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In this paper, we investigate the numerical algorithms to capture the blow-up time 
for a class of convection-diffusion equations with blow-up solutions. The numerical 
methods for such equations may not be straightforward to construct due to the lack 
of stability. Moreover, the blow-up time is more difficult to capture since we cannot 
distinguish whether the blow-up is physical or is due to the instability of the numerical 
methods. In this paper, we consider a class of convection-diffusion equations with positive 
blow-up solutions and the blow-up is due to the formation of δ-singularities. We use 
the positivity-preserving technique to enforce the L1-stability and the L2-norm of the 
numerical approximations to detect the blow-up phenomenon. We propose two ways to 
define the numerical blow-up time and prove their convergence to the exact one. As 
an application, we extend this method to calculate when the shock appears for scalar 
hyperbolic conservation laws. Three model problems will be discussed and tested to 
confirm the convergence numerically. Finally, the method can also be used to test whether 
an equation has a blow-up solution in finite time.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

For certain convection-diffusion partial differential equations the exact solutions may become unbounded during time 
evolution. The time T at which infinity appears in the exact solution is called the blow-up time. Blow-up theory is one of the 
most important contents in the study of partial differential equations and it has many applications in astrophysics, chemistry 
and environmental engineering, etc. It mainly describes the problems of heat accumulation and material advection. There 
are two basic mechanisms to trigger the blow-up for convection-diffusion equations: the superlinear growth of the source 
and the strong advection of the flow. One of the most interesting and challenging topics in the blow-up theory is to capture 
the blow-up time.

The semi-linear heat equation is one of the most significant equations that yields blow-up solutions. In 1963, Kaplan 
[30] first proposed some sufficient conditions for the blow-up phenomenon. In fact, if the source is superlinear, then the 
exact solution will grow up to infinity during time evolution. To capture the blow-up time, most theoretical works use 
the method of upper and lower solutions to find an interval containing the exact blow-up time, e.g. [30,17,18]. However, 
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it is not straightforward to calculate the exact blow-up time directly. As an alternative, numerical methods can be used 
to approximate the exact blow-up time. There are many works discussing the numerical blow-up time in the literature. 
In 1975, Nakagawa [36] considered a finite difference (FD) discretization of the semi-linear heat equation. The basic idea 
is to define a sequence of numerical blow-up time and prove the convergence to the exact one during mesh refinement. 
This seems to be the first algorithm that can compute the blow-up time numerically. Later, the idea was generalized in 
[1,4,9–11,22]. Moreover, finite element methods [24,38,37] were also proposed, yet no theoretical support was available.

Besides the above, some convection-diffusion equations can also yield blow-up solutions, such as the pressureless Euler 
equation and the chemotaxis model, etc. These models are used to describe some transport phenomenon, and the density 
functions are always nonnegative. Different from the semilinear heat equations that the blow-up is due to the source, such 
models yield δ-singularities during finite time due to the strong advection.

The system of pressureless Euler equations reads

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u) = 0,
(1.1)

where ρ is the density function and u is the velocity. System (1.1) is a weakly hyperbolic system and both eigenvalues 
of the Jacobian are u. The model can be viewed as a simplification of the corresponding usual system of Euler equations 
when the effects of pressure are neglected. The system may also arise modeling the collision of sticky particles, and if 
the particles are stuck together, then δ-functions appear in the density. During the last three decades, there were many 
theoretical contributions to the system, e.g. [5,16,26,47]. Moreover, numerical methods were also studied by several authors 
[6,7,21,49]. In [7], the authors added an artificial viscosity and built a diffusive scheme. In [6], Berthon et al. investigated 
a relaxation scheme for the pressureless gasses system. Gosse and James [21] analyzed the upwind schemes and the Lax-
Friedrichs schemes. In [49], the high-order discontinuous Galerkin (DG) methods with the bound-preserving technique [50]
were proposed to obtain physically relevant numerical approximations.

Another commonly used model that yields blow-up solutions in finite time is the following Keller-Segel (KS) chemotaxis 
model [34]

ut − div(∇u − χu∇v) = 0,

vt − �v = u − v.
(1.2)

This model represents the evolution of a cell density u(·, t) in the presence of a chemical substrate v(·, t). The boundary 
condition is set to be homogeneous Neumann boundary condition

∇u · n = ∇v · n = 0, (1.3)

where n is the outer normal of the boundary ∂�. The theory and mathematical model of chemotaxis can be traced back to 
the pioneering work of Patlak [39] in the 1950s and Keller and Segel [31–33] in the 1970s. Chemotaxis is the highly nonlin-
ear terminology which indicates movements by cells in reaction to a chemical substance, where cells approach chemically 
favorable environments and avoid unpleasant ones [34]. One of the most significant properties of chemotaxis behavior is 
the ability to display cell aggregation [3]. This phenomenon has shown to result in finite time blow-up under certain initial 
conditions for problems in two and three space dimensions [15,19,25,35], while it has proved that no blow-up occurs for 1D 
problems [35]. Thus, capturing the blow-up behavior of the numerical solution is an interesting and challenging task since 
we have to test whether a spike in the numerical approximation is a δ-function or not. Some existing numerical methods for 
solving chemotaxis equations provide high-resolution and positivity-preserving schemes, including finite volume methods 
[2,15], finite element methods [40,43], flux-corrected finite element methods [44], and DG methods [12,13,34,23,14].

There are not too many works discussing the blow-up time of the chemotaxis equations. Budd [8] used a high-order 
moving mesh method to obtain a careful resolution of the collapse behavior. The blow-up time T was estimated to high 
precision by computing until u(0, t∗) ≈ 1021 and approximating T by t∗ , which means that the blow-up occurs when the 
numerical solution is large enough. Li [34] numerically demonstrated how to find the approximate blow-up time by using 
the L2-norm of the numerical solutions. However, the above works do not have theoretical evidence to support the results.

In this paper, we consider general convection-diffusion equations with blow-up solutions. We assume the exact solution 
to be positive and the Lq (q > 1) norm of the exact solution becomes unbounded during finite time. To capture the exact 
blow-up time is not an easy task since we have no idea about the blow-up rate, blow-up set, etc, as this information may 
not be available. The only information we can use is the error estimates, and this estimate fails to work if the time is close 
to the blow-up time. Therefore, the numerical approximations are not reliable when the blow-up is about to appear. In this 
paper, we will extend upon [34] and define a special numerical blow-up time for general convection-diffusion equations 
with blow-up solutions, and theoretically prove its convergence to the exact blow-up time during mesh refinement under 
some reasonable assumptions. To construct each numerical blow-up time in the sequence, we first apply the positivity-
preserving technique to the proposed scheme to guarantee the L1 stability of the numerical approximations. Then we 
compute the numerical approximations on the meshes with different refinement levels n = 1, 2, 3, etc. Subsequently, we 
trace the Lq (q > 1) norms of the numerical solutions with respect to time. If the terminal time t is small, the exact solution 
is smooth, then the Lq-norms of the numerical approximations should be almost identical thanks to the error estimates. On 
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the other hand, if t is large, the exact solution may contain large gradients. Then a sufficiently refined mesh is necessary to 
resolve the problem. Therefore, the Lq-norms of the numerical approximations under two different resolutions may deviate 
at some time t� . Then the numerical blow-up time for the numerical approximation on the coarse mesh is expected to be 
t� . Unfortunately, it is impossible to calculate t� exactly since it is not straightforward to predict the difference of the Lq-
norms of the numerical approximations. Therefore, we define the numerical blow-up time, denoted as ηn , as the smallest 
time that the difference between the two Lq-norms is equal to some threshold cn . It is easy to see that the smaller the 
cn , the smaller the ηn . If cn is too small, say cn is less than the initial error between the numerical and exact solutions, 
then ηn = 0, and this is definitely not the numerical blow-up time we expected. On the other hand, if cn is too large, ηn
may be larger than T . Numerical experiments also verify the facts given above. Therefore, we have to choose the threshold 
cn carefully. In this paper, we will propose two ways to choose cn . The basic idea is to consider the series 

