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first scheme with time accuracy greater than one discussing stability for wormhole
propagations. Moreover, we will prove the optimal error estimates of the schemes
under mild time step restrictions. Numerical experiments are also given to verify the
theoretical results.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Acid treatment technique of carbonate reservoirs has been introduced and applied widely in the product enhancement
of oil and gas reservoirs for the past few years. The main purpose of the process is to promote production rate by increasing
permeability in the nearby damaged area. The acid is injected to dissolve the rocks near the wellbore, establishing flow
channels that provide good connectivity between the reservoir and the well. Such channels are called wormholes.
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There are many works discussing numerical simulation of wormhole propagations. The finite element method and the
finite difference method were combined by Zhao et al. to analyze the chemical-dissolution front instability theoretically
and numerically in [1]. Subsequently, a 3D simulation of carbonate acidization was investigated in [2]. Later, in [3],
the authors applied parallel simulation. Moreover, the second-order block-centered finite difference method to simulate
wormbhole propagation has been developed in [4]. Recently, the characteristic splitting mixed finite element method was
constructed in [5].

Most of the previous works for wormhole propagation are based on Darcy’s framework. It is applicable for scenarios
where porosity does not change significantly. However, when the porosity changes widely, it will result in high velocity of
the fluid in the high-porosity region. In this case, the solution may deviate from reality. Therefore, the Darcy-Forchheimer
model [6] was suggested to account for the case with nonuniform porosity and high velocity. There were several works
discussing numerical solvers for the Darcy-Forchheimer model [7-13]. In addition, the mixed finite element method was
applied to the Darcy-Forchheimer model and the stability was well studied [14]. However, this result was only limited
to a semi-discrete framework. Moreover, a fully conservative block centered finite difference method was considered
in [15]. However, only the first-order time scheme was investigated. In this paper, we will construct a second-order time
integration and prove its stability and accuracy. Due to the significant differences in velocity, we need to consider methods
with high resolutions. Therefore, we employ the discontinuous Galerkin (DG) method in this paper.

The DG method has gained greater popularity in recent decades due to its high order accuracy, local solvability and
flexibility on hp-adaptivity. The method was first introduced by Reed and Hill [16] in the framework of neutron linear
transport. Later, motivated by the work of Bassi and Rebay [17], Cockburn and Shu developed the local discontinuous
Galerkin (LDG) method to solve the convection-diffusion equations in [ 18]. The main idea of the LDG method is to rewrite
the equations with high-order derivatives into an equivalent first-order system. Then it is possible to apply the DG method
to each equation in the new system. Therefore, the LDG method shares all the advantages of the DG method. Recently,
the LDG method has been applied to conventional Darcy [19] and Darcy-Forchheimer model [20]. However, they were
also limited to semi-discrete frameworks and the stability was missing.

In [21-23], the authors incorporated the IMEX time integrations with LDG methods for linear convection-diffusion
problems, yielding good stability and accuracy. The basic idea was to introduce an auxiliary variable for the derivative
of the primitive variable and establish the relationship between them. Then it is possible to use the diffusion term to
control the convection term. For nonlinear problems, the stability was only demonstrated numerically, and the theoretical
analysis was totally missing [24]. Later, the IMEX scheme was further applied to incompressible miscible displacements
in [25]. However, only error estimates were discussed and no stability analysis was performed. Recently, we have applied
LDG methods to Darcy’s model with a first-order time integration and obtained the stability [26]. For second-order time
integrations, the error estimates were obtained with the help of the a priori error estimates and the stability was also
missing. In this paper, we will construct two special time integrations up to second-order accuracy for a more complicated
Darcy-Forchheimer model and obtain the stability and error estimates for both schemes with mild time step restrictions.
To the best knowledge of the authors, this is the first paper discussing stability of a second-order time integration for
wormhole propagation.

There are five main difficulties in the theoretical analysis of our proposed methods. Firstly, different from [14,15],
we use LDG methods for spatial discretization. Therefore, the theoretical analysis would be more difficult to perform
since we need to deal with the inter-element discontinuities. Secondly, since our model is nonlinear and the variables
are strongly coupled, it is difficult to follow [21-23] to obtain stability. In this paper, we will introduce a new auxiliary
variable that contains both convection term and diffusion term. Moreover, following [ 14], we define an auxiliary function
of velocity and establish its properties. With these properties, we could handle the analysis complication from the new
auxiliary variable. Thirdly, we need to control the change of porosity to obtain physically relevant numerical porosity.
Since the time evolution of the porosity does not interact with the spatial derivatives, we do not project it into the finite
element space, but to apply a special way for the time integration. Moreover, we define a cut-off operator for the solute
concentration which will not cause loss of accuracy, to control the growth rate of the porosity. Based on this operator,
we get the uniform boundedness and monotonicity of the porosity for both first- and second-order time integrations.
Especially, the uniform upper bounds are strictly less than one. Fourthly, we need to deal with the time level mismatch
of the spatial discretizations. For first-order time integrations, the mismatch only appears in the porosity and this can be
handled perfectly thanks to the monotonicity of porosity [26]. However, for most second-order time integrations, such as
Crank-Nicolson method, the time level mismatch will appear in both porosity and velocity following the traditional LDG
spatial discretization. Due to the lack of control of velocity, the spatial discretizations cannot be canceled or combined
following the stability analysis in the semi-discrete frameworks. The main reason is that the time integration of the
primitive variable is symmetric about time level t"*1/2, while the auxiliary variable was given at both time levels t" and
"1, To fix this, we will construct a special one-step time integration which is symmetric about time level t"*1/2 for both
the primitive and auxiliary variables to handle the mismatch. With the new time integration, the spatial discretizations
of the primitive and auxiliary variables can be perfectly canceled. Finally, we have to deal with the Forchheimer term
in the second-order time integration. Since the problem is highly nonlinear, the scheme would be extremely difficult
to implement and some iterations should be performed. However, the convergence of those iterations can hardly be
guaranteed theoretically and the iterations may be quite time consuming. To prompt efficient implementation, we modify
the one-step time integration discussed above and use the values at time levels t", t"~! to extrapolate some non-essential
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variables at time level t"*! or t"*!/2, which helps linearize the scheme and saves cost, keeping the stability and error
estimates. Thanks to the stability, we can obtain the optimal error estimate in L™ (Lz) for both schemes for concentration,
velocity, pressure and porosity without any a priori error estimates.

The rest of the paper is organized as follows. In Section 2, we demonstrate the governing equations of the compressible
wormbhole propagation with Darcy-Forchheimer model. We present some preliminaries in Section 3, including the basic
notations, norms and projections to be used throughout the paper. Two time integrations will be presented in Section 4,
and the stability will also be proved. We give the error estimates in Section 5. Numerical results are provided to
demonstrate the accuracy and capability of the method in Section 6. We will end in Section 7 with some concluding
remarks.

