSE

and coverage, both the methods perform similarly, but Kry-
ging is considerably faster and is more scalable. On the other
hand, the coverage for the proposed method is slightly below
the nominal level. This may be due to ignoring uncertainty
in θ when computing the prediction variances using Eq. 14.
A possible fix for this is mentioned at the end of Sect. 3.5.
However, the coverage is not so low as to require such a fix
sacrificing its fast runtime advantage.

The results for the 200 × 200 grids with different true
spatial covariance parameters are given in Table 2. For Set-
tings 2 and 3, k = 25 works well. This is not surprising for
Setting 2 because the process with large range is smooth as
easier to represent with a small number of terms. Solid per-
formance for small k in Setting 3 with lower partial sill is
also expected because genHyBR (Chung et al. 2018) makes
use of the partial sill to nugget ratio being moderate. As in
the first simulation, going beyond k = 50 seems unneces-
sary and the prediction RMSE performance is comparable to
that of the SPDE method, but with substantially faster com-
putation. Since INLA is implemented in R and Kryging is
implemented in MATLAB, the difference in platform makes
the computing time comparisons difficult to interpret. How-
ever, the gain in computation time forKryging is likely not the
result of change in platform solely because INLA is highly
optimized code (Martino and Rue 2009).

The results for irregularly spaced data are shown in
Table 3. The performance is similar to the SPDE method for
the proposed method with slight undercoverage. In essence,
the performance is quite similar to the regularly gridded data
scenario in the first simulation study.

We also check the performance of the proposed method
in estimating the true mean and spatial covariance parame-
ters against those obtained from SPDE. Across all settings
and irrespective of whether the data were on a regular grid

Table 1 a represents
RMSECoverage for predicting y
over different grid sizes and
different choices of the tuning
parameter k and the SPDE
method, averaged over
replications. The last column
presents the maximum standard
error for the given grid size
across methods. b shows the
median computation times in
minutes over different grid sizes
and different choices of the
tuning parameter k and SPDE
method. The figures in the
bracket indicate standard errors

(a)

Grid Size SPDE Kryging SE

k = 20 k = 50 k = 100 k = 200

100 × 100 0.910.95 0.930.92 0.910.91 0.910.91 0.910.91 0.030.03
200 × 200 0.830.95 0.860.92 0.840.91 0.830.91 0.830.91 0.010.02
300 × 300 0.800.95 0.860.92 0.840.91 0.830.91 0.830.91 0.010.02
400 × 400 0.780.95 0.840.91 0.800.89 0.790.88 0.780.88 0.010.02

(b)

Grid Size SPDE Kryging

k = 20 k = 50 k = 100 k = 200

100 × 100 5.42 (0.66) 0.14 (0.00) 1.84 (0.49) 5.14 (0.03) 11.00 (0.15)

200 × 200 44.64 (10.57) 5.51 (0.02) 1.66 (0.28) 2.12 (0.09) 48.24 (0.54)

300 × 300 170.01 (21.46) 3.39 (0.01) 4.11 (0.03) 5.49 (0.20) 7.81 (0.24)

400 × 400 662.95 (108.14) 10.78 (0.03) 12.02 (0.12) 14.28 (0.17) 18.09 (0.22)
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Table 2 a represents
RMSECoverage for predicting y
under different parametric
settings for the SPDE and the
proposed method with different
choices of the tuning parameter
k, averaged over replications.
The last column presents the
maximum standard error for the
given setting across methods. b
shows median computation
times in minutes over different
choices of the tuning parameter
k and SPDE method for
different parametric settings.
The figures in the bracket
indicate standard errors

(a)

Setting SPDE Kryging SE

k = 20 k = 50 k = 100 k = 200

Setting 1 0.910.95 0.980.89 0.920.88 0.910.88 0.910.88 0.010.01
Setting 2 0.780.95 0.800.91 0.800.89 0.790.89 0.790.89 0.010.03
Setting 3 0.800.95 0.800.86 0.790.83 0.790.83 0.790.83 0.080.03
Setting 4 0.900.95 0.980.96 0.920.96 0.910.96 0.900.96 0.020.01

