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A B S T R A C T

We present a hybrid-mixed finite element method for a novel hybrid-dimensional model of single-phase Darcy
flow in a fractured porous media. In this model, the fracture is treated as a (𝑑−1)-dimensional interface within
the 𝑑-dimensional fractured porous domain, for 𝑑 = 2, 3. Two classes of fracture are distinguished based on
the permeability magnitude ratio between the fracture and its surrounding medium: when the permeability in
the fracture is (significantly) larger than in its surrounding medium, it is considered as a conductive fracture;
when the permeability in the fracture is (significantly) smaller than in its surrounding medium, it is considered
as a blocking fracture. The conductive fractures are treated using the classical hybrid-dimensional approach
of the interface model where pressure is assumed to be continuous across the fracture interfaces, while the
blocking fractures are treated using the recent Dirac-𝛿 function approach where normal component of Darcy
velocity is assumed to be continuous across the interface. Due to the use of Dirac-𝛿 function approach for
the blocking fractures, our numerical scheme allows for nonconforming meshes with respect to the blocking
fractures. This is the major novelty of our model and numerical discretization. Moreover, our numerical scheme
produces locally conservative velocity approximations and leads to a symmetric positive definite linear system
involving pressure degrees of freedom on the mesh skeleton only. As an application, we extend the idea to
a simple transport model. The performance of the proposed method is demonstrated by various benchmark
test cases in both two- and three-dimensions. Numerical results indicate that the proposed scheme is highly
competitive with existing methods in the literature
1. Introduction

Numerical simulations of single- and multi-phase flows in porous
media have many applications in contaminant transportation, oil re-
covery and underground radioactive waste deposit. Due to the highly
conductive and blocking fractures in the porous media underground,
it is still challenging to construct accurate numerical approximations
(Matthäi et al., 2010; Vasilyeva et al., 2019; Golian et al., 2020).

There are several commonly used mathematical models for simulat-
ing flows in porous media with conductive fractures, such as the dual
porosity model (Barenblatt et al., 1960; Warren and Root, 1963; Geiger
et al., 2013), single porosity model (Ghorayeb and Firoozabadi, 2000),
traditional discrete fracture model (DFM) (Noorishad and Mehran,
1982; Baca et al., 1984; Kim and Deo, 1999, January, 2000; Karimi-
Fard and Firoozabadi, 2001; Geiger-Boschung et al., 2009; Zhang et al.,
013), embedded DFM (EDFM) (Li and Lee, 2008; Moinfar, 2013; Yan
t al., 2016; Tene et al., 2017; Jiang and Younis, 2017a; HosseiniMehr
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et al., 2018; Xu et al., 2019), the interface models (Alboin et al., 1999,
2000; Hansbo and Hansbo, 2002; Odsæter et al., 2019) and extended
finite element DFM (XDFM) based on the interface models (Fumagalli
and Scotti, 2014; Huang et al., 2011; Schwenck, 2015; Salimzadeh and
Khalili, 2015; Flemisch et al., 2016), finite element method based on
Lagrange multipliers (Köppel et al., 2019a,b; Schädle et al., 2019),
etc. Among the above methods, the traditional DFM and the interface
models have been intensively studied in the past decades.

The DFM is based on the principle of superposition. It uses a hybrid
dimensional representation of the Darcy’s law, and treats the fractures
as lower dimensional entries, with the thickness of the fracture as
the dimensional homogeneity factor. The first DFM was introduced
by Noorishad and Mehran (1982) in 1982 for single phase flows.
Later, Baca et al. (1984) considered the heat and solute transport in
fractured media. Subsequently, several significant numerical methods
were applied to the DFM, such as the finite element methods (Kim
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and Deo, 1999, January, 2000; Karimi-Fard and Firoozabadi, 2001;
Geiger-Boschung et al., 2009; Zhang et al., 2013), vertex-centered finite
volume methods (Monteagudo and Firoozabadi, 2004; Reichenberger
et al., 2006; Monteagudo and Firoozabadi, 2007; Zhang et al., 2016),
cell-centered finite volume methods (Karimi-Fard et al., 2003; Sandve
t al., 2012; Ahmed et al., 2015; Gl"aser et al., 2017; Fang et al.,
2018), mixed finite element methods (Hoteit and Firoozabadi, 2005,
2006, 2008b,a; Moortgat and Firoozabadi, 2013a,b; Zidane and Firooz-
abadi, 2014; Moortgat et al., 2016), discontinuous Galerkin methods
(Antonietti et al., 2019). All the above works are limited on conforming
meshes, i.e. the fractures are aligned with the interfaces of the back-
ground matrix cells. Therefore, it may suffer from low quality cells.
Recently, Xu and Yang introduced the Dirac-𝛿 functions (Xu and Yang,
2020) to represent the conductive fractures and reinterpreted the DFM
(RDFM) on nonconforming meshes. The basic idea is to superpose the
conductivity of the fracture to that of the matrix. The main contribution
in Xu and Yang (2020) is to explicitly represent the DFM introduced
in Karimi-Fard and Firoozabadi (2001) as a scalar partial differential
equation. Therefore, with suitable numerical discretizations, such as the
discontinuous Galerkin method, the RDFM can be applied to arbitrary
meshes. To demonstrate that the RDFM is exactly the traditional DFM
if the mesh is conforming, in Xu and Yang (2020) only finite element
methods were considered. Therefore, local mass conservation was miss-
ing. Later, the enriched Galerkin and interior penalty discontinuous
Galerkin methods were applied to RDFM in Feng et al. (2021) and the
contaminant transportation was also simulated.

Different from the traditional DFM, the interface model (Alboin
et al., 1999, 2000; Hansbo and Hansbo, 2002; Odsæter et al., 2019) ex-
plicitly represent the fractures as interfaces of the porous media. Then
the governing equation of the flow in the lower dimensional fracture
was constructed. In the interface model, the matrix and fractures are
considered as two systems, and the communication between them was
given as the jump of the normal velocity along the fractures. Therefore,
different from RDFM, the interface model, though hanging nodes are
allowable, cannot be applied to structured meshes and the fracture
must be aligned with the interfaces of the meshes for the matrix. To
fixed this limitation, the XDFM was proposed (Fumagalli and Scotti,
2014; Huang et al., 2011; Schwenck, 2015; Salimzadeh and Khalili,
2015; Flemisch et al., 2016). However, these methods may increase the
degrees of freedom (DOFs) significantly, and can hardly be applied to
fracture networks with high geometrical complexity (Flemisch et al.,
2018). As an alternative, the CutFEM (Burman et al., 2019) can be
applied to non-conforming meshes. It couples the fluid flow in all lower
dimensional manifolds. However, this method requires the fractures
to cut the domain into completely disjoint subdomains, thus it is not
applicable for media with complicated fractures.

Most of the above ideas work for problems with conductive frac-
tures. However, if the media contains blocking fractures, most meth-
ods may not be suitable. To fix this gap, the projection-based EDFM
(pEDFM) was introduced in Tene et al. (2017) and Jiang and Younis
(2017b). The effective flow area between adjacent matrix grids is
computed as the difference between the original interface area and the
projected area of the fracture segment. It will be zero if the fracture
fully penetrates through the matrix cell. Olorode et al. (2020) extended
the pEDFM into three-dimensional compositional simulation of frac-
tured reservoirs. However the pEDFM still cannot describe the complex
multiphase flow behavior in the matrix blocks within barrier fractures.
Another approach is to follow the interface model introduced in Martin
et al. (2005), Angot et al. (2009), Boon et al. (2018) and Kadeethum
et al. (2020). However, as demonstrated above, the interface model
can only handle hanging nodes, and the fractures must align with the
interfaces of the background mesh. Recently, Xu and Yang extended
the RDFM (Xu and Yang, 2020; Feng et al., 2021) to problems with
blocking fractures in Xu et al. (2021). The basic idea is to apply Ohm’s
law and superpose the resistance (the reciprocal of the permeability)
2

of the blocking fracture to that of the matrix. Then a modified partial
differential equation system was introduced and the local discontinuous
Galerkin methods with suitable penalty were perfectly applied. If the
problems contains only blocking fractures, the mixed finite element
methods can easily be combined with RDFM.

In this paper, we combine the ideas in Alboin et al. (1999) and Xu
et al. (2021) to propose a novel model for single phase flows in porous
media. The idea works for problems containing both conductive and
blocking fractures. In particular, the interface model (Alboin et al.,
1999) was used to enforce the continuity of pressure across the con-
ductive fractures, while the Dirac-𝛿 functions were applied for the
blocking fractures to superpose the resistance following the main idea
given in Xu et al. (2021). The separate treatment of conductive and
blocking fractures may yield difficulties in constructing mathematical
models. Therefore, one of the major novelty of the current work is
the seamless combination of the conductive fracture interface model
and the blocking fracture Dirac-𝛿 function approach. With the new
mathematical model, we further construct numerical discretization by
using a hybrid-mixed finite element method. The proposed method has
the following features: (1) it produces locally conservative velocity ap-
proximations; (2) it leads to a symmetric positive definite linear system;
(3) it only produces globally coupled degrees of freedom (DOFs) of
pressure on the mesh skeletons. Therefore, the numerical scheme yields
much less total DOFs and is easy to implement, and this is the main
advantage compared with the XDFM, pEDFM and CutFEM methods.
Moreover, thanks to the Dirac-𝛿 functions for blocking fractures, the
method does not require any mesh conformity with respect to the
blocking fractures, which is another major novelty of our proposed
scheme compared with the interface model. To the best knowledge
of the authors, our approach is the simplest one that can be applied
to non-conforming mesh for blocking fractures that still yield locally
conservative velocity approximations. We note that mesh conformity
with respect to the conductive fractures is still required for our method,
which is typical for interface models. We numerically demonstrate that
our hybrid-mixed finite element scheme is highly competitive both in
terms of computational efficiency and accuracy. As an application, we
couple the proposed flow equation with the simple transport equations
and construct the locally conservative hybrid finite volume methods for
the transport equations. We finally emphasis that the proposed hybrid-
mixed formulation is different from the mixed method in Boon et al.
(2018) due to the use of different model for the interface conditions.
We believe that our model is significantly simpler for complex fracture
networks since we only use one matrix domain and one (codimension
1) conductive fracture domain throughout, while the mixed method
formulation (Boon et al., 2018) needs to split the matrix and fracture
domains into multiple disjoint sub-domains and require the modeling
of codimension 1–3 fracture flows, which might be very tedious to
perform for complex fracture networks.