2. Compressible wormhole propagation with Darcy-Forchheimer model

The governing equations of the compressible wormhole propagation over the computational domain §£2 = [0, 1]x [0, 1]
are given by [14,15]:
a
yi+7+v.u:f’ (2.1)

pou ko pF()
¢ ot k(¢) Vi (9)

lulu=—vp + pg, (2.2)

a(g’:f ) iv. (uey) — V - (@DWIVE) = focr + fic + keu(Cs — 1), (2.3)
% B akea,(c — ) (2.4)
ot Os ’ .

where p is the pressure in the fluid mixture, u is the Darcy velocity, ¢ is the porosity of the rock, ¢ is the cup-
mixing concentration of the acid in the fluid phase and « is the permeability. p and g are the mass density and gravity

vector, respectively. F(¢) = \/% is the Forchheimer number. Moreover, y is a pseudo-compressibility parameter that

contributes to minor change of the density of the fluid phase in the dissolution process. f gives the external volumetric
flow rate consists of the injection rate f; and production rate f,. u is the viscosity. ¢ is the injected concentration. D, the
effective dispersion tensor, is defined as

D(u) = dnl + |uf {«E(w) + a; I — E(w))}, (25)

ujul; ..
(Eu); = W, 1=i,j=2,
where d,, > 0 is the molecular diffusivity. The longitudinal and the transverse dispersivities «; and «; are positively
defined. It is easy to see that D(u) is an invertible positive definite matrix. k. is the coefficient of local mass-transfer and
¢, is the acid concentration at the fluid-solid interface. There is a relationship between ¢, and ¢ given as

r
=T 2.6
& 1+ ks/ke (2:6)
where ks is the rate of surface reaction. The porosity ¢ and the permeability ¥ have the following relationship
1— 2
©_¢ <¢( ¢o)> | 27
ko $o \$o(1—¢)

which is established by the Carman-Kozeny correlation [27], where k¢ and ¢q are the initial permeability and porosity,
respectively. Clearly, « is a function of ¢ and

1 $ ¢0(1—¢>)>2 28
@) = D= 4 <¢(1—¢o) ' (28)

In (2.4), ps is the density of the solid phase, « is the dissolving power of the acid, a, is the interfacial area available for
reaction per unit volume of the medium and it can be calculated as

@& _ ¢ [kop _1-¢
ap o\ ko 1—¢o

with gy being the area of initial interfacial. Moreover, the initial solutions are given as

(2.9)

c(%,y,0) =co(x,y), &(x,y,0)=do(x,y), DPXy,0)=po(x,y), u(x,y,0)=ug(x,y).

In this paper, we consider periodic boundary conditions for simplicity. The problem with homogeneous Neumann
boundary conditions can be analyzed with some minor changes, so we omit it.
Finally, we would like to make the following hypotheses (H) for the problem.
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1.0 < ¢ <p(x,y,t) <" < 1.
2. y,a,p, ps, 4, ke, and kg are all given positive constants, and 0 < dp, < dg < aj.
3. ¢, ¢r,, W, U and s are uniformly bounded in R? x [0, T].

The following lemma follows from direct computation, hence we demonstrate the result only and skip the proof.

Lemma 2.1. «~'(¢), a,(¢) and F(¢) are Lipschitz continuous, i.e. there exists C > 0 such that

k™ (1) — k@)l < Cldr — dal,  lau(r) — au(2)l < Clp1 — ¢l |F(¢1) — F(2)| < Clr — o2l
3. Preliminaries

In this section, we will demonstrate some basic notations and projections to be used in the rest of the paper.
3.1. Basic notations

Let0=x1 <X3 <---<Xy,1=1land0=y1 <y3 <--- <y, 1 = 1Dbe the grid points in x and y directions,
2 2 x+t3 2 ly+3

J=1.2,0Ny e o and define

respectively. We consider a rectangular partition £2, = {KU}H 5N
=1,2,...,Ny

KUZII'X]]', l.:‘l,..‘,Nx,j:],...,Ny,

_ . _ . X _ y _ . .
where [; = [x,._%,xpr%] and Jj = [yA_%,yH%]. Define hf = x,.+% — xi_%, hj = Y1 —yj_% as the mesh sizes in x
and y directions, respectively, and denote h =max; ;(h7, hJY ). In this paper, the partition is assumed to be quasi-uniform,
i.e. min;;{h}, b} < h < C min;{h}, h/} for some positive constant C.

We choose the finite element space as

W =z :z|x € QX(K), VK € 2},

where Q¥(K) denotes the space of tensor product polynomials of degree at most k in K. Denote I}, as the set of all element
interfaces and define Iy = I7,\002. B = (1, 1)T is a predetermined vector. Let £ € I be an interior edge, and it is shared
by two elements K, and K;, where 8 -n, > 0, and 8- n. < 0, with n, and n, being the outward normals of K, and K;.
For any s € W, s~ and st represent the values of s taken from K, and K;, respectively. Furthermore, the jump is given
as [s] = st — s~. Moreover, for z € W’,j = W,f X W,.’,‘, z", z~ and [z] are defined analogously. More details can be found
in [19].

We use the traditional notation LP(K), 1 < p < oo, for the L? space over K, equipped with norm | - ||, x. For simplicity,
if K = £ or p = 2, we will omit the corresponding subscript. Moreover, we define several inner products

(u, v)g :/uvdxdy, (u, v)g :/u-vdxdy, (u, v)sx :f uvds.
K K K

Let Ik be the edges of K, and we define ||-|7, = (-,-)ax and ||l = Y Il-lI7, . Throughout this paper, we use C as
a generic constant independent of time step and mesh size, and it may have different values at different occurrences.
Moreover, ¢ is a sufficiently small positive constant.

3.2. Projections

We will define several special projections and demonstrate their properties. Before doing so, let us start with the
classical inverse property [28].

Lemma 3.1. Suppose u € WF, then there exists a positive constant C independent of u such that
hllulloox + B2 llull e < Cllully -

Now we define P* into W,i‘ which is, for each cell K

(Pru—u,v)x =0, Yv € Q" '(K), /(P+u —u)X_1. Y))dy =0, Vv € P,
Ji
/(P+u — U)X, y;_1 v(x)dx = 0, Yv € P11, (Ptu— uX;_1.¥;-1) =0
li
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where P¥(I) denotes the kth degree polynomials over the interval I. Moreover, we define 117 and I1; into W,f which are,
for each cell K,

(Mu—u. v = 0. Vv € Q“K), f (7w — u)(x,, 1. y)(y)dy = 0. Vv € PK(),
Ji

(T, u —u, vy =0, Yv € QX(K), /(ny-u — u)(x,y;, 1 W(X)dx =0, Vv € Pk,
I

as well as a vector-valued projection I~ = [1,” ® 1. The following lemma gives the error of the projections [28].

Lemma 3.2. Assume w € H*t' (), k > 1, then for any projection P,, which is either P, I1; or I1,, we have
lw — Pywl|| +h'"? |w — Pyw| 5, < Ch**1.
Moreover, the following superconvergence property works for the projection P* on Cartesian meshes [29].
Lemma 3.3. Let w € H*"?(£2), then for any K and p € W’f1 we have
|(w =P w, v p), —(w—PTw, p- nK)3K| < CH lwllgz ol »

where ny is the outward normal of K, and C > 0 is independent of K.

Before we finish this section, we would like to demonstrate the following lemma whose proof was given in [30].
Lemma 3.4. Define u € C**'(2) and ITu W,ﬂ‘. Suppose ||u — ITul|| < Ch* for k < k+ 1. Then

hillu— Mully +h"? |lu — Mul ;< Ch*.

4. LDG schemes

In this section, we will present the LDG schemes. We will start from the semi-discrete scheme.
4.1. Semi-discrete LDG scheme

Applying (2.6)-(2.9), we rewrite (2.1)-(2.4) into

dp | 9¢

—+ —+V.u= 4.1
8t+8t+ I (@1

p du 1z PF(®)
u

v + luju=—vp+ pg, (4.2)
¢ ot k(o) VK (@)
a(ecr) _
ar Vs + Aay(9)er = focr + ficr, (4.3)
s = u¢; — ¢D(u) Vg, (4.4)
¢
= Ba, cr, 45
ar @ (45)
where A = k";"; ,B= ‘(",ffﬁ ; and a,(¢) = a(1 ¢¢) s is a new auxiliary variable which is crucial in the stability analysis.