(b)

Setting SPDE Kryging

k = 20 k = 50 k = 100 k = 200

Setting 1 17.69 (2.63) 0.90 (0.00) 1.40 (0.08) 2.15 (0.10) 48.25 (0.47)

Setting 2 19.03 (1.06) 5.56 (0.05) 1.60 (0.25) 2.12 (0.07) 48.74 (0.88)

Setting 3 18.26 (3.10) 5.47 (0.41) 1.37 (0.08) 2.17 (0.08) 48.53 (0.27)

Setting 4 18.49 (2.19) 5.57 (0.04) 2.37 (1.02) 2.16 (0.08) 48.62 (0.52)

Table 3 a represents
RMSECoverage for predicting y
for the SPDE and Kryging with
different choices of the tuning
parameter k and different
underlying grid sizes, averaged
over replications for irregularly
spaced datasets. The last column
presents the maximum standard
error for the given setting across
methods. b shows median
computation times in minutes
over different grid sizes and
different choices of the tuning
parameter k and SPDE method.
The figures in the bracket
indicate standard errors

(a)

Grid size SPDE Kryging SE

k = 20 k = 50 k = 100

200 × 200 0.820.95 0.850.90 0.830.88 0.830.87 0.020.02
300 × 300 0.820.95 0.850.90 0.830.89 0.830.88 0.020.02
400 × 400 0.820.95 0.850.91 0.830.89 0.820.89 0.020.02

(b)

Grid size SPDE Kryging

k = 20 k = 50 k = 100

200 × 200 33.55 (3.58) 8.08 (0.02) 3.33 (0.31) 3.93 (0.15)

300 × 300 33.55 (3.58) 4.86 (0.02) 5.58 (0.03) 6.85 (0.05)

400 × 400 33.55 (3.58) 8.58 (0.10) 9.96 (0.11) 12.40 (0.09)

or not, the results are consistent. While SPDE does a bet-
ter job at estimating the nugget parameter, Kryging does a
better job at estimating the partial sill. For estimating range
and the mean parameters, both the method perform similarly.
Detailed comparisons are presented in tables in Appendix B.

5 Application toMODIS/Terra land surface
temperature data

In this section, we analyze a real dataset using the proposed
method. We use the dataset used by Heaton et al. (2019)
for a comparison of methods for analyzing massive spatial
data. The dataset consists of Level-3 data on land surface
temperatures as measured by the Terra instrument onboard
the MODIS satellite on August 4, 2016. The original data
were available in MODIS reprojection tool web (MRTweb),
which has since been decommissioned. The entire dataset

is available in the GitHub repository for the Heaton et al.
(2019) project at this GitHub repository. Themain reason for
using this dataset is so that we can compare to other existing
methods easily as this dataset was previously analyzed by
twelve other existing methods in Heaton et al. (2019).

The observations were laid out on a regular grid of size
500×300 within longitude values−95.91153 to−91.28381
and latitude values 34.29519 to 37.06811. About 1.1% of the
data, 1, 691 grid cells out of 150, 000 cells, were corrupted
due to cloud cover. A further 42,740 observations were held
out from the training set, keeping about 70% of the data in
the training set and about 30% in the test set. The training
and testing datasets along the locations are available in the
previously mentioned GitHub repository. Figure 1 shows the
true data (top) and training data (second from top) created
after removing some observations.