∑∞
n=1 cn . We 

will show that if the series 
∑∞

n=1 cn is convergent, i.e. the threshold is not too large, then lim inf
n→∞ ηn ≤ T . To demonstrate 

the other direction of the inequality, we choose the decay rate of cn to be strictly less than the desired accuracy of the 
numerical scheme. Hence the numerical blow-up time cannot be the one when the solution is still smooth, i.e. the error 
estimate is still valid. Therefore, it is possible to use p-series 

∑∞
n=1

1
np and geometric series 

∑∞
n=1

1
mn with suitable p and 

m for 
∑∞

n=1 cn . Thanks to the selection of cn , we have the convergence of a subsequence of the numerical blow-up time. 
Unfortunately, it is not straightforward to prove the convergence of the whole sequence, since we have no information about 
the blow-up rate, and we will discuss this in the future. Finally, the proposed blow-up time requires several levels of mesh 
refinement, and the computational cost is large if we do not apply suitable adaptive method, such as the moving mesh 
method given in [8]. However, the main target of this paper is to test the convergence of the proposed numerical blow-up 
time, not the good strategies for h-adaptivity. Therefore, we only use uniform mesh in all the numerical experiments. With 
suitable mesh adaptation, we can only increase the level of mesh refinement near the blow-up sets, leading to significantly 
reduced computational cost. We do not expect any difficulties in extending the algorithm to the numerical methods with 
mesh adaptations.

The above algorithm can be used to predict when the δ-function appears. If the exact solution may develop a discontinu-
ity, such as nonlinear hyperbolic equations, the derivative of the numerical approximation can be considered as a δ-function. 
As an extension, we discuss the following Burgers’ equation

ut + (
u2

2
)x = 0, (1.4)

and use the algorithm proposed above to compute when the shock appears. Different from the procedure discussed above, 
the derivative of the numerical approximations may not be positive, and the positivity-preserving technique does not work. 
To obtain bounded derivatives, instead of pursuing the L1 stability, we develop the total variation boundedness (TVB) of the 
numerical approximations. Thanks to the TVB technique [45,46], we can extend the proposed algorithm to compute when 
the shock appears by calculating the blow-up time of the derivative of the numerical solutions.

The organization of this paper is as follows. In Section 2, we demonstrate how to define the numerical blow-up time 
and its convergence to the exact one for general convection-diffusion equations with blow-up solutions. Some reasonable 
assumptions on the exact solutions and numerical approximations will be made. In Section 3, we discuss the pressureless 
Euler equations and the chemotaxis model in details and present how the assumptions made in Section 2 are satisfied. 
For problems with discontinuous solutions, we extend the algorithm to calculate when the shock appears in Sections 4. In 
Section 5, numerical experiments are given to demonstrate the effectiveness of the methods. Some concluding remarks are 
given in Section 6.

2. Blow-up time

In this section, we proceed to construct the sequence of numerical blow-up time and prove its convergence to the 
exact one T . For simplicity, we consider DG methods in this section. Actually the idea also works for finite volume and FD 
methods. We consider the problem in one space dimension, and denote � to be the computational domain with �h = {K }
being a uniform partition of �. The extension to problems in two space dimensions are similar. Suppose u is the exact 
solution which may yield δ-functions during time evolution and un

h = uh(x, tn) is the piecewise polynomial approximation 
at time level t = tn . Moreover, we denote C to be a generic positive constant that can take different values at different 
occurrences, but it must be independent of the mesh size h. First of all, we would like to make the following assumptions 
of the exact solution u and its numerical approximation uh .

1. The exact solution u is non-negative and 
d

dt

∫
�

u(x, t) dx = 0.

2. The exact solution u is smooth and bounded for t < T and

lim
t→T− ‖u‖Lq = ∞,

where ‖ · ‖Lq is the standard Lq-norm on the whole computational domain (1 < q ≤ ∞). For problems with δ-functions, 
we choose q = 2.
3
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3. The numerical approximation uh ≥ 0 and 
∫
�

un
h dx =

∫
�

u0
h dx, for all n ≥ 0.

4. For any ε > 0, there exists Hε > 0 such that for any h < Hε and tn < T − ε , we have ‖u −uh‖Lq ≤ Chk+1 for some k ≥ 0, 
where C does not depend on h but may depend on ε , Hε , the regularity of the exact solution and time t . In general, 
for finite element methods, we choose k to be the polynomial degree used in the finite element space.

Remark 2.1. The Hypothesis 1 is satisfied by general convection-diffusion equations with homogeneous Neumann boundary 
conditions. Actually, for nonhomogeneous Neumann boundary conditions, we do not need the total mass to be a constant 
but bounded within the target time period. The Hypothesis 2 gives the particular blow-up phenomenon we are interested in 
and defines the exact blow-up time T . Hypothesis 3 requires the positivity-preserving technique and it yields the L1 stability 
of the scheme. Actually, we can use other stability to substitute the L1 stability. Finally, the Hypothesis 4 is the standard 
error estimate for general nonlinear convection-diffusion equations with smooth exact solutions. The four Hypotheses are 
the basic assumptions we need to study the blow-up phenomenon.

The above assumption is for fully discretized schemes. To obtain the numerical approximations between tn and tn+1, we may 
consider linear function interpolation and define uh(x, t) = θun

h + (1 −θ)un+1
h for tn ≤ t ≤ tn+1 with θ = (tn+1 −t)/(tn+1 −tn). 

Then it is easy to check that uh(x, t) defined above satisfies the last two hypotheses for some k.
Next we proceed to define the numerical blow-up time. Notice that it is impossible to obtain the error estimates between 

the numerical and exact solutions under the Lq-norm near t = T due to Hypothesis 2. Therefore, we need to construct a 
sequence of numerical blow-up time that converges to the exact one during mesh refinement. To construct each numerical 
blow-up time, we would like to use the information of two numerical approximations under different resolutions. We 
compute the Lq-norms of the numerical solutions with respect to time. Due to Hypothesis 4, the Lq-norms should be 
almost identical if t is small while we anticipate a significant difference if t is large. Therefore, we say the numerical blow-
up for the approximation under the coarse mesh occurs if the difference between the Lq-norms of the two simulations is 
large enough. For simplicity, we consider uniform meshes, and the whole algorithm in one space dimension is given below.

1. Divide the computational domain into N0 cells.
2. Compute the Lq-norm of the numerical approximation uh with respect to time t , denoted as S(N0, t). In general, we 

take q = 2.
3. Suppose we have computed S(N, t) then equally split each cell into two subcells, repeat the simulation on the new 

mesh and calculate S(2N, t).
4. Let N = N02n for some positive integer n, where n is the level of mesh refinement. Use S(2N, t) as reference and 

calculate the numerical blow-up time ηn as

ηn = inf{t ≥ t� : S(2N, t) ≥ S(N, t) + D(n)}, (2.1)

where t� is some known lower bound of the blow-up time and D(n) > 0 is the threshold in defining the numerical 
blow-up time. If we do not have any information of the lower bound of the blow-up time, it is possible to choose 
t� = 0.

5. Repeat steps 3 and 4, until ηn does not change much during mesh refinement.

Remark 2.2. In step 4, S(2N, t) ≈ S(N, t) if t is small due to the error estimates, while we anticipate S(2N, t) >> S(N, t)
if t is close to the exact blow-up time T . To get (2.1), we can select the first time level, denoted as tm+1, such that the 
inequality in (2.1) is satisfied. Then we anticipate ηn ∈ [tm, tm+1]. We can either compute the S(N, t) and S(2N, t) for all 
t ∈ [tm, tm+1] and select the t such that the equal sign in (2.1) has achieved or simply take ηn = tm+1. The former way is not 
difficult to compute due to the linear interpolation we used in the time interval and S(N, t) and S(2N, t) are both quadratic 
functions in t . In practice, we can simply choose the latter way, as the error made in computing ηn is less than �t , the time 
step size, and this error does not affect the convergence as �t → 0 during mesh refinement.

Remark 2.3. In (2.1), we cannot prove the existence of ηn for all n. For simplicity of presentation, we assume ηn = ∞ if it 
does not exist, i.e. S(2N, t) < S(N, t) + D(n) for all t > 0.