0
This idea was first developed in [14] in obtalmng stability under a semi-discrete framework. Furthermore, we construct
a function of velocity as

M, (u) = (D(w)) 'u, (4.6)
and a cut-off operator M as

— u, |ul <S,
MW= {Su/|u|, lul > s, (A7)

where the positive constant S is sufficiently large. The LDG scheme for (4.1)-(4.4) is as follows: Find py, ¢, € W,f and
Sy, Uy € W" such that for any ¢, v € WX, 0, w ¢ WX, we have

Opn Ao
< pn ;) +(zil ;) = 4wy, )+ (f. Ok, (25)
P a“h " PF(gn)
! o™’ 0] = Drlpn. 6 Ok 49
(¢>h at’ )1<+<K(¢h)uh )’("‘(mhlhmh )K Dk(ph, 0) + (08, Ok (4.9)
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((PrCh)e, V)i = Lir(sh, v) + (fych + ficr, VI — (Aay(n)en, vk, (4.10)
((@aD()) ™" show) = (80" Me () cr, W), + i (W) (4.11)
where
£i(s,v) = (s, Vo)k — (8- vk, v)ax and Dg(c,w) = (c, V- W) — (€, W - v)ak,
with u’,f’ = M (up) and vg being the unit outer normal of K. Since (4.5) is only an ordinary differential equation with

respect to time, it is not necessary to perform spatial discretization. The time integration of the porosity is given as

d -
% = Ba, (¢n) &, (4.12)

where ¢, =max(0,min (cp, 1)). The hat terms in the LDG schemes are the numerical fluxes. In this paper, we choose

~

Sh=s,, Gi=c, W=u,, Ppr=p;.
In addition, we define
W)=Y vk, (@v)=Y Wk £isv)=) £isv), Dlc,w)= Y Dylc,w).
Kes2p Kes2y Kes2y Kes2p

With integration by parts, it is easy to check that for any v and w, we have

£4w, v) + D(v, w) = 0. (4.13)
4.2. Fully-discrete LDG schemes

We consider a uniform partition {t" = nt}¥ ; of the time interval [0, T], with time mesh size t = T/M. However, the
assumption of uniform partition is not essential. Two time integrations coupled with LDG spatial discretization will be
discussed.

4.2.1. First-order time integration
The first-order time integration donated as Fully-LDG(k,1), will be constructed. For any n > 0, given the numerical
solutions c]', pJ, ¢F, ul', s at time level n, we calculate ¢/ by

n+1
S — = Ba, (¢*1) & (4.14)
T
Then pit!, u} ™" can be computed via
pn+1 _pn ¢n+1 _ ¢
(Vhf’” o)+ () =0 + 00, (415)
un+1 _— n+1
,ﬁr] g+ lﬁﬂ ultl o] + 7(45 ) lup ™ [ up™t, 0 | =Dpi, 0) + (0. 0) . (4.16)
b T k(pp) (¢n+l)
for any ¢ € W, 8 € Wy, Finally, we can find c/*', s;*! by
¢H+1 .- ¢;11C;: n+1 A n n n_.n n_.n 4.17
GGG ) ot ) — (A, (8) o) + (] + 5P 0). (417)
((¢,’;+1D(ug““)> S w ) ((¢>“+1) (W) o w ) +D (W), (4.18)
for any v € W,’f, W e W’,j. The initial approximations are
on(x,y,0) = $(x,y,0), cn(x,y,0) =P co, pu(x,y,0) =P po, un(x,y,0) =TI u. (4.19)

o . o . Fopt! :
Remark 4.1. For simplicity of implementation, it is possible to replace ! ( ) | Z“ | u”“ (4.16) by
ye(@r)
F ¢n+1 . )
M |uﬁ| uZ“. The alternative scheme is also stable and has the same accuracy.

)
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4.2.2. Second-order time integration
We introduce a special second-order time integration, namely Fully-LDG(k,2). For any n > 1, given the numerical

solutions at ¢", t"~!, we first compute ¢/ as

¢n+1 _ ¢ ]

. Th  Tho— ~Bay (et et + Bav (¢n) cr., (4.20)
where
1

nHlx 2Ch—C]2' s n>1,

C = 421

h { c, n=0. (4.21)
We extrapolate ch+1 to decouple the system. Otherwise, the numerical scheme may form a coupled system, and it is
extremely difficult to implement. Then we obtain p"+1 ,’7‘“ via

n+1 n n+1 n+1
(yph - ph,{) (‘P - — ¢y C>:£d< 2+“h )+(f”+%,§), (4.22)

n+d
F 2
o “ZH —u 0|+ P <¢h ) 3u; _“h gt g 0
¢n+% T 2
h p <¢h
un+1 + u” n+1 +
S e ) EE el s (4.23)
o 2 2
for any ¢ € WK, 8 € WK, where
¢n+% ¢n+1 +¢h u”"'% _ n+1 +Uh fn+% _ fn+1 +fn
h 2 h 2 2
For simplicity, we also use the above notation for f,, fi and ;. In (4.23), extrapolation was applied in the absolute value
to linearize the scheme. Finally, ¢/ "', sj*" are obtained through

n+1.n+1 iad! cntl
—¢ P v = ¢ 74_ S ,v) — [ Aa, ¢ 7-'_ h )
T 2 h 2

1
il 4
+ | f 5

<<¢n+2D< n+d M>>_ y ) (<¢n+2)_ Me( n+2>n+12+5h )_i_D(Cf?H;C’?’w), (4.25)

for all v € Wk, w € W¥.

Eq. (4.25) is quite different from all the previous LDG methods, since we did not discretize it at time level t". Actually,
it is symmetric about time level £"3 and this is crucial in stability analysis as it can avoid time level mismatch of the
spatial discretization. The initial solutions are given as follows. We take the solutions at t° from (4.19) and the solutions
&n, Ph, Wn, Ch, Sy at t! are obtained from the first-order scheme introduced in Section 4.2.1.

1 1
+f 2, v) , (4.24)

4.3. Stability analysis

In this subsection, we proceed to prove the stability of the two fully-discrete schemes discussed in Section 4.2. We
first demonstrate some useful properties of D(u) and M.(u) whose proofs have been given in [14].

Lemma 4.1. Given D(u) in (2.5) with d,, > 0, ; and «; are non-negative functions of x,y and are uniformly bounded,
ie oy(x) < of and a¢(x) < «f. Then for any u,v RY,

ID )" v| < (d + min (a1, ) u) ™" v] < d,' vl (4.26)

D) v| > (dm + max (af, o) [ul) " v], (427)
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D' =DW) | < d? (Tof + 60]) d** lu—vl, (4.28)

where d is the dimension of £2.

Lemma 4.2. Given M. (u) in (4.6) with d,, > 0. Suppose that o; and o are positive functions of x, y and 0 < oy, < oy(x) < o]
and 0 < oy, < ar(x) < . Then for any u, v € RY,

IM, ()| < (min (o, 00,) " (4.29)
M, () — M, (V)| < Ly [u—v], (4.30)

where Ly = dy,' + (dmmin (o4, 00)) " (7of + 6¢;7) d*/? and d is the dimension of 2.

With the above two lemmas, we can prove the stability of the two fully-discrete LDG schemes. We start from the
following theorem of ¢y, and the proof of Theorem 4.1 was given in [26].

Theorem 4.1. Suppose the initial porosity ¢o > 0, then the approximation ¢y, from the Fully-LDG(k,1) scheme satisfies

bo fcb,': <1-(1—¢pe " <1, (431)
akcksa
where ¢ = Defne R = Bag = Ps(kc+k2)' then we have
n+1 ¢
0<h _"h R (4.32)
T

Theorem 4.2. The discrete porosity ¢y from the Fully-LDG(k,2) scheme is bounded, i.e.,

go<¢p<1-(1—goe ' <1, (433)
with
2(1—
<o < 2129 (4.34)
R
where ¢ > 0 is the initial porosity, ¥ = ﬁ and t* satisfies 1 — %* = e V™" It also holds that
n+1 _
< b~k R, (4.35)
T
akcks
where R = Bay = ps(‘kﬁ‘}g), n>0.