We ran the Kryging algorithm with k = 50, 100, 200
and 300. For each value of k, we use different initial val-
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Fig. 1 True satellite image (top), the image used for training after hold-
ing out data for test sample (second from top), the image obtained from
the estimated values (second from bottom) and the prediction standard
errors (bottom) for k = 200

ues and pick the best one using fivefold cross-validation
within the training dataset. The mean absolute error (MAE),
root-mean-squared error (RMSE), continuously rankedprob-
ability score (CRPS), interval score (INT) and pointwise
coverage (CVG) for the predictions of the test set datapoints
were computed for each case, and the computation times
were noted and are tabulated in Table 4. Figure 1 shows the
estimates (second from bottom) and corresponding standard
errors (bottom) for the data. The estimated image picks up all
the spatial features in the true data, indicating a goodfit. Since
the same dataset was also analyzed by twelve other existing
methods, the above-mentioned metrics for which are avail-
able in the Heaton et al. (2019) paper. The relevant results,
as presented in the original paper, are presented in Table 5.
This allows us a chance to compare the performance of our
method to other existing methods, although the computing
platforms were not the same for the two cases.

In terms of RMSE and coverage, SPDE (Lindgren et al.
2011), nearest neighbor Gaussian process or NNGP (Datta
et al. 2016a, b, c) and LatticeKrig (Nychka et al. 2015) per-
form better than the proposed method. The time taken by the
method is significantly less than the SPDE method and com-
parable to LatticeKrig. Although it should be mentioned that
the theywere run in different platformswith similar hardware
setup, the comparison should not be considered a direct one.
The time presented for the NNGP method in Heaton et al.
(2019) considers only the time taken for the conjugate model
where a well-defined grid of possible parameter values were
supplied to the model to use cross-validation in parallel. This
range of parameter values need to be determined first and is
the more difficult and time-consuming part of any existing
approximate inference method and neither the strategy nor
the time taken to arrive at those numbers was reported in
Heaton et al. (2019).

6 Conclusion

In this article, we propose an approximate inference method
for analyzing massive spatial datasets using Krylov subspace
approximation and profile maximum likelihood methods.
The method assumes that the underlying process realiza-
tions are on a regular equispaced grid, but the observations
need not be colocated on the grid. While we exclusively
model the spatial process covariance using the Matérn
covariance family, the method works for any choice of sta-
tionary covariance function. We also propose an approach to
approximate log-determinants for symmetric BTTB matri-
ces which has guaranteed asymptotic convergence to the true
log-determinant value. The method has computational com-
plexity ofO(n log n), resulting in fast run times and excellent
scalability with the sample size while producing decent esti-
mates and requires little tuning. The method is expected to
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Table 4 Performance of the
proposed method on the MODIS
dataset for various choices of k

k MAE RMSE CRPS INT CVG Run time (min.) Cores used

50 1.43 1.95 1.07 10.97 0.93 11.18 4

100 1.43 1.85 1.04 9.74 0.93 15.10 4

200 1.36 1.78 0.99 9.60 0.93 19.59 4

300 1.36 1.79 0.99 9.68 0.93 27.01 4

Table 5 Results from the case
study competition for the
satellite data as in Table 3 of
Heaton et al. (2019)

Method MAE RMSE CRPS INT CVG Run time(min) Cores used

FRK 1.96 2.44 1.44 14.08 0.70 2.32 1

Gapfill 1.33 1.86 1.17 34.78 0.36 1.39 40

LatticeKrig 1.22 1.68 0.87 7.55 0.96 27.92 1

LAGP 1.65 2.08 1.17 10.81 0.83 2.27 40

Metakriging 2.08 2.50 1.44 10.77 0.89 2888.52 30

MRA 1.33 1.85 0.94 8.00 0.92 15.61 1

NNGP 1.21 1.64 0.85 7.57 0.95 2.06 10

Partition 1.41 1.80 1.02 10.49 0.86 79.98 55

Pred. Proc. 2.15 2.64 1.55 15.51 0.83 160.24 10

SPDE 1.10 1.53 0.83 8.85 0.97 120.33 2

Tapering 1.87 2.45 1.32 10.31 0.93 133.26 1

Periodic Embedding 1.29 1.79 0.91 7.44 0.93 9.81 1

run especially well when the spatial range is small to moder-
ate and partial sill-to-nugget ratio is moderate. This is seen
in the applications involving both synthetic and real datasets.