The rest of the paper is organized as follows. In Section 2, we
present the hybrid-dimensional model under consideration. We then
formulate in Section 3 the hybrid-mixed finite element discretization
of the model proposed in Section 2. Numerical results for various
benchmark test cases are presented in Section 4. We conclude in
Section 5.

2. The hybrid-dimensional model

2.1. Notation

We consider a bounded open domain 𝛺𝑚 ⊂ R𝑑 , 𝑑 = 2, 3, which
contains several (𝑑 − 1)-dimensional conductive or blocking fractures.
For simplicity, the fractures are assumed to be hyperplanes with smooth
boundaries. We denote 𝛺𝑐 as the (𝑑−1)-dimensional open set containing
all the conductive fractures, and 𝛺𝑏 as the set containing all the
blocking fractures. Assume the (𝑑 − 1)-dimensional domain boundary
𝜕𝛺𝑚 = 𝛤𝐷∪𝛤𝑁 , with 𝛤𝐷∩𝛤𝑁 = ∅. Furthermore, we denote the following
sets of (𝑑−2)-dimensional boundaries (intersections) associated with the

set of conductive fractures 𝛺𝑐 :
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Fig. 1. A typical two dimensional fractured domain 𝛺𝑚 (the rectangular domain). The
domain boundary 𝛤𝐷 = {𝐶𝐷}, 𝛤𝑁 = {𝐴𝐵}∪{𝐵𝐶}∪{𝐴𝐷}, where {𝐴𝐵} denotes the line
segment connecting nodes 𝐴 and 𝐵. Here 𝛺𝑐 = {𝐸𝐾} ∪ {𝐽𝐺}, 𝛺𝑏 = {𝐿𝑀}, 𝛤𝑐𝑐 = 𝐻 ,
𝛤𝑐𝑏 = 𝐹 ∪ 𝐼 , 𝛤𝐷

𝑐𝑚 = 𝐺, 𝛤𝑁
𝑐𝑚 = 𝐽 , and 𝛤𝑐𝑖 = 𝐸 ∪𝐾.

• 𝛤𝑐𝑐 is the set containing the intersections among conductive
fractures.

• 𝛤𝑐𝑏 is the set containing the intersections between 2 conductive
and blocking fractures.

• 𝛤𝑐𝑚 is the set containing the intersections between conductive
fractures and domain boundary 𝜕𝛺𝑚, which is further split to
𝛤𝑐𝑚 = 𝛤𝑁𝑐𝑚 ∪ 𝛤𝐷𝑐𝑚 with 𝛤𝑁𝑐𝑚 ∈ 𝛤𝑁 and 𝛤𝐷𝑐𝑚 ∈ 𝛤𝐷.

• 𝛤𝑐𝑖 is the boundary of 𝛺𝑐 that does not intersect with the domain
boundary 𝜕𝛺𝑚.

We set 𝛤𝑐 = 𝛤𝑐𝑐 ∪ 𝛤𝑐𝑏 ∪ 𝛤𝑐𝑚 ∪ 𝛤𝑐𝑖 as the collections of all intersec-
tions of 𝛺𝑐 . An illustration of a typical hybrid-dimensional domain in
two-dimensions is given in Fig. 1.

We denote 𝒏𝛤 as a uniquely oriented unit normal vector on a (𝑑−1)-
dimensional interface/boundary 𝛤 , and denote 𝜼𝛤 as the in-plane unit
outer) normal vector on the (𝑑−2) dimensional boundary 𝜕𝛤 of 𝛤 , see
Fig. 2.

Let 𝜖 be the thickness of the fractures, which is assumed to be a
small positive constant for simplicity. Let K𝑚 be the permeability tensor
of the domain excluding the fractures 𝛺𝑚∖{𝛺𝑐 ∪𝛺𝑏}, 𝐾𝑏 ≪ K𝑚 be the
(scalar) permeability in the normal direction of blocking fractures 𝛺𝑏,
and K𝑐 ≫ K𝑚 be the permeability tensor in the tangential direction of
the conductive fractures 𝛺𝑐 .

2.2. The hybrid-dimensional flow model

The following hybrid-dimensional model is a combination of the
conductive fracture treatment in Alboin et al. (1999) and blocking
fracture treatment in Xu et al. (2021). We apply the Dirac 𝛿-functions in
he bulk domain 𝛺𝑚∖𝛺𝑐 excluding conductive fractures and the model
eads:

K−1
𝑚 + 𝜖

𝐾𝑏
𝛿𝛺𝑏𝒏𝛺𝑏 ⊗ 𝒏𝛺𝑏 )𝒖 = − ∇𝑝, in 𝛺𝑚∖𝛺𝑐 , (1a)

∇ ⋅ 𝒖 = 𝑓, in 𝛺𝑚∖𝛺𝑐 , (1b)

where 𝒖 is the Darcy velocity, 𝑝 is the pressure, 𝑓 is the volume
source term, 𝛿𝛺𝑏 is the Dirac-𝛿 function that takes values ∞ on the
blocking fractures 𝛺𝑏 and zero elsewhere, and 𝒏𝛺𝑏 is the unit normal
vector on 𝛺𝑏. The basic idea is to superpose the resistance of the
porous media to reduce the Darcy velocity in the normal direction
of the blocking fractures Within the conductive fractures excluding
intersections 𝛺𝑐∖𝛤𝑐 , we use the following (𝑑 − 1)-dimensional Darcy’s
law:

(𝜖K𝑐 )−1𝒖𝑐 = − ∇𝛤 𝑝𝑐 , in 𝛺𝑐∖𝛤𝑐 , (1c)

∇𝛤 ⋅ 𝒖𝑐 = [[𝒖]], in 𝛺𝑐∖𝛤𝑐 , (1d)
3

where 𝒖𝑐 is the (tangential) Darcy velocity in the conductive fractures,
𝑝𝑐 is the associated pressure, and the velocity jump [[𝒖]] = (𝒖+ −𝒖−) ⋅𝒏𝛤
represents the mass exchange between the conductive fractures and the
surrounding media, where 𝒖±(𝒙) = lim𝜏→0± 𝒖(𝒙 − 𝜏𝒏𝛤 ) for all 𝒙 ∈ 𝛺𝑐
is the bulk Darcy velocity evaluated on one side of the conductive
fractures. Moreover, ∇𝛤 and ∇𝛤 ⋅ are the usual surface gradient and
surface divergence operators. The above equations give the modified
Darcy’s law for flow in porous media containing both conductive and
blocking fractures. We close the hybrid-dimensional system with the
following set of boundary/interface conditions:

𝑝 = 𝑝𝐷, on 𝛤𝐷, (1e)

𝒖 ⋅ 𝒏 = 𝑞𝑁 , on 𝛤𝑁 , (1f)

𝑝 = 𝑝𝑐 , on 𝛺𝑐 , (1g)

[[𝒖𝑐]] = 0, on 𝛤𝑐𝑐 , (1h)

𝑝𝑐 = 𝑝𝐷, on 𝛤𝐷𝑐𝑚, (1i)

𝒖𝑐 ⋅ 𝜼𝛤 = 0, on 𝛤𝑐𝑏 ∪ 𝛤𝑁𝑐𝑚 ∪ 𝛤𝑐𝑖, (1j)

where (1g) ensures continuity of bulk pressure across conductive frac-
tures, the no-flow boundary condition in (1j) is imposed on the inter-
sections 𝛤𝑐𝑏, 𝛤𝑁𝑐𝑚 and 𝛤𝑐𝑖, and the jump term in (1h) is

[[𝒖𝑐]]
|

|

|𝑒
∶=

∑

𝛤⊂𝛺𝑐∖𝛤𝑐 , 𝑒∈𝛤

𝒖𝑐 |𝛤 ⋅ 𝜼𝛤 , ∀𝑒 ∈ 𝛤𝑐𝑐 ,

which represents mass conservation along intersections 𝛤𝑐𝑐 . Note in
particular that each conductive fracture containing the intersection
𝑒 appears exactly twice in the above summation, and the in-plane
normal velocity on the fracture is allowed to be discontinuous along
the intersection 𝑒. For example, the jump [[𝒖𝑐 ]]|𝐻 at node 𝐻 in the
configuration in Fig. 1 is

[[𝒖𝑐 ]]|𝐻 ∶=
∑

𝛤∈{{𝐸𝐻},{𝐻𝐾},{𝐺𝐻},{𝐻𝐽}}
𝒖𝑐 |𝛤 ⋅ 𝜼𝛤 .

We note that in the above model (1), the flow in the tangential direc-
tion in the blocking fractures is completely ignored as the permeability
therein is much smaller than that of the surroundings, on the other
hand, the flow in the normal direction is ignored on conductive frac-
tures by the pressure continuity condition (1g) since the permeability is
uch larger than that of the surroundings and the fluid has a tendency
o flow along the tangential direction therein.