Proof. We use mathematical induction and assume ¢y < ¢; < 1. (4.20) can be rewritten as

1 1—¢ptt_ — ¢!
n+1 n+1,x h
—R————¢ fR
e T —¢ e
+1,%
We define g"*1* = R “ ST = 0 and 8" = Tt 2 0. Under (4.34), we have 8" < 2. Then with direct calculation, we
can obtain
1, 1
¢n+1 2/311+ LA (1 — ’/3 )¢;11 -1

1+ %lgn+1,*

The proof for ¢“+‘ > ¢p > ¢ is straightforward since the right-hand side of (4.20) is non-negative. Moreover, we have

o= _ ¥ iy, ¥ n
R 1—
. = 2 ( — ¢y ) b ( ¢’h),
with Y = ——. It is easy to get
1 W
¢”+ + \//‘r ( - ¢h)
leading to
n 1- % ' e_¢f ! —ﬁT
1—¢y > 7] =90 =|— (1—¢o) =¢e"2" (1—¢o),
14 5 ez’

8
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where the second step requires the condition (4.34). Hence,
gr<1-e 27 (1.
The estimate in (4.35) is straightforward. O
Based on the above two theorems, it is easy to obtain
0 <F. <F(¢n) <F*, 0<ku<(on) ' <«*,

where F,, F*, k, and «* are positive constants. By using Lemma 2.1, we can deduce the following result.

Lemma 4.3. j% is Lipschitz continuous, i.e. there exists C > 0 such that

< Cl¢1 — ¢2l.

Proof. The Lipschitz continuity of % can be obtained by

(@)
F(¢1) F(¢2) - F(¢1) F(¢2) F(¢2)  F(¢2)
V(@) Vr(¢2)

CIF(¢1) — F(¢)l +C _

(@) (@) T Vg ()

IA

IA

C[F(¢1) — F(¢2)l +C

C[F(¢1) —F(d2)l +C -

Clg1 — ¢al,
where we used the boundedness of F(¢) and «(¢r)~'. O

IA

Then we can state the stability of the Fully-LDG(k,1) scheme.

Theorem 4.3. The numerical approximations of the Fully-LDG(k,1) scheme satisfy

n n
loil* + e * 4+ D s = € 37 ™" + R+ R + € | * + C logi?. (4.36)
m=1 m=1
el +TZ [E= CTZ it + e’ (4.37)
where Ct < min(%, 2, %), n > 1and R = Bay = p‘;’(",jcki‘;g).
Proof. Taking ¢ = pj™' in (4.15) and @ = u}"" in (4.16), we obtain
n+1 _ n+1
<yphtph,pz+1> (‘l’ - ¢h ,p’r;+1> — Ed ( nH’pZH) + (f pzﬂ) , (4.38)
powt —wp M n+1  ntl PF (4p") n+1|  ndl o ntl
<¢n+l 7 Ju )+ (¢n+1)uh LU @) |yt
(p2+1 n+1) (,og, ug“) ) (4.39)

The first term in the (4.39) can be written as

n+1 n
1% (uh - uh) un+1
¢n+1 T > “h

1 P n+1 n+1 1 p n+1 n n+1 n 1 p n o .n
= — u + — u —u),(u —u —— | —u,,u
2 <¢;11+1 h uy, 27 d);l—pr] ( h h) ( h h) 27 ¢;11+1 h> = h

9
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! 1
- zt< i n+1>+(¢fﬂ (™ —uf) (u™" uz)> (f ). (440)
h

h

where we used the monotonicity of ¢ in the last step. Summing (4.38)-(4.39) and using (4.13) and (4.40), we have
2

2
1 0 1 0
2 (I 1 + okt = el = Iei]*) + 5 ¢ﬁlﬁ‘-+ ¢HJ““—%)
5 3
Hv CNIS) Y | i Iy s
& (¢ﬁ+l) (@) 3
L
< ¢n+1 - ¢h n+1 n+1 n+1
=T Y +o(fppt) + 7 (g upt)
=t <2R2 +2 o]+ 2 oyt = Pl + ||f“ "+ = ngl2 + )+ - ||2) : (4.41)
where the last step requires Theorem 4.1, triangle inequality and Young's inequality. Summing (4.41) over n to get
1/2 2 n F (¢m+1) 173 ’
Y[+l N P nt1 m+1 p S
21 5 g “Z ( ) Wy <657 K

w

L

(4.42)

n 1
<o (2101 + S o)+ ok clogt+ ot 2] 2]
m=0

with 7 < min(%, £). Using the discrete Gronwall’s inequality, we can obtain (4.36) in Theorem 4.3.
The proof of (4 37) in Theorem 4.3 is similar to Theorem 4.5 in [26], hence we omit it. O

Now we state the stability of the Fully-LDG(k,2) scheme.

Theorem 4.4. The approximate solutions of the Fully-LDG(k,2) scheme satisfy

n
ol + ]+ = 32

m=2

um+um—l 2
h h
2

n 2
< R+ Clpgl + Ce |f°)" + o 3 |4+ ¢ " + c ] (4.43)
m=2

m—1
2

2
o | +Co el + ]

lebl®+= E:

m=2

(4.44)

-1
sm +sh ‘

akcksag

in(t o _ _
where Ct < min( ), n> 1and R = Bay = ol tk”

2’ 4

+p,, uprt il .
Proof. Taking ¢ = in (4.22) and § = -"——" in (4.23), we obtain

pE-H ph pz-H + pz ¢n+1 d’ﬂ n+1 + ph
, + )
T 2 T 2

- gd( n+12+ i pﬁ“;ﬂﬁ) <n+1 PZ“;PE), (4.45)

n+2
n+1 n n+1 n d)
pou o —uy + u,
) +

n+d T 2 gl

n+1 +ll un+l +uz
2 ’ 2

n n—1
3up —u,
2

10
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n+l n+1 n n+1 n n+1 n n+l
+u uw +u + U +u +up
+| , bl = ot B TSy (g ST (446)
(¢n+2) 2 2 2 2 2
With the monotonicity of ¢, we obtain
1 1
powow w1 o up gt L2 up, uy
n+3 ] 2 2t | nt+d ’ 2¢ | n+3 7
¢’ ¢y ° oy °
1 1
> o :jrluZH’uZH -5 %uﬁ,uz . (4.47)
o ° oy °
Summing (4.45)-(4.46), we have
2 2
VHn+12Vn2 1 P nt1 1 P
S en =5 ek + 5 L I T
2 2 2 n+5 2 n—5
¢y ° ¢y *
1/2 2
2 n+%
F
+1 ] g <¢h ) 3uZ—uZ“‘ u g
K(¢Z+2) 2 < n+%> 2 2
K\ oy
n+1 n n+1 n+1 n+1 n
+ + u’+u
I ¢h, Ph Tt fn+%’ Ph R h
T 2 2 2
2
5 p;1+1+pz 2 1 112 ) m n+1+u’
h o Alfnt5 h
< 2R + 5 + = |lf""2] +Clogl-+¢ T 5
K(¢h 2)
2
1 1 2 un+1+un
st| R+ H s ||p2||2+f Fr+E 4 Clogl + e — h (4.48)
2 2 -l 2
K(¢h )
Taking & = § and summing (4.48) over n leads to
2 . 2
1 7t ! 4+ ul
L R il I B e :
2 2 n+3 — m+1 2
on m=1 |\ k(¢ *)
172
m44
F 2
- P <¢h ) 3up —up™! w4y
+T) - 5 5
m=1 P (¢;1T1+2>
2
14 2 1 p
< fZ”p \p,';“H +CR +Clogl® + *‘[Z”ferZ + 2 Il 5| [ (4.49)
Py
We take 7 < ¥ to get
2 2
n+1 P n 7t ¢ w4y
L R NI R o]
¢y * k(¢ )