Although uncertainties for the mean and spatial parame-
ter estimates are not provided directly, they can be obtained
using the following approaches. A reasonable approach
would be to compute the exact Hessian and its inverse for
the optimization process of Eq. (13). However, that is time-
consuming as it has O(n3) complexity involved with the
computation. A suitable approximation to the inverse of the
Hessian will be needed to efficiently estimate the uncer-
tainties associated with these parameters. A computationally
expensive alternative is to estimate the parameters using the
parametric bootstrap, as outlined in Sect. 3.5.

Themethod is proposed as a d-dimensionalmethod.How-
ever, for irregular datasets on dimensions higher than 3, the
grid formation is slow and difficult. But for the purposes
of geostatistical analyses, we need only concern ourselves
with problems in R

2 or R
2 × R where grids are simple and

easy to deal with. Should the case arise where one has to
deal with higher-dimensional geospatial analysis, one needs
to look for a suitable alternative to the grid structure, which
can be a future avenue for research. Moreover, Kryging is
most attractive when the observations are approximately on
a grid or uniformly distributed and adaptations for extremely
irregular cases such as data observed along transects or in
separated clusters is another area of future work.

The proposed model can be utilized in many other scenar-
ios than simply what has been illustrated in this article. The

computational amenities of the method can be utilized for
spatiotemporal modeling. Changing the observational model
to include two or more sources of data can be contemplated
as well. Quantifying uncertainties for the mean and the spa-
tial parameters can be one possible extension. Extending the
method to non-Gaussian observational models, for example,
binary or count data, would be another possibility.
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A Gradient and Hessian computation for the
optimization procedure

In this section, we present the necessary details of computing
and approximating the gradient andHessian for the optimiza-
tion routine.

We first derive exact expressions for the gradient and then
showhow to approximate themusing the strategy inSects. 3.2
and 3.1. Computing the analytical gradient would require

computing derivatives of� =
(

1
σ 2 �(θ)−1 + 1

τ 2
ATA

)−1
and

x̂(θ) with respect to each of μ, σ 2, τ 2 and ρ. For conve-
nience, we reparameterize 1/σ 2 = λ2 and 1/τ 2 = λ2e . Using
the precision instead of variance brings about greater ease in
computing the analytical derivatives. Under the new param-
eterization,

� =
(
λ2eA

TA + λ2�−1
)−1

, (15)

x̂(θ) = �λ2eA
T(y − Xβ), (16)

and

pl(θ) 	 p

2
log λ2e − λ2e

2
ψ̂(θ)Tψ̂(θ)

+ n

2
log λ2 − 1

2
log det �(θ)−

λ2

2
x̂(θ)T�(θ)−1x̂(θ),

(17)

where ψ̂(θ) = y − Xβ − Ax̂(θ).
The derivatives for � are computed to be

∂�

∂β
= 0,

∂�

∂λ2
= −��(ρ)−1�,

∂�

∂ρ
= λ2��(ρ)−1 (d�(ρ)) �(ρ)−1�,

∂�

∂λ2e
= −�ATA�,

(18)

where d�(ρ) denotes the derivative of �(ρ) with respect
to ρ. This is easy to compute analytically and has the nice
BTTB property that �(ρ) has.

Using the expressions in (18), we compute the derivatives
of x̂(θ) to be

∂ x̂(θ)

∂β
= −λ2e�A

TX,

∂ x̂(θ)

∂λ2
= −��(ρ)−1̂x(θ),

∂ x̂(θ)

∂ρ
= λ2��(ρ)−1 (d�(ρ)) �(ρ)−1̂x(θ),

∂ x̂(θ)

∂λ2e
= �ATψ̂(θ).