.3. The hybrid-dimensional transport model

We now consider a scalar quantity 𝑐 that is transported through the
orous medium subject to the velocity fields in the flow model (1).
ere 𝑐 usually represents the concentration of a generic passive tracer.
imilar to the flow treatment in the previous subsection, transport
nside the blocking fractures is ignored. The concentrations 𝑐 in the
atrix and 𝑐𝑐 in the conductive fractures are governed by the following
dvection equations, see e.g. (Alboin et al., 2002; Fumagalli and Scotti,
013; Odsæter et al., 2019),

𝜙𝑚
𝜕𝑐
𝜕𝑡

+ ∇ ⋅ (𝒖𝑐) = 𝑐𝑓 , in 𝛺𝑚∖𝛺𝑐 × (0, 𝑇 ], (2a)

𝜖𝜙𝑐
𝜕𝑐𝑐
𝜕𝑡

+ ∇𝛤 ⋅ (𝒖𝑐𝑐𝑐) − [[𝑐𝒖]] = 0, in 𝛺𝑐 × (0, 𝑇 ], (2b)

with the following initial, interface, and boundary conditions

𝑐 =𝑐𝑐 on 𝛺𝑐 × (0, 𝑇 ], (2c)

𝑐 =𝑐0 on 𝛺 × 0, 𝑐𝑐 = 𝑐𝑐,0 on 𝛺𝑐 × 0, (2d)

𝑐 =𝑐𝐵 on 𝜕𝛺𝑖𝑛 × (0, 𝑇 ], 𝑐𝑐 = 𝑐𝑐,𝐵 on 𝛤𝑖𝑛 × (0, 𝑇 ], (2e)

where {𝜙𝑚, 𝑐0, 𝑐𝐵 , 𝜕𝛺𝑖𝑛} and {𝜙𝑐 , 𝑐𝑐,0, 𝑐𝑐,𝐵 , 𝛤𝑖𝑛} represent the {porosity,
initial concentration, inflow concentration, and inflow boundary} in
the matrix and conductive fractures, respectively. Observe that concen-
tration continuity (2c) across the conductive fractures are enforced in

the model (2).
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. The hybrid-mixed finite element method

.1. Preliminaries

Let ℎ ∶= {𝐾} be a conforming simplicial triangulation of the
omain 𝛺𝑚. Let ℎ be the collections of (𝑑 − 1)-dimensional facets
edges for 𝑑 = 2, faces for 𝑑 = 3) of 𝛺𝑚. Assume the mesh is fully
fitted with respect to the conductive fractures, i.e.,  𝑐

ℎ ∶= 𝛺𝑐 ∩ ℎ is a
(𝑑−1)-dimensional simplicial triangulation of the domain 𝛺𝑐 . Here the
mesh ℎ is allowed to be unfitted with respect to the blocking fractures.
Moreover, we denote 𝑐ℎ as the collection of (𝑑 − 2)-dimensional facets
of  𝑐

ℎ (vertices for 𝑑 = 2, edges for 𝑑 = 3).
We use the lowest-order hybrid-mixed finite element methods to

discretize the model (1). The following finite element spaces will be
needed:

𝑽 ℎ ∶= {𝒗 ∈ [𝐿2(ℎ)]𝑑 ∶ 𝒗|𝐾 ∈ 𝑅𝑇0(𝐾), ∀𝐾 ∈ ℎ}, (3a)

𝑊ℎ ∶= {𝑤 ∈ 𝐿2(ℎ) ∶ 𝑤|𝐾 ∈ 𝑃0(𝐾), ∀𝐾 ∈ ℎ}, (3b)

𝑀ℎ ∶= {𝜇 ∈ 𝐿2(ℎ) ∶ 𝜇|𝐹 ∈ 𝑃0(𝐹 ), ∀𝐹 ∈ ℎ}, (3c)

𝑽 𝑐
ℎ ∶= {𝒗𝑐 ∈ [𝐿2( 𝑐

ℎ )]
𝑑 ∶ 𝒗|𝐹 ∈ 𝑅𝑇0(𝐹 ), ∀𝐹 ∈  𝑐

ℎ }, (3d)

𝑀𝑐
ℎ ∶= {𝜇 ∈ 𝐿2(𝑐ℎ) ∶ 𝜇|𝐸 ∈ 𝑃0(𝐸), ∀𝐸 ∈ 𝑐ℎ}, (3e)

where 𝑅𝑇0(𝑆) is the Raviart–Thomas space of lowest order on a simplex
𝑆, and 𝑃0(𝑆) is the space of constants.

We denote the following inner products:

(𝜙, 𝜓)ℎ ∶=
∑

𝐾∈ℎ
∫𝐾

𝜙𝜓 dx, ⟨𝜙, 𝜓⟩𝜕ℎ ∶=
∑

𝐾∈ℎ
∫𝜕𝐾

𝜙𝜓 ds,

⟨𝜙, 𝜓⟩ 𝑐ℎ ∶=
∑

𝐹∈ 𝑐ℎ
∫𝐹

𝜙𝜓 ds, [𝜙, 𝜓]𝜕 𝑐ℎ ∶=
∑

𝐹∈ 𝑐ℎ
∫𝜕𝐹

𝜙𝜓 dr,

where dx is for 𝑑-dimensional integration, ds is for (𝑑 − 1)-dimensional
integration, and dr is for (𝑑 − 2)-dimensional integration. When 𝑑 = 2,
∫𝜕𝐹 𝜙𝜓dr is simply the sum of point evaluations at the two end points
of a line segment 𝐹 .

3.2. The hybrid-mixed method for the flow model

The hybrid-mixed method for the hybrid-dimensional model (1) is
given as follows: Find (𝒖ℎ, 𝑝ℎ, 𝑝ℎ, 𝒖𝑐ℎ, 𝑝

𝑐
ℎ) ∈ 𝑽 ℎ ×𝑊ℎ ×𝑀ℎ ×𝑽 𝑐

ℎ ×𝑀
𝑐
ℎ with

𝑝ℎ|𝛤𝐷 = P0(𝑝𝐷) and 𝑝𝑐ℎ|𝛤𝐷𝑐𝑚 = P0(𝑝𝐷), where P0 denotes the projection
onto piecewise constants, such that

(K−1
𝑚 𝒖ℎ, 𝒗ℎ)ℎ + ∫𝛺𝑏

𝜖
𝐾𝑏

(𝒖ℎ ⋅ 𝒏)(𝒗ℎ ⋅ 𝒏)ds

− (𝑝ℎ,∇ ⋅ 𝒗ℎ)ℎ + ⟨𝑝ℎ, 𝒗ℎ ⋅ 𝒏⟩𝜕ℎ = 0, (4a)

(∇ ⋅ 𝒖ℎ, 𝑞ℎ)ℎ − (𝑓, 𝑞ℎ)ℎ = 0, (4b)
− ⟨𝒖 ⋅ 𝒏, 𝑞 ⟩ + ⟨∇ ⋅ 𝒖𝑐 , 𝑞 ⟩ 𝑐
4

ℎ ℎ 𝜕ℎ 𝛤 ℎ ℎ ℎ
+ ∫𝛤𝑁
𝑞𝑁 𝑞ℎ ds = 0, (4c)

⟨(𝜖K𝑐 )−1𝒖𝑐ℎ, 𝒗
𝑐
ℎ⟩ 𝑐ℎ

− ⟨𝑝ℎ,∇𝛤 ⋅ 𝒗𝑐ℎ⟩ 𝑐ℎ + [𝑝𝑐ℎ, 𝒗
𝑐
ℎ ⋅ 𝜼]𝜕 𝑐ℎ

+ ∫𝛤𝑐𝑏
𝛼(𝜖K𝑐 )−1(𝒖𝑐ℎ ⋅ 𝜼)(𝒗

𝑐
ℎ ⋅ 𝜼) dr = 0, (4d)

− [𝒖𝑐ℎ ⋅ 𝜼, 𝑞
𝑐
ℎ]𝜕 𝑐ℎ = 0, (4e)

or all (𝒗ℎ, 𝑞ℎ, 𝑞ℎ, 𝒗𝑐ℎ, 𝑞
𝑐
ℎ) ∈ 𝑽 ℎ×𝑊ℎ×𝑀ℎ×𝑽 𝑐

ℎ×𝑀
𝑐
ℎ with 𝑞ℎ|𝛤𝐷 = 𝑞𝑐ℎ|𝛤𝐷𝑐𝑚 =

, where 𝛼 > 0 is a penalty parameter for the implementation of the no-
low boundary condition (1j) on 𝛤𝑐𝑏. In our numerical implementation,
e take 𝛼 = 106.
We show that the scheme (4) is formally consistent with the hybrid-

imensional model (1):

(1) Eq. (4a) is a discretization of the Darcy’s law (1a) in the bulk
using integration-by-parts and the following property of Dirac-𝛿
function:

∫𝛺𝑚
𝛿𝛺𝑏𝜙dx = ∫𝛺𝑏

𝜙 ds.

(2) Eq. (4b) is the discretization of mass conservation (1b) in the bulk.
(3) Eq. (4c) simultaneously enforces (i) the continuity of normal

velocity 𝒖ℎ ⋅𝒏 across interior element boundaries ℎ∖( 𝑐
ℎ ∪𝛤𝑁 ), (ii)

the boundary condition (1f) on 𝛤𝑁 , and (iii) mass conservation
(1d) within the conductive fractures in  𝑐

ℎ .
(4) Eq. (4d) is a discretization of the Darcy’s law (1c) on the conduc-

tive fractures  𝑐
ℎ , where the pressure continuity condition (1h) is

also strongly enforced as 𝑝ℎ both represents the bulk pressure on
the element boundary ℎ and the pressure within the conductive
fracture  𝑐

ℎ . Moreover, the last term in (4d) is a penalty formula-
tion of the no-flow boundary condition (1j) on 𝛤𝑐𝑏. Note that 𝛤𝑐𝑏
is allowed to be not aligned with the facets of  𝑐

ℎ .
(5) Eq. (4e) is a transmission condition that simultaneously enforces

(i) continuity of in-plane normal velocity 𝒖𝑐ℎ ⋅ 𝜼 on interior facets
𝐸𝑐ℎ∖{𝛤𝑐𝑐 ∪ 𝛤𝑁𝑐𝑚 ∪ 𝛤𝑐𝑖}, (ii) the mass conservation (1h) on the
intersections 𝛤𝑐𝑐 (iii) the no-flow boundary condition (1j) on 𝛤𝑁𝑐𝑚
and 𝛤𝑐𝑖.