Before we prove the convergence of the numerical blow-up time ηn , we would like to demonstrate the following lemma.

Lemma 2.1. Suppose the computational domain � is divided into N uniform cells and the Hypothesis 3 is satisfied, then there exists 
C > 0 such that S(N, t) = ‖uh‖Lq ≤ Ch

1
q −1 , where h = 1 and 1 ≤ q ≤ ∞.
N
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Proof. By the norm equivalence in finite dimensional spaces, we have for 1 < q < ∞

‖uh‖qLq =
∑
K∈�h

‖uh‖qLq(K ) ≤ C
∑
K∈�h

h1−q‖uh‖qL1(K )
≤ C

⎛⎝∑
K∈�h

h
1
q −1‖uh‖L1(K )

⎞⎠q

,

then

‖uh‖Lq ≤ C
∑
K∈�h

h
1
q −1‖uh‖L1(K ) = Ch

1
q −1‖uh‖L1 .

By Hypothesis 3, ‖uh‖L1 = ∫
�
uh dx is a constant that does not depend on t or h. The proof for q = ∞ is similar, so we omit 

it. �
For problems in d space dimensions, we can obtain similar results following the same lines. Therefore, we only state the 

lemma below without proof.

Lemma 2.2. Suppose the computational domain is divided into Nd uniform hyperrectangular cells and the Hypothesis 3 is satisfied, 
then there exists C > 0 such that S(N, t) = ‖uh‖Lq ≤ Ch

d
q −d, where h = 1

N .

Remark 2.4. The above two lemmas also work for FD methods. Actually, let {x j}Nj=1 be the uniform distributed grid points 
with mesh size h and {u j}Nj=1 be the numerical approximation at the grid points. We denote I j = [x j − h

2 , x j + h
2 ] to be the 

cells and it is easy to check ∪I j = �. Finally, we define uh(x) = u j if x ∈ I j and ‖uh‖qLq = h 
∑N

j=1 u
q
j . Then we can follow the 

proof in Lemma 2.1 to obtain the conclusion for FD methods. For the rest of this section, we can also use these definitions 
to extend the results to FD methods.

To prove the convergence of the numerical blow-up time, we need two lemmas.

Lemma 2.3. Suppose the hypotheses 1-4 are satisfied, and

∞∑
n=1

D(n) < ∞, (2.2)

then there exists a subsequence {ηnk} ⊆ {ηn} such that ηn ≤ T .

Proof. If false, then there exists M > 0 such that t� > T for all � ≥ M . By (2.1), we have

S(N02
�+1, t) < S(N02

�, t) + D(�), ∀ t� ≤ t ≤ T , � ≥ M.

We sum up over � to obtain

n∑
�=M

S(N02
�+1, t) <

n∑
�=M

S(N02
�, t) +

n∑
�=M

D(�),

which further implies

S(N02
n, t) < S(N02

M , t) +
∞∑

�=M

D(�), ∀ n > M.

By Lemma 2.1 with h = 1
N02M

, we have S(N02M , t) ≤ C . Using the fact that 
∞∑
n=1

D(n) < ∞, we can obtain S(N02n, t) ≤ C for 

all n > M and t� ≤ t ≤ T . We will show that this contradicts Hypothesis 2 and finish the proof. Actually, if Hypothesis 2 is 
still valid, then there exists T0 ≥ t� such that ‖u(t)‖Lq > 2C , for all t > T0. Given t > T0, we take n > M to be sufficiently 
large, with h being sufficiently small, such that ‖u − uh‖Lq ≤ C by Hypothesis 4. Then by triangle inequality, we have

2C < ‖u(t)‖Lq ≤ ‖uh‖Lq + ‖u − uh‖Lq = S(N02
n, t) + ‖u − uh‖Lq ≤ 2C,

which is a contradiction. Therefore, Hypothesis 2 is no longer satisfied.
By Hypothesis 4 and triangle inequality, we have ‖u(t)‖Lq ≤ C , for all t� ≤ t < T , which contradicts Hypothesis 2. �
5
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Lemma 2.3 has a straightforward corollary.

Corollary 2.1. Suppose the hypotheses 1-4 are satisfied, and the numerical blow-up time is defined as (2.1)with 
∞∑
n=1

D(n) < ∞, then

lim inf
n→∞ ηn ≤ T .

Now we proceed to discuss the other direction of the above inequality and the result is given below.

Lemma 2.4. Suppose the hypotheses 1-4 are satisfied, and the numerical blow-up time is defined as (2.1)with

D(n) ≥ C2−k̃n (2.3)

for some k̃ < k + 1 if n is large, then

lim inf
n→∞ ηn ≥ T .

Proof. If false, there exists ε > 0 such that

lim inf
n→∞ ηn = T − 2ε.

Without loss of generality, we assume

lim
n→∞ηn = T − 2ε.

Then we have the following two facts:

1. There exists Mε > 0 such that for any n > Mε , we have ηn < T − ε;
2. By hypotheses 2 and 4, there exists Hε such that for any h < Hε and t < T − ε , we have ‖u − uh‖Lq ≤ Chk+1.

Take n to be sufficiently large such that n > Mε and h = 1
N = 1

N02n
< Hε , we have

|S(2N, t) − S(N, t)| ≤ Chk+1 = C

2n(k+1)
, ∀ t� ≤ t < T − ε.

Here we can take t ≥ η� because ηn ≥ η� and hence η� ≤ T − 2ε < T − ε . By (2.1), we have

S(2N, ηn) − S(N, ηn) = D(n). (2.4)

Therefore,

C

2k̃n
≤ D(n) = S(2N, ηn) − S(N, ηn) ≤ |S(2N, ηn) − S(N, ηn)| ≤ C

2n(k+1)
, (2.5)

which is a contradiction if n is large. �
Remark 2.5. We can use the idea given in Remark 2.2 to get the identity (2.4). In practice, it is not necessary to compute 
ηn exactly, and we can simply use the time level as the numerical blow-up time, as the error is within �t , the time step 
size, and such an error does not affect the convergence as �t → 0.

Remark 2.6. Based on the proof given above, we have to choose k̃ to be as small as possible to observe contradiction for 
smaller n. Based on Corollary 2.1, we need to choose k̃ > 0. Therefore, in practice, we need to choose k̃ to be a small positive 
constant. Numerical experiments in Section 5 also support such expectation.

Now, we can demonstrate the main theorem.

Theorem 2.1. Suppose the conditions in Lemmas 2.3 and 2.4 are satisfied, then

lim inf
n→∞ ηn = T .

Proof. The conclusion follows from Corollary 2.1 and Lemma 2.4. �

6
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Following the proof given above with some minor changes, we can obtain the theorem for a more general case.

Theorem 2.2. Suppose the exact solution satisfies ‖u(·, t)‖ ≤ C for all t ≥ 0 under some norm ‖ · ‖ and Hypothesis 2. The numerical 
approximation uh satisfies ‖uh(·, t)‖ ≤ C for all t ≥ 0 and Hypothesis 4. Moreover, assume the numerical blow-up time is defined as 
(2.1), with D(n) satisfying (2.2) and (2.3), then

lim inf
n→∞ ηn = T .

Remark 2.7. Actually, Theorem 2.1 is a special case of Theorem 2.2 with ‖ · ‖ = ‖ · ‖L1 . Theorem 2.1 will be used for the 
blow-up of the primitive functions while Theorem 2.2 will be used for the blow-up of the derivative of the primitive 
functions.

Now, we demonstrate two ways to define the numerical blow-up time

1. The first approach is given as

ηn = inf{t ≥ t� : S(2N, t) ≥ S(N, t) + C

N0mn
}, (2.6)

with 1 < m < 2k+1. In most of the numerical experiments we take k = 1. Therefore, 1 < m < 4 would be the suitable 
choices.

2. Another approach is to define the blow-up time as

ηn = inf{t ≥ t� : S(2N, t) ≥ S(N, t) + C

N0nm
}, (2.7)

with m > 1. Clearly, D(n) = C
N0nm

satisfies (2.2). Moreover, notice the fact that nm <<mn if n is large, we can show that 
the conditions given in Theorem 2.1 are all satisfied.