(19)

Substituting the expressions for analytical derivatives of
� and x̂(θ) in the expression for the analytical gradient, we
have it computed to be

∂pl

∂β
= λ2eX

Tψ̂(θ),

∂pl

∂λ2
= n

2λ2
− 1

2
x̂(θ)T�(ρ)−1̂x(θ)

∂pl

∂ρ
= −1

2
dL + 1

2
λ2̂x(θ)T�(ρ)−1 (d�(ρ)) �(ρ)−1̂x(θ),

∂pl

∂λ2e
= p

2λ2e
− 1

2
ψ̂(θ)Tψ̂(θ),

(20)

where dL is the derivative of log det �(ρ) with respect to ρ.
We approximate the gradient expressions in (20) by

approximating x̂(θ) by x∗
k (θ) as in (12) and using the exact

arithmetic identities expressed in (10). The approximated
gradients can be computed as

∂pl

∂β
≈ λ2eX

Tψ∗
k(θ),

∂pl

∂λ2
≈ n

2λ2
− 1

2
‖zk‖22,

∂pl

∂ρ
≈ −1

2
d̂L + λ2

2
zTkV

T
k (d�(ρ))Vkzk,

∂pl

∂λ2e
≈ p

2λ2e
− 1

2
ψ∗

k(θ)Tψ∗
k(θ),

(21)

where ψ∗
k(θ) = y − Xβ − Ax∗

k (θ) and Vk, zk have been
defined in Sect. 3.2.

d̂L is an approximation to dL, the derivative of the
log-determinant of �(ρ) with respect to ρ. The analytical
expression for dL turns out to be

dL = trace
(
�(ρ)−1d�(ρ).

)

This is infeasible to compute directly and is therefore approx-
imated using the BTTB structure of �(ρ) and d�(ρ).

Any symmetric matrix with BTTB structure can be
extended to have a BCCB structure as was done in com-
puting the log-determinant itself and one can extract the
eigenvalues of the matrix with BTTB structure using the
matrix with BCCB structure. Any BCCB matrix is diago-
nalizable as FDFT, where F is a scaled matrix consisting of
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d-dimensional (d=2, in our case) Fourier coefficients, irre-
spective of the BCCB matrix being diagonalized. Therefore,
we can say

�(ρ) = FD1FT,

�(ρ)−1 = FD−1
1 FT,

d�(ρ) = FD2FT.

(22)

These imply that

trace
(
�(ρ)−1d�(ρ)

)
= trace

(
FD−1

1 FTFD2FT
)

= trace
(
D−1
1 D2

)
.

(23)

Since both D1 and D2 are diagonal, approximating dL boils
down to computing D1 and D2, which can be computed
by d-dimensional FFT of the corresponding first circulant
block structures of the extended BCCB structure and subset-
ting it properly. The equivalence in computing the derivative
of log-determinant of the BTTB and matrix and its corre-
sponding BCCB matrix has been demonstrated by Kent and
Mardia (1996), showing the approximation to have the same
error rate as in approximating the log-determinant itself.
Approximating the derivative of the log-determinant term
also costs the same as approximating the log-determinant
itself, O(n log n).

While minimizing the negative log-likelihood function,
the Hessian turns out to be simply the Information matrix
I(θ). While

E (−∇2pl(θ)) = I(θ),

we also have

E

(
∇pl(θ)∇pl(θ)T

)
= E

[
(−∇pl(θ)) (−∇pl(θ))T

]
.

Here the expectations are computed with respect to y and ∇,
∇2 represent the gradient and Hessian created by computing
first- and second-order partial derivatives with respect to θ .
Therefore, the outer product of the gradient with itself serves
as a rank-one estimate for the Hessian for a likelihood opti-
mization problem. Although we are using profile likelihood
instead of the actual likelihood function, the approximation
still stands in an asymptotic sense since both the actual like-
lihood estimator and the profile likelihood estimators have
the same asymptotic properties. This prompts us to take the
outer product of the approximated gradient with itself as a
rank-one approximation to the Hessian.