(6) The Dirichlet boundary condition (1e) and (1i) are imposed
strongly through the corresponding degrees of freedom (DOFs)
on 𝑝ℎ and 𝑝𝑐ℎ, respectively.

The following result further shows that the scheme (4) is well-posed.

heorem 3.1. Assume the measure of the Dirichlet boundary 𝛤𝐷 is not
mpty, then the solution to the scheme (4) exists and is unique.

roof. Since the equations in (4) leads to a square linear system, we
only need to show uniqueness. Now we assume the source terms in (4)

vanishes, i.e., 𝑓 = 𝑝𝐷 = 𝑔𝑁 = 0. Taking test function to be the same as
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trial functions in (4) and adding, we get

K−1
𝑚 𝒖ℎ, 𝒖ℎ)ℎ + ∫𝛺𝑏

𝜖
𝐾𝑏

(𝒖ℎ ⋅ 𝒏)2 ds + ⟨(𝜖K𝑐 )−1𝒖𝑐ℎ, 𝒖
𝑐
ℎ⟩ 𝑐ℎ

= 0.

Hence, 𝒖ℎ = 𝒖𝑐ℎ = 0. Since 𝒖ℎ = 0, the inf–sup stability of the 𝑅𝑇0 − 𝑃0
finite element pair implies that 𝑝ℎ = 𝑝ℎ = 𝐶 from (4a) where 𝐶 is a
constant. Since 𝛤𝐷 is not empty and 𝑝𝐷 = 0, we get the constant 𝐶 = 0.
Finally, restricting Eq. (4d) to a single element 𝐹 ∈  𝑐

ℎ and using the
fact that 𝒖𝑐ℎ = 0 and 𝑝ℎ = 0, we get

∫𝜕𝐹
𝑝𝑐ℎ𝒗

𝑐
ℎ ⋅ 𝜼 ds = 0, ∀𝒗𝑐ℎ ∈ 𝑅𝑇0(𝐹 ),

which then implies that 𝑝𝑐ℎ = 0. This completes the proof. □

3.3. Static condensation and linear system solver

The linear system (4) can be efficiently solved via static conden-
sation, where the DOFs for 𝒖ℎ, 𝑝ℎ, and 𝒖𝑐ℎ can be locally eliminated,
resulting in a coupled global linear system for the DOFs for 𝑝ℎ and
𝑝𝑐ℎ, which is symmetric and positive definite. Efficient linear system
solvers for the resulting condensed system is an interesting topic where
one could design efficient decoupling algorithms or robust monolithic
preconditioners. Here we simply use a sparse direct solver in the
computation and postpone the detailed study of linear system solvers
to our future work.

3.4. Local pressure postprocessing

We use the following well-known local (piecewise linear) pressure
postprocessing to improve the accuracy of pressure approximation in
the bulk: find

𝑝∗ℎ ∈ 𝑊 ∗
ℎ ∶= {𝑤 ∈ 𝐿2(ℎ) ∶ 𝑤|𝐾 ∈ 𝑃1(𝐾), ∀𝐾 ∈ ℎ},

where 𝑃 1(𝐾) is the space of linear polynomials on element 𝐾, such
that

(∇𝑝∗ℎ,∇𝑞
∗
ℎ)ℎ = − (K−1

𝑚 𝒖ℎ,∇𝑞∗ℎ)ℎ , (5a)

(𝑝∗ℎ, 1)ℎ = (𝑝ℎ, 1)ℎ , (5b)

for all 𝑞∗ℎ ∈ 𝑊 ∗
ℎ .

3.5. The hybridized finite volume method for the transport model

We consider a standard cell-centered, first-order upwinding finite
volume scheme for the transport model (2), coupled with the implicit
Euler method for the temporal discretization. We hybridize the cell-
centered finite volume scheme so that the coupled unknowns live on the
mesh skeletons, which simplifies the definition of upwinding fluxes on
the conductive fracture interactions (e.g. point 𝐻 in Fig. 1). Hence we
use piecewise constant spaces to approximate the matrix concentration
𝑐ℎ ∈ 𝑊ℎ on the mesh ℎ, the matrix concentration 𝑐ℎ ∈ 𝑀ℎ on the
matrix mesh skeleton ℎ, and the fracture concentration 𝑐𝑐,ℎ ∈ 𝑀𝑐

ℎ on
the fracture mesh skeleton 𝑐ℎ.

The hybridized finite volume scheme with implicit Euler temporal
discretization is given as follows: given data (𝑐𝑛−1ℎ , 𝑐𝑛−1ℎ ) ∈ 𝑊ℎ ×𝑀ℎ at
time 𝑡𝑛−1, find (𝑐𝑛ℎ, 𝑐

𝑛
ℎ, 𝑐

𝑛
𝑐,ℎ) ∈ 𝑊ℎ ×𝑀ℎ ×𝑀𝑐

ℎ at time 𝑡
𝑛 ∶= 𝑡𝑛−1 + 𝛥𝑡 with

𝑐𝑛ℎ|𝜕𝛺𝑖𝑛 = 𝑃0(𝑐𝐵(𝑡𝑛)) and 𝑐𝑛𝑐,ℎ|𝛤𝑖𝑛 = 𝑃0(𝑐𝑐,𝐵(𝑡𝑛)) such that
(

𝜙𝑚
𝑐𝑛ℎ − 𝑐

𝑛−1
ℎ

𝛥𝑡
, 𝑑ℎ

)

ℎ

+ ⟨𝒖ℎ ⋅ 𝒏𝑐
𝑛,∗
ℎ , 𝑑ℎ⟩𝜕ℎ =

(

𝑐𝑛ℎ𝑓, 𝑑ℎ
)

ℎ
, (6a)

−⟨𝒖ℎ ⋅ 𝒏𝑐
𝑛,∗
ℎ , 𝑑ℎ⟩𝜕ℎ+

⟨

𝜖𝜙𝑐
𝑐𝑛ℎ − 𝑐

𝑛−1
ℎ

𝛥𝑡
, 𝑑ℎ

⟩

 𝑐ℎ

+[𝒖𝑐ℎ ⋅ 𝜼𝑐
𝑛,∗
𝑐,ℎ , 𝑑ℎ]𝜕 𝑐ℎ = 0, (6b)

[𝒖𝑐ℎ ⋅ 𝜼𝑐
𝑛,∗
𝑐,ℎ , 𝑑𝑐,ℎ]𝜕 𝑐ℎ = 0, (6c)
5

for all (𝑑ℎ, 𝑑ℎ, 𝑑𝑐,ℎ) ∈ 𝑊ℎ ×𝑀ℎ ×𝑀𝑐
ℎ with 𝑑ℎ|𝜕𝛺𝑖𝑛 = 0 and 𝑑𝑐,ℎ|𝛤𝑖𝑛 = 0,

where the upwinding fluxes are given as follows:

𝑛̂,∗
ℎ |𝜕𝐾 =

{

𝑐𝑛ℎ if 𝒖ℎ ⋅ 𝒏𝐾 > 0,
𝑐𝑛ℎ if 𝒖ℎ ⋅ 𝒏𝐾 ≤ 0,

(6d)

𝑛̂,∗
𝑐,ℎ|𝜕𝐹 =

{

𝑐𝑛ℎ if 𝒖𝑐ℎ ⋅ 𝜼𝐹 > 0,
𝑐𝑛𝑐,ℎ if 𝒖𝑐ℎ ⋅ 𝜼𝐹 ≤ 0. (6e)

3.6. Remarks on the mesh restrictions and comparison with existing meth-
ods

The proposed flow and transport solvers (4), (6) require the mesh
o be fitted to the conductive fractures, while allowing for an unfitted
reatment of the blocking fractures. Actually, this is one of the ma-
or novelty of the proposed work. While the derivation of numerical
chemes that work on fully unfitted meshes is beyond the scope of
his paper, here we propose a simple mesh postprocessing technique
o convert a general unfitted background matrix mesh to an immersed
esh that is fitted to all the fractures. Similar immersing mesh tech-
iques were used for interface problems (Ilinca and Hétu, 2011; Frei
nd Richter, 2014; Auricchio et al., 2015; Chen et al., 2017). Below we
llustrate the procedure of immersing a single fracture to an unfitted
etrahedral mesh in 3D:

(i) Represent the fracture geometry as the zero level set of a con-
tinuous piecewise linear function 𝜙ℎ on the background mesh.
Perturb 𝜙ℎ slightly if necessary to avoid fracture pass through the
background mesh nodes.

(ii) Loop over the background mesh edges, find the cut edges where
𝜙ℎ has opposite sign on the two edge endpoints. For each cut
edge, compute the coordinates of the cut vertex 𝑣𝑐 where 𝜙ℎ(𝑣𝑐 ) =
0, and add 𝑣𝑐 to the mesh nodes.

(iii) Loop over the background mesh faces, find the cut faces which
contains the cut vertices. Order the cut vertices based on their
vertex label number. Loop over the cut vertices, for each (sub-
)face that contains the cut vertex, split the (sub-)face by 2 by
connecting the cut vertex with the opposite (sub-)face node.