11
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1/2

m—1 m+1 m
3uh —uh u "+ uy

[

/7 2
m+2
2
= fZIIp |* + CR? + Clogl + 71:ZHfm+z N SITINES I, (250)
' 2 I°h 2 ) B :

m=1 h

Thanks to Theorem 4.3, we have
[Pl + uil® = ez (I + R + 1ogl2) + cClps ] + ud] ),
which further yields

n
o 1+ ot + 2 3

m=1

2
m+1 m
u, + u,
2

2
) +C (R +1pg)

n
<cey (Il + s
m=1

2 2 2
+Cr [P+ c(flph " + [uh][- (451)
Applying the discrete Gronwall’s inequality, we obtain (4.43). :
n+ n n+ n
Next we turn to prove (4.44). Taking v = M in (4.24) and w = w in (4.25), we have

¢;11+1 n+1 ¢hch C;;+1+C;11 _ [:d n+]+5h Cir:+1+c’rlz Mg ¢n+% n+1+ch C;::+1+C;:
T 2 2 72 v\ 2 2

1 Cn+1 4 cn 1 1 Cn+1 4 ch
- (,,"* R G B (4.52)
5o (u n+ M S o A ¢n+2 - a (o ot +a s spt! + s
h 2 2 e\ h 2 2
n+1 n+1
+ ¢y + sj
+D , 453
( 3 5 (4.53)

We use (4 35) in Theorem 4.2 to obtain
(¢n+l( n+1 C;:) ( n+l +Ch)) (¢n+1 n+1 Cg+1) (¢11+1C;,1’Ch)

(¢n+l me k) (qb,’:c;}, o) - %R (cp, ). (4.54)
Summmg (4.52) and (4.53) and using (4.54), we have

2
/ 1) /= 2 + A e N
H +1 n+1 5 H ¢;11C,'1] <¢h 2D< 5
B n+1 n ( n+1 +Ch) a0 n+2 n+1 +Ch n+1 +Ch
- 2 Y 2 2
+2

fo

e

()
(i
X

1 1
n+lc n+ + Ch n+l n+2 n+ + Ch
+ 2

n

n+1 n+1

n+ +C +s T

(“h 2) T, h)+2R(c,’},c,’,")
2 1

t et <¢h+2D< n+2M>> n+2+sh
n+l
n+5,M + s}
(a0 (s)) 5

12

+1 1 1
+ Ch nt+3 n+l

¢

2
>+8t

I /\

+ e

n+l ntl

fi ‘q

I /\

e 1° 4+ g + , (455)
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1 1
where the first step follows from (4.13), the second step requires the boundedness of D(uzJr2 ’M) and Me(u2+2 ). Summing
(4.55) over n and taking Ct < %* and ¢ = % we have

2
H / n o <¢m+2D( '”*2 M)>_1/2 Si ' +sp
2
1 2
<&§:@¢n IR

By Theorem 4.3, we have
leall® = co 5 +c fef ]
which further yields

ERI gl L

m=1

m=1

m+2 m+2

. (4.56)

+ Sh

m+2 m+2

< CrZ(|c,T||

Applying the discrete Gronwall’s inequality, we finish the proof. O

) + e e+l

5. Error estimate

In this paper, we use e to denote the error between the exact and numerical solutions, i.e. e, = p — pn, e =
Cf—Ch, € =U— Uy, € =S — Sy, €, = ¢ — ¢p. As the general treatment of the finite element methods, the errors can
be split into two terms

=& — np, ﬂp=P+P—P, $p=P+p_ph,
ec =& — 1, nc:P+Cf_Cf» Sc:P+Cf_Ch,
eu:Su_nus N, =II"u—u, §u=l_[7ll—llh,
es=&—1n, n=II"s—s, E,=TII"s—s.
With direct calculation, we can show that
£y v) = L5, v) =0, Vv € QX(K). (5.1)

From Lemma 3.2, we have the following approximation properties.

Lemma 5.1. The projection errors satisfy, for any n > 0, the following properties

lails + e + [yl + Juill + ]| < cn**, (5.2)
92 + bl + 05ll o + 98] = ch, (5.3)
[t = nf |+ iyt = mp | < e e (5.4)

For the special projections given above, we will demonstrate the following lemma by the standard approximation
theory [28].

Lemma 5.2. We choose the initial solution as the way in (4.19), then we have
llcr(x, y, 0) — cu(x, ¥, 0)]| + [Ip(x, . 0) — p(x, . 0)]| + [[u(x, y,0) — up(x,y, 0)]| < Ch**1.
5.1. The main result of the Fully-LDG(k,1) scheme

We first present some results of ¢y, ¢y and sy, of the Fully-LDG(k,1) and we refer the readers to [26] for more details.

Lemma 5.3. The ¢y, of the Fully-LDG(k,1) satisfies the following estimates

H n+1” n+1

1
—e =5 leg |’
o (e + ||€c [+ lnel +=) g™

5 IIe

< o (g — e + e + e + 1202 + 7). (55)
and

n+1 _ n

o2 < (e + ] + 1+ v 56)

13
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Lemma 5.4. The c, and s, of the Fully-LDG(k,1) satisfy the following estimate
1 1 1 1 1 2 1 nr1my) "2 1 2
5 H‘/"”7+ e Ve —en| -5 |erer (#r'paa) e
= Co (W flegt + [leg ] + &7 + =) e
1
+Co (& + et + leg™ [+ n ) &) + SeRr (el &)

< ce (e =P+ el + [l + et — el + s — ol + gl + 122 + )

~1/2 2
(¢ﬂ+1D(u2+1‘M)) ;z+1

2 1 2
+E +T

+eéT

(5.7)

Now we state the main theorem of the Fully-LDG(k,1) scheme.

Theorem 5.1. Let ¢ € [0, T; H*3), s € L®(0, T; (H*2)%),u € [*®(0, T; (H**2)?), ¢ e L=°(0, T; H**3) be the exact
solutions of problem (4.1)-(4.5), and let cp, Sk, Un, ¢n, pr be the numerical solutions of Fully-LDG(k,1) scheme with initial
discretization given as (4.19). If the finite element space is made up of piecewise tensor product polynomials of degree at most
k and assume the time step t satisfies
Ct < min(l, Z, B, ﬁ),
2°4 2 2
then the Fully-LDG(k,1) scheme satisfies

n n
HEXNP + & 17 + e 1 + &%+ Y IEwls +7 ) IEN? < C (P2 +7°), vn=1, (5.8)
m=1 m=1
which further yields the optimal error estimate
n n
lef 1% + llepl® + e 12 + lepl* + 7 > ez, +7 > lel* < € (P2 +7%), vn=>1. (5.9)
m=1 m=1