However, we compute the unique entries of the exact Hes-
sian to be

∂2pl

∂β∂βT = −λ2eX
TX + λ4eX

TA�ATX

∂2pl

∂β∂λ2
= λ2eX

TA��(ρ)−1̂x(θ)

∂2pl

∂β∂ρ
= −λ2eλ

2XTA��(ρ)−1 (d�(ρ)) �(ρ)−1̂x(θ)

∂2pl

∂β∂λ2e
= XTψ̂(θ) − λ2eX

TA�ATψ̂(θ)

∂2pl

∂λ4
= − n

2λ4
+ x̂(θ)T�(ρ)−1��(ρ)−1̂x(θ)

∂2pl

∂λ2∂ρ
= 1

2
x̂(θ)T�(ρ)−1 (d�(ρ)) �(ρ)−1̂x(θ)

− λ2̂x(θ)T�(ρ)−1 (d�(ρ))

× �(ρ)−1��(ρ)−1̂x(θ)

∂2pl

∂λ2∂λ2e
= −x̂(θ)T�(ρ)−1�ATψ̂(θ)

∂2pl

∂ρ2 = −1

2
d2L + λ2

2
x̂(θ)

× �(ρ)−1
(
d2�(ρ)

)
�(ρ)−1̂x(θ)

− λ2̂x(θ)T�(ρ)−1 (d�(ρ))
[
�(ρ)−1

−�(ρ)−1��(ρ)−1
]
(d�(ρ)) �(ρ)−1̂x(θ)

∂2pl

∂ρ∂λ2e
= λ2̂x(θ)T�(ρ)−1 (d�(ρ))�(ρ)−1�ATψ̂(θ)

∂2pl

∂λ4e
= − p

λ4e
+ ψ̂(θ)TA�ATψ̂(θ),

(24)

where d2L represents the second derivative of log det �(ρ)

with respect to ρ and d2�(ρ) is the second derivative of�(ρ)

with respect to ρ. d2�(ρ) also has a BTTB structure as�(ρ)

and d�(ρ).
These entries are then approximated using the approxima-

tion to � as presented in Chung et al. (2018), namely

� ≈ λ−2
(
�(ρ) − ZkΔkZT

k

)
, (25)

where Zk = �(ρ)VkWk withBT
kBk = WkΘkWk andΔk =

(
I + λ−2Θk

)−1
.

We define z0 = y−Xβ −Ax∗
k (θ) = ψ∗

k(θ). The approx-
imated entries of the Hessian are

∂2pl

∂β∂βT ≈ −λ2eX
TX + λ4e

λ2
XTA�(ρ)ATX

−λ4e

λ2
XTUkBkWkΔkWT

kB
T
kU

T
kX
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∂2pl

∂β∂λ2
≈ λ2e

λ2
XTAx̂∗(θ) − λ2e

λ2
XTUkBkWkΔkWT

kzk

∂2pl

∂β∂ρ
≈ −λ2eX

TA (d�(ρ))Vkzk

+λ2eX
TUkBkWkΔkWT

kV
T
k (d�(ρ))Vkzk

∂2pl

∂β∂λ2e
≈ −XTz0 − λ2e

λ2
XTA�(ρ)ATz0

+λ2e

λ2
XTUkBkWkΔkWT

kB
T
kU

T
kz0

∂2pl

∂λ4
≈ − n

2λ4
+ 1

λ2
‖zk‖22 − 1

λ2
zTkWkΔkWT

kzk

∂2pl

∂λ2∂ρ
≈ −1

2
zTkV

T
k (d�(ρ))Vkzk

+zTkV
T
k (d�(ρ))VkWkΔkWT

kzk
∂2pl

∂λ2∂λ2e
≈ − 1

λ2
zTkB

T
kU

T
kz0 + 1

λ2
zTkW

T
kΔkWT

kB
T
kU

T
kz0

∂2pl

∂ρ2 ≈ −1

2
d̂2L + λ2

2
zTkV

T
k

(
d2�(ρ)