(iv) Loop over the background mesh elements, find the cut elements
which contains the cut vertices. Order the cut vertices based
on their vertex label number. Loop over the cut vertices, for
each (sub-)element that contains the cut vertex, split the (sub-
)element by 2 by connecting the cut vertex with the opposite two
(sub-)element nodes that are not aligned with the cut edge.

The above recursive bisection procedure guarantees that the fracture
lies on the boundary of the generated immersed mesh. The case with
multiply intersecting fractures can be treated by recursion. Here we
note that the generated immersed mesh is usually highly anisotropic
since the background mesh is completely independent of the frac-
ture configurations. Our numerical results in the next section suggest
that the hybrid-mixed method (4) works well on these anisotropic
immersed meshes. Typical 2D immersed meshes for complex fracture
configurations are given in Figs. 11 and 14.

We now briefly compare our proposed fractured flow solver (4) with
some existing schemes in Berre et al. (2021), which were used to solve
a series of 4 benchmark problems in 3D fractured porous media flow.
Among the 17 schemes in Berre et al. (2021, Table 1), 7 were shown to
yield no significant deviations for all the tests, see Berre et al. (2021,
Figure 18), which include the multi-point flux approximation (UiB-
MPFA), the lowest order mixed virtual element method (UiB-MVEM),
and the lowest order Raviart–Thomas mixed finite element method
(UiB-RT0) mainly developed by the research group in the University of
Bergen (Keilegavlen et al., 2021; Nordbotten et al., 2019; Boon et al.,
2018), the MPFA scheme (USTUTT-MPFA) and the two-point flux ap-
proximation scheme (USTUTT-TPFA_Circ) developed by Flemisch et al.
(2011), the mimetic finite difference method (LANL-MFD) (Lipnikov
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Fig. 3. Benchmark 1. Left: computational mesh. Right: piezometric head along the line 𝑧 = −200 m (dotted blue line on the left figure).
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Fig. 4. Benchmark 2. Domain and boundary conditions.

et al., 2014), and the hybrid finite volumes discontinuous hydraulic
ead method (UNICE_UNIGE-HFV_Disc) developed by Brenner et al.
2017). Among these 7 schemes, the first three schemes use a mixed
imensional interface model that require the modeling of co-dimension
–3 fractured flows, where the mesh can be non-matching across
ubdomains, but needs to be geometrically conforming to the fractures.
n the other hand, the last four schemes work on a mixed dimensional
nterface model where only fractured flow in co-dimension 1 were
odeled, which require the mesh to be completely conforming to the
ractures. All of these schemes yield a locally conservative velocity
pproximation. We further note that the two methods in Berre et al.
2021) that allow for general nonconforming meshes, namely the La-
range multiplier method (Köppel et al., 2019a,b; Schädle et al., 2019)
nd the EDFM method (Nikitin and Yanbarisov, 2020), cannot handle
locking fractures and do not provide a locally conservative velocity
pproximation.
Numerical results of our proposed scheme (4) for the benchmark

roblems in Berre et al. (2021) indicate that our results yield no signif-
icant deviations with the above mentioned 7 schemes, see details in the
next section. Our scheme also produce a locally conservative velocity
approximation, and the resulting linear system after static condensation
is a symmetric positive definite (SPD) problem with global unknowns
involve pressure DOFs on the mesh skeleton only. The number of the
global unknowns of our scheme is roughly 𝑁𝐹 , which is the total
number of mesh faces, and the average nonzero entries per row in
6

the system matrix is 7 (a pressure DOF on an interior tetrahedral (
face is connected to 6 neighboring face pressure DOFs). Concerning
the computational cost of our scheme, it is more expensive than the
TPFA scheme (USTUTT-TPFA_Circ) which lead to an SPD system with
roughly 𝑁𝐶 cell-wise pressure DOFs and about 5 nonzero entries per
row in the system matrix, is slightly less expensive than the cell-based
MPFA schemes (UiB-MPFA, USTUTT-MPFA), which lead to SPD systems
with roughly 𝑁𝐶 cell-wise pressure DOFs and about 20–50 nonzero
entries per row in the system matrix, and is significantly cheaper
than the schemes UiB-MVEM, UiB-RT0, LANL-MFD, and UNICE_UNIGE-
HFV_Disc, which lead to saddle point systems with total number of
roughly𝑁𝐹 velocity DOFs and𝑁𝐶 pressure DOFs. Note that𝑁𝐹 ≈ 2𝑁𝐶 .
Hence, our proposed scheme is also highly competitive in terms of
computational costs. Another distinctive advantage of our scheme over
these 7 schemes is that the mesh can be completely nonconforming to
the blocking fractures.

4. Numerics

In this section, we present detailed numerical results for the pro-
posed hybrid-mixed method for the four 2D benchmark test cases
in Flemisch et al. (2018) and the four 3D benchmark test cases in Berre
t al. (2021). We name the method (4) as HM-DFM since it is a hybrid
mixed method for a discrete fracture model. When plotting the pressure
or hydraulic head distribution over line segments, we evaluate the
second-order postprocessed solution in (5) for the proposed method.
The focus of the numerical experiments is on the verification of the
accuracy of our proposed flow model (1) and the associated method
(4). Hence, we test the flow solver (4) for all the 8 benchmark cases.
eanwhile, we also test the accuracy of velocity approximation by
eeding them to the transport problem (2), which is solved using the
scheme (6) for three cases, namely Benchmark 2 in 2D, and Benchmark
5/6 in 3D. Furthermore, convergence study via mesh refinements was
conducted for Benchmark 2 and Benchmark 6 below.

Our numerical simulations are performed using the open-source
finite-element software NGSolve (Schöberl, 2014), https://ngsolve.
org/. Jupyter notebooks for reproducing all numerical examples in
this section can be found in the git repository https://github.com/
gridfunction/fracturedPorousMedia. Visualization of meshes for the
3D benchmark examples and interactive contour plots of the pres-
sure/hydraulic head can also be found therein.

4.1. Benchmark 1: Hydrocoin (2D)

This example is originally a benchmark for heterogeneous ground-
water flow presented in the international Hydrocoin project (Ski,
1987). A slight modification for the geometry was made in Flemisch
et al. (2018, Section 4.1), and we follow the settings therein. In
articular, the bulk domain is a polygon with vertices 𝐴 = (0, 150), 𝐵 =

400, 100), 𝐶 = (800, 150), 𝐷 = (1200, 100), 𝐸 = (1600, 150), 𝐹 = (1600,

https://ngsolve.org/
https://ngsolve.org/
https://ngsolve.org/
https://github.com/gridfunction/fracturedPorousMedia
https://github.com/gridfunction/fracturedPorousMedia
https://github.com/gridfunction/fracturedPorousMedia
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Fig. 5. Benchmark 2: computational meshes. The fitted mesh on the left panel is used for both conductive and blocking fracture cases. The unfitted mesh on the right panel is
used only for the blocking fracture case.
Fig. 6. Benchmark 2 with conductive fractures: pressure distribution along two lines.
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Fig. 7. Benchmark 2 with blocking fractures: values along the line (0,0.1)–(0.9,1.0).

−1000), 𝐺 = (1500,−1000),𝐻 = (1000,−1000) and 𝐼 = (0,−1000)
measured in meters. There are two conductive fractures in the domain
{𝐵𝐺} and {𝐷𝐻}. The fracture {𝐵𝐺} has thickness 𝜖 = 5

√

2 m and the
fracture {𝐷𝐻} has thickness 𝜖 = 33∕

√

5 m. The permeability (hydraulic
onductivity) is K𝑚 = 10−8 m∕s in the bulk and K𝑐 = 10−6 m∕s in the
fractures. Dirichlet boundary condition 𝑝 = height is imposed on the top
boundary, and homogeneous Neumann boundary condition is imposed
7

e

on the rest of the boundary. Here the unknown variable 𝑝 is termed as
the piezometric head according to Ski (1987). The quantity of interest
is the distribution of the piezometric head 𝑝 along the horizontal line
at a depth of 200 m.

We apply the method (4) on a uniform triangular mesh with mesh
size ℎ = 60, see the left panel of Fig. 3, which leads to 1115 matrix
elements and 44 fracture elements. On this mesh, the number of the
globally coupled DOFs is 1779, in which 1691 DOFs are associated
with the bulk hybrid variable 𝑝ℎ, and 43 DOFs are associated with
the fracture hybrid variable 𝑝𝑐ℎ. In the right panel of Fig. 3, we record
the postprocessed piezometric head 𝑝∗ℎ in (5) along the line segment

= −200 m, where 𝑧 is the horizontal direction, along with the
eference data obtained from a mimetic finite difference method on
very fine mesh (with 889,233 DOFs). We observe that the results
or the proposed method on such a coarse mesh already shows a good
greement with the reference data.