3. Numerical discretizations

In this section, we construct the numerical methods for the pressureless Euler equations and the chemotaxis model to 
be used in this paper.

3.1. The discontinuous Galerkin methods for pressureless Euler equations

In this subsection, we apply DG methods to pressureless Euler equations subject to periodic boundary conditions in one 
space dimension. First we rewrite (1.1) as

wt + f(w)x = 0, t > 0, x ∈ �,

w =
(

ρ
m

)
, f(w) =

(
m

ρu2

)
,

(3.1)

where m = ρu, ρ is the density and u is the velocity. Let τ be the time step size, Nx be the number of cells, and {I j}, 
j = 1, ..., Nx be a uniform partition of � with h being the mesh size and I j = [x j− 1

2
, x j+ 1

2
]. The finite element space is 

defined as

Vh = {v : each of its components vi|I j ∈ Pk(I j),1 ≤ j ≤ Nx},
where Pk(I j) denotes the space of polynomials in I j of degree at most k. The DG scheme for (3.1) is to find wh ∈ Vh such 
that for any vh ∈ Vh

((wh)t,vh) j = (f(wh), (vh)x) j + f̂ j− 1
2
v+
h | j− 1

2
− f̂ j+ 1

2
v−
h | j+ 1

2
, (3.2)

where (w, v) j =
∫
I j
w · vdx, and v−

h = vh(x
−
j+ 1

2
) denotes the left limit of the vector vh at x j+ 1

2
. Likewise for v+

h . Moreover,

f̂ j+ 1
2

= f̂(wh(x
−
j+ 1

2
),wh(x

+
j+ 1

2
))

is the numerical flux. If we take vh = 1 in (3.2) and Euler forward time discretization, we have the equation satisfied by the 
numerical cell averages
7
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wn+1
j = wn

j + τ

h
(̂f j− 1

2
− f̂ j+ 1

2
), (3.3)

where wn
j is the numerical cell average is cell I j at time level n. Moreover, we also denote wn

j to be the numerical approxi-
mation in cell I j at time level n. Physically, the density is positive and the velocity satisfies the maximum principle. In [49], 
the admissible set was defined to be

G =
{
w =

(
ρ
m

)
: ρ > 0, aρ ≤m ≤ bρ

}
,

where

a = minu0(x) and b = maxu0(x), (3.4)

with u0 being the initial velocity. Let αi , i = 0, · · · , M be the Legendre Gauss-Lobatto quadrature weights for the interval 
[− 1

2 , 12 ] such that 
∑M

i=0 αi = 1, with 2M − 3 ≥ k, and denote the corresponding Gauss-Lobatto points in cell I j as x j
i , then 

the Gauss-Lobatto quadrature yields

wn
j =

M∑
i=0

αiw
n
j (x

j
i ).

The following theorem was demonstrated in [49].

Theorem 3.1. Suppose wn
h(x

j
i ) ∈ G in (3.3), then with the Godunov numerical fluxes and under the CFL condition

λ = τ

h
<

1

2max(| a |, | b |) ,

where a and b are defined in (3.4), we have wn+1
j ∈ G, for all j = 1, · · · , Nx.

Thanks to the above theorem, we have wn+1
j ∈ G . However, the numerical approximation wn+1

j may not be in G . There-
fore, a bound-preserving limiter is necessary to find an updated one w̃ j ∈ G . For simplicity, we drop the superscript n + 1
in the following procedure.

1. Set up a small number ε = 10−13.
2. Let ρ j be the numerical approximation of the density in cell I j . If its cell average ρ j > ε, then proceed to the following 

steps. Otherwise, take w̃ j = w j as the numerical solution and skip the following steps.
3. Modify the density: Compute mj = mini ρ j(x

j
i ), then we take

ρ̃ j = ρ j + θ(ρ j − ρ j)

with

θ = ρ j −min(ε,ρ j)

ρ j −mj

as the new numerical density, also denoted as ρ j .

4. Modify the velocity: Define q j
i = w j(x

j
i ) and

Gε =
{
w =

(
ρ
m

)
: ρ ≥ ε,a − ε ≤ m

ρ
≤ b + ε

}
.

If q j
i ∈ Gε , then take θ j

i = 1. Otherwise, take

θ
j
i = ‖ w j − s ji ‖

‖ w j − q j
i ‖

,

where ‖ · ‖ is the Euclidean norm, and s ji is the intersection of the line

s(t) = (1 − t)w j + tq j
i , 0 ≤ t ≤ 1,

and

∂Gε =
{
w =

(
ρ
m

)
: ρ ≥ ε,

m

ρ
= a − ε or b + ε

}
.

Define θ j = mini=0,...,M θ
j , and use w̃ j = w j + θ j(w j −w j), as the updated approximation.
i

8
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Remark 3.1. With the bound-preserving technique we can obtain positive solutions, hence Hypothesis 3 is satisfied. Hypoth-
esis 4 was also verified by numerical experiments in [49].

The above work is for Euler forward time discretization. For high-order ones, we consider the strong stability preserving 
(SSP) time discretizations [20,41,42] for the ODE system ut = Lu. The second order SSP Runge-Kutta method is given as [20]

u(1) = un + τ L(un),

un+1 = 1

2
un + 1

2

(
u(1) + τ L(u(1))

)
.

(3.5)

The third order SSP Runge-Kutta method is given as [42]

u(1) = un + τ L(un),

u(2) = 3

4
un + 1

4

(
u(1) + τ L(u(1))

)
,

un+1 = 1

3
un + 2

3

(
u(2) + τ L(u(2))

)
.

(3.6)

3.2. The FD scheme for chemotaxis model

According to Appendix B, the chemotaxis model in two space dimensions (1.2) under the polar coordinates can be 
rewritten as follows

ũt = �ũ −
(
ũ

r

)
r
− χ

(
ũ
r ṽr − ṽ

r2

)
r
,

ṽt = �ṽ −
(
ũ

r

)
r
+ ũ − ṽ,

(3.7)

on the domain � = [0, 1], where ũ = ru, ṽ = rv , �ũ = ũrr and �ṽ = ṽrr . Homogeneous Neumann boundary condition is 
considered at r = 0. Based on the above notations, the L1-norm of u is defined as

‖u‖L1 =
∫∫

u dxdy =
∫

2πur dr =
∫

2π ũ dr.

Therefore, we use

N∑
j=1

ũ j2πh

to compute the L1-norm of the numerical approximation, where ũ j is the numerical solution at grid point r j , j = 1, · · · , N
and h is the mesh size. Similarly, the L2-norm can be defined as√√√√√ N∑

j=1

ũ2
j2π

h

r

We follow the second-order integrating factor Runge-Kutta [27] method and the scheme can be written as

ũ(1) = e−Aτ

[
ũn − τ

(̂̃un

r

)
r

− τχ

(
̂

ũn
r ṽnr − ṽn

r2

)
r

]
,

ṽ(1) = e−Aτ

[
ṽn − τ

(̂̃vn
r

)
r

+ τ ũn − τ ṽn
]

;
(3.8a)

ũn+1 = 1

2
e−Aτ ũn + 1

2

⎡⎣ũ(1) − τ

( ̂̃u(1)

r

)
r

− τχ

⎛⎝ ̂

ũ(1) r ṽ
(1)
r − ṽ(1)

r2

⎞⎠
r

⎤⎦ ,

ṽn+1 = 1

2
e−Aτ ṽn + 1

2

[
ṽ(1) − τ

( ̂̃v(1)

r

)
+ τ ũ(1) − τ ṽ(1)

]
,

(3.8b)
r

9



H. Guo, X. Liang and Y. Yang Journal of Computational Physics 466 (2022) 111421
where ũ and ṽ are vectors containing the numerical approximations at the grid points, A is the matrix of the � operator, all 
the derivatives with respect to r are regarded as some FD spatial discretizations, ∗̂ is the numerical flux. More details will 
be given in Appendix B. To obtain positive approximations of ũ and ṽ , we employ the positivity-preserving limiter proposed 
in [45,46], detailed implementation will be given in Appendix A, to get positive quantities within the square brackets. 
Moreover, the exponential term keeps the positivity of the numerical approximations. Actually, in [29] the authors proved 
that the exponential term preserves the maximum-principle. The results can easily be extended to keep the positivity of the 
numerical approximations, since the exponential term maps the vector e to e itself, where e is the vector whose components 
are all 1.