Proof. Based on Lemmas 5.3 and 5.4, we only need to split the proof into two steps.
Step 1. The exact solutions satisfy the following variational forms

n+1 _ ,n n+1 _ 4n
(P )+ () = @+ 70 + (s10), (.10
p ul—um ) ( M n+1 ) oF (¢n+1) n+1| g nt+1
—,0 )+ 0 )+ | ——= ,0
(¢n+1 T K(¢n+1)u p (¢n+1) |ll |ll
= D", 0) + (pg. 0) + (s3.6) , (5.11)
¢n+lc}’l+1 _ ¢ncfn
() = 1) 000+ 5 )+ 0. 512)
<(¢n+lD(un+1))—1 st w) _ <(¢n+1)—1 M, (un+1) C}]H’ w) 4D (Can, w) , (5.13)
n+1 _ 4n
¢ - ¢ = Ba, (¢n+l)cfn + ¢l (5.14)

where ¢, v € W,’f and 6, w € W’,j. Here ¢',i =1, 2, 3, 4 are local truncation errors satisfying
|| <cCr, i=1,2,3,4, vn>o. (5.15)
Subtracting (5.10)-(5.14) from (4.14)-(4.18), we get the following error equations

en+] —en en-H p
(yprp’ 4) + (¢r¢ f) =t (e 8) +(s7.¢). (5.16)

p utl—u" P ut —up M 1 M n+1
n+1 n+1 0]+ n+1 u n+1 uy .0
¢ T bn T k (9m1) « (o)

14
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F(¢ nH | g Fiopt") , ) )
+ (\IO/W| +1| +1_ P (¢hn+])| h+1} h+1 0) D(ep+1,0)+(§2,9)’
K@

<¢n+lc}1+1 ¢n n__ (¢n+1cirll+1 ([);ZC,';) U)

T

= £%(e5™!,v) — (Aay (") ¢ — Aay (1) ci. v) + (fec, v) + (53, v),
<(¢n+1D(un+1))*l s+ _ (qbﬁ“D(uZ“ M)> S w )

_ <(¢n+l)*1 M, (un+1) n+1 (¢n+1) (“ZH) C}r11+1’ )+D(e’g“,w),

7_6‘7’ = Ba, (¢n+1) " — Ba, (¢n+1) &4 .

Step 2. We take ¢ = E;“ in (5.16) and 0 = &ﬁ“ in (5.17), and sum up these two equations to get

EIH—] i_-n n+1 _
(V p - gn«H) +< (q’b“;+])gn+1’gz+l) + (d)fl:—]g - gu §n+1>

n+1
n (PF (¢ 1) (’un+1‘un+1 _ ]uﬂ“! n+1 n+1) ZT1
(™)

77n+1 _ nn en+l —eh
T1:<yp . p,é,i'“ -[—= 7 ¢,f,’)1+1 s

M N1 entl ® _ M u'tl g
(¢"+])"" o ) ((K(ff’ﬁ“) K(¢>”+1)> = )

T3— ( n+1 §n+1)
o= (187 + (1 87,

.= 7 nom L& p o \ul—uw
5= ;11+1 T ¢n+1 o1 T > Su ’
+1
Ty = PF (¢p"1)  oF (¢™) | g+ |
Je@) Jelon)
We first estimate the last term on the left-hand side of the above equation,

(PF (¢I’11+1) (’un+1‘un+1 ‘ n+1’un+1) §n+1)
u

where

e (@)

n+1 n+1

_ PF (0} ) (|un+l| _ |un+1|) nit gret | pF (¢ ) |u +1 un+1| (un-H un+1) n+1
(¢n+1) h (¢n+l) h h
n+1
" (PF (¢ ) (|“ZH| _ }un+1 _ ug+1|) (un+l _ uz+1) ’ Eﬁﬂ)

« (o)

= Hy + H, + Hs.

n+1

Using hypothesis 3, the boundedness of ¢, and the triangle inequality ||w |—| w — v|| < |v], we have

Hi| + [Hs| < C (| &5 + ht) | &nt )
15

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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Next, we estimate H,. We have

H2 — (pF (¢n+l) ‘gz+l‘;§ﬁ+1’gz+l) + (PF (¢'}T+]) | n+1| ”g"H—]’) n+1 ;S.T—])

(&) Ve (et
( 'OF (¢n+1) | n+1| nn+1 En+1
(¢n+l)
N 3 N N 2
(pF(¢n+>) ! (m«m) o ( <¢"+>) o
(¢n+1) , (¢n+l) , « (¢g+1) ,
F (6" 13 F (6" 3 ’
_ m gnﬂ m nn-H
(¢n+l) . p (d)lz:ﬂ) .
1/3 3
1 oF n+1 . .
> 3 (()) Al I T
wn) "

Now we estimate Ti(i = 1, 2, 3, 4, 5, 6) term by term. We estimate T; by Schwarz inequality, Lemma 5.1 and (5.6),
o= C (e ] + & + 1+ ) &

Using hypothesis 3 and Lemma 2.1 to obtain
o= C(H o+ (e ) &

The estimate of T; follows from Lemma 3.3 and
T3 = CHH ™, 187

For T4, we apply Schwarz inequality to get
To = Co g™ | + oo ]

The estimate of Ts requires hypothesis 3, the boundedness of ¢““ and Lemma 5.1,
T = C (fleg™ | + 1) &l

Finally, we apply hypothesis 3 and Lemma 4.3 to estimate Tg,
To = Cleg™ | &

Substituting all the above estimates into (5.21), with the monotonicity of ¢, we have
2

2 n+1 13
s (pF(¢> )) -
2 K (45;:“) p
< Co (g™ + 2]+ o) L= |+ oo (L + leg™ |+ 1 o) &+ co i s
< Co(leg —ehl”+ e+ el + g+ =& + 71" + o — &l + 82" + 122 +27) . (5:22)
where the last step follows from Young’s inequality.

Under the condition Ct < min(%, %, g, ‘7’7*), combining (5.5), (5.7) and (5.22), and summing it over n, we can obtain
(5.8) by discrete Gronwall's inequality, which further yields (5.9) by standard approximation results. O

H §n+1

2 Y 2
1 R G B o

3
2
1
_l’_

2
1 P
+ ¢n+1 ( o= E:,l) -

P n+l

¢n+1

I/

5.2. The main result of the Fully-LDG(k,2) scheme

Since the Fully-LDG(k,2) scheme contains more than one time levels, the following lemma is helpful in preparing the
initial solutions.

16
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Lemma 5.5. With the initial solution given in (4.19), the error estimates of the solutions at the first time level t! satisfy

lepl® + & 17 + &l + 162 1° + = l&alls + < &1 < cote 424, (523)

Proof. Combining (5.5), (5.7) and (5.22) with n = 0 leads to

2
1o v e 1] L 1] ol [
2“e¢“ +2 ”Sp“ +2 ¢;Eu +2H\/agc +T K(¢;1l) u
A\ 3 9
F e
T ey ) e [T
K(¢,})

13
= Cr (fleg]| + 4"+ 1) leg | + Cx (g + [&all + 04"+ 7) 8]
+Ct (flez || + W+ o) ] + € (fleg | + 1 +7) &
+Ct ([leg | + ] + &l +r7) &) + con
= co (e + 1" + 1617 + l&a]) +ex &)
e (el + 82 1” + &3 + l&a]*) + con®* + ¢z,
where t and ¢ are small enough. Then we get (5.23). O
Now we state the main theorem of the Fully-LDG(k,2) scheme.
Theorem 5.2. Let ¢; € [0, T; H*3),s € [0, T; (H*"2)?),u € [0, T; (H*"2)?), ¢ € L°(0, T; H**3) be the exact
solutions of (4.1)-(4.5), and let cy, Sy, Wn, ¢n, pr be the numerical solutions of the second-order time integration scheme with

initial discretization given as (4.19). If the finite element space is made up of piecewise tensor product polynomials of degree
at most k and assume

1
Ct < min(-, Z, B, %),
444 4
then the Fully-LDG(k,2) scheme satisfies

n em + §m71 n em + §m71
2 2 2 2 2 2 2k+2 4
67+ 16117 + llegI1° + 11§, +T§ R 2" I +T§ [ == Zs I><C (P +7%).vn>1  (524)
m=2 m=2
which further yields the optimal error estimate