.2. Benchmark 2: Regular fracture network (2D)

This test case is originally from Geiger et al. (2013) and is modified
y Flemisch et al. (2018), which simulates a regular fracture network
n a square porous media. The computational domain including the
racture network and boundary conditions is shown in Fig. 4. The
atrix permeability is set to K𝑚 = I, and fracture thickness is 𝜖 =
0−4. Two cases of fracture permeability was considered: (i) a highly
onductive network with K𝑐 = 104I, (ii) a blocking fracture with 𝐾𝑏 =
0−4.
We apply the method (4) on a triangular mesh with 1348 matrix

lements and 91 fracture elements, see the left panel of Fig. 5. For
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Fig. 8. Benchmark 2: Matrix concentration at time 𝑡 = 0.05 (left) and 𝑡 = 0.1 (right). Top row: conductive fractures. Bottom row: blocking fractures. Color range: 0(blue)–1(red).
olution obtained on the fourth level refined mesh with a small time step size 𝛥𝑡 = 3.125 × 10−5. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
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he blocking fracture case, we also present the result on a unfitted
riangular mesh with 1442 matrix elements.
For the conductive fracture case, the number of the globally coupled

OFs is 2127, in which 2041 DOFs are associated with the bulk
ybrid variable 𝑝ℎ, and 86 DOFs are associated with the fracture hybrid
ariable 𝑝𝑐ℎ. The pressure distributions along two lines, one horizontal
t 𝑦 = 0.7 and one vertical at 𝑥 = 0.5 are shown in Fig. 6, along with
he reference data obtained from a mimetic finite difference method
n a very fine mesh (with 1, 175, 056 DOFs). Similar to the previous
xample, we observe that the results for the proposed method show a
ood agreement with the reference data.
For the blocking fracture case, the number of the globally coupled

OFs is 2041 on the fitted mesh and is 2188 on the unfitted mesh.
he pressure distribution along the lines (0, 0.1)–(0.9, 1.0) is shown in
ig. 7. Again, we observe a very good agreement with reference data
or the results on the fitted mesh. The result on the unfitted mesh case
s slightly off due to mesh nonconformity, which is expected as it could
ot capture the pressure discontinuity across the blocking fractures.

.2.1. Coupling with transport and convergence study with mesh refine-
ents
After the velocity fields are computed from the scheme (4), we feed

them to the transport model (2), and solve it by using the hybrid finite
8

volume scheme (6). We take the porosities 𝜙𝑚 = 0.1, 𝜙𝑐 = 0.9 in
the model (2), with the initial concentrations 𝑐0 = 𝑐𝑐,0 = 0, and set
the left boundary as the inflow boundary for the concentrations, with
𝑐𝐵 = 𝑐𝑐,𝐵 = 1. The final time of simulation is 𝑇 = 0.1. Convergence
of our coupled scheme (4) and (6) is checked via a mesh refinement
tudy, where the initial meshes are given in Fig. 5, and three level of
niform mesh refinements are applied afterwards. The constant time
tep size is taken to be 𝛥𝑡 = 2−𝑙 × 5 × 10−3, where 𝑙 is the mesh
efinement level. Since there is no analytic solution to the problem, we
rovide a reference solution using the coupled scheme (4) and (6) on
the fourth level refined fitted mesh (with about 345k elements) with a
small time step size 𝛥𝑡 = 3.125×10−5. Contour of matrix concentrations
of the reference solution at time 𝑡 = 0.05 and 𝑡 = 0.1 are presented in
Fig. 8, where we clearly observe the conducting and blocking effects
of the respective fractures. Moreover, we plot the computed matrix
concentrations along the cut line 𝑦 = 0.7 in Fig. 9, where we observe
convergence as the mesh refines.

Finally, the 𝐿2-errors in the matrix velocity ‖𝒖ℎ − 𝒖𝑟𝑒𝑓‖𝛺𝑚 , and
postprocessed matrix pressure ‖𝑝∗ℎ − 𝑝∗𝑟𝑒𝑓‖𝛺𝑚 , and the 𝐿

2-errors in the
matrix concentration ‖𝑐ℎ(𝑇 ) − 𝑐𝑟𝑒𝑓 (𝑇 )‖𝛺𝑚 at final time 𝑇 = 0.1 are
recorded in Table 1 for the conductive fracture case, in Table 2 for the
blocking fracture case on fitted meshes and in Table 3 for the blocking
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Fig. 9. Benchmark 2: Matrix concentration along the line 𝑦 = 0.7 at time 𝑡 = 0.1 for the solution on different meshes. LVL stands for the number of mesh refinement levels.
Reference solution is obtained on the fourth level refined fitted mesh with a small time step size 𝛥𝑡 = 3.125 × 10−5.
Fig. 10. Benchmark 3: computational domain and boundary conditions.
racture case on unfitted meshes, where we recall that the reference
olutions are obtained on the fourth level refined fitted mesh with a
mall time step size 𝛥𝑡 = 3.125 × 10−5. Here the rate of convergence for
𝑟𝑟 at level 𝑖 is estimated via the formula

𝑎𝑡𝑒 ∶= log(𝑒𝑟𝑟 ∕𝑒𝑟𝑟 )∕ log(2).
9

𝑖−1 𝑖 c
From Table 1 for the conductive fracture case, we observe that the
convergence rate in the velocity approximation is first order and that
in the postprocessed pressure approximation is second order, which
is consistent with the expected convergence behavior of the hybrid-
mixed method for the equi-dimensional case (Raviart and Thomas,
1977; Arnold and Brezzi, 1985), and the convergence rate for the
oncentration is about 1∕2, which is also expected for the hybridized
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Fig. 11. Benchmark 3: computational meshes.
Fig. 12. Benchmark 3: pressure distribution along line (0, 0.5)–(1 − 0.9). HDG-DFM(a) is the numerical solution on the fitted mesh in Fig. 11(a), HDG-DFM(b) is the numerical
solution on the immersed fitted mesh in Fig. 11(b).
b
o
a
f

4

Fig. 13. Benchmark 4: Computational domain and boundary conditions.
10

i

Table 1
Benchmark 2 with conductive fractures (fitted mesh): history of convergence for the
𝐿2-errors in 𝒖ℎ, 𝑝∗ℎ, and 𝑐ℎ(𝑇 ) along mesh refinements. Reference solution is obtained
on the fourth level refined fitted mesh with a small time step size 𝛥𝑡 = 3.125 × 10−5.
Mesh ref. lvl. 𝐿2-err in 𝒖ℎ Rate 𝐿2-err in 𝑝∗ℎ Rate 𝐿2-err in 𝑐ℎ(𝑇 ) Rate

0 3.567e−02 – 3.786e−04 – 1.177e−01 –
1 1.954e−02 0.87 1.061e−04 1.84 8.587e−02 0.45
2 1.029e−02 0.92 2.863e−05 1.89 5.883e−02 0.55
3 4.881e−03 1.08 7.146e−06 2.00 3.541e−02 0.73

finite volume scheme due to the concentration discontinuities in the
domain. Similar convergence behavior was observed in Table 2 for the
locking fracture case on fitted meshes. From Table 3 we observe 1∕2
rder convergence for all three variables, where the degraded velocity
nd pressure convergence is due to nonconformity of the mesh with the
ractures.

.3. Benchmark 3: Complex fracture network (2D)

This test case considers a small but complex fracture network that
ncludes permeable and blocking fractures. The domain and boundary
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Fig. 14. Benchmark 4: computational meshes.

Fig. 15. Benchmark 4: Pressure distribution along lines 𝑦 = 500 m (left) and 𝑥 = 625 m (right). HDG-DFM(a) is the numerical solution on the fitted mesh in Fig. 14(a), HDG-DFM(b)
is the numerical solution on the immersed fitted mesh in Fig. 14(b).

Fig. 16. Benchmark 5: Conceptual model and geometrical description of the domain.
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Fig. 17. Benchmark 5: Hydraulic head in the matrix over the line (0 m, 100 m, 100 m)–(100 m, 0 m, 0 m). Left: results on a coarse mesh with about 10k cells. Right: results on a
fine mesh with about 100k cells.

Fig. 18. Benchmark 5: Hydraulic head in the matrix over the line (0 m, 100 m, 100 m)–(100 m, 0 m, 0 m). Left: results on a coarse mesh with about 10k cells. Right: results on a
fine mesh with about 100k cells.

Fig. 19. Benchmark 5: Fracture concentration over the line (0 m, 100 m, 80 m)–(100 m, 0 m, 20 m). Left: results on a coarse mesh with about 10k cells. Right: results on a fine mesh
with about 100k cells.
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Fig. 20. Benchmark 6: Conceptual model and geometrical description of the domain.

Table 2
Benchmark 2 with blocking fractures (fitted mesh): history of convergence for the 𝐿2-
errors in 𝒖ℎ, 𝑝∗ℎ, and 𝑐ℎ(𝑇 ) along mesh refinements. Reference solution is obtained on
the fourth level refined fitted mesh with a small time step size 𝛥𝑡 = 3.125 × 10−5.
Mesh ref. lvl. 𝐿2-err in 𝒖ℎ Rate 𝐿2-err in 𝑝∗ℎ Rate 𝐿2-err in 𝑐ℎ(𝑇 ) Rate

0 1.358e−02 – 2.406e−04 – 1.396e−01 –
1 7.098e−03 0.94 6.402e−05 1.91 1.025e−01 0.44
2 3.607e−03 0.98 1.630e−05 1.97 7.149e−02 0.52
3 1.666e−03 1.11 3.566e−06 2.19 4.572e−02 0.64

Table 3
Benchmark 2 with blocking fractures (unfitted mesh): history of convergence for the
𝐿2-errors in 𝒖ℎ, 𝑝∗ℎ, and 𝑐ℎ(𝑇 ) along mesh refinements. Reference solution is obtained
n the fourth level refined fitted mesh with a small time step size 𝛥𝑡 = 3.125 × 10−5.
Mesh ref. lvl. 𝐿2-err in 𝒖ℎ Rate 𝐿2-err in 𝑝∗ℎ Rate 𝐿2-err in 𝑐ℎ(𝑇 ) Rate

0 7.611e−02 – 8.295e−02 – 1.424e−01 –
1 5.357e−02 0.51 5.890e−02 0.49 1.050e−01 0.44
2 3.991e−02 0.42 4.088e−02 0.53 7.418e−02 0.50
3 2.634e−02 0.60 2.899e−02 0.50 4.882e−02 0.60

conditions are shown in Fig. 10. The exact coordinates for the fracture
ositions are provided in Flemisch et al. (2018, Appendix C). The
racture network contains ten straight immersed fractures. The fracture
hickness is 𝜖 = 10−4 for all fractures, and permeability is K𝑐 = 104 for
ll fractures except for fractures 4 and 5 which are blocking fractures
ith 𝐾𝑏 = 10−4. Note that we are considering two subcases (a) and (b)
ith a pressure gradient which is predominantly vertical and horizontal
espectively.
We apply the method (4) on two set of meshes: a triangular fitted

mesh with 1332 matrix elements and 88 fracture elements which was
provided in the git repository https://git.iws.uni-stuttgart.de/benchma
rks/fracture-flow, see left of Fig. 11, and a triangular immersed fitted
mesh with 1370 matrix elements and 211 fracture elements obtained
from a background unfitted mesh using the immersing mesh technique
introduced in Section 3.6, see right of Fig. 11. The globally coupled
DOFs is 2066 for the fitted mesh, and is 2211 for the immersed mesh.
The pressure distributions along the lines (0, 0.5)–(1.0, 0.9) are shown in
Fig. 12. We observe that the results on the two meshes are very close
to each other, and they are in good agreements with the reference data
obtained from a mimetic finite difference method on a very fine mesh
with 1.8 million DOFs.