4. Blow-up of the derivatives

It is well-known that nonlinear hyperbolic equations may develop shocks in finite time though the initial condition is 
smooth. When the shock appears, the derivative of the discontinuity of the exact solution can be considered as a δ-function, 
and this is called the blow-up of the derivative. In this section, we extend the idea proposed in Section 2 to capture 
the blow-up time of the derivative, i.e. the time when the shock appears. We consider the following scalar hyperbolic 
conservation law in one space dimension subject to periodic boundary conditions

ut + f (u)x = 0, u(x,0) = u0(x), (4.1)

where u0(x) is a function with a bounded variation. The main difficulty we are facing is how to find a suitable norm as 
demonstrated in Theorem 2.2 for the derivatives of the numerical approximations, since they may not be positive and the 
integrals may not be a constant during time evolution. Notice that the total variation of a differentiable function is the 
L1-norm of the derivative. As an alternative, we use the total variation to control the primitive function, and apply the total 
variation bounded (TVB) FD schemes [46] for (4.1).

The definition of total variation of a real-valued function p(x) over [a, b] is

Var(p) = sup
Nx

sup
a=x0<x1<...<xNx=b

Nx−1∑
j=0

|p(x j+1) − p(x j)|, (4.2)

which equals 
∫ b
a |p′(x)|dx when the function is differentiable. Therefore, the total variation can be viewed as the L1-norm 

of the derivative. If the initial condition has a bounded total variation, then the total variation of the exact solution is 
decreasing during time evolution, i.e.

Var(u(·, t2)) ≤ Var(u(·, t1)) for any t2 > t1, (4.3)

which further yields

‖ux(·, t)‖L1 ≤ ‖ux(·,0)‖L1 , ∀ t > 0.

To construct the FD approximations of (4.1), we define x j , j = 1, · · · , Nx as the uniformly distributed grid points of the 
computational domain � with mesh size h. We use un

j for the numerical approximation of the exact solution u(x j, tn), the 
total variation of the numerical solution is measured by

T V (un) =
∑
j

|un
j+1 − un

j |. (4.4)

We construct the approximation of ux , the derivative of the exact solution, at x = x j+ 1
2

= x j + h
2 as

(ux)
n
j+ 1

2
≈ un

j+1 − un
j

h
(4.5)

and define

‖un
x‖L1 =

Nx−1∑
j=1

∣∣∣∣∣u
n
j+1 − un

j

h

∣∣∣∣∣ · h = T V (un), ‖un
x‖2L2 =

Nx−1∑
j=1

∣∣∣∣∣u
n
j+1 − un

j

h

∣∣∣∣∣
2

· h.

In this paper, we would like to construct u to be TVB, namely

T V (un+1) ≤ T V (un) + Mτ or T V (un+1) ≤ (1 + Mτ )T V (un), (4.6)

for some constant M . The TVB flux limiter is one of the most effective technique for high-order FD methods [45,46] to obtain 
the total variation stability. In this paper, we will follow the TVB flux limiter proposed in [46] to obtain the boundedness of 
the total variation of the numerical approximations during time evolution, which further implies
10
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Fig. 1. The numerical approximations of density and velocity at t = 0.8 with P1 polynomials and Nx = 160.

‖ux(·, t)‖L1 ≤ C, ∀ t > 0.

Notice that (4.5) is only second-order accurate. Therefore, we can choose k < 1 in Hypothesis 4 in Section 2.
Based on the above analysis, the conditions required in Theorem 2.2 are satisfied. We denote S(N, t) = ‖ux(·, t)‖L2 and 

the numerical blow-up time ηn is also defined as (2.6) or (2.7).

5. Numerical experiments

In this section, we use numerical experiments to demonstrate the convergence of the numerical blow-up time. The 
theoretical analysis can neither guarantee the convergence of the full sequence of the numerical blow-up time nor provide 
the convergence rate of the numerical blow-up time. Therefor, in all the numerical experiments, we check (1) whether the 
numerical blow-up time is getting closer to the exact one and (2) whether the difference between two adjacent numerical 
blow-up time is getting smaller.

5.1. Pressureless Euler equations

Example 5.1. We solve (3.1) with the following initial data

ρ0(x) = 1, u0(x) = sin(x), (5.1)

on the domain � = [0, 2π ]. Clearly, the exact solution is

u(x, t) = u0(x0), ρ(x, t) = ρ0(x0)

1+ u′
0(x0)t

,

where x0 is given implicitly by

x0 + tu0(x0) = x,

and at t = 1, a δ-function appears in the density at x = π .

We use the third order SSP RK method with τ = 0.05h and test the example by using Pk polynomials with k = 1. We 
divide � into N uniform cells. Tables 1 and 2 show the L2-norm of the error between the numerical and exact solutions at 
t = 0.8. We can achieve second order accuracy. Fig. 1 shows the numerical approximations of the density and velocity. We 
observe a large gradient in the velocity and a potential blow-up in the density at x = π .

To calculate the numerical blow-up time, we compute the L2-norm of the numerical approximations of the density with 
respect to time. We take N0 = 10 as the initial resolution and gradually refine the mesh and take N = N02n as the number 
of grid points with n being the level of mesh refinement. Fig. 2 shows the time evolution of the L2-norm of the numerical 
approximations of the density with different values of n (n = 1, · · · , 9), denoted as “sn”. Here a base-10 log scale is used for 
the vertical axis. We observe significant differences among the curves when t is close to 1.
11



H. Guo, X. Liang and Y. Yang Journal of Computational Physics 466 (2022) 111421
Table 1
L1-norm and L2-norm of the error at t = 0.8 between 
the numerical velocity and the exact velocity for Ex-
ample 5.1 with initial condition (5.1).
N L1-norm order L2-norm order

10 · 22 1.01E-01 - 1.32E-01 -
10 · 23 3.59E-02 1.49 6.21E-02 1.12
10 · 24 1.19E-02 1.60 1.99E-02 1.08
10 · 25 3.20E-03 1.89 5.56E-03 1.64
10 · 26 7.98E-04 2.00 1.45E-03 1.84
10 · 27 1.97E-04 2.02 3.66E-04 1.97
10 · 28 4.94E-05 2.00 9.56E-05 1.98

Table 2
L1-norm and L2-norm of the error at t = 0.8 between 
the numerical density and the exact density for Exam-
ple 5.1 with initial condition (5.1).
N L1-norm order L2-norm order

10 · 22 1.01E-01 - 2.08E-01 -
10 · 23 1.00E-02 2.11 1.32E-02 2.19
10 · 24 2.48E-03 2.02 3.32E-03 1.99
10 · 25 6.22E-04 1.99 8.78E-04 1.92
10 · 26 1.57E-04 1.99 2.29E-04 1.94
10 · 27 3.94E-05 1.99 5.85E-05 1.97
10 · 28 9.88E-06 2.00 1.48E-05 1.98

Fig. 2. Log-scaled L2-norm of the numerical approximations for Example 5.1 under different resolutions. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

We compute the numerical blow-up time ηn by (2.6) with τ = 0.05h and different choices of m, and the results are 
given in Table 3. We have the following observations: (1) For fixed m, the larger the C , the better the approximation, 
since the numerical blow-up time is closer to 1; (2) For fixed C , the smaller the m, the better the convergence, and this 
is the same as we expected in Remark 2.6; (3) If m < 4, we can observe convergence of the numerical blow-up time. If 
m = 5, the numerical blow-up time does not converge to 1. This result agrees with Lemma 2.4 since we chose k = 1 and 
m = 2k̃ = 2k+1 = 4 is the threshold. Moreover, since m = 5 yields k̃ = ln2m > 2 which is greater than the designed accuracy 
of the numerical approximation. Therefore, the decay rate of D(n) is faster than that of the error during mesh refinements. 
Hence, we expect ηn → 0 as n → ∞, which can be observed when C = 100. We anticipate a more refined mesh is necessary 
to observe such convergence for larger values of C .