)
Vkzk

−λ2zTkV
T
k (d�(ρ))VkWkΔk

×WT
kV

T
k (d�(ρ))Vkzk

∂2pl

∂ρ∂λ2e
≈ zTkV

T
k (d�(ρ))ATz0

−zTkV
T
k (d�(ρ))VkWkΔkWT

kB
T
kU

T
kz0

∂2pl

∂λ4e
≈ − p

2λ4e
+ 1

λ2
zT0A�(ρ)ATz0

− 1

λ2
zT0UkBkWkΔkWT

kB
T
kU

T
kz0, (26)

where d̂2L is a numerical approximation to d2L. We do not
use this approximation for our computing, but hope to use it
in future.

B Additional tables from the simulation
study

In this section, we provide additional results for the simula-
tion study. Table 6 evaluates parameter estimations for the
first simulation study for both SPDE and Kryging methods.
The same is done in Tables 7 and 8 for the second and third
simulation studies. The results across the board are similar
as mentioned in Section 4. SPDE performs better in estimat-
ing the nugget parameter τ 2, while Kryging performs better
in estimating the partial sill parameter σ 2. Both methods do
equally well in estimating the mean parameter β and the spa-
tial range parameter ρ.

Table 6 RMSE in estimating the parameters for SPDE and Kryging for different grid sizes and choices of k as in the first simulation study. The
true values for the parameters were (44.49, 3, 0.5, 1). The figures in brackets indicate standard error

Parameter Grid Size SPDE Kryging

k = 20 k = 50 k = 100 k = 200

β 100 × 100 0.30 (0.30) 0.31 (0.32) 0.30 (0.32) 0.31 (0.32) 0.31 (0.32)

200 × 200 0.23 (0.22) 0.28 (0.23) 0.28 (0.23) 0.28 (0.23) 0.28 (0.23)

300 × 300 0.32 (0.24) 0.32 (0.25) 0.32 (0.25) 0.32 (0.25) 0.32 (0.25)

400 × 400 0.26 (0.26) 0.29 (0.26) 0.29 (0.26) 0.29 (0.26) 0.29 (0.26)

σ 2 100 × 100 1.43 (0.11) 0.36 (0.34) 0.36 (0.34) 0.36 (0.34) 0.36 (0.34)

200 × 200 1.59 (0.07) 0.31 (0.24) 0.31 (0.24) 0.31 (0.24) 0.31 (0.24)

300 × 300 1.70 (0.07) 0.33 (0.26) 0.33 (0.26) 0.33 (0.26) 0.33 (0.26)

400 × 400 1.81 (0.06) 0.30 (0.17) 0.30 (0.17) 0.30 (0.17) 0.30 (0.17)

τ 2 100 × 100 0.10 (0.01) 0.17 (0.05) 0.17 (0.05) 0.17 (0.05) 0.17 (0.05)

200 × 200 0.06 (0.01) 0.16 (0.04) 0.16 (0.04) 0.16 (0.04) 0.16 (0.04)

300 × 300 0.05 (0.00) 0.16 (0.05) 0.16 (0.05) 0.16 (0.05) 0.16 (0.05)

400 × 400 0.04 (0.00) 0.19 (0.03) 0.19 (0.03) 0.19 (0.03) 0.19 (0.03)

ρ 100 × 100 0.06 (0.02) 0.03 (0.00) 0.03 (0.00) 0.02 (0.00) 0.02 (0.00)

200 × 200 0.01 (0.01) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

300 × 300 0.01 (0.01) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

400 × 400 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)
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Table 7 RMSE in estimating
the parameters for SPDE and
Kryging under different
parametric settings and different
choices of k as in the second
simulation study. The true
values for the parameters were
(44.49, 3, 0.5, 0.05),
(44.49, 3, 0.5, 0.2),
(44.49, 1.5, 0.5, 0.1) and
(44.49, 6, 0.5, 0.1) for settings 1
through 4, respectively. The
figures in brackets indicate
standard error