4.4. Benchmark 4: a realistic case (2D)

We consider a real set of fractures from an interpreted outcrop in
the Sotra island, near Bergen in Norway. The size of the domain is
700 m × 600 m with uniform scalar permeability K𝑚 = 10−14 m2.
The set of fractures is composed of 64 line segments, in which the
permeability is K𝑐 = 10−8 m2. The fracture thickness is 𝜖 = 10−2 m. The
exact coordinates for the fracture positions are provided in the above
13
mentioned git repository. The domain along with boundary conditions
is given in Fig. 13. Similar to the previous example, we apply the
method (4) on two set of conforming meshes: a fitted mesh consists of
10,807 matrix elements and 1047 fracture elements provided in https:
//git.iws.uni-stuttgart.de/benchmarks/fracture-flow, see left of Fig. 14,
and an immersed fitted mesh consists of 5473 matrix elements and
1541 fracture elements obtained from a background unfitted mesh using
the immersing mesh technique introduced in Section 3.6, see right of
Fig. 14. The number of the globally coupled DOFs is 17,253 for the
fitted mesh (a), and 9753 for the immersed mesh (b).

The pressure distribution along the two lines 𝑦 = 500 m and 𝑥 =
625 m are shown in Fig. 15, along with the results for the mortar-DFM
method with 25,258 DOFs from Flemisch et al. (2018). We observe
hat the three results are in good agreements with each other, with the
DG-DFM(b) using the least amount of DOFs.

.5. Benchmark 5: Single fracture (3D)

This is the first benchmark case proposed in Berre et al. (2021). To
e consistent with the notation in Berre et al. (2021), the pressure and
ermeabilities are renamed as hydraulic head and hydraulic conductiv-
ties, respectively for this test case and the three examples following.
ig. 16 illustrates the geometrical description. Here the domain 𝛺 is a
ube-shaped region (0 m, 100 m) × (0 m, 100 m) × (0 m, 100 m) which
s crossed by a conductive planar fracture, 𝛺2, with a thickness of
= 10−2 m. The matrix domain consists of subdomains 𝛺3,1, above
he fracture, and 𝛺3,2 and 𝛺3,3 below. The subdomain 𝛺3,3 represents
heterogeneity within the rock matrix. The matrix conductivities are
iven in Fig. 16, and the fracture conductivity is K𝑐 = 0.1 so that
K𝑐 = 10−3. Inflow into the system occurs through a narrow band
efined by {0 m} × (0 m, 100 m) × (90 m, 100 m). Similarly, the outlet
s a narrow band defined by (0 m, 100 m) × {0 m} × (0 m, 10 m). At
he inlet and outlet bands, we impose the hydraulic head ℎ𝑖𝑛 = 4 m
nd ℎ𝑜𝑢𝑡 = 1 m respectively. The remaining parts of the boundary are
ssigned no-flow conditions. Following the setup in Berre et al. (2021),
we set 𝑐𝐵 = 0.01 m−3 at the inlet boundary for the transport problem.
The matrix porosity 𝜙 is taken to be 0.2 on 𝛺3,1 ∪ 𝛺3,2 and 0.25 on
𝛺3,3, and the fracture porosity 𝜙𝑐 is taken to be 0.4. The final time of
simulation is 𝑇 = 109 s, and the time step size is 𝛥𝑡 = 107 s.

We perform the method (4) and (6) on a coarse tetrahedral mesh
with 10,232 matrix elements and 448 fracture elements and a fine tetra-
hedral mesh with 111,795 matrix elements and 1758 fracture elements.
The number of the globally coupled DOFs on the coarse mesh is 23,377,
while that on the fine mesh is 235,619. The hydraulic head along the
line (0 m, 100 m, 100 m)–(100 m, 0 m, 0 m) is shown in Fig. 17, along
with reference data and published spread provided in the git repository
https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow-3d. The ref-
erence data in Fig. 17 is obtained from the USTUTT-MPFA method on
a mesh with approximately 1 million matrix elements, while the shaded
region depicts the area between the 10th and the 90th percentile of the
published results in Berre et al. (2021) on mesh refinement level 1 (left,
∼ 10k cells) and refinement level 2 (right, ∼ 100k cells). The match
number results from evaluating at 100 evenly distributed evaluation
points if the value for the HM-DFM method is between the respective
lower and upper value. We observe that our result agrees with the
reference values quite well, especially on the fine mesh.

Moreover, we plot the matrix concentration along the line (0 m, 100
m, 100 m)–(100 m, 0 m, 0 m) in Fig. 18, and the fracture concentration
along the line (0 m, 100 m, 80 m)–(100 m, 0 m, 20 m) at final time 𝑇 =
109 s in Fig. 19, together with the published spread provided in the
git repository, which depicts the area between the 10th and the 90th
percentile of the published results in Berre et al. (2021) using similar
first order finite volume schemes with implicit Euler time stepping and
𝛥𝑡 = 107 s. We observe that our results agree quite well with the

provided data.
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Fig. 21. Benchmark 6 (conductive fractures): Hydraulic head in the matrix over the line (0 m, 0 m, 0 m)–(1 m, 1 m, 1 m). Left: results on a coarse mesh with about 4k cells. Right:
results on a fine mesh with about 36k cells.

Fig. 22. Benchmark 6 (blocking fractures): Hydraulic head in the matrix over the line (0 m, 0 m, 0 m)–(1 m, 1 m, 1 m). Left: results on a coarse mesh with about 4k cells. Right:
results on a fine mesh with about 36k cells.

Fig. 23. Benchmark 6: Matrix concentration at time 𝑡 = 0.25 along the five vertical planes 𝑥 = 0.1, 𝑥 = 0.3, 𝑥 = 0.5, 𝑥 = 0.7 and 𝑥 = 0.9. Top row: conductive fractures. Bottom row:
blocking fractures. Color range: 0 (blue)– 1(red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 24. Benchmark 6: Mean matrix concentration over time on 𝛺𝐴 (left), 𝛺𝐵 (middle), and 𝛺𝐶 (right). Top row: conductive fractures. Bottom row: blocking fractures. LVL stands
for the number of mesh refinement levels.
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Fig. 25. Benchmark 7: Conceptual model and geometrical description of the domain.

.6. Benchmark 6: Regular fracture network (3D)

This is the second benchmark case proposed in Berre et al. (2021),
hich is a 3D analog of Benchmark 2. The domain is given by the unit
ube 𝛺 = (0 m, 1 m)3 and contains 9 regularly oriented fractures, as
llustrated in Fig. 20. Dirichlet boundary condition 𝑝 = ℎ̄ = 1 m is
mposed on the boundary 𝛤𝐷 = {(𝑥, 𝑦, 𝑧) ∈ 𝜕𝛺 ∶ 𝑥, 𝑦, 𝑧 > 0.875 m},
eumann boundary condition 𝒖⋅𝒏 = −1 m∕s is imposed on the boundary
𝛺𝑖𝑛 = {(𝑥, 𝑦, 𝑧) ∈ 𝜕𝛺 ∶ 𝑥, 𝑦, 𝑧 < 0.25 m}, and no-flow boundary
ondition is imposed on the remaining boundaries. The heterogeneous
atrix conductivity is illustrated in Fig. 20, and the fracture conduc-
ivity is either K𝑐 = 104 m2, which represents a conductive fracture
r 𝐾𝑏 = 10−4 m2 which represents a blocking fracture. The fracture
hickness is 𝜖 = 10−4 m. For the transport equation, matrix porosity is
aken to be 𝜙 = 0.1, conductive fracture concentration is 𝜙𝑐 = 0.9, and
he inflow boundary condition 𝑐𝐵 = 1 m−3 is set on the inlet boundary
𝛺𝑖𝑛. Final time of the simulation is 𝑇 = 0.25 s.
We perform the method (4) on a coarse fitted tetrahedral mesh with

375 matrix elements and 944 fracture elements and a fine tetrahedral
esh with 36,336 matrix elements and 4524 fracture elements. The
umber of the globally coupled DOFs on the coarse mesh is 13,373 for
15

3

Table 4
Benchmark 6 with conductive fractures (fitted mesh): history of convergence for the
𝐿2-errors in 𝒖ℎ, 𝑝∗ℎ, and 𝑐ℎ(𝑇 ) along mesh refinements. Reference solution is obtained
on the third level refined fitted mesh with about 2.25 million matrix elements and
time step size 𝛥𝑡 = 3.125 × 10−4.
Mesh ref. lvl. 𝐿2-err in 𝒖ℎ Rate 𝐿2-err in 𝑝∗ℎ Rate 𝐿2-err in 𝑐ℎ(𝑇 ) Rate

0 1.789e−01 – 1.456e−01 – 1.496e−01 –
1 1.120e−01 0.68 5.886e−02 1.31 9.645e−02 0.63
2 6.181e−02 0.86 1.852e−02 1.67 5.102e−02 0.92

the conductive fracture case and 8334 for the blocking fracture case
(only DOFs for 𝑝ℎ are global DOFs in this case), while that on the
fine mesh is 94,738 for the conductive fracture case and 70,881 for
the blocking fracture case. The hydraulic head along the diagonal line
(0 m, 0 m, 0 m)–(1 m, 1 m, 1 m) is shown in Fig. 21 for the conductive
fracture case and in Fig. 22 for the blocking fracture case. We observe
that our results agree with the reference values very well, which were
obtained from the USTUTT-MPFA method on a mesh with approxi-
mately 1 million matrix elements. The small derivation of our result on
the left panel of Fig. 21 with the reference data is acceptable due to the
use of a very coarse mesh.