Next, we calculate the numerical blow-up time ηn by (2.7) and the results are given in Table 4, similar observations can 
be obtained.
12
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Table 3
Numerical blow-up time by (2.6) with different values of m and C and under different mesh sizes.
m N 10 20 40 80 160 320 640 1280 2560

1.1 C=100 - - 0.833 0.848 0.891 0.929 0.954 0.971 0.9815
C=1000 - - - 0.911 0.915 0.935 0.955 0.971 0.9817
C=10000 - - - - 0.954 0.956 0.962 0.973 0.9820
C=100000 - - - - - - 0.979 0.980 0.9840

1.5 C=100 - - 0.817 0.833 0.888 0.927 0.954 0.971 0.9815
C=1000 - - - 0.888 0.903 0.931 0.954 0.971 0.9815
C=10000 - - - - 0.939 0.943 0.957 0.971 0.9817
C=100000 - - - - - - 0.967 0.974 0.9820

2 C=100 - - 0.817 0.825 0.884 0.927 0.954 0.971 0.9815
C=1000 - - 0.958 0.872 0.895 0.929 0.954 0.971 0.9815
C=10000 - - - - 0.923 0.935 0.954 0.971 0.9815
C=100000 - - - - - 0.954 0.959 0.971 0.9817

3 C=100 - - 0.801 0.817 0.884 0.927 0.954 0.971 0.9815
C=1000 - - - 0.856 0.888 0.927 0.954 0.971 0.9815
C=10000 - - - - 0.907 0.929 0.954 0.971 0.9815
C=100000 - - - - - 0.939 0.955 0.971 0.9815

5 C=100 - - 0.770 0.801 0.884 0.522 0.365 0.229 0.1198
C=1000 - - - 0.833 0.884 0.927 0.761 0.748 0.5044
C=10000 - - - 0.888 0.891 0.927 0.807 0.782 0.7682
C=100000 - - - - 0.915 0.929 0.954 0.841 0.8183

Table 4
Numerical blow-up time by (2.7)with different values of m and C and under different mesh sizes.
m N 10 20 40 80 160 320 640 1280 2560

1.1 C=100 - - 0.833 0.840 0.888 0.927 0.954 0.971 0.9815
C=1000 - - - 0.888 0.903 0.931 0.954 0.971 0.9815
C=10000 - - - - 0.939 0.943 0.957 0.971 0.9817
C=100000 - - - - - 0.970 0.970 0.975 0.9822

1.5 C=100 - - 0.833 0.833 0.884 0.927 0.954 0.971 0.9815
C=1000 - - - 0.880 0.899 0.929 0.954 0.971 0.9815
C=10000 - - - - 0.931 0.939 0.956 0.971 0.9817
C=100000 - - - - - 0.962 0.964 0.973 0.9820

2 C=100 - - 0.833 0.825 0.884 0.927 0.954 0.971 0.9815
C=1000 - - - 0.872 0.891 0.929 0.954 0.971 0.9815
C=10000 - - - - 0.923 0.935 0.955 0.971 0.9815
C=100000 - - - - - 0.954 0.960 0.972 0.9817

3 C=100 - - 0.833 0.834 0.884 0.927 0.954 0.971 0.9815
C=1000 - - - 0.856 0.888 0.927 0.954 0.971 0.9815
C=10000 - - - - 0.907 0.929 0.954 0.971 0.9815
C=100000 - - - - - 0.941 0.956 0.971 0.9815

5.2. 1D KS chemotaxis model

Example 5.2. We consider the following KS chemotaxis model in one space dimension on the computational domain � =
[−0.4, 0.4]

ut − uxx − (uvx)x = 0,

vt − vxx = u − v,
(5.2)

subject to periodic boundary conditions. The initial conditions are given as{
u0 = 840−84x2 ,

v0 = 420e−42x2 .
(5.3)

The initial data are the one dimensional version of the initial data given in [14], where a blow-up is anticipated. We use 
the second-order centered difference for the diffusion term and the second-order FD methods with positivity-preserving 
flux limiter [45,46] for the convection term. The time integration was also given as the second-order integrating factor 
Runge-Kutta method discussed in Section 3.2. The numerical approximations of u at different terminal time with Nx = 160
grid points are given in Fig. 3. From the figure, we observe a δ-like structure at x = 0. However, it has been proved that the 
blow-up will never happen for chemotaxis model in one space dimension. Therefore, this structure cannot be a δ-function. 
To test this, we compute the L2-norm of the numerical approximations on different grids and the results are given in Fig. 4, 
where a based-10 log scale is applied for the vertical axis and the L2 norm of the numerical approximation under the n-th 
13
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Fig. 3. Example 5.2: numerical approximations of u at t = 5 ∗ 10−5 (left) and t = 1 ∗ 10−4 (right) with positivity-preserving limiter for FD scheme and 
N = 160.

Fig. 4. Log-scaled L2-norm of the numerical approximations for Example 5.2 under different resolutions.

level mesh refinement is denoted as “sn”. We observe that the curves are basically the same if n > 4 (N > 80). Hence this 
is not a blow-up solution.

5.3. 2D KS chemotaxis models

We use the second order FD method given in section 3.2 to solve the 2D KS chemotaxis equations (3.7) on the compu-
tational domain � in polar coordinates. For simplicity, we always assume the solution keeps the same along the angular 
coordinate. Hence � is a one dimensional domain containing the radial coordinate only.

Example 5.3. We choose � = [π, 3π ], χ = 1 and consider the following initial conditions{
u0 = sin2 r

v0 = cos r + 2.
(5.4)

We compute the numerical approximations of u at t = 0.1 and calculate the error between the numerical and reference 
solutions (obtained by the finest resolution) under L1 and L2 norms, and the results are given in Table 5. Clearly, we can 
observe optimal order of accuracy.
14



Table 5
L1-norm and L2-norm of the error at t = 0.1 for 
Example 5.3.

N L1-norm order L2-norm order

24 4.35E-02 - 2.26E-02 -
25 1.18E-02 1.88 5.93E-03 1.93
26 2.38E-03 2.31 1.14E-03 2.38
27 4.55E-04 2.38 2.10E-04 2.44
28 9.90E-05 2.20 4.47E-05 2.23

Fig. 5. L2-norm of the numerical approximation for Example 5.4 under different resolutions.

Next, we test the convergence of the numerical blow-up time proposed in (2.6) and (2.7).

Example 5.4. We take the domain � = [0, 1], χ = 8 and consider the following initial conditions{
u0 = 1000e−500r2 ,

v0 = 10e−500r2 .
(5.5)

We compute the L2-norm of the numerical approximations with respect to time. The initial mesh contains N0 = 10 grid 
points and double the total grid points during mesh refinement with n being the refinement level. Fig. 5 shows the time 
evolution of the L2-norm of the numerical solutions with N = N0 · 2n (n = 4 to 13) grid points, where a base-10 log scale 
is used for the vertical axis and the L2-norm of the numerical approximation under the n-th level of mesh refinement 
is denoted as “sn”. We can see that the curves are basically identical if t < 5 × 10−5, and this agrees with the results 
presented in [8], where the true blow-up time is anticipated to be 5.115 × 10−5. We compute the numerical blow-up time 
ηn by (2.6) with τ = 10−6h and m = 2, 3. The results are given in Tables 6-7. We can observe that the numerical blow-
up time converges to the exact one during mesh refinement. Moreover, we compute the numerical blow-up time ηn by 
(2.7) with m = 2, 3 and similar results can also be obtained from Tables 8-9. Moreover, we conclude that the choice of the 
constant C does not have significant effects on the convergence.

5.4. Burgers’ equations

In this section, we test the convergence of the numerical blow-up time of the derivative.