2 2 2 2 ~ en 4 e 2 —oerter! 2 %+2 | 4
e l? + epl” + e I” + egll® +7 D N=——12+ 7 3 I=—=—I° < C (P + %) . vn> 1. (525)

m=2 m=2

Proof. We split the proof into four steps.
Step 1. The exact solutions satisfy, for any n > 1, the following forms

1_ 0 n+1 _ 4n n+1 n 1
p"tt—p ¢ ¢ U +u a1 ntl
(”7[ o)+ () = (5t + () + (s ). (5.26)
1 F ¢”+% -1 1
un+ —u" 14 3u — u” un+ + u®

P

-—. 0]+ .0
"2 T 2 2

un+1+un n+1+ n 1
- |~ .0 +D(u,0)+<pg,0>+<g§“,o), (5.27)
K(¢n+§) 2 2

¢n+lcﬂ+1 _ d’ncn sn+1 " CIH—] + ch
(ff,v :Ed <+,U>— Aav (¢n+%) %,U
T

1cM 4 en 1,1 1
L R A +<g§+2,v>, (5.28)

+
o~



L. Tian, H. Guo, R. Jia et al. Journal of Computational and Applied Mathematics 409 (2022) 114158

((¢"+%D(u"+%)>_l s““;-s“w) _ <(¢n+;)—1Me (u )¥ w)

n+1
+c 1
o (T ) (57w,
¢n+1 _d)n 1

1
e AR Sl A

where ¢, v € W,’f and 0, w € W’,j. Here g,. (l = 1,2, 3,4) and ¢ are local truncation errors which satisfy

n+%

Si <cr? |¢f| =ce? n=1.

Then we can get the error equations for n > 1

e”+1 _em en+1 e en-H + e n+l
(y”r",c> + (¢r"’¢ = (%c) + (gl 2,§>,

p un+1 —u" . P uln1+l _uz ol . w un+l +u" B uw n+1 +uh 0
¢n+% T ¢n+% T ’ K (¢n+%) 2 <¢n+2) 2 ’
h
1
N pF(¢n+%) u’ — un—] un+1 +u” B PF(¢Z+2) 3112 _ u;ll—1 n+l +uh P
o™ h 2 2 o 2 2

n+l+e npl
=D<20 < +2,0>,

<¢n+1cfn+1 _ ¢n (¢n+1 n+1 ¢;11C;11) U)
7 )

(e e e
() (L),
<(¢”+5D(u”+5)) 1 sn+1 §H s ( ( M))* n+12+ S",w)
() e ) )5
+D (W,w) + (§:+2,w) ,

n+1 _

e ey n n+1,% n =n 1 ny .n n\ =n n
%‘7’ 23( (¢ +1)Cf+1, (¢ +1) +1,% )+53(av(¢)Cf—av(¢h)ch)+§5-

Step 2. Multiplying (5.36) with e"+1 and then integrating it over £2, we obtain
(et = ehoes™) = 2 (Bla (6") —au (61") g ")

(Bau (&) (e = &™) ™) + 5 (Bau (85) (cf — &) . e5™")

(B(av (#") —a (#1)) & ™) + 7 (c5. €5)
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(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)
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Using the fact |¢f — &'| < |¢f' — ¢ff| and Lemma 2.1, we obtain
|
H A HE"+l el =5 lesl”

< Co (1] + 160 + lefl + a1 41+ |65
< cr (Je ! 1P+ e + 217 + 2|+ w2 4 o4) (538)

On the other hand, we have

e:;;r] — eg 1 Ref n+1 N ¢n+1) ( nHlE En+1,*)
T “ 20 1—¢o ? 2 1—¢0 h
1 Rcf n 1 R n n__ =n 2
2| T= g% +”1_¢0(1_¢h)(cf_ch) +Cr
< C(llegt I+ el + &2l + g2 + b+ <) (5.39)

n+1_ ¢en n+1, gn
Step 3. Taking ¢ = w in (5.32) and 0 = % in (5.33), we obtain

(V 8 5"“+s> p &g BUE) | n &V rE g7
T 2 n+3 T 2 2 2
(ph ’ <¢”+2>
or (a17F)
h n—1 n+1 n n+1 n 7
ul—ul g g g g
n 3 h u u Su u | _ T;, 5.40
n+1 2 2 2 ; l ( )
(o)
where
(g g (4 e gy
T 2 T 2 ’
S IRV AAR S i 1l D VR L GAb i s
K<¢Z+%> 2 2 <¢n+2> K<¢n+%> 2 2
Ty = P o |wow BT s (e wom BT e
¢)n+2 ¢n+% T 2 ¢n+2 T ’ 2 ’

Ty

T ﬂ+1 + np E+1 +E‘I‘;
2 2 ’
pF (¢;+%)
o (
(")
or (o)
( n+2>
h

n n—1
3wy —u,

2

Ju" — un—l

2

2 ’ 2

) ”+1+u En+1+$‘11

R T W+ &
2 2

3uh
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o (674) (o)
() )

ey GUAEN () BT 4E
S1 3 S2 ) ‘

Now we estimate T;,i = 1, - -- , 7 term by term. Using Lemma 5.1 and (5.39), we obtain
To< (e | + e | + ] + e+ r "+ 22) (g™ + &)
The estimate of T, requires hypothesis 3 and Lemma 2.1,

g+ &)
2

un+l+un §ﬁ+1+§ﬁ
2 ’ 2

3u" — unfl
2

Te

T;

T = C (W1 + (e | + [leG])

Using Lemma 5.1 and hypothesis 3 again, we get

n+l + Eu

T = C (e + llep | +n ) | === -

1
where we have applied the boundedness of ¢;+2. The estimate of T, follows from Lemma 3.3,

Ea & E &

T4 < Chk+l ”pn-H ”k+2 5 5

+ P

Now we estimate Ts. For the second part in Ts, we have

n+
<¢ 2) 3uj —up!
ntd 2
<(47)
n+2
(7)) g gy

e g &
2 ’ 2

n+1+nu §E+1+§Tl

<
- 2 2 2
(o)
<¢n+2) :
N ‘371“ —ny et Ay B4 E
<¢n+2) 2 2
n+
F 2
+ ’ ( ) ' — gt g BT 46
<¢n+2> 2 2 2

Thanks to (5.3) in Lemma 5.1, Lemma 4.3 and triangle inequality, we have

Ty < C (I + ] + ey | B

We estimate Tg by Lemma 4.3,

n+l+§

To = C (5™ + g ]) | =—
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Obviously,

su + gu

T, SCIZ(”S;?HH +H£§H)+ 2

Substituting the above equations into (5.40), we obtain
2

Y fent12 Y qeng2 1 P ent1 1 [ ® §n+1 +En
—_ - _l’_ — —_ - =
2 HEP ” 2 ||$p H 2 ¢:+% E“ 2 n77 H (¢;+2
1/2 2
pF (¢Z+%>
)

= Cr ([l + lepll + s + e+ 0t + =) (15| + D)

Eu +£
2

< cr (e 1P+ eI+ sl + e 1 + =1 + s )

n n—1
3w, —u,

2

1
£ +E

+7T 5

+Cr (e + b + el + e[| +n " +=2)

(¢”+2) 2

Here we also need the monotonicity of ¢ in the treatment of the fourth term on the left-hand side.