We further performed a convergence study of the flow and transport
solvers (4) and (6) via mesh refinements, and record the 𝐿2-errors in
atrix velocity and postprocessed pressure, and the 𝐿2-errors in matrix
oncentration at final time 𝑡 = 0.25 in Table 4 for the conductive
racture case and in Table 5 for the blocking fracture case, where the
nitial mesh is the coarse one with 4375 tetrahedral elements. A total
f three uniform mesh refinements was performed, and the solution on
he third level mesh was used as the reference solution to calculate the
ssociated errors. The time step size is taken to be 𝛥𝑡 = 2−𝑙×2.5×10−3 s,
here 𝑙 is the mesh refinement level. On the finest mesh, there are
bout 2.25 million tetrahedral elements and 4.5 million globally cou-
led DOFs. From both tables, we observe convergence of our schemes,
nd in particular the convergence rate for the velocity is approaching
irst order, that for the postprocessed pressure is approaching second
rder, and for the concentration is about first order.
Finally, in Fig. 23 we plot slices of concentrations computed on the

rd refined mesh at final time 𝑡 = 0.25 along the five vertical planes
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Fig. 26. Benchmark 7: Hydraulic head in the matrix over the line (0.5 m, 1.1 m, 0 m)–(0.5 m, 1.1 m, 1 m). Left: results on a coarse mesh with about 32k cells. Right: results on a
fine mesh with about 148k cells.
3
d
T
w
l
t
g
a

4

T
A
s
(
m
b

𝜕

u

𝜕

Table 5
Benchmark 6 with blocking fractures (fitted mesh): history of convergence for the 𝐿2-
errors in 𝒖ℎ, 𝑝∗ℎ, and 𝑐ℎ(𝑇 ) along mesh refinements. Reference solution is obtained on
the third level refined fitted mesh with about 2.25 million matrix elements and time
step size 𝛥𝑡 = 3.125 × 10−4.
Mesh ref. lvl. 𝐿2-err in 𝒖ℎ Rate 𝐿2-err in 𝑝∗ℎ Rate 𝐿2-err in 𝑐ℎ(𝑇 ) Rate

0 1.791e−01 – 1.533e−01 – 1.288e−01 –
1 1.118e−01 0.68 6.080e−02 1.33 8.139e−02 0.66
2 6.172e−02 0.86 1.891e−02 1.68 3.939e−02 1.05

Fig. 27. Benchmark 8: Conceptual model and geometrical description of the domain.

= 0.1, 𝑥 = 0.3, 𝑥 = 0.5, 𝑥 = 0.7 and 𝑥 = 0.9, and in Fig. 24 we plot
he evolution of mean concentration over time on the following three
egions:

𝛺𝐴 ∶= (0.5 m, 1 m) × (0 m, 0.5 m) × (0 m, 0.5 m),

𝛺𝐵 ∶= (0.5 m, 0.75 m) × (0.5 m, 0.75 m) × (0.75 m, 1 m),

𝐶 ∶= (0.75 m, 1 m) × (0.75 m, 1 m) × (0.5 m, 0.75 m).

𝛺𝐴 ∶= (0.5 m, 1 m) × (0 m, 0.5 m) × (0 m, 0.5 m),

𝛺𝐵 ∶= (0.5 m, 0.75 m) × (0.5 m, 0.75 m) × (0.75 m, 1 m),

𝐶 ∶= (0.75 m, 1 m) × (0.75 m, 1 m) × (0.5 m, 0.75 m).

From the results in Fig. 23, we clearly observe the different flow
attern for the conductive fracture case in the first row and the blocking
racture case in the second row. We further note that the mean concen-
rations reported in Fig. 24 were presented in Berre et al. (2021, Figure
10) (only) on the coarse mesh with about 4k matrix elements and a
coarse time step size 𝛥𝑡 = 2.5×10−3 s. Our results on four set of meshes
are close to each other and improve slightly as the mesh and time step
size refines, and they are also qualitatively similar to the majority of
16

the coarse-grid results in Berre et al. (2021, Figure 10).
4.7. Benchmark 7: Network with small features (3D)

This is the third benchmark case proposed in Berre et al. (2021),
in which small geometric features exist that may cause trouble for
conforming meshing strategies. The domain is the box 𝛺 = (0 m, 1 m)×
(0 m, 2.25 m) × (0 m, 1 m), containing 8 fractures; see Fig. 25. Ho-
mogeneous Dirichlet boundary condition is imposed on the outlet
boundary

𝜕𝛺𝑜𝑢𝑡 ∶= {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 1, 𝑦 = 2.25, 𝑧 < 1∕3𝑜𝑟𝑧 > 2∕3},

inflow boundary condition 𝒖 ⋅ 𝒏 = −1 m∕s is imposed on the inlet
boundary

𝜕𝛺𝑖𝑛 ∶= {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 1, 𝑦 = 0, 1∕3 < 𝑧 < 2∕3},

and no-flow boundary condition is imposed on the remaining bound-
aries. The conductivity in the matrix is K𝑚 = 1 m2, and that in the
fracture is K𝑐 = 104 m2. Fracture thickness is 𝜖 = 0.01 m.

We perform the method (4) on a coarse tetrahedral mesh with
1,812 matrix elements and 3961 fracture elements and a fine tetrahe-
ral mesh with 147,702 matrix elements and 9441 fracture elements.
he number of the globally coupled DOFs on the coarse mesh is 83,022,
hile that on the fine mesh is 343,359. The hydraulic head along the
ine (0.5 m, 1.1 m, 0 m)–(0.5 m, 1.1 m, 1 m) is shown in Fig. 26, where
he reference data is obtained with the USTUTT-MPFA scheme on a
rid with approximately 106 matrix cells. Here we observe a very good
greement with the reference data even on the coarse mesh.

.8. Benchmark 8: Field case (3D)

This is the last benchmark case proposed in Berre et al. (2021).
he geometry is based on a postprocessed outcrop from the island of
lgerøyna, outside Bergen, Norway, which contains 52 fracture. The
imulation domain is the box 𝛺 = (−500 m, 350 m) × (100 m, 1500 m) ×
−100 m, 500 m). The fracture geometry is depicted in Fig. 27. Ho-
ogeneous Dirichlet boundary condition is imposed on the outlet
oundary

𝛺𝑜𝑢𝑡 ∶= {−500} × (100, 400) × (−100, 100)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜕𝛺𝑜𝑢𝑡,0

∪ {350} × (100, 400) × (−100, 100)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜕𝛺𝑜𝑢𝑡,1

niform unit inflow 𝒖 ⋅ 𝒏 = 1 m∕s is imposed on the inlet boundary

𝛺𝑖𝑛 ∶= {−500} × (1200, 1500) × (300, 500)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜕𝛺𝑖𝑛,0
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Fig. 28. Benchmark 8: Hydraulic head across the domain. (a): Profile from outlet 𝜕𝛺𝑜𝑢𝑡,0 towards the opposite corner. (b): Profile from outlet 𝜕𝛺𝑜𝑢𝑡,1 towards the opposite corner
𝜕𝛺𝑖𝑛.
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𝜕𝛺𝑖𝑛,1

.

Conductivity is K𝑚 = 1 m2 in the matrix, and K𝑐 = 104 m2 in the
fracture. Fracture thickness is 𝜖 = 10−2 m.

We perform the method (4) on a tetrahedral mesh with 241,338
atrix elements and 47,154 fracture elements. The number of the
lobally coupled DOFs is 696,487.
The hydraulic head along the two diagonal lines (−500 m, 100 m,

100 m)–(350 m, 1500 m, 500 m) and (350 m, 100 m,−100 m)–(−500 m,
500 m, 500 m) are shown in Fig. 28, along with published results
rom Berre et al. (2021). Similar to Benchmark 4 in 2D, no reference
ata on refined meshes was provided for this problem due to its
omplexity. Comparing with the published results in Fig. 28 we observe
hat our method still performs quite well.

. Conclusion

A novel hybrid-mixed method for single-phase flow in fractured
orous media has been presented. The proposed model combines the
nterface model for the conductive fractures and time Dirac 𝛿-functions
pproach for the blocking fractures. The distinctive features for the
umerical methods include local mass conservation, symmetric positive
efinite linear system, and allowing the computational mesh to be com-
letely non-conforming to the blocking fractures. Ample benchmark
ests show the excellent performance of the proposed scheme, which is
lso highly competitive with existing work in the literature. Extension
o the method to more complex fractured flow models and adaptation
f the method to more general meshes consists of our on-going work.
e will also investigate efficient preconditioning procedures for the
ssociated linear system problem in the near future.
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