Parameter Setting SPDE Kryging
k=20 k=50 k=100 k=200

β Setting 1 0.16 (0.15) 0.16 (0.14) 0.16 (0.14) 0.16 (0.14) 0.16 (0.14)

Setting 2 0.42 (0.37) 0.46 (0.39) 0.46 (0.39) 0.46 (0.39) 0.46 (0.39)

Setting 3 0.18 (0.10) 0.22 (0.10) 0.22 (0.10) 0.22 (0.10) 0.22 (0.10)

Setting 4 0.42 (0.27) 0.43 (0.28) 0.43 (0.28) 0.43 (0.28) 0.43 (0.28)

σ 2 Setting 1 1.43 (0.05) 0.16 (0.17) 0.16 (0.17) 0.16 (0.17) 0.16 (0.17)

Setting 2 1.79 (0.11) 0.59 (0.32) 0.59 (0.32) 0.59 (0.32) 0.59 (0.32)

Setting 3 0.47 (0.06) 0.23 (0.21) 0.23 (0.21) 0.23 (0.21) 0.23 (0.21)

Setting 4 4.07 (0.06) 0.70 (0.44) 0.70 (0.44) 0.70 (0.44) 0.70 (0.44)

τ 2 Setting 1 0.10 (0.01) 0.16 (0.02) 0.16 (0.02) 0.16 (0.02) 0.16 (0.02)

Setting 2 0.04 (0.01) 0.21 (0.06) 0.21 (0.06) 0.21 (0.06) 0.21 (0.06)

Setting 3 0.07 (0.15) 0.30 (0.03) 0.30 (0.03) 0.30 (0.03) 0.30 (0.03)

Setting 4 0.12 (0.01) 0.10 (0.06) 0.10 (0.06) 0.10 (0.06) 0.10 (0.06)

ρ Setting 1 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00)

Setting 2 0.05 (0.02) 0.13 (0.00) 0.13 (0.00) 0.13 (0.00) 0.13 (0.00)

Setting 3 0.03 (0.02) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

Setting 4 0.01 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

Table 8 RMSE in estimating
the parameters for SPDE and
Kryging for different choices of
underlying grid size and k for
the simulation study with
irregularly spaced data. The true
parameter values were
(44.49, 3, 0.5, 0.1). The figures
in brackets indicate standard
error

Parameter Grid size SPDE Kryging
k=20 k=50 k=100

β 200 × 200 0.24 (0.18) 0.29 (0.16) 0.29 (0.16) 0.29 (0.16)

300 × 300 0.24 (0.18) 0.29 (0.16) 0.29 (0.16) 0.29 (0.16)

400 × 400 0.24 (0.18) 0.29 (0.16) 0.29 (0.16) 0.29 (0.16)

σ 2 200 × 200 1.61 (0.07) 0.26 (0.21) 0.26 (0.21) 0.26 (0.21)

300 × 300 1.61 (0.07) 0.26 (0.21) 0.26 (0.21) 0.26 (0.21)

400 × 400 1.61 (0.07) 0.26 (0.21) 0.26 (0.21) 0.26 (0.21)

τ 2 200 × 200 0.06 (0.01) 0.17 (0.04) 0.17 (0.04) 0.17 (0.04)

300 × 300 0.06 (0.01) 0.17 (0.04) 0.17 (0.04) 0.17 (0.04)

400 × 400 0.06 (0.01) 0.17 (0.04) 0.17 (0.04) 0.17 (0.04)

ρ 200 × 200 0.01 (0.01) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

300 × 300 0.01 (0.01) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)

400 × 400 0.01 (0.01) 0.03 (0.00) 0.03 (0.00) 0.03 (0.00)
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