Example 5.5. We solve (4.1) with initial condition u0(x) = sin(x). The exact solution is given implicitly as u(x, t) = sin(x −ut). 
The initial total variation is V ar(u0) = 4 and the shock appears at t = 1.
H. Guo, X. Liang and Y. Yang Journal of Computational Physics 466 (2022) 111421
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Table 6
The convergence of blow-up time by (2.6) with m = 2 and different constant C .

n 160 320 640 1280 2560

Blow-up time C=100 4.913E-06 5.300E-06 1.465E-05 1.042E-05 1.064E-05
C=1000 - 1.501E-05 1.683E-05 1.453E-05 4.556E-05
C=10000 - - 2.710E-05 3.587E-05 4.564E-05
C=100000 - - - 4.346E-05 4.638E-05
C=1000000 - - - - 4.883E-05
N 5120 10240 20480 40960 81920

Blow-up time C=100 4.917E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=1000 4.917E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=10000 4.917E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=100000 4.921E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=1000000 4.948E-05 5.044E-05 5.089E-05 5.108E-05 5.115E-05

Table 7
The convergence of blow-up time by (2.6) with m = 3 and different constant C .

N 160 320 640 1280 2560

Blow-up time C=100 2.125E-06 4.356E-06 1.263E-06 3.500E-07 1.031E-07
C=1000 - 6.256E-06 1.475E-05 1.034E-05 9.609E-06
C=10000 - - 1.743E-05 1.407E-05 4.556E-05
C=100000 - - 2.939E-05 3.526E-05 4.561E-05
C=1000000 - - - 4.304E-05 4.604E-05
N 5120 10240 20480 40960 81920

Blow-up time C=100 4.917E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=1000 4.917E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=10000 4.917E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=100000 4.917E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=1000000 4.918E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05

Table 8
The convergence of blow-up time by (2.7) with m = 2 and different constant C .

N 160 320 640 1280 2560

Blow-up time C=100 4.425E-06 5.300E-06 1.473E-05 1.089E-05 4.556E-05
C=1000 - 1.501E-05 1.737E-05 1.724E-05 4.558E-05
C=10000 - - 2.914E-05 3.804E-05 4.577E-05
C=100000 - - - 4.543E-05 4.714E-05
C=1000000 - - - - -
N 5120 10240 20480 40960 81920

Blow-up time C=100 4.917E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=1000 4.917E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=10000 4.918E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=100000 4.931E-05 5.043E-05 5.089E-05 5.108E-05 5.115E-05
C=1000000 5.004E-05 5.053E-05 5.091E-05 5.108E-05 5.115E-05

Table 9
The convergence of blow-up time by (2.7) with m = 3 and different constant C .

N 160 320 640 1280 2560

Blow-up time C=100 2.125E-06 4.431E-06 1.438E-06 9.942E-06 9.040E-06
C=1000 9.575E-06 6.750E-06 1.510E-05 1.154E-05 4.556E-05
C=10000 - - 1.942E-05 2.151E-05 4.559E-05
C=100000 - - 3.521E-05 3.960E-05 4.585E-05
C=1000000 - - - - 4.751E-05
N 5120 10240 20480 40960 81920

Blow-up time C=100 4.917E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=1000 4.917E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=10000 4.917E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=100000 4.919E-05 5.042E-05 5.089E-05 5.108E-05 5.115E-05
C=1000000 4.934E-05 5.044E-05 5.089E-05 5.108E-05 5.115E-05
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Table 10
L1, L2 norms of the error with TVB flux limiters.

N L1-norm order L2-norm order

25 8.85E-03 - 6.42E-03 -
26 1.16E-03 2.933 8.94E-04 2.844
27 1.47E-04 2.978 1.15E-04 2.962
28 1.84E-05 2.996 1.44E-05 2.991
29 2.31E-06 2.998 1.81E-06 2.998
210 2.88E-07 3.000 2.26E-07 2.999

Fig. 6. L1-norm of the numerical approximation for Example 5.5 under different resolutions.

We apply the ENO3 [42] method with the TVB flux limiter [45,46]. The time integration is given as the SSP RK3 method 
(3.6) with τ = 0.01h. We compute the error between the numerical and exact solutions at t = 0.5. The results are given in 
Table 10. From the table, we can observe optimal convergence rates.

Next, we compute the blow-up time of the derivatives. Fig. 6 shows the L1-norm of the numerical approximations of ux
on different grids. Only the results based on n = 2, 3, 4, 5, 6 are plotted, since the curves for larger values of n are too close 
to 4. Moreover, we also plot the L2-norm of the numerical approximations of ux in Fig. 7.

We choose (2.6) with m = 2, 3, 4 and 5 to compute the blow-up time, and the results are given in Table 11. Since (4.5)
is only second-order accurate, we can only observe convergence from the results for m = 2, 3. Though the convergence for 
m = 3 is quite slow. The results for m = 5 may not converge, since the numerical blow-up time is decreasing, especially if C
is small. m = 4 is the threshold, and it is hard to determine whether the numerical blow time is convergent or divergent.

Moreover, we also use (2.7) with m = 2 and 3 to compute the numerical blow-up time and the results are given in 
Table 12. We can clearly observe that ηn converges to 1, the exact blow-up time, during mesh refinement.

6. Concluding remarks

In this work, we considered the general convection-diffusion equations with blow-up solutions. We proposed two meth-
ods to find the numerical blow-up time by using the L2-norm of the solutions. The convergence of the numerical blow-up 
time can be obtained under some reasonable assumptions. We extended this method to calculate when the shock appears 
for nonlinear hyperbolic equations thanks to the TVB flux limiters. Numerical experiments verified the theoretical analysis. 
Finally, the proposed method can also be used to test whether the equation has blow-up solutions or not.

In the future, we will discuss how to improve the convergence rate of the numerical blow-up time as the current 
algorithm may result in slow convergence. One idea was to use adaptive methods and refine the meshes locally near the 
singularities.
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Fig. 7. L2-norm of the numerical approximation for Example 5.5 under different resolutions.

Table 11
The blow-up time by (2.6) with different values of m.

m N 40 80 160 320 640 1280 2560 5120 10240 20480

2 C=1 - 0.683 0.753 0.808 0.851 0.884 0.910 0.921 0.945 0.9570
C=10 - 0.910 0.899 0.908 0.922 0.936 0.949 0.960 0.969 0.9755
C=100 - - 1.063 0.999 0.979 0.974 0.975 0.979 0.982 0.9858
C=300 - - - 1.119 1.009 0.992 0.986 0.986 0.987 0.9894
C=400 - - - 1.160 1.019 0.997 0.989 0.988 0.989 0.9903

3 C=1 - 0.592 0.651 0.701 0.742 0.775 0.801 0.823 0.842 0.8577
C=10 - 0.830 0.826 0.841 0.861 0.880 0.897 0.910 0.921 0.9302
C=100 - 1.126 0.967 0.933 0.929 0.934 0.942 0.950 0.958 0.9626
C=500 - - 1.179 0.999 0.968 0.961 0.962 0.966 0.970 0.9747
C=1000 - - - 1.034 0.989 0.972 0.969 0.972 0.975 0.9784

4 C=1 - 0.514 0.547 0.572 0.587 0.596 0.601 0.603 0.605 0.6052
C=100 - 1.012 0.912 0.890 0.889 0.896 0.904 0.910 0.915 0.9173
C=1000 - - 1.170 0.979 0.950 0.944 0.946 0.950 0.954 0.9567
C=10000 - - - - 1.011 0.981 0.973 0.972 0.973 0.9753
C=20000 - - - - 1.041 0.992 0.980 0.977 0.977 0.9790

5 C=10 - 0.732 0.719 0.722 0.722 0.713 0.697 0.675 0.648 0.6162
C=100 - 0.961 0.875 0.853 0.852 0.854 0.857 0.850 0.842 0.8320
C=1000 - - 1.021 0.943 0.922 0.919 0.920 0.922 0.921 0.9191
C=10000 - - - 1.052 0.979 0.960 0.955 0.955 0.957 0.9575

Table 12
The numerical blow-up time by (2.7) with different values of m.