+Ct <||’g'{‘l||2 + & ||2) +Ct (W2 + %) t et (5.41)

P s ety ; : ;
Step 4. Taking v = *——¢ and w = == in (5.34) and (5.35) respectively and summing these two equations, we have

(Emt —&r) pnt! s”“ +£" i () o Ss ;’“ + &
( . , ( D( )) 5 ZR,, (5.42)
where

R = ((ng-ﬂ TI?)Q))’:H $n+]+$ ) ( n+1 f)en+1 SC"H-F&")

T 2

_((62“ &) q S"“Jrs) ( o' ¢h)5” E”“+$>

2
+( n+1 n §n+12+5,: ),
N
() o) ) T 1)) ),

+1
R3 = —D n+1+77c 2 +§g>,

2
+2 n+ M\ Pt gl gl ) ntd) el et gL 4 gl
D 3 ) ) + on M, (u, ) , ) s

41 n+l+e $n+l+é_-n ntd $n+1+€:n ael €n+1+gn
o= (IR B () AR (e 87 48)

R4

2 2 2

1\ Mg en et + ¢t gnt+l n
o) e )
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Now we estimate Ri(i = 1, ---,6) term by term. The estimate is similar to that in Section 5.2 in [26]. So we skip the
same details and only state the estimates.

Ry < C(H g™ |+ llep | + szl + s~ + =) (e + &)

E &
R I |+ el + ey + e +h) [ Bt
Ry < G [t SHTH F A |l &2“;52 H
Re= C(fer ] + Jor] +ney | B
o< C(Jsr |+ 2]+ +22) (00| + 2] + ¢ Ez”H |

Ro = C (& + & + ™ | + lleb | +n) (e + &z ) -

Substituting the above equations into (5.42) and using Young’s inequality, we have

s e T G e

< o (I 1P+ ey + e + e+ e+ & 1P+ &)
n+2 n+2M 12 n+1+£s
e (s o )

where the treatment of the second term on the left-hand side is similar to (4.54). Taking ¢ = % combining (5.38), (5.41)
and (5.43) and summing it over n, we obtain

+Ct (W2 4+ 1Y), (5.43)

2 2

H n+1” s ”5+1” + 1 n+12+1 o 1 +7T - w &g
21\ gp2 8 iVttt 2
h
1/2 2
1
n oF <¢:+7> ome m+1
+r2 3uy zuh 2_|_§u
m=1 (¢m+2>
77 & +1 m+2 -1/2 m+1+,g.s
= (atn (™)) B
<CTZ<||€ P el et e+ e + et + gl
n
wer ) (e P+ & + en17) + ¢ (42 + %) + i, (5.44)
m=1
where
) 2
1 1 0
:2||e;||2+’z’||§;||2+2"/;;53 + = ;E& < C (B2 4 %), (5.45)
h

We can prove (5.45) with Lemma 5.5. Under the condition Ct < min(%, %, %, ‘%*), we can get (5.24) by applying discrete
Gronwall’s inequality to (5.44).
Finally, by using the standard approximation result, we obtain (5.25). O
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Table 1
Accuracy test for the Fully-LDG(k,r)(r = 1,2) scheme of the wormhole propagations.
Time scheme N Ilp — pull Order llu — up| Order llcr = ¢l Order | — dnll Order
16 8.21E-3 - 5.60E—3 - 3.70E-3 - 3.56E—5 -
First order 32 2.38E-3 1.79. 1.46E—-3 1.93 1.13E-3 1.71 1.01E-5 1.81
64 7.77E—-4 1.61. 4.01E—4 1.86 4.33E—-4 1.38 3.45E—6 1.55
128 3.15E—4 1.30. 1.29E—4 1.63 1.97E—-4 1.14 1.46E—6 1.24
16 7.69E—-3 - 5.78E-3 - 3.33E-3 - 3.45E-5 -
Second order 32 2.52E-3 1.61 1.58E—3 1.87 8.37E—4 2.01 8.68E—6 1.99
64 6.54E—4 1.95 4.00E—4 1.98 2.09E—4 2.00 2.18E—6 2.00
128 1.52E—4 2.10 9.87E-5 2.01 5.22E-5 2.00 5.45E—-7 2.00

6. Numerical experiments

In this section, we perform several numerical examples to illustrate the accuracy and capability of the fully-discrete
schemes (4.14)-(4.25) for wormhole propagations.

6.1. Accuracy test

Example 6.1. We solve (2.1)-(2.4) and the parameters are taken as
dn =102, /=0, &, =0, K =1, T=0.2,
a=k=k=u=1f=(=0 p=1,
ap=0.5, ps =10, y = 1. (6.1)
The exact smooth solutions are given as

p(x, t) = e cos(2wx) cos(2my), u(x,t) = e ‘[sin(27wx)cos(27y); cos(2x)sin(2wy)],
o(x, t) = 0.6 + % sin(27x) cos(27y), cr(x,t)=0.5+ 0.1e~" sin(2mx) sin(27y). (6.2)

We can calculate the initial conditions and the right hand sides accordingly. Piecewise linear tensor product polynomials
are employed in the LDG scheme. We perform accuracy verifications on uniform meshes with N x N elements over the
computational domain 2 = [0, 1] x [0, 1], and compute the numerical approximations at T = 0.2. The time step is
takenast =0.1h, h= % Periodic boundary condition is used in this numerical example. The numerical results for the
error in I? norm and corresponding order of accuracy are presented in Table 1. From the table, we can observe optimal
convergence rates, which verifies the theoretical results.

6.2. Wormhole propagation problem

This is a real wormhole propagation scenario in petroleum engineering. The computational domain is £2 = [0, 0.2 m] x
[0, 0.2 m]. Initial concentration of acid and initial porosity of rock in this domain are set to be ¢¢c = 0 and ¢ = 0.2,
respectively. The acid flow is injected to the porous media from the left boundary with a velocity of 0.01 m/s and drained
out of it from the right boundary with the same velocity. The velocity is defined as u = [0.01, 0]7 m/s. Top and bottom
boundary conditions are set to be periodic. The concentration of influx acid is 1 mole/m?. To observe the wormhole
propagation, we set two square singular areas with high porosity and permeability on the left boundary with width
0.01 m: one is 0.05 m above the bottom with the porosity of 0.4, and the other 0.1 m above the bottom with the porosity
of 0.6. The permeability of the two entries is determined by (2.7) which is about 1071 m? and 10~!! m?, respectively.

Example 6.2. A real wormhole propagation scenario in petroleum engineering is studied in this example. The parameters
are taken as

dn =107, =0, a =0, Ko=10""m? T=50s,

o = 100 kg/mol, k. =1m/s, k; =10 m/s,

n=10"%Pas, fi=f,=0, p= 1000,

ap=2m"', p;=2500kg/m?>, y =0.01. (6.3)

In this example, the Fully-LDG(k,2) is employed, and the time step is chosen as T = 0.2h with uniform mesh size h.

The LDG discretization with linear polynomial is used in this example. The contour plots of concentration of acid, porosity

of rock and pressure on a uniform mesh with 80 x 80 elements at different time are shown in Fig. 1. We can clearly see
the wormhole generates and grows with time.
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(a) cppat T=5 (b) ¢y, at T =25 (¢) ¢pp, at T =50

(d) ¢p at T =5 (e) ¢p, at T =25 () ¢p at T =50

P P
100300 100600
100200 100400

~ 100100 100200
100000 100000
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(G) up at T =5 (k) up at T'=25 1) up, at T =50

Fig. 1. Example 6.2: Numerical solutions for concentration, porosity, pressure and velocity along x direction at different time. The computational
mesh is composed by 80 x 80 elements. The Fully-LDG (k,2) scheme (4.20)-(4.25) is employed with t = 0.2h.
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7. Concluding remarks

In this paper, we applied the LDG spatial discretization coupled with two time integrations to wormhole propagation
with Darcy-Forchheimer model. We applied a special way for the time integration of the porosity, leading to physically
relevant numerical approximations and controllable growth rate of the porosity. We also proposed two suitable time
integrations up to second-order accuracy. Moreover, we obtained the stability of the two schemes and proved the optimal
error estimates for the pressure, velocity, porosity and concentration in different norms.
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