m N 40 80 160 320 640 1280 2560 5120 10240 20480

2 C=0.1 - 0.330 0.492 0.633 0.740 0.817 0.875 0.911 0.938 0.9572
C=1 - 0.683 0.745 0.808 0.860 0.899 0.929 0.950 0.965 0.9756
C=10 - 0.910 0.891 0.908 0.928 0.946 0.961 0.972 0.980 0.9858
C=200 - - 1.250 1.035 1.005 0.995 0.992 0.993 0.994 0.9950
C=300 - - - 1.120 1.018 1.002 0.997 0.995 0.995 0.9961
C=400 - - - 1.160 1.029 1.008 1.000 0.997 0.997 0.9970

3 C=1 - 0.606 0.651 0.720 0.786 0.841 0.884 0.916 0.940 0.9572
C=10 - 0.840 0.826 0.851 0.883 0.912 0.935 0.953 0.966 0.9756
C=100 - 1.199 0.967 0.943 0.945 0.955 0.965 0.974 0.981 0.9858
C=500 - - 1.179 1.010 0.985 0.980 0.982 0.985 0.988 0.9910
C=1000 - - - 1.048 1.005 0.992 0.989 0.989 0.991 0.9930
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Appendix A. The positivity-preserving limiter

In this section, we introduce the general parametrized flux limiter proposed in [46,48]. The limiter can preserve the 
global maximum principle while maintaining the high order accuracy of the underlying scheme. In this paper, we will 
introduce the one-dimensional case, and assume the numerical consider the following form

d

dt
u j + 1

h
(Ĥ j+ 1

2
− Ĥ j− 1

2
) = 0, (A.1)

where u j is the numerical approximation at the grid point x j , and Ĥ is the high-order numerical flux. With the third order 
SSP-RK method (3.5), the updated scheme can be written as

un+1
j = un

j − λ(Ĥrk
j+ 1

2
− Ĥrk

j− 1
2
), (A.2)

where λ = τ/h, and

Ĥrk
j+ 1

2
= 1

6
Ĥn

j+ 1
2

+ 2

3
Ĥ (2)

j+ 1
2

+ 1

6
Ĥ (1)

j+ 1
2
, (A.3)

with Ĥ∗ being the numerical flux obtained by u∗
h at each RK stage for ∗ = n, (1), (2), respectively.

The general parametrized flux-limiting procedure proposed in [48] is to modify the flux H̃rk
j+ 1

2
:

H̃rk
j+ 1

2
= θ j+ 1

2
(Ĥrk

j+ 1
2

− ĥ j+ 1
2
) + ĥ j+ 1

2
, (A.4)

where ̂h j+ 1
2
is a low order monotone flux with which the scheme is positivity-preserving, i.e.

0 ≤ un
j − λ(̂h j+ 1

2
− ĥ j− 1

2
).

The limiting parameter θ j+ 1
2
is a number between 0 and 1, and it is defined to ensure

0 ≤ un
j − λ(H̃rk

j+ 1
2

− H̃rk
j− 1

2
). (A.5)

Detailed steps are given in [48] to find the limiting parameters through the inequality (A.5). The basic idea is to find a 
pair (�− 1

2 ,I j
, �+ 1

2 ,I j
) such that any pair (θ j− 1

2
, θ j+ 1

2
) ∈ [0, �− 1

2 ,I j
] ×[0, �+ 1

2 ,I j
] satisfies (A.5). Then the following inequality 

can be obtained:

λθ j− 1
2
(H̃rk

j− 1
2

− ĥ j− 1
2
) − λθ j+ 1

2
(H̃rk

j+ 1
2

− ĥ j+ 1
2
) − �m

j ≥ 0, (A.6)

where we have

�m
j := 0− [un

j − λ(̂h j+ 1
2

− ĥ j− 1
2
)] ≤ 0. (A.7)

Let F j± 1
2

:= Ĥrk
j± 1

2
− ĥ j± 1

2
, next we get the parameter θ j+ 1

2
as follows:

(a) if F j− 1
2

≥ 0, F j+ 1
2

≤ 0,

(�m
− 1

2 ,I j
,�m

+ 1
2 ,I j

) = (1,1);
(b) if F j− 1

2
≥ 0, F j+ 1

2
> 0,

(�m
− 1

2 ,I j
,�m

+ 1
2 ,I j

) = (1,min(1,
�m

j

−λF j+ 1
2

));

(c) if F j− 1
2

< 0, F j+ 1
2

≤ 0,

(�m
− 1

2 ,I j
,�m

+ 1
2 ,I j

) = (min(1,
�m

j

λF 1
),1);
j− 2
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(d) if F j− 1
2

< 0, F j+ 1
2

> 0,

(�m
− 1

2 ,I j
,�m

+ 1
2 ,I j

) = (

�m
− 1

2 ,I j

λF j− 1
2

− λF j+ 1
2

,

�m
− 1

2 ,I j

λF j− 1
2

− λF j+ 1
2

).

The local parameter θ j+ 1
2
is determined to be

θ j+ 1
2

= min(�m
+ 1

2 ,I j
,�m

− 1
2 ,I j+1

). (A.8)

Therefore, the modified positivity-preserving numerical flux will be

H̃rk
j+ 1

2
= θ j+ 1

2
(Ĥrk

j+ 1
2

− ĥ j+ 1
2
) + ĥ j+ 1

2
. (A.9)

Appendix B. The chemotaxis model

We use polar coordinates to rewrite (1.2). For simplicity, we assume the solution is a constant along the angular coordi-
nate, i.e. uθ = 0, then it is easy to check that ux = ur cos θ and uy = ur sin θ . Therefore, we have

rut = (rur)r − χ(ruvr)r,

rvt = (rvr)r + ru − rv,
(B.1)

on the domain r ∈ [0, 1]. Let ũ = ru and ṽ = rv , we can further get

ũt = �ũ −
(
ũ

r

)
r
− χ

(
ũ
r ṽr − ṽ

r2

)
r
,

ṽt = �ṽ −
(
ṽ

r

)
r
+ ũ − ṽ,

(B.2)

where �ũ = ũrr and �ṽ = ṽrr .
Next, we show that the numerical approximations are positive provided �t is small enough. Due to the SSP structure of 

the proposed schemes (3.8), we only need to discuss (3.8a). We consider the following first order time discretization

ũn+1 = e−Aτ

[
ũn − τ

(̂̃un

r

)
r

− τχ

(
̂

ũn
r ṽnr − ṽn

r2

)
r

]
, (B.3a)

ṽn+1 = e−Aτ

[
ṽn − τ

(̂̃vn
r

)
r

+ τ ũn − τ ṽn
]

, (B.3b)

with ∗̂ being the numerical flux with flux limiters discussed in Appendix A. To perform the spatial discretization, we 
denote r j , j = 1, · · · , N , to be the uniformly distributed grid points with mesh size h and r1 = h

2 , rN = 1 − h
2 . The spatial 

discretization of ∗̂r at r j is given as (̂∗ j+ 1
2

− ∗̂ j− 1
2
)/h, where ∗̂ j− 1

2
is the numerical flux at r j − h

2 . In this paper, the high-
order numerical flux is obtained by the third-order WENO FD method with flux splitting [28], and the low-order monotone 
flux is given as the upwind flux with ṽn given as the average of the values at the two adjacent grid points and ṽr given 
by the centered difference. To enforce the homogeneous Neumann boundary condition at r = 0, we take ∗̂ 1

2
= ∗̂ 3

2
. For 

simplicity, we use u for ũ and v for ṽ in this section, and let f (u) = u
r , g(u) = u rvr−v

r2
and h(v) = v

r . Next, we use u j as 
the numerical solution at the jth grid point, likewise for v j . Then we have the following lemma, whose proof follows from 
direct computation, hence we skip it.

Lemma B.1. Suppose un ≥ 0 and vn ≥ 0, then un+1 ≥ 0 under the CFL condition

1 − λa − 2λχb ≥ 0, (B.4)

where a = max | f ′(u)|, b = max |g′(u)|. In addition, we have vn+1 ≥ 0 under the CFL condition

1 − τ − λc ≥ 0, (B.5)

where c = max |h′(v)|.
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